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1 Introduction and summary

The superconformal indices [1, 2] of four-dimensional N' = 2 supersymmetric field theories
allow for a specialization, known as the Schur indices [3, 4]. They can be viewed as
supersymmetric partition functions on S' x S3 that enumerate the BPS local operators
annihilated by four supercharges. The Schur indices are identified with the vacuum characters
of the associated chiral algebras [5]. For a class S theory they can be viewed as correlation
functions of 2d TQFT on a Riemann surface [3, 6] and the closed-form expressions have
been explored [7, 8]. The Schur indices can be decorated by adding the BPS line defects
wrapping the S! and sitting at a point along a great circle in the S3 [9-14].! They can count
the BPS local operators sitting at the endpoints of the supersymmetric line defects [12],
which we call the Schur line defect correlation functions.

In this paper we study the Schur line defect correlation functions of N = 2* U(N)
super Yang-Mills (SYM) theory that is obtained by adding the mass term for the adjoint

!The decoration can be also achieved by inserting BPS local operators [15-17].



hypermultiplet in the N = 4 vector multiplet.? They involve the fugacity associated to the
adjoint mass parameter related to the R-symmetry so that they can be also understood as
the flavored Schur line defect correlation functions of N =4 U(N) SYM theory. The Schur
index and line defect correlators of A" =4 U(N) SYM theory admit a systematic analysis
based on the Fermi-gas formalism [11, 14, 26-28]. They can be identified with canonical
partition functions of quantum free Fermi-gas consisting of N particles on a circle. We
derive an exact closed-form formula of the line defect correlators via the Fermi-gas method.
They can be expressed in terms of multiple series which generalizes the Kronecker theta
function [29-32]. We refer to it as multiple Kronecker theta series. It can be expanded
with respect to the twisted Weierstrass functions [33, 34]. From the Fermi-gas approach
we further examine the grand canonical ensemble of the Schur line correlation functions.
The grand canonical line defect correlation functions are shown to be expressed in terms
of the generating functions of the multiple Kronecker theta series as well as the multiple
Kronecker theta series themselves. They obey differential equations which lead to recursion
relations of the canonical correlation functions. From our exact formulae, we also study the
large N limits of the Schur line defect correlation functions of N'=4 U(N) SYM theory.
They should encode the spectra of the excitations of the holographic dual AdSy geometry
proposed in [35-43]. We conjecture the exact forms for the large N limit of the 2-point
functions of the charged Wilson line operators and those in the rank-m antisymmetric and
symmetric representations. We find that the 2-point function of the Wilson line operators
in the rank-m symmetric and antisymmetric representation for N'=4 U(N) SYM theory
coincides with the generating function for the Schmidt type partitions, known as the plane
partition diamonds [44, 45] as N — oo and m — oo. This leads to a correspondence
between the fluctuation modes of the holographic dual D5-brane wrapping AdSs x S4,
D5-brane giant or the D3-brane wrapping AdSy x S?, D3-brane dual giant and the plane
partition diamonds.

1.1 Structure

The organization of the paper is as follows. In section 2 we start with the description of the
Schur line defect correlation functions as matrix integrals including symmetric functions in
the integrands. We summarize several useful formulae and properties of symmetric functions.
We argue that in the half-BPS limit the flavored Schur index of N’ =4 U(N) SYM theory
reduces to the measure of the Hall-Littlewood functions. In this limit, the closed-form
formula of the Schur line defect correlators can be obtained in terms of Kostka-Foulkes
polynomials. In section 3 we study the Fermi-gas formulation of the Schur line defect
correlation functions of NV = 2* U(N) SYM theory. We show that the Schur line defect
correlators can be expressed in terms of the multiple Kronecker theta series which generalizes
the Kronecker theta function and that they can be also expressed in terms of the twisted
Weierstrass functions. In section 4 we analyze the grand canonical ensemble of the Schur
line defect correlation functions. We find the exact closed-form expressions of the grand
canonical Schur line defect correlation functions and the differential equations which lead

2See [18-25] for the study of the correlation functions of Wilson loops in A/ = 2* SYM theory on S*.



to the recursion relations of the canonical correlators. In section 5 we investigate the large
N limit of the Schur line defect correlation functions. We discuss the holographic dual
and combinatorial aspects of the large IV correlators. In appendix A we summarize the
notations and definitions of the functions in this paper. In appendix B examples of the
multiple Kronecker theta series and its relation to the twisted Weierstrass function are
shown. In appendix C we present spectral zeta functions with higher orders.

1.2 Open questions

There remain several interesting future works which we do not pursue in this paper. We
expect that they can be addressed by using the closed formulae which we present in
this work.

e The elliptic version of the Cauchy determinant formula plays a central role in the
Fermi-gas analysis of the Schur indices and the Schur line defect correlators. In fact,
there are some sort of generalizations of the Frobenius determinant formula [46, 47].
Also it would be intriguing to generalize our analysis to the cases with other gauge
groups as well as other A/ = 2 supersymmetric gauge theories.

e Upon S-duality of A/ =4 SYM theory the Wilson line operators map to the 't Hooft
line and dyonic line operators. It would be nice to check S-duality of line operators by
reproducing our analytic expressions from the dual descriptions by using difference
operators [48] or/and the monopole bubbling indices [49-53].

e While N' = 2* SYM theory is not conformal, its holographically dual supergravity
background has been investigated [23, 54, 55]. It would be interesting to examine
the ratio of the index to the large N index which can lead to a giant graviton
expansion [56].

o N =2* SYM theory possesses a rich phase structure [21, 57]. The correspondence
between the Schur line defect correlators and the canonical partition functions of
the quantum free Fermi-gas allows for various techniques of the Wigner method
in quantum statistical mechanics. We hope to report the detailed analysis of the
phase structure.

o The half-indices [9, 10, 12, 58, 59] and quarter-indices [58, 60] of ' =4 SYM theory
can be also decorated by the line defects. It would be interesting to explore their
exact formulae and examine their analytic properties.

o The twisted Weierstrass function [33, 34] which appears in the expression of the
Schur index and line defect correlation functions generates the quasi-Jacobi forms [32].
It would be interesting to study the modular properties of the Schur line defect
correlators and their physical implications of the BPS spectra.

e While the unflavored Schur indices are equivalent to the vacuum characters of the
associated vertex operator algebras (VOAs) [5], the unflavored Schur line correlation
functions can be expressed as a linear combination of characters of certain modules



for the VOAs [12]. We hope to investigate the connection to the VOA characters
including the A" = 2 T(SU(N)) SCFTs [61-65] whose Schur line defect correlators are
derived from our formulae by specializing the fugacity.

o Interestingly, the multiple Kronecker theta series which we introduce has a close
relationship to the multiple g-zeta values (¢-MVZs) [66-78] and g-multiple polyloga-
rithms (¢-MPLs) [66, 70, 79], which can enjoy g¢-shuffle relations. Since the algebra
of the line operators in our setup of N' = 2* SYM theory would coincide with the
spherical DAHA [80] (also see [14, 81-83]) as the non-commutative deformation of
the coordinate ring of the Coulomb branch [84-87], it would be interesting to address
it by presenting more general ¢, t-shuffle relations. More detailed investigation would
be an interesting future work.

e The grand canonical line defect correlation functions are conjectured to enjoy a hidden
symmetry [14]. It takes a similar form as the triality symmetry of the grand canonical
correlation function of the Coulomb branch operators in the 3d N =4 U(N) ADHM
theory on S [14, 88]. It would be intriguing to show the hidden symmetry analytically
by further analyzing our exact formulae.

2 Line defect Schur correlators

2.1 Wilson line operators

A Wilson line operator is a non-local operator which is defined as a trace TrrU in a
representation R of a gauge or flavor group of the path-ordered exponential (i.e. holonomy
matrix) U for a given curve L. Let us consider a four-dimensional N' = 4 U(N) SYM
theory on S! x S3. We introduce the half-BPS Wilson line operators which wrap the S and
localize at points in the S2. The supersymmetry can be preserved when the line operators
sit along a great circle in the S3 [12]. Upon a decompactification of the S' and a conformal
map, they map to rays emanating from the origin in R* (see figure 1).*> When the two line
operators are inserted at the north and its anti-counterpart at the south poles on the S3,
they map to the straight line in R*. The origin can preserve two supercharges and support
local operators sitting at a junction of multiple rays.

This setup can decorate the Schur index [3, 4] which can be regarded as a certain
supersymmetric partition function of four-dimensional A > 2 theories on S' x S3. In the
presence of the BPS line operators localized along a great circle in the S® it is interpreted as
a correlation function of the line operators. We refer to it as the Schur line defect correlators.
The Schur line defect correlators are topological in that they do not depend on the distance
between the inserted line operators. While without any insertion of the line operators
the Schur index counts the BPS local operators annihilated by four supercharges, in the
presence of a collection of the BPS line operators along a great circle in the S3, the Schur
line defect correlators would count the BPS local operators living at the junction of the rays
annihilated by two supercharges. For the Schur indices and Schur line defect correlators of

3Unlike straight lines along R in R* they have endpoint. They are also called the half line defects [12].
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Figure 1. The line operators wrapping S* and inserted along a great circle in 3 (left). The rays
emanating from the origin in R* (right). Since they map to one another under the conformal map,
the Schur line defect correlators will count the BPS local operators living at a junction of lines.

N =4 SYM theory, one can introduce a fugacity ¢ associated with the difference of the
Cartan generators of the SU(2)¢c and SU(2) g subgroups of the R-symmetry group SU(4)g.
We call them the flavored Schur indices and flavored Schur line defect correlators. They
reduce to the unflavored ones by setting ¢ to unity. Alternatively, introducing the fugacity
&= q Y242 = ¢2™C this is interpreted as the Schur index of N' = 2* SYM theory whose
mass parameter of the N' = 2 adjoint hypermultiplet is (.

2.2 Line defect Schur correlators

For N =4 U(N) SYM theory the flavored Schur correlation function of the k half-BPS
Wilson line operators Wg,, j =1, - , k% transforming as the representation R; under the
gauge group U(N) can be evaluated from a matrix integral [10]

(Wry -+ Wr ) "W(t;q)

ST IS ) ERL 1 G MU NI IR
NI (qgtig;q)é\fo i1 2mio; Hi;éj (qitQ%;q)oo (q?t_Q%;‘.Ooo j=1 J

where the integration contour is chosen as a unit torus TV. It is a formal Taylor series in
¢*/? and its coefficients are Laurent polynomial in ¢ with integer coefficients.® Here XR, ()
is a character of the representation R;. Physically, it corresponds to the classical value of
the BPS Wilson line operator whose holonomy matrix is specified by gauge fields along
the S'. We have used a shorthand notation (q%tiQ;q)oo = (q%tQ;q)oo(q%t_z;q)oo. The
correlation function (2.1) is obviously invariant under the transformation

t—t1 (2.2)

under which two SU(2) subgroups of the SU(4) R-symmetry are swapped. In the absence
of the line operators, the flavored Schur line defect correlator (2.1) reduces the flavored
Schur index ZV™V). The exact closed-form of the flavored Schur index is explored in [28].

4While the Schur line defect 2-point functions (i.e. k = 2) for N/ = 4 SYM theory have been studied
in [10, 11], we consider more general Schur line defect correlation functions.
®We follow the same notation and definition in [28, 58] for the flavored Schur index of A" = 4 SYM theoy.



2.3 Symmetric functions

The characters of the representations under the gauge group appearing in the matrix
integral (2.1) is presented as certain symmetric functions in gauge fugacities o;.

The Wilson line operator W,, with charge n € Z in U(N) SYM theory is specified by
the character given by the n-th power sum symmetric function in N variables

pa(o) = >0 (2.3)

The generating function for the Wilson line operators W,, with charge n is

i i S 0 1
P(s;o) =) pp(o)s" = = s log —— . (2.4)
— —1-s0; s ieq (1 —s0y)

The Wilson line operator W« in the rank-k antisymmetric representation is described
by the character given by the k-th elementary symmetric function

6k(O') = Z 031045 "« Ojy, - (25)

1<i1 <ia << <N

The generating function for the Wilson line operators Wiy in the antisymmetric represen-
tation reads

00 N
E(s;o) = Z er(o)st = H(l + s504). (2.6)
k=0 i=1

The elementary symmetric function can be expressed as a specialization of the Schur
function sy (o)

€k(0') = S(lk)(O'). (27)

The Wilson line operator Wy, in the rank-k symmetric representation for U(N) SYM
theory is characterized by the complete homogeneous symmetric polynomial of degree k in
N variables

hi(o) = Z T Oy =+ Oy (2.8)

The generating function for the Wilson line operators W) in the symmetric representation is

00 N
H(s;o) = Z hi(0)s* = H 1 —130-' (2.9)
k=0 i=1 ¢

The complete homogeneous symmetric function can be expressed as a specialization of the
Schur function sy (o)

hi(o) = s@y(0)- (2.10)



2.3.1 Newton’s identities

Newton’s identities state that

k
kew(o) =Y (1) ep—i(o)pi(0). (2.11)
i=1
It implies that
r 1
ex(o) = (—l)kfr P (0)™ (2.12)
where the sum is taken over all possible partitions A of k = Y7_; \im; with Ay > Ao >
-+« > A\p. Similarly, it follows that
k
khk(U) = th,i(U)pi(U). (2.13)
i=1
Hence we have
r 1
h = —— . (o)™ 2.14
)= I sryon @ (214)

As each of families {px(0)}, {ex(o)} and {hg (o)} generates the ring of symmetric polynomials
as a polynomial ring. According to the relations (2.12) and (2.14), the correlation functions
of the Wilson line operators in the rank-k antisymmetric and symmetric representations can
be expressed as linear combinations of those of the Wilson lines with fixed charges n < k.

