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1 Introduction

The holographic principle of gravity provides profound insights into both macroscopic and
microscopic properties of black holes in general relativity. Stemming from the Anti de-Sitter
(AdS)/conformal field theory (CFT) correspondence, the entropy of BPS black holes in string
theory admits microscopic interpretations by state counting [1, 2]. The crucial mechanism
that enables these descriptions is the conformal symmetry, which is applied from the AdS
factor in the black hole near horizon geometry. To be specific, these descriptions rely on
a concrete set up of the correspondence based on symmetry analysis in lower dimensions,
which is known as the AdS3/CFT2 [3]. The infinite local symmetries in the 2D CFT help to
determine the physical degrees of freedom in a bulk spacetime with AdS factor. For example,
the asymptotic growth of states determines the entropy of black holes in string theory [4, 5].

For spacetimes without AdS factors, the holographic principle still applies for many
cases. Kerr black holes are typical celestial objects in universe. The holographic aspects of
Kerr black holes have been widely explored both on the gravity side and on the field theory
side. For extreme Kerr black holes, the near horizon region obtained by a scaling procedure
shares the SL(2, R) × U(1) isometry [6]. Under specific boundary conditions, the asymptotic
symmetry analysis shows that this scaling region has enhanced symmetries which are identical
to the local symmetries of a chiral 2D CFT [7–9]. This is known as the Kerr/CFT conjecture,
supported by the evidence that the Cardy formula reproduces the extreme Kerr black hole
entropy [7, 8], and thermal correlators of a 2D CFT match the scalar scattering amplitudes
on an extreme Kerr background [10]. For non-extreme Kerr black holes, the near horizon
scaling region disappears and the spacetime geometry carries no explicit conformal symmetry.
However, in this case, scalar perturbations with low frequency on a generic Kerr background
can be shown to satisfy hypergeometric equations in the near region radial direction, which
are manifestly invariant under global conformal transformations [11]. This hidden conformal
symmetry is intrinsic to the Kerr background and governs the dynamics of the scalar field
on it, which is reflected from the facts that the black hole entropy is reproduced form the
Cardy formula and the scalar scattering amplitudes coincide with thermal correlators of a
2D CFT [11, 12]. Further more, a two copies of Virasoro algebra, which is the symmetry
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algebra belongs to a 2D CFT, can be explicitly built in the covariant phase space near the
horizon bifurcation surface of a generic Kerr black hole [13].

In this paper, we will analysis the holographic descriptions of accelerating Kerr black
holes in the covariant phase space. Black holes with acceleration parameters are also exact
solutions to the Einstein equation with possible electromagnetic fields coupled. Such a
solution is usually known as the C-metric which describes a pair of black holes constantly
accelerating away from each other [14–21]. Physically, the acceleration of black holes is caused
by cosmic strings induced from conical singularities in the solution. We will take a typical
solution to the vacuum Einstein equation in four dimensions into account, which describes a
pair of rotating black holes constantly accelerating away from each other [15, 18, 19], known
as the accelerating Kerr black hole. Parallel to the stories in the Kerr/CFT, some aspects
of the holographic properties for such solutions have been figured out. At extremality, the
accelerating Kerr-Newman black hole acquires a warped and twisted product of AdS2×S2 near
horizon scaling region, and the asymptotic symmetry analysis can be applies to build a 2D CFT
dual [22]. For slowly accelerating Kerr black holes, the equation of motion for low frequency
scalar perturbations in the near region still possesses hidden conformal symmetry [23]. The
black hole entropy in the accelerating case still matches the result from the Cardy formula.
See [24, 25] for holographic properties of the accelerating black holes in lower dimensions.
One next step is to ask whether the 2D CFT is unique for holographic descriptions of a
generic accelerating Kerr black hole. Following the studying in the non-accelerating case [26],
we take a warped CFT as the possible dual field theory to the accelerating Kerr black hole.

The warped CFT is a two dimensional non-relativistic quantum field theory with warped
conformal symmetries featured by one Virasoro algebra plus one U(1) Kac-Moody algebra [27,
28]. It was initiated from the investigation of the holography of a large class of geometries
with SL(2, R) × U(1) isometry. Many aspects of the properties of the warped CFT have been
uncovered [29–45]. Natural choices of the corresponding gravitational theories are the warped
AdS3 spacetimes, where the asymptotic symmetries can be represented by the Virasoro and
Kac-Moody algebra [46–52]. The near horizon geometry of an extreme Kerr black hole also
endowed with SL(2, R) × U(1) isometry, which can be viewed as a quotient of warped AdS3
with fixed polar angle [7]. So the warped CFT is also relevant to the Kerr black hole. The
Virasoro and Kac-Moody algebra with non-trivial central extensions have been built in the
covariant phase space for a non-extreme Kerr black hole, and a Cardy like DHH entropy
formula of the warped CFT [28] assists to recover the entropy of the Kerr black hole [26]. The
scattering amplitudes of scalar and gravitational perturbations on a generic Kerr background
also have dual warped CFT interpretations [53]. In the present paper, we generalize the
work in [26] to the accelerating Kerr black hole case. We will figure out a possible dual field
theory as the warped CFT by explicitly carrying out the Virasoro and Kac-Moody algebra
with central extensions, and show the matching between the entropy from DHH formula and
the entropy of rotating black holes with acceleration.

