Associate professor
NIE Xin 聂鑫
头像
NIE Xin 聂鑫
Email: nie.hsin@gmail.com

Curriculum Vitae

Employment

2025 - Present       Associate Professor, Shing-Tung Yau Center and School of Mathematics of Southeast University

2021 - 2025            Assistant Professor, Shing-Tung Yau Center of Southeast University

2019 - 2021            Visitor at YMSC, Tsinghua University. 

2015 - 2019            Postdoc at KIAS, South Korea. 

2013 - 2015            Postdoc at University Paris 11, France.


Education

2009 - 2013            Ph.D.(Mathematics), University Paris 6, France. 

2008 - 2009            M.Sc.(Mathematics), University Paris 13, France. 

2004 - 2008            B.Sc.(Mathematics), Tsinghua University.

Research

I am interested in various objects associated to surface fundamental group representations and Higgs bundles, including hyperbolic 2- and 3-manifolds, Teichmüller space, harmonic maps, Lorentzian spacetimes, affine spheres, projective structures, etc.

Honors and Awards

Teaching

Publications

Publications

11. Cyclic Higgs bundles and minimal surfaces in pseudo-hyperbolic spaces. Advances in Mathematics, 436 (2024) 109402

10. (with Andrea SeppiAffine deformations of quasi-divisible convex cones.Proceedings of the London Mathematical Society, (3) 2023;127:35–83.

9. Boundary metric of Epstein-Penner convex hull and discrete conformality. Geometriae Dedicata, 218, 64 (2024).

8. ( with Yunhui Wu and Yuhao XueLarge genus asymptotics for lengths of separating closed geodesics on random surfacesJournal of Topology, 2023; 16; 106-175.

7. (with Andrea Seppi), Hypersurfaces of constant Gauss–Kronecker curvature with Li-normalization in affine spaceCal. Var. PDE , (2023) 62:4.

6. Poles of cubic differentials and ends of convex RP^2 surfaces.  J. Differential Geom., 123 (1) 67 - 140. 

5. (with Andrea Seppi) Regular domains and surfaces of constant Gaussian curvature in three-dimensional affine space.Analysis & PDE. Vol. 15 (2022), No. 3, 643–697.

4. Limit polygons of convex domains in the projective plane. Int. Math. Res. Not.,Vol. 7 (2022), 5398–5424.

3. Entropy degeneration of convex projective surfaces.Conform. Geom. Dyn. Vol. 19 (2015), 318–322. 

2. On the Hilbert geometry of simplicial Tits sets.Ann. Inst. Fourier. Vol 65 No.3 (2015) 1005-1030.

1. The quasi-Poisson Goldman formula.J. Geom. Phys. Vol 74(2013) 1-17.

Ph.D. thesis

  • Théorie quasi-Poisson pour connexions plates, entropie d'ensemble de Tits.   Dissertation at University Paris 6 (2013).