For example, let us consider the 2-point function of the Wilson line operators in the
conjugate representations R and R

<WRW§>U(N)

1wy i (819),, (45:9),
2T gy (a0 550) (a3 800)

Xr(0)xz(0),  (2.15)

N (gzt22; )
where x7(c) = xr(0™!). According to the relations (2.12) and (2.14) we have

(Wiaz) Wegay) )

1
= 1 [(W1W1W_1W_1>U(N) _ 2<W1W1W_2>U(N) + <W2W_2>U(N)}, (2.16)
U(N
(WioyWigg) "™
1
= 1 [(W1W1W_1W_1>U(N) + 2<W1W1W_2>U(N) + <W2W_2>U(N)} (2.17)



and

<W(13)W( ))U(N)

1
= [(Wlwlwlw_lw_lw_ VW) (Wi Wi Wi Wi W_o) VW) (W Wy W W_g) VY

+ QW WoW_ W_o)V ) — 19w Wy W W_g) YY) 4 <W3W_3>U<N>] , (2.18)

(W) W(3)> v

1
=3 [(Wlwlwlw_lw_lw_ YW L (Wi Wi Wi Wi W_o) VW) (W, Wy W W_g) VY

IWL WoW_1W_g) V) 4 12(Wy Wy Wy W_g) V) 4 <W3W_3>U(N>] . (2.19)

2.3.2 Irreducible power sum symmetric functions

Let A = (A1, A2, ,Ar) be a partition of weight |A\| and I = {1,2,--- ,k — 1} a set of
integers. Given the partition A and the set I we consider a decomposition I = @;_; I; with
the conditions I; N I; = () and |I;| = ;. We then recursively define irreducible elements of

products of k power sum symmetric functions pp,, -, Pn._1s P—ny——ny_, DY
p{nlv"'7nk—17_n1_"'_nk—1}
= pn1pn2 o Png_ 1 P—ni—no——np_q

_ . 2.20
Z 2 Z p{Zu)eIl M) D er, )T Dmet D@ ery "Z<a>} (2.20)

I=1 A=Ay Ar) {Tnye

Here the sum ) (I, I} is taken over all the possible combinations of subsets of integers.
For example, we have

p{nl,—nl} :pnlp—nla (221)

P{nin2,—ni—na} = PniPnaP-ni—n2 — Pini,—ni} = P{na,—n2} = P{ni+nz,—n1—na}s
(2.22)
Pinina,ns,—n1—na—n3} = PniPnePnsP—ni—ns—ns — P{ny,—n1} — P{na,—n2} — P{ns,—ns3}
~ Plnitno,—ni—n2} ~ P{nitng,—ni—nz} ~ P{natnz,—na—nsz}
~ P{ni+na+ns,—n1—na—ns} = P{ni,n2,—n1—n2} = P{nins,—ni-ns}
~ P{nanz,—n2—n3} ~ P{ninotnz,—ni1—n2—nz} ~ Plna,nitns,—ni—na—ns}

(2.23)

— P{n3,n1+4n2,—n1—na—nz}-

For £ > N the products of power sum symmetric functions corresponding to the k-point
functions can be decomposed into a sum of products which have at most N power sum



symmetric functions corresponding to the 2-, 3-, ---, N-point functions and a constant
term. It follows that

pmpnz o Png_1P—ni—ng——np_q

_NZ —i)!S(k,N—i+1)

+Z > Z p{Z<1>€11n«l)f"vz,«r)eh"i(rw*ZZ:lZim)ga"i(a)}’ (2.24)
J=LA=(A1, ) {I1,, 1

IAl=4,
r<N-1

where S(n, k) are the Stirling numbers of the second kind. According to the relation (2.24),
the k-point functions of the Wilson line operators in U(/N) SYM theory for k > N can be
built up from the 2-, 3-, ---, N-point functions.

For example, for N = 2 the partitions with a single row only contribute in the sum.
They are A = (A1) = (j) with 1 < j < k — 1 and correspond to the 2-point functions. Hence
the k-point function of the charged Wilson line operators in U(2) SYM theory can be simply
decomposed into a sum of the 2-point functions according to the following relation:

PniPng = Png_1P—ni—ng—-—ngp_1
k—1

=2(=S(k,2) + S(k, 1)) =+ anjp—nj + Z Pnj, +nj,P—nj, —nj,
Jj=1 J1<j2

+ -+ o E pnj1+nj2+“‘+njk_2p_nj1 LAY D I L )
J1<je<-<Jk-2

+ Dnj, +njy+oetng, P—njy —njy——ny, - (2.25)
The k& = 3,4 and 5-point functions of the charged Wilson line operators read
(W, Wiy W) -y )V
479 (W, W, VY e (W, W VYD (W Wy ) VP, (2.26)
(W, WnQWn3W7n17n27n3>U(2)

__121U +Z mW—m +Z nri-”yW—m—nJ)U(Q)+<Wn1+n2+n3W—n1—n2—n3>U(2)7

1<J
(2.27)
<Wn1 Wn2 WnB W”M W—’Vll —n2—n3—n4g >U(2)
4
_2SIU(2) +Z<an anz + Z nzl +TL12 nzl 7”12>U(2)
=1 11 <i9
+ Z nzl +niy+nig W_nil Ny —MNig >U(2) + <Wm1 TNy +N45 NG, W_nil Ny —Mijgz —Miy >U(2) .
11 <t2<13
(2.28)

For N = 3 the sum is taken over the two types of partitions with » = 1 and r = 2, which
are A = (A1) and (A1, \2) corresponding to the 2- and 3-point functions respectively. The



k-point function can be written as a sum of the 2- and 3-point functions by using the

following relation:

PniPng - Png_1P—ni1—ng—-—np_1

= 3(25(k,3) — S(k, 2) + S(k, 1))

+ Z Z p”<1>+"<1)+ n ) P— L0 T T )
N=Ti i) Y bY

k—1

—i—Z Z Z Z p{z n(1),ZA2 na =2 Ty (2.29)

J=1 00 <0 () (1> i <2 iq a=1 g a=lsva=1 )
A A =i <. <’L <-- <z

For k£ = 4 one finds that

<Wn1 WnQ WnB W_Tbl —n2—ns >U(3)

2
= 18IU(3)+Z<WM W* 3)+Z ni+n; nz*n]>U(3)+<Wn1+n2+n3an1*n2*n3>U(3)

=1 1<j
3
+Z<Qﬂmwn] w—ni—n]‘>U(3) +Z Z <wnignnjl +nj, Qﬂ_nl —nz—n3>U(3)7 (2'30)
i<j i=1 j1#£4,joF1
’ ]ljl <]322
where
(20, 20,20, )T
2
= <Wn1Wn2W—n1—n2>U(N) - Z(WniW—ni>U(N) - <Wn1+n2 W—n1—n2>U(N) (2‘31)
i=1

is the irreducible part of the 3-point function. The numerical coefficient of the U(3) Schur
index in (2.30) is computed from the relation (2.29) as 3(25(4,3) — S(4,2) + S(4,1)) = 18.
For k£ =5 we have

<WmWn2Wn3Wn4W_m —na—ng—ng) OO

U(3 U 3) U(3
= 1087 U“‘Z Wn,Won,) ®) 4 Z n21+n12W—nil—ni2> ®)

i=1 11 <12
U(3) U(3)
+ Z ml iy +nig W*ml —Nijy—MNig > + (Wml Ny N5 +N4, W*nil Ny —Miz —Miy >
11<12<13
4
U@3 U(3)
+ Z <ani1 QB”Q w‘”il _”i2> @ + Z Z <wni1 wniz +nig QB_"H _"i2_”i3>
11 <tg i=1 i9<1i3
19711
137101
U3
+ Z mmmm-&-nz-&—ns-l-m mm—nz n2—n3z— n4> ®)
U3
+ Z N4y N4y n1+n2+n3+n4—ni1 —MNiy m—m—nz—ns—m) ( )' (2'32)

11 <19

~10 -



Again the numerical coefficient of the U(3) Schur index is fixed from (2.29) as 3(25(5, 3) —
S(5,2) +5(5,1)) = 108.
2.4 Half-BPS limits

When we keep q := ¢'/2t? fixed and take ¢ to zero, the Schur index reduces to the half-BPS
index. In this limit the matrix integral (2.1) reduces to

1#£] - o
(Wgr, - WRk> 1BPS =N %H 2?_5;1 7£3(§ - Ujlg H XR (2.33)
z,j j=1

The resulting integral (2.33) defines an inner product of the symmetric functions

1,90 N|]{H 221?;1 :#(Slq;% flo)g(a™). (2.34)

It can be viewed as a g-deformation of the Hall inner product. With respect to the inner

product (2.34) the Hall-Littlewood functions Py (o;q) are orthogonal

1

(Px(0;9), Pu(0™,q)) = Y (2.35)

where

(a5 q)Nfl()\) ngl(CI; Cl)mj(A)
(1—q)¥

and m;(\) is the multiplicity of the integer i in the partition A. In the absence of line

defects the matrix integral (2.33) reduces to the half-BPS index

vy = (2.36)

vy _ 1
3BPS  (qiq)n

Consider the 2-point function of the Wilson line operators where the characters are given

z

(2.37)

by the Schur functions

doy iz (1-3)
1 2mio; I, (1 _ q%)

WA Lok = f H sx(0)8.(0 ). (2.38)

Since the Schur functions can be decomposed in terms of the Hall-Littlewood functions
= Kx(a)P.(o;9), (2.39)
v

where K),(q) is the Kostka-Foulkes polynomial [48], the matrix integral can be formally
evaluated from (2.35) as

Ko (9) Ky (q)
<WW)1( )y _ A p L . (2.40)
A 3 BPS EV: HnNzll(V)(l —qn) szl Hn;(l )(1 —q")
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3 Fermi-gas formulation

In [28] the closed-form expressions for the Schur index of N' = 2* U(N) SYM theory are
presented by means of the Fermi-gas method. In this section we extend the analysis to the
Schur line defect correlation functions.

We redefine the flavor fugacity by replacing t with &€ = ¢~1/2t2 = €2™¢ which is associated
with the N' = 2* deformation due to the mass parameter for the adjoint hypermultiplet.

We define a new function

O(x;q) = > (~1)'a"2g" 2" 2iin
(z2 —273) H 1—¢™)(1 - 2¢™)(1 — 2~ ¢). (3.1)

Then the matrix integral (2.1) can be rewritten as

(Wr, - Wr,) "™ (&)
— (_1)]\751\[2/27{ N o 0'(10)Y TLic; 0(5:50)0(2 < q)
N! loi|=1 ;-7 2Ti0; IL; 9(%‘_5—2; )

k
H xR, (). (3.2)

Corresponding to (2.2), the integral (3.2) is invariant under
E—q ¢l (33)

According to the Frobenius determinant formula [34, 89, 90]

i s Tligy O 71q Pluge 39 _ H(u’qll det F(v;w ', u; q), (3.4)
[L,; 0(viw; "5 q) O(ull; viw; " q) @i
where
0(xy; 1q)3
Fo,y:q) = (zy; ) (43 9)5 (3.5)

0(z;9)0(y; q)

is the Kronecker theta function [29-32], one can express (3.2) as

(W, - Wr,) "M (& q)
_ DYV fluig) N do o\
B NU  g(ugN; )7{01|:1H27T102 C}JtF ;j& ;U5 q j];[lmj(a). (3.6)

In the absence of the characters xz; in the integrand of (2.1) it reduces to the Schur index

and the normalized function

1 N do, ;
Z(N;u; &q) = — Ldet F | =&Y u 3.7
( ,U,f, Q) N' fjailzl Zl_[ 27TZO'z 1,7 (%5 aua q> ( )
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can be regarded as a partition function of free Fermi-gas with N particles on a circle which
is characterized by a one-particle density matrix

pol,a’su; &5 .g) = F(e2™70¢ ! us & q)
2mip(a—a’) ¢—p
e
D (3:8)
PEZL q
where 0 < o = %loga < 1 is the periodic position operator and p is the discrete
momentum operator.
In order to generalize the Fermi-gas method to the Schur line defect correlation functions,
we use the idea in [11, 91]. We consider matrix integrals

k
2N (N {55} 06 ) =N f{m 11‘[ de tF( ) 11 ECsj;0 (3.9)

271'201 i,
and

{n;}
DN (s} ) = N'?{WH

where E(s;;0) and H(s;;0) are the generating functions (2.6) and (2.9) for the characters

) k
det F’ <az§_1,u; q) HH(sj;U"f), (3.10)
O‘j j=1

27T10'Z 1,5

of the antisymmetric representations and those of the symmetric representations. These
matrix integrals play a role of generating functions for the correlation functions of the
Wilson line operators. For example, the correlation functions of the Wilson line operators
Wy, of charges {n; }le can be obtained from the coefficient of the term with H§:1 s; in
either of (3.9) or (3.10). Besides, for £k = 2 and (n1,n2) = (1, —1) one can extract the 2-point
functions of the Wilson line operators Wy (resp. W) in the rank-I antisymmetric
representations (resp. symmetric representations) by reading off the term including s} s
n (3.9) (resp. in (3.10)).