This paper is organized as follows. Section 2 reviews the accelerating Kerr black hole
spacetime as well as the hidden conformal symmetry of the Klein-Gordon equation on it.
The global part of the warped conformal symmetry is specified by imposing a constraint in
the momentum space of the scalar perturbation. In section 3, we consider the linearized
covariant charges associate to a set of vector fields. These vector fields are chosen so that the
induced infinitesimal coordinate transformations keep the scalar equation and the constraint

– 2 –



J
H
E
P
0
3
(
2
0
2
4
)
0
5
0

invariant. And their Fourier zero modes coincide with the scaling generators of the conformal
coordinates. The commutation relations of the vector fields form a Virasoro and Kac-Moody
algebra without central extensions. In the covariant phase space, the Dirac brackets of the
covariant charges induced from these vector fields form a warped conformal algebra with
central extensions. Section 4 is for the consistency check for the validity of the warped
conformal symmetries by reproducing the entropy of the accelerating Kerr black hole from
DHH formula. Section 5 is for summary and discussion. In appendix A, we construct another
sector of the Virasoro algebra with central extension, which indicates the known possibility
of a 2D CFT being relevant holographic dual to the accelerating Kerr black hole.

2 Hidden conformal symmetry

The metric of the accelerating Kerr black hole in the Boyer-Lindquist coordinates takes
the following form [18, 19]

ds2 = − Q

Ω2ρ2

(
dt − a sin2 θdϕ

)2
+ P sin2 θ

Ω2ρ2

(
(r2 + a2)dϕ − adt

)2
+ ρ2

Ω2

(
dr2

Q
+ dθ2

P

)
,

(2.1)
where

Ω = 1 − αr cos θ , ρ2 = r2 + a2 cos2 θ ,

P = 1 − 2αM cos θ + α2a2 cos2 θ , (2.2)
Q = (1 − α2r2)∆ , ∆ = r2 − 2Mr + a2 .

The three parameters M , a = J/M , and α are the black hole mass, the angular momentum
per unit mass and the acceleration of the black hole, respectively. This solution of the vacuum
Einstein equation characterises a pair of rotating black holes uniformly accelerating away
from each other under the action of string-like forces represented by conical singularities
along the axis of symmetry. Near the north (θ = 0) and south (θ = π) poles, there are deficit
and excess polar angles which induce the conical singularities

lim
θ→0

2π

sin θ

√
gϕϕ

gθθ
= 2πΘ+ , lim

θ→π

2π

sin θ

√
gϕϕ

gθθ
= 2πΘ− , (2.3)

where Θ± = 1∓ 2αM + α2a2. The black hole outer (+) and inner (−) horizons are located at

r± = M ±
√

M2 − a2 . (2.4)

At r = 1/α, there is an accelerating horizon, which lays far beyond the black hole horizons
when the acceleration is small. The outer horizon area ABH and the surface gravity κH

determine the Bekenstein-Hawking entropy and the Hawking temperature of the black hole
respectively in the following forms

SBH = ABH

4 = 2πMr+
1 − α2r2

+
, TH = κH

2π
=

(r+ − r−)(1 − α2r2
+)

8πMr+
. (2.5)

Now let us first review the massless scalar perturbation on the accelerating Kerr black
hole background and the hidden conformal symmetry appearing in the corresponding solution
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space. Then we will specify the symmetry to a subalgebra which generates the global
warped conformal symmetry by imposing a constraint in the momentum space of the scalar
perturbation. Such constraint is also responsible for the holographic interpretations of the
scalar scattering process in terms of a warped CFT. For a perturbative massless scalar field
Φ, its equation of motion is given by the Klein-Gordon equation

∇µ∇µΦ = 0 . (2.6)

On the accelerating Kerr black hole background, the scalar field equation allows separable
solutions of the form [54]

Φ = (1 − αr cos θ)e−iωt+imϕR(r)S(θ) , (2.7)

where ω and m are the frequency and angular momentum of the scalar field. With this ansatz,
the Klein-Gordon equation can be separated into the radial and angular equations [54]

d

dr

(
Q

dR(r)
dr

)
+
[ (2Mr+ω − am)2

(r − r+)(r+ − r−)(1 − α2r2) − (2Mr−ω − am)2

(r − r−)(r+ − r−)(1 − α2r2)

+ (r2 + 2Mr + 4M2 + a2)ω2 − 2amω − 2α2r(r − M)
]
R(r) = KR(r) ,

(2.8)

1
sin θ

d

dθ

(
sin θ

dY (θ)
dθ

)
−
[

m2

sin2 θ
+ a2ω2 sin2 θ − 2amω − α2(M2 − a2) sin2 θ

]
Y (θ)
P 2

= −KY (θ)
P

,

(2.9)

where K is the separation constant and Y (θ) =
√

PS(θ). To show the hidden conformal
symmetry, we assume the low frequency limit

Mω ≪ 1 , (2.10)

and consider the scalar field equations in the near region

rω ≪ 1 , (2.11)

as usual on the Kerr background [11]. In addition to the non-accelerating case, we also need
to impose further restriction on the acceleration of the black hole as discussed in [23]. We
consider the pair of black holes which are slowly accelerating away from each other such
that the near region is far within the accelerating horizon

