报告题目:On the K2 group of algebraic curves and Beilinson’s conjecture
报告人:刘杭 博士
报告人单位:陕西师范大学
报告时间:2019年11月22日,上午10:00-11:00
报告地点:四牌楼校区逸夫建筑馆1502
报告摘要:
The Beilinson’s conjecture is one of the most important conjectures in K-theory and establishes very far reaching relations between algebraic K-theory and the value of L-function at integers of projective algebraic variety over number fields. We explain the Beilinson’s conjecture on K2 of curves. Then we construct families of smooth, proper, algebraic curves in characteristic 0, of arbitrary genus g, together with g elements in K2. We show that those elements are in general independent by a limit calculation of the regulator. Working over a number field, we show that in some of those families the elements are integral.
报告人介绍:
刘杭,陕西师范大学讲师,2015年博士毕业于中国科学院大学,主要从事代数K-理论和数论的研究。研究工作发表在IMRN,Journal of Pure and Applied Algebra,,Proceedings of AMS等国际学术期刊。