We observe that the introductions of the products 9?:1 Y, E(sj;0™) in (3.9) and
H;?:l My, H(sj; 0") in (3.10) replace the density matrix (3.8) with

P ([ Y o, €q) = XS (s} a)polos i uEq) (3.11)
and
P ({ss b as 0w 6 q) = XTI ({5} adpo(on 0w, ), (312)
where we have defined position-dependent matrices
k
X%m,nz,---,nk)({sj}; a) = H E(sj; €2™mae), (3.13)
j=1
and
k
XI(}UJLQ nk) {33} H 27””]0‘) (3.14)

In other words, the matrix integrals (3.9) and (3.10) are now identified with the canonical
partition functions of free Fermi-gas with N particles whose density matrices are given
by (3.11) and (3.12).
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3.1 Spectral zeta functions
3.1.1 Multiple Kronecker theta series
We define a function

1 —lip—lin;

qu+nz )lz ’

QUL {nikui&q) - ZH

p€EZ =0

(3.15)

where ng = 0. As this function generalizes the Fourier series (3.8) of the Kronecker theta
function by including mult-index obeying certain condition, we call the function (3.15)
multiple Kronecker theta series.

The multiple Kronecker theta series (3.15) plays a role of elementary blocks of the
Schur indices and line defect correlators. If k = 0 and ly = [, the multiple Kronecker theta
series (3.15) becomes the spectral zeta function associated with the density matrix pg of
the Fermi-gas for the Schur index of NV = 2* U(N) SYM theory [28]

Zy(u; & q) = Tr(pp)
_g_p !
= Q0w &q) =) ( > : (3.16)

= 1 — ugP

We can write the spectral zeta function for [ =1 as

3 ~1,,
Zilwsia) = D —p m (1) (3.17)
and
—(1-1) -1 ql—lgl
(i €50) = {53 2 sl - |Pk+1[ 1 ](M (3.18)

for | > 2 with u = €™ and ¢ = €>™". Here s(n, k) are the Stirling numbers of the first
kind and

9
Py M (2,7) = ‘Z - nH (3.19)

is the twisted Weierstrass function [34] where Y’ stands for the sum that omits n = 0 if
(6,6) = (1,1).

In [28] it is shown that the Schur indices of N' = 2* U(N) SYM theories can be
expressible in terms of the spectral zeta functions (3.16).

More generally, the multiple Kronecker theta series (3.15) can be written in terms of
the twisted Weierstrass function by means of the partial expansion into the function (3.16).
It is convenient to define functions

: (3.20)

(3.21)

— 14 —



The function (3.20) transforms as

(M)gq-16-1 = —(—N)ge

= """ (n)ge (3.22)
under (3.3). It follows that
(1)11 1
[n), = = (3.23)
/ (n)q,l
Sen _ — 5 e
(n)%ﬁ + (_n)q,ﬁ - - (n)qé — 1 52 q _f ) (3.24)
(n)quJ qz —q 2
(”)2,5 (_”)g,g (”)2,5
+ = — , (3.25)
(Mger  (—n)gen  (N)gea(n)gesn
where
1 n n n
=qz2§"(q2&" —q 287"). 3.26
e ( ) (3.26)
These relations are useful to describe the correlation functions.
Let lpax be the maximal value of the integers {l;}, i = 0,--- ,k for the function

Q{li};{ni};u;€;q). For k > 0 the function Q({l;}; {n:};w;&;q) can be decomposed into
>; li parts, each of which is expressed in terms of the spectral zeta function Q(I;0;u;€;q) =
Zi(u;&;q) with 1 <1 < lpax and the function (3.20).

For example, for K = 1 we have

Q(lo,11;0,n3u5 &5 q)
lo—1 lg+l1
=>. (Hll _1> (~ 1)k eM () Q(ly — k; 036707 5 )
k=0

lh—1
-l k+1lp—1 kal loth
+> ( k ><—1>kq—’mf-’m< n)HOQ( — ;05w €5F 3 ). (3.27)
k=0
Clearly, it follows that
Q1,103 0,713 &5 9) = Qlo, 130, —n, us § q). (3.28)

Several examples are shown in appendix B.
For k = 2 with [p =, [ = lo = 1 one finds that

Q(1,1,1;0,n1,m2;u; €5 q)
[ m—1
m
Z Z Z (71)k+m—1q(m—1)(n1+n2)—k1n1—kgnzg(m—l)(nl—l-nz)
m=1 k=0 ki1+ko= <k; + 1)
X (n1)qe(n2)gre QU —m + 1; 05 u; {T=m+T )
+ (=n)g e (=1 +n2)geQ(1; 0167425 q)
+(—n ) e(=n2 +n1)4£Q(1;0; u; €72 ). (3.29)
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We have

Q(1,1,1;0,n1,n2;u;§59) = Q(1,1,1;0, =ny, no — ny;us & q), (3.30)
Q(1,1,1;0,n1,m2;u; &5 q) = Q(1,1,1;0,m1 — na, —ng;u; & q). (3.31)

Further examples for k£ = 2 are found in appendix B.2.
For general k with [ =1y = -+ =l = 1 the multiple Kronecker theta series (3.15) can
be decomposed as

Q(la alaovnlv 7nk’au7£7Q)

k k

[H Ni)ge + D (—ni)ge(—ni + n])qg}Q(l;O;U;fk“;Q) (3.32)
i=1 i=1 j#i

Likewise, the spectral zeta functions for the modified density matrices (3.11) and (3.12)

can be expressed in terms of the multiple Kronecker theta series (3.15). Noting that

o = e>™ is a translation operator

o "O(p)o" 2mna0( Je 2mina _ O(p+n), (3.33)

where O(p) is some p-dependent operator, the spectral zeta functions can be calculated by
taking traces of normal ordered operators (Xgl/l;z ’nk)(a) p(p)).
We obtain the spectral zeta function associated with the modified density matrix (3.11)

of the form

l
ZiE(n17n27 st ,nk-fl) = T\r (p(E’n‘lvn27 ,nk) )

k
= Ziw&q)+ 205 V({nidiui&9) [ s
=1
k
+ Tz V(s ws &9) T s (3.34)
m>2 =1

where Z;(u;&;9) = Q(1;0;u;&; q) which is independent of the fugacities {s;} encodes the
Schur index without any insertion of the line operators. It is nothing but the spectral zeta
function (3.16) for the density matrix pg. The function Zl(;];_l) which appears in the terms
with []; s; captures the k-point functions of the charged Wilson line operators. It is given by

k

Z5 Vnbw&o =1> Y Y QU {Naipwge),  (3.35)

T b =N Y

where

= > na, (3.36)

ax€J;

and each J; is a subset of integers labeling the charged Wilson line operators obeying the
condition

p=sCJoC---CJ;CI={1,2,--- k—1}. (3.37)
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Here A C B allows the case A = B while A C B excludes it. Since J; is empty, Ny, is 0.
For example, when k > 5 the subsets

Ji =0, Jo ={1,2}, Js =1{1,2,3,4,5} (3.38)
are allowed so that we have
Ny =0, Ny, =n1 + na, Ny, =n1 +na2 + ng + ng + ns. (3.39)

The other terms Z (- 1)({nj} u;&;q) in (3.34) encode the 2-point functions of the
Wilson line operators transformlng in the rank-m antisymmetric representations. The
k-point function of N/ = 2* U(N) SYM theory can be constructed from the spectral zeta
functions ZlE(nl, <o np_q) withl=1,---  N.

Similarly, the spectral zeta function specified by the other modified density matrix (3.12)
takes the form

!
Zf (mn, - sgmy) = Tr( T nk))

k

= Zi(u; & q) + Zl(ffl)({m}; u; &) [

i=1

k
+ Tz Vnidiws & o) TT s (3.40)
i=1

m>2

Again whereas the function Zl(,];_l) appears as a coefficient of the terms with J]; s;, the terms
H;(k-1)
Z

L ({n;}; u; & q) encode the 2-point functions of the Wilson line operators transforming

in the rank-m symmetric representations.

3.1.2 zF

We show several examples of the spectral zeta functions. For simplicity we abbreviate

QULi}; {ni};u; & q) = Q({Li}; {ni}).

For k = 2 the spectral zeta functions for the modified density matrix (3.11) are

ZE (n) = (1+35182)Q(1;0), (3.41)
ZE(n) = (145252)Q(2;0)+25152[Q(2;0)+Q(1,1;0,n)], (3.42)
Z§ (n) = (1+51s3)Q(3;0)

+3(s152+5252) [Q (3:0)+Q(2,1;0,n)+Q(1,2;0 n)} (3.43)

77 (n) = (1+5153)Q(4;0
+4(s185+5753) [Q(4:0)+Q(3,1;,0,) +Q(2,2;0,1) +Q(1,3;0,m)|

+522 [6@(4 0)+8Q(3,1;0,n)+10Q(2,2;0,n)

+8Q(1,3;0,n)+4Q(1,2,1;0,n,2n)], (3.44)
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Z3 (n) = (1+5153)Q(5;0)
+5(s152+5153) | Q(5;0)+Q(4,1:0,n) +Q(3,2;0,m)
+Q(2,3;0,7)+Q(1,4;0,n)|
+(5152+5152)[10Q(5 0)+15Q(4,1;0,n)+20Q(3,2;0,n)+20Q(2,3:0,n)

+15Q(1,4;0,n)+5Q(2,2,1;0,n,2n)+10Q(1, 3, 1;0,n,2n)+5Q(1,2,2;O,n,2n)].
(3.45)

These spectral zeta functions with & = 2 are the blocks of the 2-point functions. In

particular, we have

Z} (n) = 1Q(1;0) +z§ Q(l — k, k;0,n). (3.46)
k=1
For k = 3 we get
Z{ (n1,ma) = (1 + s15253)Q(1;0), (3.47)
ZE(n1,n2) = (1 + s35352)Q(2; 0) + 2515953 [Q(2; 0)+Q(1,1;0,n1)
+Q(1,1;0,m5) + Q(1,1;0,n1 + ), (3.48)
ZE(n1,m9) = (1 + s35353)Q(3;0)
+ 3(s15253 + 575553) [Q(S; 0) + ZQ: Q(2,1;0,n;) + Q(2,1;0,n1 + na)
2 - 2
+37Q(1,2;0,1) + Q(1,2:0,m1 +na) + > Q(1,1,1;0,m4, ny + nz)] .
i=1 =1

(3.49)

These spectral zeta functions are associated to the 3-point functions. The terms which are
associated with s;sos3 describe the 3-point functions of the charged Wilson line operators.