α2r2 ≪ 1 . (2.12)

Given these assumptions, α2r2 is well approximated by α2r2
+ in the near region and low

frequency limit. The radial equation (2.8) thus is simplified to have two regular singular
points at horizons r = r±, which takes the form

d

dr

(
∆dR(r)

dr

)
+
[

(2Mr+ω−am)2/k2
+

(r−r+)(r+−r−) −
(2Mr−ω−am)2/k2

+
(r−r−)(r+−r−)

]
R(r) =K′R(r) , (2.13)
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where k+ = 1 − α2r2
+ and K′ = K/k+. This is the hypergeometric equation with solutions

transforming in the representation of SL(2, R), which indicates the existence of hidden
conformal symmetry in the solution space of the scalar field. To explicitly show the symmetry,
it is convenient to invoke the conformal coordinates used in [23]1

ω+ =
√

r − r+
r − r−

e2πTRϕ ,

ω− =
√

r − r+
r − r−

e2πTLϕ− k+
2M

t , (2.14)

y =
√

r+ − r−
r − r−

eπ(TL+TR)ϕ− k+
4M

t ,

where
TR = r+ − r−

4πa
k+ , TL = r+ + r−

4πa
k+ . (2.15)

By using these conformal coordinates, one can define SL(2, R) generators in the following
way [11]

H+ = i
∂

∂ω+ ,

H0 = i

(
ω+ ∂

∂ω+ + y

2
∂

∂y

)
, (2.16)

H− = i

(
(ω+)2 ∂

∂ω+ + ω+y
∂

∂y
− y2 ∂

∂ω−

)
.

These vector fields satisfy the SL(2, R) Lie bracket algebra

[H0, H±] = ∓iH± , [H−, H+] = −2iH0 . (2.17)

With these vector fields and given the near region radial equation (2.13), one can show that
the θ independent part of the scalar field Φ(t, r, ϕ) = e−iωt+imϕR(r) satisfies the Casimir
equation of the SL(2, R)

H2Φ(t, r, ϕ) = ℓ(ℓ + 1)Φ(t, r, ϕ) , (2.18)

where

H2 = −H2
0 + 1

2(H+H− + H−H+)

= 1
4

(
y2 ∂2

∂y2 − y
∂

∂y

)
+ y2 ∂2

∂ω+∂ω− , (2.19)

is the SL(2, R) quadratic Casimir. The eigenvalue K′ of the Casimir operator is assigned to be
ℓ(ℓ + 1). This intuitively indicates that the scalar field with low frequency in the near region
of a slowly accelerating Kerr black hole forms the representation of the SL(2, R) symmetry
with chiral conformal weight ℓ. There is another set of SL(2, R) generators (H̄±, H̄0) which
can be obtained by exchanging ω+ and ω− in the expressions (2.16). Combined with the
unbarred generators, these are known as the hidden conformal symmetries [23].

1We do not remove the conical singularity at θ = π, so there is no Θ− factor present.
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However, in this paper, we are considering the warped conformal symmetries appearing
in the near region. Thus not all the barred generators are legal under this consideration. In
terms of the Boyer-Lindquist coordinates, the zero modes of the hidden conformal generators
can be written as

H0 = i

2πTR

∂

∂ϕ
+ 2i

M

k+

TL

TR

∂

∂t
, (2.20)

H̄0 = −2i
M

k+

∂

∂t
. (2.21)

As the generator H̄0 only has time derivative operation, the eigenvalue of H̄0 hence is
proportional to the frequency ω of the scalar field. In studying the bulk scattering processes
holographically with a warped CFT, we should view the frequency ω of the scalar perturbation
as a fixed constant instead of a variable conjugate to the time t. The evidence can be found
in the context of WAdS/WCFT [34] and Kerr/WCFT [53]. This condition in the momentum
space of the scalar field set the eigenvalue of H̄0 to be a fixed constant. However, the
generators H̄± have non-trivial commutation relations to H̄0, i.e., [H̄0, H̄±] = ∓iH̄±. So
the H̄± operating on the scalar field will change the eigenvalue of H̄0 which is not expected
from a warped CFT interpretation. In other words, taking the warped conformal symmetries
in the near region into account, the allowed global symmetry generators are H0,± and H̄0.
H0,± are generating the SL(2, R) symmetry and H̄0 is responsible for the U(1) symmetry
of the warped CFT.

