李本伶教授学术报告

发布者:卢月发布时间:2019-12-13浏览次数:285


报告题目:Sprays with scalar curvature and related Finsler metrics

报告人:李本伶 教授

报告人单位:宁波大学

报告时间:2019年12月13日,下午14:00-15:00

报告地点:九龙湖数学学院第二报告厅



报告摘要:

A spray on a manifold is a vector field on the tangent bundle, which is closely related to a system of second order differential equations. If a spray can be induced by a Finsler metric, the system of second order differential equations is just the geodesic equation of the Finsler metric. Naturally, Finsler geometry and spray geometry are closely related. In this talk, we will introduce some sprays with scalar curvature including projectively flat sprays. Then some sprays among those can be induced by Finsler metrics will be introduced.


  报告人介绍:

  李本伶,浙江宁波人,2007年毕业于浙江大学数学系,获理学博士学位。现任宁波大学数学与统计学院教授,浙江省数学会常务理事。研究领域为微分几何,主要从事Finsler几何的研究,迄今发表了20余篇SCI学术论文。




0