They are given by

)

-1 2
210 =1QU0) + 13- " QU — ki, ks 0,m5) + QU — ki, ks 0,m1 + o)
k=11i=1

2
+l Z ZQ(l_kl _k27k17k2;07ni7n1+n2)~ (350)
0<k1,k2 =1
2<ky+ko<l—1

For k = 4 we find
ZE (n1,mp,n3) = (1 + 51528354)Q(1;0), (3.51)
Zy (n1,ma,m3) = (1 + s7s35357)Q(2;0)

+ 281823354 |:Q(27 0) + Q(l’ 1; 07 nl) + Q(L ]-7 0,712) + Q(lv 1a 07 TL3)

+ Q(la 17 07 ni + n2) + Q(lz 17 07 ni + Tlg) + Q(17 17 07”2 + n3)

+Q(1,130,m1 + na + ng)] (3.52)
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Z3 (n1,mz,m3) = (1+ s7s35353)Q(3; 0)
3
+ 3(51528354 + 571555357) [Q(B; 0) + Z Q(2,1;0,n;)

i=1

3
+ 303 Q(2,1;0,m; 4 nj) + Q(2,150,ny + ny + n3)

i=1i<j

3
+ ZQ(L 2:0,m;) + Y Q(1,2;0,n; +ny) + Q(1,2;0,n1 + no + ng)

1<J
3
+ZZQ 1,1,1;0,n4,n; +n5) + Y Q(L,1,1;0,n4,n1 + ny + ng)
i=1 j#i i=1
+3Q(1,1,1;0,n; + njymy + g + Tl3):|. (3.53)

i<j
The 4-point functions of the charged Wilson line operators are captured by

Z8) = 1Q(1;0) +J[Z{ZQ — e,k 0,m) + 30 QU k, k30, + ) }] (3.54)
i<j

k=1 1=1

3
+l[ > {ZZQ(l—kl—k2;/€1,k2;0,m,ni—|—nj)
0<k1,k2 =1 j;ﬁz
2<k1+ka<l—1

3
+ > QL — k1 — ks ki, ko3 0,m4,m1 + g + ng)

i=1
+ZQ(Z — k1 — ko, k1, k2;0,n; +nj,n1 + no -I-ng)}
i<j
3
+1 > D> QU — k1 —ky — k3, ku, ko, k3; 0,14, 15 + 1, n1 + ng + n3),

0<ky,k2,k3 =1 j#i
3<k1+ko+k3<l—-1

which appears in the terms associated with s1s95354.

3.1.3 zH

The 2-point function of the Wilson line operator in the symmetric representation and that
in its conjugate representation can be obtained from ZZH with £ = 2. We find

Z shsh (3.55)

Z shk Q(2;0) + Z2(k — 1+ 1)Q(1,1; O,ln)] , (3.56)
=1
2 ) = is’fs’g [WQ(&O)
k=0
k
+ Z Bk -1+ 13(’“ — 12 02,150, 0) + Q(1,2:0, 1)}
+ Z D2 Bk =L+ 1)k =+ 2QLL10,12,1)]. (3.57)

11=20<12<1y

See appendix C for more examples.
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3.2 Closed-form formula

Let A = (AT A5 --- A"") be a partition of integer N with Y ;_; m;A\; = N and A\; > Ao
> > A > Ag1 = 0. Then we have

5 —r : 1 mi
ZaW {sihw&a) = (DY [ 20 e o) - (358)

i

Now we can obtain the closed-form expressions for the Schur line defect correlation functions.
Since the Schur line defect correlation functions are independent of the variable w, it is
convenient to fix u to some special value.

When we set u to £€V/2, the canonical partition function of the Fermi-gas is identical to
the Schur index up to the overall factor (—1)V+1¢N 2/, Besides, this specialization yields
the closed-form expressions for the Schur line defect correlators as multiple series which
generalize the nested sum of the Schur index obtained in [28§]

LQ_Z'_ Dpi
Al fv P (3.59)
prpnez [im (1 — &2 gP7)

p1<---<pN

It is closely related to the multiple g-zeta values (¢-MVZs) [66-78] and g-multiple polyloga-
rithms (¢-MPLs) [66, 70, 79]. We leave more detailed investigation of the relation to these
functions to future work.

When we choose u as £, the multiple Kronecker theta series Q(1;0;u;&; ¢) vanishes

Q(1;0;u =€) = 0, (3.60)

which can lead to the expression with fewer terms. For simplicity, here and in the following
we omit the dependence on & and ¢ to write Q({l;}; {ni}; u; & q) as Q({Li}; {ni}; ).

Plugging the expression (3.34) or (3.40) for the spectral zeta function into (3.58) with
u = &N/2 and reading off the coefficients of the terms with H?:l sj, we find that the k-point
function of the Wilson line operators of charges {ni}le is given by

<Wn1 WnQ T Wﬂk>U(N)

_ ¢N?/2 o\l i 1
=¢ Z( n Z:r[l)\:m(mz)'

A

T k
X[ZmiAiQ(Ai§0§§g)mil > > Q({li}%?:l;{NJi}f:l;g%)
=1

p=11l1+lp=X; {NJz‘ }?:1

<I1 Q(Aj;o;gg)mj], (3.61)
J#i

where 3% n; = 0. The terms for p = 1 in the third sum yield NZY®), Thus we find an
exact closed-form expression for the k-point function of the charged Wilson line operators
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in terms of the Kronecker theta series

<Wn1 an e Wnk>U(N)

. 1
— NZVW) 4 §N2/2 Z(_l)r+1 H —
A o A (m)!

T k
X[me@w;o;f’i)mrl XY QN Led)

=1 p>lll+"‘lp:)\i {NJi}le

,
« [LQ0: 0;515)””] . (3.62)
J#i

The multiple Kronecker theta series (3.15) can be decomposed into the spectral zeta
functions (3.16) which are given by the twisted Weierstrass functions from the relations (3.17)
and (3.18). This implies that the Schur line defect correlation functions can be expressed in
terms of the twisted Weierstrass functions. Since the general expression is quite complicated,
we give several examples in the following.

3.3 Charged Wilson line correlators

3.3.1 U(2) 2-point functions

Consider the 2-point functions of the Wilson line operators with charge +n and with —n.

For N/ = 2* U(2) SYM theory the 2-point function can be constructed from ZIE / H(n) and
E/H Lo

Zy ' (n). It is given by

(WaW_)V® = =2 [Q(150:€)? = Q(2:05€) — Q(1, 1:0,m; €|

=€ [Q(2:0:6) + Q(1,1;0,m:€)] (3.63)
where we have used Q(1;0;¢) = 0. Since the N/ = 2* U(2) Schur index is given by [28]
2 2
U@) _ S L0 ¢ — § q§
1% = 2-Q(2:0:6) = S Py l ) ] (€, 7)
B £—P1—P2+2 -
__p%;ez (1 —¢&gr)(1 = &gm)’ (364
p1<p2

we have
(W W_r)V® =273 4 £20(1,1;0,m;€)

gfp17p2+2

B R PP P N [T M

p1,p2€7Z P1,p2€Z
p1<p2 p2=p1+n

When n = 0, Q(1,1;0,n) reduces to Q(2;0) so that the 2-point function (3.65) becomes
479 From (3.17) and (B.1) we have®

2

Q1 1;0,m5u;£59) = €2[(n)g + (—n)ge | P2 F

11 (v, 1), (3.66)

SThe expression (3.66) is valid for n # 0.
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where u = €2™. The expression (3.66) which captures the 2-point function of the charged
Wilson line operators is invariant under the transformation (3.3).

It follows from (3.64), (3.65) and (3.66) that the 2-point function (3.65) is expressed in
terms of the twisted Weierstrass functions
2
(WaW-) ) = £, qu ] (Cr) - pn [
3

—¢P, lqﬂ (R N

1
-n 2
—Lin [’5 ] Cn. @)
q2 —q 2 1
where & = ¢2™¢. Here we have used the relation (3.24).

A simple calculation also leads to another closed-form of the U(2) 2-point function

m m m—1
28" —q 2™ g
= (3.68)
(5 2 Q)oo(q2§2; Q)oo meZ\{0,n} q%f — q_%f_l L—qgm
This can be simply obtained from the Schur index of N' = 2* U(2) SYM theory of the form
m _m m—1
7U@) _ (¢:9)% qzE" —q 2 g 2
62 000 (%% D 2= gbe — gt d 1-q"

(3.69)

1

by modifying the domain of integers in the sum. By setting £ to ¢~ 2 we get the unflavored
2-point function

<an_n>U(2) ﬂ)

-

meZ\{0,n} L=qm

m—1 n—1
mq 2 ng 2
=2 - :

m>0 L=qm L=q"
3.3.2 U(3) 2-point functions

(3.70)
The 2-point function for N' = 2* U(3) SYM theory can be obtained from the three spectral
zeta functions, ZF/H(n), Zf/H(n) and Zf/H
<an_n>U(3)
£3

(n). We first set u = £3/2. It is then given by
2

(Q(1;0;€7)% = 3Q(1;0;€)Q(2; 0 €2) +2Q(3; 03¢ 2)

—2Q(1;0;€2)Q(1,1;0,1;€2) + 2Q(2,1;0,7m; €3) + 2Q(1,2; 0, n; E%)]
Since the U(3) Schur index is given by [28]

(3.71)
U0 = 22 [Q(1;0:65)° - 3Q(1:0:61)Q(2: 05¢F) +2Q(3; 0:)
Z g—m—pz—pﬁ% 572)
- P1,p2,P3€L (1_ggqm)(l_ggqu)(l_ggqp3)7 .
P1<p2<p3
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we can rewrite the correlation function (3.71) as

<an_n>U(3)

=370 4 & [—Q(l; 0;62)Q(1,150,n;£7) + Q(2,1:0,1;€2) + Q(1,2; 0, n; g%)}

S E IR YD YD YD »

P1,p2,P3€L  p1,p2,p3€L P1,p2,P3€L P1,P2,P3€EZ
p1<p2<p3 p3=p2+n p2=p1,p3=p1+n p2=p1+n,p3=p1+n

g=P1—P2-Ps+3

X . 3 5 . (3.73)
(1—&2gP)(1 —&2gP2)(1 — £2gP3)
The charge dependent term
& [-Q10:€2)Q(1, 130,m:€2) + Q(2,1;0,m:€2) + Q(1,2:0,m; 2] (3.74)

is invariant under the transformation (3.3).

Setting the fugacity u to &, we can find another expression with fewer terms. In this
case, (1;0;&) vanishes so that the Schur index can be simply written as [28§]

7U6) — _53 e QB0 (3.75)

where 0(x) := 0(x; ¢) and the 2-point function is given by

UB) _ _ ¢ (&)
) “E)

=3790) ¢

(Q(3;0:6) + Q(2,1:0,m:€) + Q(1,2;0,m; )|

0(¢)
(%)

Q(2,1;0,1;€) + Q(1,2;0,m:6) . (3.76)

When n = 0, both Q(2,1;0,n;¢) and Q(1,2;0,n;&) reduce to Q(3;0;&) so that the
U(3) 2-point function (3.73) becomes 9ZVG),

From (3.17), (3.18), (3.76) and (B.4) it can be expressed in terms of the twisted
Weierstrass functions

<an_n>U(3)

3 2¢3 2.8
- 5290((?) [P2 lq f ] (¢, ) +2P3 lq f ] (¢, 7)
_oe (Mg QSS] . 2% F:ﬁ] ] ]
2§(n)q£2’1P2 [ RS (n)qm(n)q@’lpl (G- (3.77)
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3.3.3 U(4) 2-point functions

Next consider the 2-point function for N' = 2* U(4) SYM theory. In this case there are four
spectral zeta functions which contribute to the correlator. If we set u to £2, we find

W)U = - [Q(1:0:€)1 — 6(1:0:620(2: 0:62)

+3Q(2;0;€%)* +8Q(1;0;£%)Q(3; 0;€%) — 6Q(4; 0;67)
—3Q(1;0;€%)*Q(1,1;0,n; %) + 3Q(2;0)Q(1, 150, 7; %)
+6Q(1;0;6%)Q(2,1;0,n;€%) + 6Q(1;0;£%)Q(1,2;0,n; %)
—6Q(3,1;0,n; %) —6Q(2,2;0,n; %) —6@(1,3;0,n;§2)]. (3.78)

As the N/ = 2* U(4) Schur index is given by [28§]
VW = —i (Q(1:0:€%) - 6Q(1;0:€2)%Q(2: 0; €
+3Q(2;0;6%)2 + 8Q(1;0;€2)Q(3: 0: €) — 6Q(4;03¢%)]

£P1mp2 —p3—pa+8

— , (3.79)
pm%mez (1—&2gr1)(1 — &2gP2)(1 — £2¢P) (1 — £2¢P1)
P1<p2<p3<p4
it can be expressed as
(WaW_p >U(4)
8
=47 £ 1Q0:27Q(1, 10,1 + Q2 0:£)Q(1,1:0,m: )
+ 2@(1,0,5 )Q(2,1;0,n;€%) +2Q(150;6%)Q(1,2; 0, 1; £7)
—2Q(3,1;0,n;6%) = 2Q(2,2;0,m:€?) — 2Q(1,3;0,m;¢?)|
B 1 1
(x5 T 4 X - ¥ - ¥
P1,P2,P3,P4EL P1,P2,P3,P4EZL P1,P2,P3,P4EZL P1,P2,P3,P4EZL P1,P2,P3,P4EL
P1<p2<p3<p4 pa=p3+n P2=p1,P4a=p3+n p3=p2,pa=p2+tn p3=p2+n,pa=p2+n
D VD D D S
P1,p2,P3,P4E€EZL P1,P2,P3,P4E€EL P1,p2,P3,P4E€ZL
P2=p1,p3=P1,pa=p1+n  P2=p1,p3=p1+n,pa=p1+n  p2=p1+n,p3=p1+n,ps=p1+n
57p1fp27p37p4+8
. 3.80
A= 21— Eqm)(1 - Egr)(1 — E2477) (3:50)

Again the charge dependent terms in (3.78) are invariant under the transformation (3.3).