The global warped conformal symmetry SL(2, R) × U(1) are spontaneously broken to
U(1)×U(1) by the periodic identification of the angular coordinate ϕ, i.e., ϕ ∼ ϕ + 2π. Under
this periodic identification, the conformal coordinates transform as

ω+ ∼ e4π2TRω+ , ω− ∼ e4π2TLω− , y ∼ e2π2(TL+TR)y . (2.22)

Only H0 and H̄0 are invariant under these transformation generated by the U(1) × U(1)
subgroup element

e−i4π2TRH0−i4π2TLH̄0 . (2.23)

In the next section, we will see that an explicit Virasoro algebra plus an U(1) Kac-Moody
algebra with central extensions can be formulated in the covariant phase space of a set of
specific choice of vector fields. The zero modes of these vector fields are proportional to the
unbroken U(1) × U(1) generators mentioned in this section. The Virasoro companioned U(1)
Kac-Moody algebra characterize the local symmetries of a warped CFT. So the results in the
present paper will support the warped CFT possibly being the holographic dual quantum
field description of the accelerating Kerr black hole.

3 Warped symmetries in the accelerating Kerr geometry

The near region SL(2, R) × U(1) warped conformal symmetry of the scalar field on the
accelerating Kerr black hole background is spontaneously broken to U(1) × U(1) symmetry,
which can be viewed as time translational symmetries along

t+ = 2πTRϕ , t− = k+
2M

t − 2πTLϕ , (3.1)
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with energy eigenfunction and eigenvalues taking the forms

e−iωt+imϕ = e−iωRt+−iωLt−
, ωR = 2M2ω − am

k+
√

M2 − a2
, ωL = 2Mω

k+
. (3.2)

The corresponding Hamiltonians are

HR = i
∂

∂t+ , HL = i
∂

∂t−
. (3.3)

In terms of the conformal coordinates (2.14), the Hamiltonians coincide the scaling operators

HR = i

(
ω+ ∂

∂ω+ + y

2
∂

∂y

)
= H0 , (3.4)

HL = −i

(
ω− ∂

∂ω− + y

2
∂

∂y

)
= −H̄0 , (3.5)

which are also related to the zero modes of the warped conformal generators.
Following the discussion in [26], where the warped CFT local symmetries were presented in

the Kerr spacetime, we consider a set of diffeomorphisms induced by the following vector fields

ζ(ϵ) = ϵ(ω+) ∂

∂ω+ + ∂ϵ(ω+)
∂ω+

y

2
∂

∂y
, (3.6)

p(ϵ̂) = ϵ̂(ω+)
(

ω− ∂

∂ω− + y

2
∂

∂y

)
, (3.7)

with functions ϵ(ω+) and ϵ̂(ω+). The form of these vector fields are chosen so that the
induced infinitesimal coordinate transformations will keep the SL(2, R) quadratic Casimir
H2 and the generator H̄0 invariant. Infinitesimally, the vector fields ζ(ϵ) and p(ϵ̂) lead to
the following conformal coordinate transformations

ω+ → ω+ + ϵ(ω+), ω− → ω−, y → y + ϵ′(ω+)
2 y , (3.8)

and
ω+ → ω+, ω− → ω− + ϵ̂(ω+)ω−, y → y + ϵ̂(ω+)

2 y . (3.9)

The SL(2, R) quadratic Casimir H2 (2.19) and H̄0 = i(ω−∂ω− + (y/2)∂y) are invariant up to
the leading order under above transformations. This means that the vector fields keep the
radial equation of the scalar field as well as the eigenvalue of the generator H̄0 invariant. The
vector fields depend on functions of coordinates, which should be viewed as local symmetries
represented from both the dynamics and kinematics of the scalar field. The corresponding
conserved charges of these local symmetries and their commutation relations will be figured
out in the remaining part of this paper. The form of the vector fields (3.6) and (3.7) are
the same as in the Kerr case [26] due to the same expressions of H2 and H̄0. However, the
physical charges will differ from the Kerr case because of the acceleration of the black hole.

The functions ϵ(ω+) and ϵ̂(ω+) are chosen so that the vector fields are periodic un-
der (2.22), which is equivalent to require

ϵ(e4π2TRω+) = e4π2TRϵ(ω+) , ϵ̂(e4π2TRω+) = ϵ̂(ω+) . (3.10)
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To find out the algebras for the above vector fields, the typical choices of these functions
are using their Fourier modes [26]

ϵm = 2πTR(ω+)1+ im
2πTR , ϵ̂n = (ω+)

in
2πTR , (3.11)

where m and n are integers. Define ζn ≡ ζ(ϵn) and pn ≡ p(ϵ̂n), which are the warped
conformal generators in the coordinate space, one can figure out the following corresponding
commutation relations

i[ζm, ζn] = (m − n)ζm+n ,

i[ζm, pn] = −npm+n , (3.12)
i[pm, pn] = 0 .

