(2022-11-25) 代数与数论讨论班: Yi Ouyang--Unboundedness of Tate-Shafarevich groups in cyclic extensions

发布者:杨璐发布时间:2022-11-22浏览次数:142

丘成桐中心代数与数论组周五讨论班

SEU Yau Center Algebra and Number Theory Weekly Seminar


   为活跃中心学术氛围,促进成员间的学术交流并激发合作,丘成桐中心代数与数论组从2022年10月末开始定期组织周五讨论班。周五讨论将面向代数与数论组、全体中心成员、数学学院研究生及感兴趣的校内外师生。

  2022年11月25日,代数与数论组周五讨论班将由中国科学技术大学欧阳毅教授主讲,报告信息如下。


Title: Unboundedness of Tate-Shafarevich groups in cyclic extensions

SpeakerProf. Yi Ouyang(欧阳毅

Affiliation: University of Science and Technology of China(中国科学技术大学)

Time: 14:00-15:00, Friday, Nov 25th, 2022 (UTC+8, Beijing Time)

Venue腾讯会议/VooV Meeting610-274-748

入会链接https://meeting.tencent.com/dm/QUMvf4mZtXUi

Inviter: Chao ZHANG 张超), Hao ZHANG 张浩)



Abstract
Suppose K is a global field, L/K is a cyclic extension and A/K is an abelian variety. In this talk, we prove unboundedness results of the Tate-Shafarevich groups Sha(A/L) under the following conditions:

(1)if A is fixed and L varies, which gave an affirmative answer to an open problem proposed by Cesnavicius;

(2)if L/K is fixed and either K is a number field and A varies over elliptic curvesor [L:K]=2-power and A varies over principally polarized abelian varieties, which generalize results of K. Matsuno and M. Yu respectively.

This is a joint work with Jianfeng Xie.



Speaker

欧阳毅,中国科学技术大学数学系教授2000博士毕业于美国明尼苏达大学,师从Greg W.Anderson教授。2003年回国在清华大学任职2007入职中科大任教授。在数论与算术几何及其在密码与编码的应用领域发表论文30余篇。与Jean-Marc Fontaine教授合写待出版论著“Theory of p-adic Galois Representations2018年被评为安徽省教学名师曾获宝钢优秀教师奖。


0