Specializing the fugacity u to &, we have alternative expression

U@ _ 4gua . € 0E) 0. .
(WaW=) U0 =420 4 5525 [Q(2:0:9Q(1, 10,3 )
—2Q(3,1;0,m:6) — 2Q(2,2;,0,m;6) — 2Q(1,3;0,m:6)].  (3.81)
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From (3.17), (3.18), (3.79) (3.81), (B.8) and (B.9) we can write the correlation function in
terms of the twisted Weierstrass function

<Wann>U(4)
5 2712 34
- & ) [35132 [‘ﬂ (C:)—2P, [qf

4 4
(¢.7)—6P; [qgﬁ ] (¢, 7)—6Py [qsg ] (¢ 7)

6 0(¢3) 1 1
n 2 2 n 2¢4 2¢4
—agt s, qu ] (ot L (G5 (p, [q N ] (om0 ] ()
PR S 5 PO M P
6 (n)qg,l(n)q@,lPQ | (Gm)ree (”)qs“,l(”)ga,lpl 1)) (352

3.3.4 U(2) 3-point functions

Next consider the 3-point functions of the Wilson line operators which carry charges ny, no
and ng obeying the Gauss law condition ny + no + ng = 0.

For N' = 2* U(2) SYM theory the 3-point function can be obtained from the spectral
zeta functions Zf/H(nl, ngy) and ZQE/H(nl, ny). With the specialization u = £, we find

<Wn1 W’”»Z W_nl —n2 >U(2)
= -&[Q(1;0;6)% - Q(2:0;¢)
—Q(1,1;0,7156) = Q(1,1;0,19;€) — Q(1,1;0,m1 + 3 €), (3.83)

where Q(1;0; &) = 0. This is consistent with the relation (2.26) and the expression (3.63) of
the U(2) 2-point function. According to the closed-form expression (3.64) of the U(2) Schur
index, we can write it as

<Wn1 WnQ W—’nl —n2 > v@

§—p1—p2+2

2 R PP DI P SRR T ki e M

P1,p2€Z P1,p2€Z P1,p2€Z P1,p2€Z
p1<p2 p2=p1+ni1 p2=p1+n2 p2=p1+ni+n2

3.3.5 U(3) 3-point functions
Consider the 3-point function for N' = 2* U(3) SYM theory. It is produced by three spectral

zeta functions ZlE/H(TL]_,TLQ), Z2E/H(n1, ngy) and Zf/H(nl, ny). By taking u = fg, we obtain
<Wn1 Wh, W—n1—n2>U(3) (3.85)
9
55 3 3 3 3
= 2 [Q(L:0:62)° — 3Q(L:0:62)Q(2:05€7) +2Q(3; 0:67)
2
—2Q(150:€) 3 Q1L 1;0,m::£2) — 2Q(150;€2)Q(1, 1;0,m1 + no; £2)
=1
2 3 3
+2) 0 Q(2,1:0,15;62) +2Q(2, 10,1 +1n2;£3)
=1
2 3 3 2 3
+2) Q(1,20,n:;562) +2Q(1,2;0,m1 +no;£2) + 2 Q(1,1,1;0,n5,m +n2;£2)}~
=1 i=1
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We can rewrite this as
(Wi, W, Wy )V

S FP D D VEENED SR VR SRS v

P1,p2,p3€Z =1 p1,p2,p3EZL P1,P2,P3€EZL =1 pi1,p2,p3€Z P1,P2,P3E€EL
P1<p2<p3 p3=p2+n; p3=p2+ni+nz P2=p1,p3=p1+n; P2=p1,p3=p1+ni+ng
2 2 >
i=1 P1,p2,P3EL P1,P2,P3E€EL =1 P1,P2,P3E€EL
P2=p1+n;,p3=p1+n; p2=p1+ni+nz,p3=p1+ni+n2 p2=p1+n;,p3=p1+ni+n2

5*?1*p2*p3+%
X . . — (3.86)
(1—E&2qP1)(1 —E2¢P2)(1 — £2¢P3)

According to the closed-form expression (3.72) of the U(3) Schur index, we have

2
<Wn1 Wn2W*n1*n2>U(3) = _6IU(3) + Z<WH¢W*M>U(3) + <Wn1+n2W*n1*n2>U(3)
=1
9 2 3
+62 ) Q(1,1,1;0,n,m1 4 12;£2). (3.87)

=1

Unlike the U(2) case, the 3-point function is not only given by the U(3) Schur index and
the U(3) 2-point functions. The remaining term is

2

=1

(M)

§

From (B.10) the term (3.88) can be rewritten in terms of the twisted Weierstrass function as

2
ggZQ(lalvl;Ovnhnl +’I’Z2,§%)
=1
0 2 3] /3
£2 [ZZ +n4)q.c(En1 £ n2) §+Z —n; qg(n])qglP [1] <2C,T>. (3.89)
+ =1 i#]

Note that this term is equal to

2
E% 0(5) ZQ(L 17 1;0,711',711 + n27£)

0(&?) =
2
9
€2 [ZZ £ni)ge(£n1 £ no q£+z 1y qf(”J)qﬁl F ] (¢, 1), (3.90)
+ =1 1#£]
which is obtained by setting u = £ since P [513} ( ¢, 1) = 5):%) and P; { } ¢,1) =

(9()57% Also the term (3.88) is invariant under the transformation (3.3).
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3.3.6 U(4) 3-point functions

For N'=2* U(4) SYM theory the 3-point function can be built up from the four spectral
zeta functions ZIE/H(H1,712), Zf/H(nl, na2), Z;E/H(nl,ng) and Zf/H(nl,ng). With u = &2,
it is given by

<Wn1 Wn2 W—n1 —n2 > v

8
= & |om 0t - 600:0:820(2:0:)
+3Q(2;0;£%)% + 8Q(1;0;£%)Q(3;0; €%) — 6Q(4;0; )
—3Q(1;0;£%)° Q(1,1;0,m;€%) +3Q(2;,0;¢%) > Q(1,1;0,m;?)
n=ni,nz,ni+ns n=ni,nz,n1+nz
+6Q(1;0;6%) > QR L0,mEH)+6Q(1;0:6%) > Q1,20,m;8%)
n=ni,nz,ni1+ns n=ni,nz,ni+n2

—6 > (Q(3,1;0,n:€%) + Q(2,2;0,m;€%) + Q(1,3;0,n; %))

n=ni,nz,n1+nz

2 2
+6Q(1;0) > Q(1,1,1;0,ni,n1 + n2; €2) — 6> Q(2,1,1;0,n4,n1 + ng; )
3 =1

=1
2 2
—6_Q(1,2,1;0,n5,n1 +12;€%) — 6> Q(1,1,2;,0,n4,n1 + n2;§2)1- (3.91)
i=1 =1

While the first five lines contain generalized terms appearing in the U(4) 2-point func-
tion (3.78), the last two lines are particular terms for the U(4) 3-point function. The
correlator (3.91) also can be written as multiple series

(1) 2) (3)
<memW_m_n2>U<4>=( > + D + ) )
P1,P2,P3,P4E€EL P1,P2,P3,P4EL P1,P2,P3,P4EL

g—pl—pz—ps—p4+8

“ A=) (1 - E2g7)(1 — E2g7)(1 — E2g71)°

(3.92)

where

vy Yoy % (3.93)

P1,P2,P3,P4E€EL P1,P2,P3,P4EL
P1<p2<p3<p4
is the sum producing a scalar multiple of the U(4) Schur index,

@)
3 _

P1,p2,P3,p4E€ZL

2 2
1 1 1 1
PO DI - ED DENE-D DEED DR )
t=1 p1,p2,p3,pa €L P1,P2,P3,P4E€EL =1 p1,p2,p3,p4€ZL P1,p2,P3,P4E€EZL
Pa=p3+n; pa=p3+ni+nz P2=p1,P4=pP3+n; P2=p1,p4=p3+ni+nz
2 2
=1 p1,p2,p3,p4€ZL P1,P2,P3,P4EZL =1 P1,P2,P3,P4EZL P1,P2,P3,PAEL
P3=p2,pa=p2+n;  P3=p2,p4=p2+ni+nz p3=p2+n;,pa=p2+n;  p3=p2+ni+n2,ps=p2+ni+n2
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2 2. + 2

i=1 P1,p2,P3,P4E€EZL P1,p2,P3,P4E€EL
P2=P1,P3=P1,P4=P1+N;  P2=P1,p3=P1,P4=p1+n1+n2
2
+2 > + >
=1 D1,p2,P3,p4E€ZL D1,p2,P3,p4E€ZL
P2=p1,P3=P1+N,pa=p1+N;  P2=p1,p3=p1+ni1+n2z,pa=p1+ni+nz
2
+> > + M (3.94)
i=1 P1,P2,P3,p4€EZ P1,P2,P3,p4EZ

p2=p1+n;,p3=p1+n;,pa=p1+n;  p2=pi1+ni+nz,p3=pi1+ni+nz,pa=pi+ni+na

is the sum appearing in the U(4) 2-point function and

3) 2 2
) == > +>( >
P1,P2,P3,P4EL =1 P1,P2,P3,P4EL =1 P1,P2,P3,P4EL
p3=p2+ni,pa=p2+ni+nz P2=p1,p3=p1+ni,pa=pi1+ni+n2
+ 3 + 3 )] (3.95)
P1,P2,P3,P4 €L P1,P2,P3,P4E€EL

p2=p1+n;i,p3=p1+n;,pa=p1+ni+n2 pP2=p1+n;,p3=p1+ni1+n2z,pa=pir+ni+nz

is the sum characterizing the U(4) 3-point function.

The expression (3.91) is reducible in that it contains the terms as a scalar multiple of
the U(4) Schur index and that of the U(4) 2-point function. We find that

(Wi, Wi, W_m_n2>U<4>

= -8z + Z anW—m>U(4) + <Wn1+n2 W—m—n2>U(4)
=1

+£SZ[ Q(1:0:€)Q(1, 1, 130,15, + 123 €2) + Q(2,1, 130,13, my + 713 €2)
+Q(1,2,1;0,mi, 1 +12;€2) + Q(1,1,2:0,m4,m1 + 13 €7)|. (3.96)
By setting u = &£, we get

<Wn1 Wn2 W—m —n2 > v

2
78IU + Z Wy, W_ m> v )+ <Wn1+n2anrn2>U(4)
=1
9 2
58 Z|: 2 1,1,0,n2,n1+n2,§)+Q(1,2,1,0,n1,n1—f—ng,ﬁ)
7,:1
+Q(1,1,2;0,m5,m1 +1; )| (3.97)

To express the 3-point function (3.97) in terms of the twisted Weierstrass function, it suffices
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to rewrite the irreducible part as

9 2
Z[ (2,1,1;0,m5, 71 +19;€) + Q(1,2,150,m4, m1 + ng; &)
z:l

+ Q(17 ]-a 27 Oanivnl + n27€):|

4
:[gz (£ni)q,e(£n1 £ no) 5+Z —n; qg(n])qg} [gl(g,)

i=1 i#j

2
[ZZ +n;)ge(En = n2)q§{ (qﬁ)i”ii("ﬁ”?)cggi(:I:ni)q7§(:|:n1 +n2)q¢
=1

)

£8

+ (En)ge + (En £ n2)ge f + D (—n)ge(n)ge{ (@) (—n) () e

i#]j
64
+ (=ni)ge + (n)q, EH [ (¢,7), (3.98)
where
Cg3:)t (2 — g~ q:Fm:an)’ Cg3) =(2—q" —q ™). (3.99)

3.3.7 U(2) 4-point functions

The 4-point function of the Wilson line operators of charges ni, na, ng and ny is allowed
when the condition ny 4+ ny + ng + ng = 0 holds. So we write ng = —ny — ny — ns.