This is the Virasoro Kac-Moody (VKM) algebra without central extensions. The zero modes
of the VKM algebra are proportional to the zero modes of the warped conformal generators

ζ0 = −i2πTRH0 , p0 = −iH̄0 . (3.13)

Next, we will calculate the linearized covariant charges associated to the diffeomorphisms
induced by the vectors (3.6) and (3.7) acting on the event horizon. The covariant charges
will implement symmetries associated with the diffeomorphisms on a phase space through the
Dirac brackets. The corresponding Dirac brackets are the quantum version of the classical
algebras determined by the vectors now with central extensions and the central charges reflect
the underling quantum degree of freedoms. The variation of the covariant charge associated
to a vector ζ in general relativity has two parts

δQ = δQIW + δQW Z . (3.14)

The first part is the Iyer-Wald charge [55]

δQIW (ζ, h; g) = 1
16π

∫
∂Σ

∗FIW . (3.15)

The co-dimension two surface of integration ∂Σ will be chosen as the horizon bifurcation
surface Σbif . The two-form field FIW has components given by

(FIW )µν = 1
2∇µζµh + ∇µhσ

νζσ + ∇σζµhσ
ν + ∇σhσ

µζν −∇µhζν − (µ ↔ ν) , (3.16)

where hµν is the variation of the inverse metric gµν → gµν + hµν and h = gµνhµν . The
second part is the Wald-Zoupas charge [56]

δQW Z(ζ, h; g) = 1
16π

∫
∂Σ

iζ · (∗X) . (3.17)

The one-form field X is constructed from the background geometry and linear in hµν for the
consistency conditions on the covariant charges. The determination of X is a case by case
formulation which depends on the background geometry under considering. For the black
hole bifurcation surface case, the candidate choice of X is given by [13]

X = 2hν
µΩνdxµ , (3.18)
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where Ωµ is the component of the Há́ȷiček one-form which measures the rotational velocity
of the horizon

Ωµ = qν
µnσ∇ν lσ . (3.19)

Here lµ∂µ and nµ∂µ are the null normal vectors to the future and past horizons respectively,
and satisfy lµnµ = −1. The null parameter of the vectors are chosen so that they are invariant
under the 2π identification of the coordinate ϕ. qµν = gµν + lµnν + nµlν is the induced metric
on ∂Σ. Given the integrability, the covariant charges will form an algebra with Dirac bracket

{Qζn ,Qζm} = Q[ζn,ζm] + Km,n , (3.20)

where the central extension term is given by [57]

Km,n = δQ(ζn,Lζmg; g) . (3.21)

We will specify the charge algebras associate to the classical commutation relations (3.12).
Parallel to the discussion in [26], we define the charge variations associated to the vectors
ζn and pn as

δLn ≡ δQ(ζn, h; g) , δPn ≡ δQ(pn, h; g) . (3.22)

Assuming these charges are integrable and the Dirac brackets are well defined in the sense
that the charge itself can be realized as an operator generating diffeomorphisms on a Hilbert
space, the charge algebras can be divided into three sectors with possible central extensions.
One is the Virasoro sector

{Ln, Lm} = (m − n)Lm+n + Km,n , Km,n = δQ(ζn,Lζmg; g) . (3.23)

Next is the Kac-Moody sector

{Pn, Pm} = km,n , km,n = δQ(pn,Lpmg; g) . (3.24)

Finally there is possible central term in the mixed sector

{Ln, Pm} = mPm+n + Rm,n , Rm,n = δQ(ζn,Lpmg; g) . (3.25)

To figure out the central terms, we will use the conformal coordinates (2.14). The surface of
integration ∂Σ is the black hole horizon bifurcation surface Σbif , which is the intersection
of the future and past horizons. In the original Boyer-Lindquist coordinates, the future
horizon is located at r = r+, t ∈ (0,∞) and the past horizon is located at r = r+, t ∈ (−∞, 0).
These are mapped to ω− = 0 and ω+ = 0, respectively. So the bifurcation surface is at
ω+ = ω− = 0. Near this co-dimension two surface, in terms of the conformal coordinates,
the black hole metric (2.1) can be expanded as

ds2 = F+−
y2 dω+dω− + Fyy

y2 dy2 + Fθθdθ2 + ω+ F−y

y3 dω−dy + ω−F+y

y3 dω+dy

+ O((ω+)2, ω+ω−, (ω−)2) , (3.26)
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where

F+− =
4(r2

+ + a2 cos2 θ)
(1 − αr+ cos θ)2k+

,

Fyy = 16J2P sin2 θ

(r2
+ + a2 cos2 θ)(1 − αr+ cos θ)2k2

+
,

Fθθ =
r2

+ + a2 cos2 θ

(1 − αr+ cos θ)2P
, (3.27)

F−y = −2(8πJ)2TR(TL + TR) + 32πJa2TR(k+ − P ) sin2 θ

(r2
+ + a2 cos2 θ)(1 − αr+ cos θ)2k3

+
,

F+y =
−8(4πJ)2TL(TL + TR) + 8

[
4J2 + 4πJa2(TL + TR) + a2(r2

+ + a2 cos2 θ)
]
sin2 θ

(r2
+ + a2 cos2 θ)(1 − αr+ cos θ)2k3

+

+
64π2a4 [T 2

L(2k+P + 2k2
+ − k+ − 3) + TLTR(k+P + k2

+ − k+ − 1)
]
sin2 θ

(r2
+ + a2 cos2 θ)(1 − αr+ cos θ)2k5

+

−
8a4k2

+(k2
+ − 1) sin4 θ

(r2
+ + a2 cos2 θ)(1 − αr+ cos θ)2k5

+
.

The null normal co-vector and vector of the future and past horizons are chosen respectively as

lµdxµ = y
−2TL

TL+TR dω− , nµ∂µ = −y
2TL

TL+TR ∂ω− . (3.28)

Note that the y dependent factors are set for the periodicity under identifications (2.22). An
observation made in [13] is that the integrations on the bifurcation surface with metric (3.26)
have non-vanishing contributions coming from the simple poles in ω+ and the relevant
integral has a part of the contribution

∫ e4π2TR ω+
0

ω+
0

(ω+)−1+ i(m+n)
2πTR dω+ = 4π2TRδm,−n . (3.29)

The integral is performed near the reference point ω+
0 when ω+ → 0. Taken this into account

and using the functions (3.27), the variation of the charge along ζm on the bifurcation surface
associated to ζn receives the following two contributions

δQIW (ζn,Lζmg; g) = i
(
(4π2T 2

R)m + m3
)

δm,−n

×
∫ π

0
dθ

√
FyyFθθ(2F+− + F−y − F+y)

16F+−

= 2i
J

k2
+

TR

TL + TR

(
(4π2T 2

R)m + m3
)

δm,−n , (3.30)

δQW Z(ζn,Lζmg; g) = i
(
(4π2T 2

R)m + m3
)

δm,−n

×
∫ π

0
dθ

√
FyyFθθ [2(TL − TR)F+− − (TL + TR)(F−y − F+y)]

32(TL + TR)F+−

= i
J

k2
+

TL − TR

TL + TR

(
(4π2T 2

R)m + m3
)

δm,−n . (3.31)
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The central extension term in the Virasoro sector is determined by adding up the above
two parts. The linear term in m can be absorbed into the zero mode of the generators
and we are left with

Km,n = i
J

k2
+

m3δm−n . (3.32)

The variation of the charge along pm associated to pn contains the following two parts

δQIW (pn,Lpmg; g) = −imδm,−n

×
∫ π

0
dθ

√
FyyFθθ(2F+− − F−y + F+y)

16F+−

= −2i
J

k2
+

TL

TL + TR
mδm,−n , (3.33)

δQW Z(pn,Lpmg; g) = imδm,−n

×
∫ π

0
dθ

√
FyyFθθ [2(TL − TR)F+− − (TL + TR)(F−y − F+y)]

32(TL + TR)F+−

= i
J

k2
+

TL − TR

TL + TR
mδm,−n . (3.34)

Adding up these two parts gives the central extension term in the Kac-Moody sector

km,n = −i
J

k2
+

mδm,−n . (3.35)

Finally, the two parts of the charge variation along pm associated to ζn take the forms

δQIW (ζn,Lpmg; g) =
(
(2πiTR)m + m2

)
δm,−n

×
∫ π

0
dθ

√
FyyFθθ(F−y − F+y)

16F+−

= − J

k2
+

TL − TR

TL + TR

(
(2πiTR)m + m2

)
δm,−n , (3.36)

δQW Z(ζn,Lpmg; g) = i
(
(2πiTR)m + m2

)
δm,−n

×
∫ π

0
dθ

√
FyyFθθ [2(TL − TR)F+− − (TL + TR)(F−y − F+y)]

32(TL + TR)F+−

= J

k2
+

TL − TR

TL + TR

(
(2πiTR)m + m2

)
δm,−n . (3.37)

These two parts cancels with each other which gives vanishing central term in the mixed sector

Rm,n = 0 . (3.38)

In deriving the central terms, the Wald-Zoupas counter-term with the Há́ȷiček one-form (3.19)
is essential. There are two main motivations for this choice of the counter-term. One is that
the central terms derived solely from the Iyer-Wald charge depend on the temperature of
the dual warped CFT. The Wald-Zoupas counter-term makes the central terms temperature
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independent. Second is that it can eliminate the mixed central term from Ln and Pm bracket
which is also expected from the canonical form of the warped conformal algebra. Putting the
three sectors together, the charge algebra of (3.22) induced from (3.12) can be expressed as

{Ln, Lm} = (m − n)Lm+n + i
J

k2
+

m3δm,−n ,

{Ln, Pm} = mPm+n , (3.39)

{Pn, Pm} = −i
J

k2
+

mδm,−n .

This is known as the warped conformal algebra consists of a Virasoro algebra and a U(1)
Kac-Moody algebra with the central charge c and the Kac-Moody level k being

c = 12 J

k2
+

, k = −2 J

k2
+

. (3.40)

The point to emphasize here is that although the conformal coordinates (2.14) are introduced
to make the global warped conformal symmetry manifest when the acceleration parameter α

is small, the charge algebra presented in (3.39) is exact for α. The conformal coordinates
are valid for finite α in the near horizon region where α2r2 is well approximated by α2r2

+ for
any α in the radial equation of the scalar field. In calculating the variation of the charges in
the near horizon region, we perform a coordinate transformation from the Boyer-Lindquist
type to the conformal one and allow α to take any value smaller than 1/r+. The presence
of the warped conformal algebra suggesting that the accelerating Kerr black hole could be
described holographically in terms of a warped CFT.