The 4-point function of the charged Wilson line operators for N' = 2* U(2) SYM theory
can be obtained from the two spectral zeta functions Z{E/H (n1,n2,n3) and Zf/H(nl, N2, n3).
With v = £ it is given by

<WN1WH2W7L3W—7L1 —ng— n3>U @ = _52 [Q(1§0§§)2 - Q(2;05 f)

- ZQ(L 1;0,n:58) — > Q(1,1;0,n; + nyi: &) — Q(1,1;0,n1 + no + ns;é’)}

i=1 1<J
3
=¢° {Q(2; 0:6) + > Q(1,1;0,n:8) + > Q(L,1;0,n; + nj;§)
=1 1<J
+Q(1,1;0,71 + 1y + 1g; )| (3.100)

This is consistent with the relation (2.27) where it is expressible in terms of the U(2) Schur
index and the 2-point functions. We can also write it as

<Wnl WnQ Wn3 W_nl —nz2—n3 > U(Q)

S GIPOIED YD VD S SIS VI

p1,p2€Z =1 pi1,p2€Z ©>j  p1,p2€Z P1,p2€7Z
p1<p2 p2=p1+n; p2=p1+n;+n; p2=p1+ni+n2+n3
§—P1—P2+2

g (1 —&qPr)(1 —&qr2)’ (3.101)

where the first sum leads to 2ZY() and the others produce the U(2) 2-point functions.
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3.3.8 U(3) 4-point functions

For N' = 2* U(3) SYM theory, the 4-point function is given by the three spectral zeta
: E/H E/H E/H

functions Z;" (n1,n2,n3), Zy ' (n1,n2,n3) and Z;

the 4-point function for N = 2* U(3) SYM

(n1,n9,ns). Setting u = fg, we get

(W, Wy, Wong W, iy ) 7 (3.102)
:%[Q(l;o;gg)3—3@(1;0;53)62(2;0;63)%@(3;0;63)
3
—2Q(1;0:6%) 3" Q(1,1;0,n5563) —2Q(1;0:6%) Y Q(1,1;0,m+n;:€%)
i=1 1<jg
3
—2Q(1;0:65)Q(1,1;0,n1 +na+n3;63) 42 Q(2,1;0,m:563)+2 Y Q(2,1;0,m;+1y53)
i=1 i<j

3
+2Q(2,1;0,n1+n2+n3;63)+2 D Q(1,2;0,n56%)+2 > Q(1,2;0,m;+n;3€7)
i=1 i<j

3
+2Q(1,2;0,n1+na+n3;€2) 42> > Q(1,1,1:0,m4,m+n:€3)
i=1 j£i
3 3 3
+2ZQ(L17150a”i7n1+”2+n3§€§)+22Q(171a1;0>ni+nja”1+n2+n3§§§)}~
i=1 i<j
This can be rewritten in terms of the U(3) Schur index, the 2- and 3-point functions as (2.30).
It is given by the multiple series
<Wn1 Wn2 Wn3 W_nl_n2_n3>U(3)
1 2 3
:( Z ()Jr Z ()+ Z ())
p

g—m—m —Ps-i-%

(1—€2gr)(1 — £2gr2)(1 — E2gm)

, (3.103)

1,p2,P3€EZL P1,p2,p3E€EL P1,P2,P3EL
where the first sum

> Woz ow (3.104)

P1,p2,P3EL P1,pP2,P3EZL
P1<p2<p3

generates a scalar multiple of the U(3) Schur index, the second

5 @):(f; YAy Y o+ % (3,105

P1,p2,P3EL 1=1 p1,p2,p3€Z  i<j p1,p2,p3€L P1,p2,p3€EZL
P3=p2=" p3=p2+n;+tn; p3=p2+ni+na+ns
3
i=1  p1,p2,p3€Z i<j P1,p2,P3€EL P1,p2,P3€L
P2=p1,p3=p1+n; P2=p1,p3=p1+n;+n; Pp2=p1,p3=p1+ni+nz2+n3
3
=1 P1,p2,P3€EZ 1<J P1,p2,p3€EZ
p2=p1+ni,p3=p1+n; p2=p1+ni+n;,p3=pi+n;+n;
P1,p2,P3EL )

p2=p1+ni+nz2+nz,p3=pi1+ni+n2+ns3
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yields the U(3) 2-point functions and the third

> Ueyy Y sy ¥

P1,p2,p3€EZ 1=1 j#i P1,p2,p3€EZ 1<j P1,p2,p3€EZ
P2=PpP1+Nn4,P3=P1+N;+n; p2=p1+n;,p3=p1+ni+nz+ns
+Y > (3.106)
i<j P1,P2,P3EL

p2=p1+n;+n;,p3=p1+ni1+n2+n3

gives rise to the U(3) 3-point functions.

3.3.9 U(4) 4-point functions

Similarly, the closed-form expression for the 4-point function for N/ = 2* U(4) can be found
by collecting the four spectral zeta functions. When we set u to &2,

<Wn1 Wn2 WnS W_nl —nz2—ns3 >U(4)

3
= 24IU(4) +Z<an W*nz +Z n;+n; nz*ny>U(4) +<Wn1+n2+n3 W*ﬂ1*n2*n3>U(4)

=1 1<J

3
+Z<wnlm}n3 Qn—ni—nj>U(4) +Z Z <mnimn]‘1 +nj2 QZ]—”1 —n2—”3>U(4)
i<j i=1 j1#i,j2#i
J1<7J2
3
+£SZZQ(]—7 ]-7 17 ]-;O)ni7ni+nj7nl+n2+n3;€2)u (3107)
i=1j#i

where the irreducible parts of the 3-point functions are defined by (2.31). The irreducible
part of the U(4) 4-point function

3
§8 Z Z Q(L 1,1,1;0,n4,n; + nj,n1 + Nz + n3; 52)
i=1 j#i
g—p1—p2—p3—p4+8
PhpQ%}MGZ (1 —&2gPr)(1 — E2gP2)(1 — E2gP3) (1 — E2qp4)’
P2=p1+n;,p3=p1+ni+n;j,
pa=p1t+nit+nz+ns

(3.108)

which is given by the multiple Kronecker theta series can be written as

ZZ (1i)g,e(ni + nj)ge(n1 + n2 4+ n3)ge
i=1 j#i in +nj +n1 +n2 +n3)q52 1

+ (q£2)m (ni)q,f(nj)%ﬁ(nl +ng +ng — ni)%ﬁ} P [iﬂ (2C7 T)

3.109
(n1 +n9g +n3 —2n; + nj)qg’l ( )

in terms of the twisted Weierstrass function.

~ 31—



3.4 Antisymmetric Wilson line correlators

While the correlation functions of the Wilson line operators in the antisymmetric and
symmetric representations are given by those of the charged Wilson line operators by using
Newton’s identities, we can also obtain them from the spectral zeta functions. From the
generating function (3.9) the 2-point functions of the Wilson line operators in the rank-m
antisymmetric representation and in its conjugate representation can be also obtained by
reading off the coefficients of the terms with s"s5".

For N/ =2* U(1) and U(2) SYM theory there is no non-trivial 2-point functions of the
Wilson line operators in the antisymmetric representation. We have

(Wiazy W) V@) = V€, (3.110)

and

<W(12) W

)" = (). (3.111)

3.4.1 U(4) 2-point function

The non-trivial 2-point function of the Wilson line operators in the rank-2 antisymmetric
representation appears for N’ = 2* U(4) SYM. Substituting the spectral zeta functions
ZE M), ZF(n), Z¥(n) and Zf (n) into (3.58), reading off the coefficients of the terms with

5252 and setting u to £2, we obtain
<W(12)W(12)> v
8
S 0:0:8)" — 6Q(1;0:7Q(2: 0:€)

+3Q(2 0:6%)* +8Q(1; 0;6%)Q(3; 05 6%) — 6Q(4; 0;€%)

—4Q(1;0;€)°Q(1,1;0,1;€%) + 4Q(2;0:6%)Q(1, 1;0, 1;€%) +2Q(1,1;0,1;)

+8Q(1;0:67)Q(2,1;0,1;6%) + 8Q(1;0;€%)Q(1, 2,0, 1;¢%)

—8Q(1,3;0,1;€%) —8Q(3,1;0,1;£2) — 10Q(2,2;0,1; £2) — 4Q(1,2,1;0, 1,2;52)].

(3.112)
The expression (3.112) contains the U(4) Schur index and the U(4) 2-point function of the
Wilson line operators in the fundamental representation. It can be rewritten as
(Waey W) VW = =279 o)V

12)
58 2y 2

—Q(2,2:0,1;€2) — 2Q(1,2,1;0,1,2; €2)], (3.113)
where we have eliminated the term involving Q(1,1;0, 1;£?) as it vanishes for u = £2.

We eventually get
<W(]_2)W@
= 2794 Loy W)V

3 (1)11 S (1>2, (1)2’ (2)q.e ¢
Tz sjlp [ 1 ] (267 +2(s g(l)qaf,l +allg - (4);2,1}]31 [1] (24’7)1'

>U(4)

52

2
(3.114)
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Equivalently,

<W(12)W@)U(4) (3.115)

—279® 4wy w_p)VA
&1 —-g8?, [g (=) —g?)(1 - gg") o, ¢
T l g2 2 l ] ¢ s TG l 1(24’ )]‘

Note that this can be also obtained from the relation (2.16) and the previous results for the
2-, 3- and 4-point functions. Under S-duality the U(4) Wilson line operator in the rank-2
antisymmetric representation is expected to map to the U(4) 't Hooft line operator Ty of
magnetic charge B = (12,0,0). So the expression (3.114) or (3.115) should also be equal to
the dual 2-point function [10]

<T(12,0,0)TW>U(4) (&)

_ 1 dal (Uicaz:FaQ) (qalazaQ)

S 22(8 17q q& %H o ( fﬁo;F) (E7107 05 )oo
wﬁm>mm, H4@ >@mﬁmm
(géo3 0 )oo(§ 105 04)00Z 1j— 3(q2§a o )oo (q2¢&- 10?0]?)00

While we have checked that they coincide by expanding the two expressions, it would be

(3.116)

interesting to analytically prove the equality.

3.4.2 U(5) 2-point function

For N' = 2* U(5) SYM the 2-point function of the Wilson line operators in the rank-2
representation and its conjugate representation can be obtained from the five spectral zeta
functions (3.41)—(3.45). With u = §% we get

3

)V = =570 4 3 W)U + S Q(1 062 )Q(1,1;0,1;¢3)?

<W(12) W@

—2Q(1,1;0,1;€3)Q(1,2;0,1;£3) — 2Q(1;0;£3)Q(1, 2,150, 1,2 £3)
+20Q(1,2,2;0,1,2€%) +4Q(1,3,1;0,1,2;£3)
—2Q(1,1;0,1;£3)Q(2,1;0,1;£3) — Q(1,0;£3)Q(2,2; 0, 1;£3)
+20Q(2,2,1;0,1,2;,€3) +2Q(2,3;0, 1;€3) +2Q(3,2; 0, 1;¢3) |

(3.117)

where
25

770 = % Q(1;0;€3)° — 10Q(1;0;€2)°Q(2; 0;¢3)
+15Q(1;0:£2)Q(2;0;€2)% + 20Q(1; 0;£7)2Q(3; 05 £2)
—20Q(2;0;€2)Q(3; 0;€3) — 30Q(1;0;£3)Q(4 0;63) + 24Q(5;0;€3) | (3.118)
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is the U(5) Schur index and

N

£

(W)U = 5790 4 = [—Q<1;0;53>3Q<17 130,1:63) + 3Q(1:0:£2)°Q(1,2;0,1:£2)

—6Q(1;0;£7)Q(1,3;0,1;62) +4Q(1,3,1;0,1,2;£2) + 6Q(1,4;0,1;£2)
+3Q(1;0;£1)Q(1,1;0,1;£2)Q(2; 0;€3) — 3Q(1,2;0,1;£7)Q(2; 0;£2)

+3Q(1;0;£3)%Q(2, 150, 1;53>] (3.119)

is the U(5) 2-point function of the fundamental Wilson line operators.

3.5 Symmetric Wilson line correlators

One can also find the 2-point functions of the Wilson line operators in the rank-m symmetric
representation and its conjugate representation by extracting the coefficients associated with
the terms of s{"s5" from the generating function (3.10). As opposed to the antisymmetric
Wilson line operators, the rank m of the representation can be larger than the rank N of
the gauge group.