4 Black hole entropy from warped symmetries

In this section, we will use the entropy formula derived from the modular property of the
warped CFT to recover the entropy of the accelerating Kerr black hole in (2.5). We choose
the coordinates t+ and t− defined in (3.1) as the finite temperature warped CFT coordinates.
These coordinates are defined on a torus due to the Boyer-Lindquist coordinates t and ϕ

having the following spatial and thermal identifications

(t, ϕ) ∼ (t, ϕ + 2π) ∼ (t + iβ, ϕ + iβγH) , (4.1)

where β = 1/TH and γH = a/(2Mr+) are the inverse Hawking temperature and angular
velocity for the event horizon. So the warped CFT coordinates inherit the following spatial
and thermal identifications

(t+, t−) ∼ (t+ + 4π2TR, t− − 4π2TL) ∼ (t+ + 2πi, t− + 2πi) . (4.2)

The above identifications determines a generic torus where the warped CFT lives on. To
invoke the entropy formula, one can use the modular property of the warped CFT which
manifests as a symmetry in the partition function for swapping the canonical spatial and
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thermal circles. Such a torus with canonical spatial circle can be obtained by a following
warped conformal transformation

t̂+ = − t+

2πTR
, t̂− = t− + TL

TR
t+ , (4.3)

after which the torus (4.2) becomes a canonical one

(t̂+, t̂−) ∼ (t̂+ − 2π, t̂−) ∼ (t̂+ − 2πτ̂ , t̂− + 2π ˆ̄τ) , (4.4)

where

τ̂ = i

2πTR
, ˆ̄τ = i(TL + TR)

TR
. (4.5)

In terms of the canonical torus (4.4), the thermal entropy of the warped CFT takes the
form [26, 28]

S(0|1)(ˆ̄τ |τ̂) = 2πi
ˆ̄τ
τ̂

P̂ vac
0 + 4πi

1
τ̂

L̂vac
0 , (4.6)

where L̂vac
0 and P̂ vac

0 are the vacuum expectation values of the Virasoro and Kac-Moody
zero modes on the canonical torus, respectively. These vacuum values are not independent
since the vacuum state is parameterized by a spectral flowing in the warped CFT, and
they are related through [28]

L̂vac
0 = − c

24 + (P̂ vac
0 )2

k
, (4.7)

where c is the Virasoro central charge and k is the Kac-Moody level. On the canonical
torus, the zero mode L̂0 is the conserved charge associate to the vector ∂/∂t̂+ which is
the rotational Killing vector −∂/∂ϕ of the original metric (2.1) given (4.3) and (3.1). So
this charge is proportional to the angular momentum of the rotating black hole and thus
has vanishing vacuum value

L̂vac
0 = 0 . (4.8)

Substituting the result (4.8) and the central extension parameters (3.40) into (4.7), one can get

(P̂ vac
0 )2 = −J2

k4
+

. (4.9)

Given the vacuum values of the zero modes, the entropy in (4.6) with thermal parameters (4.5)
can be evaluated as

S(0|1)(ˆ̄τ |τ̂) = 4π2 J

k2
+

(TL + TR) = 2πMr+
k+

, (4.10)

which is precisely the thermal entropy of the accelerating Kerr black hole expressed in (2.5).
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5 Summary and discussion

In this paper, we investigate the possible holographic dual to the accelerating Kerr black
hole as a warped CFT. The accelerating Kerr black holes are exact solutions to the vacuum
Einstein equation in four dimensions. These solutions characterize a pair of rotating black
holes uniformly accelerating away from each other caused by the cosmic strings from conical
singularities. Similar to the Kerr black hole, the hidden conformal symmetry applied to low
frequency scalar perturbations in the near region also exists when the pair of rotating black
holes are slowly accelerating. By imposing the constant frequency condition to the scalar
perturbation, the allowed symmetry generators are reduced to that of the global warped
conformal symmetry. To specify the local warped conformal symmetry, we implement a set of
vector fields whose commutation relations form the Virasoro and Kac-Moody algebra without
central extensions. These vector fields are settled according to the forms used in the Kerr
black hole case now with acceleration parameter. They are chosen not from the first principle
but inspired by the invariance of the scalar radial equation as well as the eigenvalue of the
U(1) generator under the corresponding infinitesimal coordinate shifts. These vector fields
should be viewed as local symmetries represented from both the dynamics and kinematics
of the scalar perturbation. It is interesting to find out the consistent boundary conditions
which support the diffeomorphisms induced from the chosen vector fields.

In the covariant phase space of the chosen vector fields, the linearized covariant charges
form the warped conformal algebra consists of a Virasoro algebra and a U(1) Kac-Moody
algebra with central extensions under Dirac brackets. The variations of covariant charges
are calculated by the Iyer-Wald charge mended by the Wald-Zoupas counter-term, which is
introduced to make the cental terms temperature independent as well as vanishing mixed
central term. Since the covariant charges are evaluated near the horizon, in spite of the
global warped conformal symmetry applied to the scalar perturbation in the near region
when the accelerating is slow, the warped conformal algebra with central terms obtained
here is exact for the acceleration parameter of the black hole.