3.5.1 U(2) 2-point function

For V' = 2* U(2) SYM theory we set u = £. Substituting the spectral zeta functions Z¥ (n)
and Z (n) into (3.58), we obtain from the coefficients of the terms with s7's3* the 2-point
function of the U(2) 2-point function of the Wilson line operators in the rank-m symmetric
representation

U
(W) W) U
52

S+ D@00+ 3 2m —m + DR 0,ms; )] 3.120)

mi1=1

This can be rewritten as

U(2
W) Wy @

m % m1 *% —m1 2
— (m+ DT -2 3 (m—m +1)4 5,7;1 qn;f P [1] ¢, 7). (3.121)
mi1=1 q —q

It follows from the relation of symmetric functions that

U
(W) W)

=(1-m?)Z"@ + 3 (m—my + 1) (Wi, Wy )V@. (3.122)

mi1=1

This is consistent with the formula (3.66) for the U(2) 2-point function of the charged
Wilson line operators.
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When we take the unflavored limit & — g /2, the 2-point function (3.120) in the large

m limit coincides with
n—1

2 i

U2) _ ntq 2
<W(m:OO)Wm:oo)> ® = Z 1 — gn
n>0 q

=1+ 4¢"? +10q + 16¢>/% + 26¢° + 40¢°/? + 504>
+ 6447 + 91¢* + 104¢°/% +122¢° + - - - | (3.123)
which is the generating function for the sum of squares of divisors d of n for which n/d
is odd.
3.5.2 U(3) 2-point function

Next consider the 2-point function of the rank-m symmetric Wilson line operators for

N = 2* U(3) SYM theory. It can be constructed from the three spectral zeta functions
3

ZH(n), Zi(n) and Zi (n). If we set u to £2, we obtain

(W o) W)U
- [ (000,625 - 31 0:68)0(2:0:6%) + 203 0562))
+ i13(m—m1+1)(m—m1+2)
Xébﬂﬂﬁ%@@h&mu§%+MZthn§%+ML2Qmu§H
+ i S 6(m—my + 1) (m—my +2)Q(1,1,1;0,m2,m1;§%)]. (3.124)

mi1=20<mo<mq
This can be expressed as

)U(B)

2 1 i -
<m N ) (m - ) 70 4 2 LS (= 1) — 0+ 2) Wy W) V)

mi1=1

Z ST (m—mi 4 1)(m—mi +2)Q(1,1,1;0,mz,my; £2). (3.125)

m1=20<mao<mi
4 Grand canonical correlators

We consider the Wilson line correlation functions in the grand canonical ensemble. We define

the normalized grand canonical Schur correlation function of the Wilson line operators by
(Wr, - "Wnk>GC(U' 1:€;9)

£_N2/2M<WR1 o Wr )TN (& g)p™

Mg

ﬂuuquﬂ 0(usq)
00 N &

- det F 1o _ N i1

Z(u; ;€5 q) Mﬁ, = 7{@ 1H1 omio; i (U] u q)jl;[lXRJ(U) I (4.1)
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where
o0
Elwsus &) = > Z(N;u; &)™
N=0

1 —ug? — p™"
:H—

— (4.2)

pEZ

is the grand canonical partition function of the Fermi-gas.
The grand canonical correlation function (4.1) and the partition function (4.2) are
invariant under the following transformation:

= q e,
u — u_l,
= —Uilﬂa (43)

which extends the transformation (3.3). This transformation turns out to be useful to
deform the expressions of the grand canonical correlators.
For the modified density matrix (3.11) or (3.12), we introduce a function

det(1 + pplmrre ’"k))

(n17n27""nk) E/H
Lo Yo £ ) — 4.4
gE/H (Ha {S]},U,f,Q) det(l +,up0) ( )
where the functions
Ep M = det(1+ el ™) = Y 2L (4.5)

N=1

appearing in the numerator are the grand canonical partition functions which applies to the
grand canonical ensembles of the Fermi-gas systems whose canonical partition functions are
given by (3.9) and (3.10). Analogous to (3.9) and (3.10), the function (4.4) can be regarded
as a generating function for the normalized grand canonical correlation functions (4.1) by
reading off the coefficients of the terms with equal powers of s; with j =1,--- k.

We can write (4.4) as

g(En/lllln%m ,nk)(M; {Sj}; u; &; q) = det(l + Xg};}nz, ’nk)Q(p))

B 00 (_1)m+1T X(nl’n2’m7nk) m 1.6
= exp Z 1"( E/H (U)Q(p)) s ( . )
m=1
where
k
X]gm,m, nk)(0> — H(l + 8]0—”]) —1 (4 7)
j=1
and
( ) : 1
y(nne, nk _ — 4.8
(o) ]131 - (4.8)
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are the position-dependent operators and

— &P
_ ko p€ (4.9)
L+ppo 1 —ugl —pg?

o(p)

is the momentum-dependent operator. Then a further analysis follow exactly the same
line as the discussion in section 3.1. The normalized grand canonical correlation func-
tions can be obtained by expanding (4.6) and evaluating the normal ordered operators
(X(nl’nQ"" ’"’“)(a)g(p)) and their traces.

E/H
4.1 Generating functions for multiple Kronecker theta series
Again it is useful to observe the relation (3.33) and to define a function

PAY —k’p—Zf:Ini
R({ni}ipmsw;&5q) ==Y (—p)"¢

Hk (1 — ugptmi — p&—pP=—mi (4.10)
pez 1li=1 q 73 )

in the calculation of the traces of the normal ordered operators. Under (4.3) the func-

tion (4.10) transforms as
R({ni}; —u" psu 54767 q) = R({-ni}i i ws € ). (4.11)

As we will see, the functions (4.10) show up in the exact expression of the normalized
grand canonical correlators as building blocks since they are generating functions for the
multiple Kronecker theta series (3.15)

R(ny, s piws 5 q)

m1>1 my>1

The simplest example is

R(0; psus&sq) =) e (4.13)

il ugh — g

The function (4.13) is invariant under the transformation (4.3). It is a generating function
for the spectral zeta function Z;(u;&; q) or Q(I;0;u;&; q) given by (3.16)

R(0; p5u;65q) = — i Z1(u; & q)(—p)!
=1
3 QU0 s q) () (4.14)
=1

4.2 Closed-form formula

The normalized grand canonical correlation functions of the Wilson line operators of fixed
charges can be obtained from either Qg”"" M) op Qg“’m i) by finding the coefficients of
the term with [, s;.
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4.2.1 2-point functions

In terms of the function (4.10) we can express the traces of the normal ordered operators
(Xén’_n)g)m. It is convenient to abbreviate (4.10) as R({n;}) = R({n;}; u;u;&; q). We have

Tr(X 7 ) = s159R(0), (4.15)
Tr(/lf'én’_") 0)? = 25159R(0,n) + 5753 R(0,0), (4.16)
e 0)* = 35353 (R(0,0,n) + R(0,n,n)) + sis3R(0,0,0), (4.17)

Tr(x" o) = 253 (R(0,0,n,n) + 2R(0,n,n, 2n))

+ 45353 (R(O, 0,0,n) + R(0,0,n,n) + R(0,n,n, n))

+ s153R(0,0,0,0), (4.18)
Tr(X" " 0)” = 55353 (R(0,0,0,n,n) + R(0,0,n,n,n) + R(0,0,n,n,2n)

+2R(0,n,n,n,2n) + R(0,n,n,2n, 2n))

+ 5stsd (R(o, 0,0,0,n) + R(0,0,0,n,n)

+ R(0,0,n,n,n) + R(0,n,n,n, n))

+ 5955R(0,0,0,0,0), (4.19)
Tr(x 7 )6 = 23182(R(0,0,0,n,n,n) +3R(0,0,n,n,7n,2n)

+ 3R(0,n,n,n,2n,2n) + 3R(0,n,n,2n, 2n, 3n))

+ 35153 (3R(0,0,0,0,n,n) + 4R(0,0,0,n,n,n)

+ 3R(0,0,n,n,n,n) + 2R(0,0,0,n,n, 2n)
+4R(0,0,n,n,n,2n) + 6 R(0,n,n,n,n,2n)
+2R(0,0,n,n,2n,2n) + 4R(0,n,n,n,2n, 2n)
(

+2R(0,n,n,2n,2n, 2n)>
+ 65753 (R(0,0,0,0,0,n) + R(0,0,0,0,n,n)

+ R(0,0,0,n,n,n) + R(0,0,n,n,n,n) + R(0,n,n,n,n, n)) (4.20)

The normalized grand canonical 2-point function of the Wilson line operators of charges
+n is obtained from the terms with s;s2. These terms only appear from (4.15) and (4.16).
Plugging them into (4.6), we obtain the normalized grand canonical 2-point function of the
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Wilson line operators of charges 4+n

W W_,)C = R(0) — R(0,n)

ps? pre e
= - +
sl —ug? —pe? (1= ugl — p&P)(1 — ughtn — pg=r=")
—P(1 — ygPtr
- Z (1 P M§_p§(1 . p+r)t —p—n)’ (4.21)
ez (L —ug? — pg —ught — pg
From (4.12) it can be also expressed as
<WnW7n>GC
== > QU 0) (=)™ = Y Qm1,ma;0,n)(—p)" ", (4.22)
m>1 mi,ma>1

By multiplying the normalized grand canonical 2-point function (4.22) by the grand canonical
partition function =Z(u;u;§; q) and expanding (4.21) in powers of p, we can rederive the
previous exact expressions of the canonical 2-point functions of the charged Wilson line
operators.

By using the transformation (4.3), the grand canonical 2-point function (4.21) can be
also written as

ac _ pEP(1 —ug’™")
W W)™ = I;Z (1 —ugP — pu&P)(1 —ugp~™ — p&—r+n)

_ pEP (1 — ugP)
=L T up — pe )0 — = )

(4.23)
PEZL

where in the second line we have shifted the integer p — p + n. Multiplying (4.21) by £~
and subtracting it by (4.23), we find

<WnW—n>GC _

1—q" upgPg P
- . 4.24
1—5‘"%(1—qu—ufp)(l—uq”+”—u£""”) (4.24)

4.2.2 3-point functions

While there are two relevant traces for the normalized grand canonical 2-point function of
the charged Wilson line operators, there are three relevant traces for the 3-point functions.
They are given by

Tr(xm27mm2) oy — 5055 R(0), (4.25)
Tr(X]E;”“”Q’*”“”Q’g)Q = 2518283 (R(O, ni,n1 + ng) + R(0,n2,ny + nz)) + 535353 R(0,0),
(4.26)
Tr(Xg“’”2”_”1_”2)g)3 = 3515253 (R(O, ni,n1 + ng) + R(0,n2,n1 + nz))
+ 3535353 (R(0,0,m1) + R(0,n1,m1) + R(0,0,n2) + R(0,n3,m5)
+ R(0,0,n1 + na) + R(0,n1 + n2,n1 + ng)
+ R(0,n1,n1 + n2) + R(0,n2,n1 + n2)> + 535555 R(0,0,0).
(4.27)
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Substituting (4.25)—(4.27) into (4.6) and extracting the terms with s;s9s3, we can get the

normalized grand canonical 3-point function of the Wilson line operators with charges nq,
ng and —ni — no.

We find

Wi Was Wy —ng) &€

= R(0) — R(0,n1) — R(0,n2) — R(0,n1 + ng)
+ R(0,n1,n1 + n2) + R(0,n2,n1 + na).

— 3 I, YOS
I I S e
s [ L—ugp = p&P = (1= ugP — p&P) (1 — ugPt™ — pg=r=ni)
2 3y —m —
+Z HS& 3p—n;—ni1—n2 (4 28)
= (1 —ugl — p&P)(1 — ughtmi — p&p=mi)(1 — ugptmtnz — pygmp-m=nz) | * -

where n3 = —nj; — ng. In terms of the multiple Kronecker theta series (3.15) it is given by

Wi Was Wy —ng) &€

2

= > Qm;0)(—w)™— > [ZQ(mlamz;Ovni)+Q(m1,m2;07n1+n2)}(—M)ml+m2

m>1 mi1,m2>0 =1

2
- YD Qma,ma,ms;0,n,my +ng) (—p) MRS, (4.29)
mi,mz,m3>01=1

All the canonical 3-point functions of the charged Wilson line operators can be obtained by

multiplying the normalized grand canonical 3-point function (4.29) by the grand canonical
partition function (4.2) and expanding (4.28) in powers of pu.
From (4.28) we get

Wi Was Wy —ng) &€

pEP(1 — ygptmitnz) [(1 — ugPt™M) (1 — ughtm2) — M2§_2p_n1_"2]
) _;;z (1~ ugp — p&P) [Ty (1 — ugPtne — p&p=m)(1 — ugrtmtnz — pg=pmm=n2)’

(4.30)

Using the transformation (4.3), it can be written as

Wia Wig Wy —ng ) &€

pETPTMTN2 (1 — yqP) {(1 — ugPt™) (1 — ugPt™2) — M2§—2p—n1—n2}
B _,E (1 ugP — p& ) [Ty (1 — ugrt™ — pg=P=me)(1 — ugptmtnz — pg=p=m=nz)’

(4.31)
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Multiplying (4.30) by £~ "1~"2 and subtracting it by (4.31), we get

Was Wiz We =) ©
(¢m*m2 —1)
(=)
Z qp+n1+n2§—p—n1—nz [(1 _ qu+n1)(1 _ qu-i-nz) _ M2§—2p—n1—n2]
X .
v=r’ (1 —ugP — p&=r) 22:1(1 — ugPtni — p&—P=ni)(1 — ugptm+ne — yg—p—ni—n2)
(4.32)

4.2.3 4-point functions

There are four traces which encode the normalized grand canonical 4-point function of the
charged Wilson line operators. Since only the terms with s1s958354 are required to find the
exact expression of these correlation functions, we only show them for simplicity. We get

H(Xémmw&_m_m_n@Q) = 51525354 R(0), (4.33)

51528384

Tr(Xém,nzyns,—m —n2—n3)Q)2

= 2515258354 (R(O, n1)+R(0, TLQ)—I-R(O, TL3)

51525354
+R(0,n1+n2)+R(0,n1+n3)
+R(O,n2+n3)+R(0,n1+n2+n3)>, (4.34)

Tr(Xénl7”27”37_77/1—"2_”3)@)3

= 3515258354 (R(O, ni,ny —H”Lg)-l—R(O, ni,M1 +n3)