The construction of the warped conformal symmetries indicates that the warped CFT is
possibly relevant for the holographic descriptions of the accelerating Kerr black hole. Invoking
the modular properties of the warped CFT partition function, the thermal entropy of a finite
temperature warped CFT can be determined by the modular parameters and the vacuum
charges of the symmetry generators, which gives a Cardy like DHH entropy formula. This
entropy formula can be used to recover the entropy of the accelerating Kerr black hole, given
the central terms obtained from the covariant charges’ algebra. This is the first consistency
check for the possible warped CFT dual of a accelerating Kerr black hole.

From the warped CFT perspective, the acceleration of the bulk spectime must have some
field theory impacts which distinguish an accelerating Kerr black hole form a single Kerr
black hole. One of the clues can be found from the periods τ̂ and ˆ̄τ of the thermal circle of a
warped CFT defined on a canonical tours (4.5). Given the temperatures TR and TL (2.15),
the canonical thermal periods satisfy the following relation

ˆ̄τ(ˆ̄τ − 2i)
τ̂2 = k2

+ . (5.1)
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The acceleration of the bulk spacetime makes the combination of the canonical thermal
periods on the left hand side of the above equation less than 1. The holographic interpretation
of the bulk acceleration depends on the fully construction of the dictionary between the
accelerating Kerr black hole and the warped CFT. The cosmic strings which induce the
conical defects around the north and south poles in the bulk geometry might introduce heavy
states in the dual warped CFT. These are interesting future topics to explore. This paper
presents a first step to the dictionary at a symmetry level.

Some interesting questions are waiting to be clarified. For example, are those warped
symmetries responsible for the dynamics of the scalar or higher spin perturbations on the
accelerating Kerr black hole background? For a slowly accelerating Kerr black hole, the
radial equation (2.8) at large distance, which approaches to the accelerating horizon, can
be approximately written as

d

dr

(
(r2 − r2

α)dR(r)
dr

)
+
((

(r2
α + a2)ω − am

)2
r2 − r2

α

+ K + 2
)

R(r) = 0 , (5.2)

where rα = 1/α is the accelerating horizon radius. This is a associated Legender equation
which also allows hypergeometric solutions. Is this fact indicates the existing of conformal
symmetries near the accelerating horizon? In appendix A, we attach an alternative construc-
tion of another sector of the Virasoro algebra. So it seems that the underling symmetries
of the rotating black holes depends highly on the choice of the diffeomorphisms taken into
account. One need a first principle guidance from the consistent boundary conditions to pick
out the allowed diffeomorphisms. We leave these topics for future research.

A Another sector of the Virasoro algebra

Consider the following vector field

ζ̄n = 2πTL(ω−)1+ 1n
2πTL

∂

∂ω− + (2πTL + in)(ω−)
in

2πTL
y

2
∂

∂y
, (A.1)

where n is an integer. The commutation relation for the vectors ζ̄n with different n satisfies
the Virasoro algebra

i[ζ̄m, ζ̄n] = (m − n)ζ̄m+n . (A.2)

Define the charge variation associated to the vector ζ̄n as

δL̄n ≡ δQ(ζ̄n, h; g) . (A.3)

Choosing the null normal co-vector and vector of the past and future horizons respectively as

lµdxµ = y
−2TR

TL+TR dω+ , nµ∂µ = −y
2TR

TL+TR ∂ω+ , (A.4)

one can find the charge algebra of (A.3) as the Virasoro algebra with central extension

{L̄n, L̄m} = (m − n)L̄m+n + K̄m,n , (A.5)
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where the central term K̄m,n is given by

K̄m,n = δQ(ζ̄n,Lζ̄m
g; g) . (A.6)

To evaluate the central term, one use the non-vanishing contributions from the simple poles
in ω− on the bifurcation surface. The relevant integral now is

∫ e4π2TL ω−
0

ω−
0

(ω−)−1+ i(m+n)
2πTL dω− = 4π2TLδm,−n , (A.7)

near the reference point ω−
0 when ω− → 0. The variation of the charge along ζ̄m on the

bifurcation surface associated to ζ̄n has the following two parts

δQIW (ζ̄n,Lζ̄m
g; g) = i

(
(4π2T 2

L)m + m3
)

δm,−n

×
∫ π

0
dθ

√
FyyFθθ(2F+− − F−y + F+y)

16F+−

= 2i
J

k2
+

TL

TL + TR

(
(4π2T 2

R)m + m3
)

δm,−n , (A.8)

δQW Z(ζ̄n,Lζ̄m
g; g) = −i

(
(4π2T 2

L)m + m3
)

δm,−n

×
∫ π

0
dθ

√
FyyFθθ [2(TL − TR)F+− − (TL + TR)(F−y − F+y)]

32(TL + TR)F+−

= −i
J

k2
+

TL − TR

TL + TR

(
(4π2T 2

R)m + m3
)

δm,−n . (A.9)

Adding up the above two parts and absorbing the linear term in m into zero mode of the
generators, we get the central term

K̄m,n = i
J

k2
+

m3δm,−n . (A.10)

This leads to another sector of the Virasoro algebra

{L̄n, L̄m} = (m − n)L̄m+n + i
J

k2
+

m3δm−n , (A.11)

with the central charge c̄ being

c̄ = 12 J

k2
+

. (A.12)
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