51828384

+R(0,n2,n1+n2)+ R(0,n2,n2+n3)
+R(0,n3,n1+n3)+R(0,n3,n2+n3)
+R(0,n1,n1+n2+n3)+R(0,n2,n1+n2+n3)
R(0,n3,n1+n2+n3)+R(0,n1+na,n1+ns+n3)
(
(

_l’_

+R(0,n1+n3,n1+n2+n3)
+R O,n2+n3,n1+n2+n3)), (4.35)

Tr(Xénlmz,nsﬁnl*M*ns)Q)4

= 451525354 (R(U, n1,n1+n2,n1+n2+n3)
51825354

+R(O,n1,n1 +ns3,n1 +n2+n3)
—I—R(O,ng,nl +no,n1 +n2+n3)
—i—R(O,nQ,ng—i—ng,m +n2+n3)
+R(0,n3,n1+n3,n1 +n2+n3)

( )

+R(0,n3,n9+n3,n1+no+ns ) (4.36)

Plugging these traces into (4.6) and reading the terms with s1s2s3s4, one can find the
normalized grand canonical 4-point function of the charged Wilson line operators. It is
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given by
(Whs Wiy Wig W—n, —ny—ng ) °
3
- Z R(O, nl) — Z R(O, n; + nj) - R(O, ny + ng + n3)

1<j

3
+ZZROTL17”’L+TL]) ZR(Oani7n1+n2+n3)
i=1 j#i =1

3
+ Z R(O, n; +nj,ny +ng + n3) — Z Z R(0,n;,n; + nj,n1+ng + n3). (4.37)
i<j i=1 j#i
In terms of the multiple Kronecker theta series (3.15) we can also write it as

W Was Was W= —ng—ns) €

= A=)+ Y Ap(mp)mtme

m>0 mi1,m2>0
=+ Z AS(_H)m1+m2+m3 + Z ‘/44(_H)m1+m2+m3+m47 (438)
mi,m2,m3>0 mi1,m2,m3,m4>0
where
A1 = Q(m;0), (4.39)
3
=Y Q(m1,mg;0,n:) + Y Q(ma,ma; 0,n; + nj) + Q(ma, ma; 0,n1 + nay + nz),
i=1 itj
(4.40)
3
Az = Z Z Q(mb ma, m3; 0,1, n; + nj) + Z Q(ml, mao,m3;0,n;,n1 +ng + ng)
i=1 j#i i=1
+ Y Q(m1,ma, mg;0,m; + 1y, n1 + ng + ng), (4.41)
1<j
3
A4 = Z Z Q(mb ma, M3, mMa4; 07 g, Ny + nj,ny + ng + 7'L3). (442)
i=1 j£i

4.2.4 k-point functions

It is now straightforward to find the exact expression for the general normalized grand
canonical k-point functions of the charged Wilson line operators by calculating the relevant
traces of the normal ordered operators. We have

<wmwn2---wnk Wy 1)

+Z Z Z (07 @ 1), @ n;2), ", @ ) ni('r))-

J=LA=(As A0) {1 Vel idel, I iMel o I,
Al=s
(4.43)
Again we have used the notation of the set {Iy,--- , I} of integers with cardinality |I;| = |\;]

for a given partition A = (A1, A2, -+, Ap).
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4.2.5 Antisymmetric representations

The normalized grand canonical 2-point function of the Wilson line operators transforming
in the rank-2 antisymmetric representation and its conjugate are associated to the terms
with s2s3 in (4.6). They are contained in the traces of (Xén’_n)g)l with [ = 1,2, 3,4, which
are given by (4.15)—(4.18). Inserting them into (4.6) and setting n = 1, we find

ac
WayWamy)

1 1
= —5R(0,0) + R(0,0,1) + R(0,1,1) = R(0,0,1,1) — R(0,1,1,2)

(R(0) — R(0,1))% (4.44)

N

_l’_

For the grand canonical 2-point function of the Wilson line operators transforming in the
rank-3 antisymmetric representation, one needs the traces of (X j(En’_n) o) withl=1,---,6,
which are given by (4.15)—(4.20). We get

GC
<W(1,1,1)W(1’1’1)>

1 1
=3 R(0,0,0,1,1,1)+ 2 R(0,0,0+R(0,0,0,1,1)+R(0,0,1,1,1)
—R(0,0,1,1)—R(0,0,0,1)— R(0,1,1,1)— R(0,0,1,1,1,2)— R(0,1,1,1,2,2)
+R(0,0,1,1,2)+R(0,1,1,2,2)+2R(0,1,1,1,2)— R(0,1,1,2,2,3)

+(R(O)—R(O,1))(—;R(0,0)+R(0,0,1)+R(0,1,1))+é(R(O)—R(O,l))3. (4.45)

4.2.6 Symmetric representations

The normalized grand canonical correlation functions of the Wilson line operators trans-
forming in the symmetric representation are described by the matrix (4.8). The traces of
the normal ordered operators read

Tr(x o) = 3 shskR(0), (4.46)
k=1
o) k
Tr(X Vo) = 3 shsk|(k — 1)R(0,0) + " 2(k — L+ 1)R(0, In)] (4.47)
k=1 =1
n—n - k—1)(k—2
Tr(Xg e) = Y sish [()2()1%(0,0,(»
k=1
13k —D(k—1+1)
+ 5 (R(0,0,in) + R(0,In,In))
=1
k—111—1
+ 3(k — 1) (k — b + 1) R(0, lan, Lin) . (4.48)
l1=11l2=1
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The normalized grand canonical 2-point function of the Wilson line operators in the
rank-2 symmetric representation is given by

— R(0) - %R(O, 0) — 2R(0,1) — R(0,2)

+ R(0,0,1) + R(0,1,1) + 2R(0,1,2) — %R(O, 0,1,1) — R(0,1,1,2)
+ %(R(O) — R(0,1))2. (4.49)

4.3 Recursion formula

We observe that the grand canonical partition function (4.4) obeys a differential equation

0 _ -
@:(u;u;ﬁ; q) = R(0; 1143 & )E(1; 45 €3 q).- (4.50)
Recalling that R(0; u;u;&;q) is the generating function for the spectral zeta function

Z(u; €; q), we obtain a recursion relation”

ii DLz Zz(N —1). (4.51)
N =1
For example,
Z(1) = 7y, (4.52)
2(2) = J(£120) - ), (4.53)
23) = S(MZQ) - H2() + %), (4.54)
204) = {(HZ0) - 22(2) + Z53(1) - Z). (4.55)

Also we have the differential equation (4.50) for the Schur line defect correlation functions.
It follows that

9 _(nym o0 o
@:%/1}1 W= =S 2P ) ()t 2 (4.56)
=1

This leads to a recursion relation for the canonical partition function of the line defect

correlation function

R i .
Zpu (N = =3 (=) 20 2y (N - ), (4.57)
=1

5 Large N correlators

In this section we study the large N limits of the Schur line defect correlators in NV = 4
U(N) SYM theory. They are interesting in the context of the AdS/CFT correspondence [92]

"Similar recursion relations for the unflavored Schur indices have been discussed in [7, 8].
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as they should capture the spectrum of the fundamental string and the excitations around
the D-brane configuration in string theory. The Wilson loop operator in the fundamental
representation for A = 4 U(N) SYM theory is proposed to be dual to a fundamental
string [35, 36] (also see [93-96]). It was argued in [37] that the Wilson loop operators in
higher-dimensional representations would be dual to certain D-brane configurations, as
the D-branes can be viewed as the effective description of multi-string configurations. For
the antisymmetric (resp. symmetric) representations they are conjecturally dual to the
configuration with D5-branes [38-41] (resp. D3-branes [37, 39, 40, 42, 43)]).

5.1 Closed-form formula
5.1.1 Charged Wilson lines

For the flavored 2-point function of the Wilson line operators of charges n and —n we find
that the large N limit is simply given by

(n)

<WnW7n>U(OO) =N q%tz’l(n)

Lo
q2t™ 711'U(OO)

(n)g,1
1 _ N
(1 —q2t*)(1 - q2t=>")
where ZU(®) is the large N limit of the Schur index of N' =4 U(N) SYM theory [2]
o9 1— "
V) = I a (5.2)

(1—q22)(1 - g2t=2)

n=1
We do not have a direct derivation of this expression, but have checked it for various n by
using our exact closed-form expression.
In particular, the flavored 2-point function of the Wilson line operators of unit charge,
i.e. transforming as the fundamental representation for N'=4 U(N) SYM theory in the
large N limit is

1—
(WaW_p)U) = . S— 50 (5.3)
(1—-q2?)(1 — q2t7?)
The expression (5.3) can be also found in [10]. The half-BPS Wilson loop in the fundamental
representation in N' =4 U(N) SYM theory is holographically dual to a fundamental string

wrapping AdSs in AdSs. The large N index (5.3) counts the fluctuation modes of the
fundamental string wrapping AdSs in AdSs [97].
More generally, we find that all the large N odd-point functions vanish

<Wn1 T Wn2k+1>U(OO) =0 (54)
and that the most even-point functions also vanish except for the following form:
1 m m o0
W«Wnl W*m) tees (WnkW*nk) k>U( )
W, W_, U(oo) \ ™M1 W, W_p, U(oo) \ Mk

where 0 < ny <ng < -+ < ng.
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It is also intriguing to study the large charge limit as the holographic dual of the large
representations have been also investigated e.g. in [96, 98-101]. For example, when n — oo
while keeping N finite, we find that

(WoeW_so) V) = NZUIN), (5.6)

5.1.2 Antisymmetric Wilson lines

For the large N correlation function of the Wilson line operators in the rank-m antisymmetric
representation in NV = 4 U(N) SYM theory, we start with Newton’s identity (2.12).
Combining our observations (5.4) and (5.5), the antisymmetric correlation function at large
N behaves as

oo )T+r m; m Ulee)
W Wiz '™ = 8 3 <HHAmeJ oW %) (5.7)
N i=1j=1
|>\| |>\'\
I U m;
|A|’\ =1 A my! TV

where A is a partition of m with m = Y7_; Amy, Ay > Ag > -+ > A, and X is that
with m = Z] P AjmG, Ay > Ay > -+ > AL Using (5.1), we finally obtain the closed-form

expression

(1—¢M) " )
(Wamy W) V() = § H i ( : V) (5.9)
@ O g e - gFea)

For example, we have

<W(12)W( )>U(Oo)
2
1 1—g 1—¢’ U(0)
== + V() 5.10
2Ku—q%t2><l—qéw>> <1—qt4><l—qt—4>w (10
H (1]
<W(13)W( )>U(OO)

=

3
T
(1 - q22)(1 — ¢31-2) (1 =gt (1 —qt™) (1 — g242)(1 — q2t~2)
g mp

3

l—gq
2 3 3
(1-¢2t9(1 - ¢2t79)
[T

]IU(OO% (5.11)
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(W(14)W7

U(co
(14)> (o0)

e
24 [\ (1 — q22)(1 — q2t2) (1—qt*)(1 —qt™*) \ (1 — q2#2)(1 — q3t2)

- i)

+3< L =g )2—1—8 -7 L=
(1—qt")(1—qt™?) (1= q2t6)(1 — q2t=5) (1 — q2£2)(1 — q2t~2)
H g

+6 L—¢' V() (5.12)
(1 —¢*t®)(1 —¢*t78) ' '

CLTT]

Also we find that it can be expressed as

U
<W(1m)W(1m)> (c0)
—1
1 1 1 1 1 1 1 1 .
noo (@2t%,¢212),(¢2t 72,02t ) n 0 (¢2%5¢282)5(¢2t725¢2t72) men—1

(5.13)

The half-BPS Wilson loop in the rank-m antisymmetric representation in A =4 U(N) SYM
theory is holographically dual to a D5-brane with AdSs x S* geometry and m fundamental
strings, D5-brane giant [38]. The number m of fundamental strings cannot be greater than
N, the amount of electric flux. The large N indices should compute the spectra of the
fluctuation modes of the D5-brane giant [102].

When the representation of the Wilson line operators is very large, they will be
appropriately described by a D5-brane with fluxes. We also find that the large m limit of
the flavored 2-point function (5.13) agrees with

1—4q"
(Wiam=oe) W=y 1] P TOEr =0 (5.14)

In fact, the expression (5.14) can be also found in [10] and shown to agree with the
holographic calculation in [102].

5.1.3 Symmetric Wilson lines

We also find that the large IV limit of the flavored 2-point function of the Wilson line
operators in the rank-m symmetric representation for N' =4 U(N) SYM theory is that in
the rank-m antisymmetric representation:

U(oo
W) Wery) (20) = = (Wam)Wiimy

(m
This follows from the vanishing theorem (5.4) and Newton’s identities (2.12) and (2.14).

)>U<°°> (5.15)
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()
’f_l‘ ] 1T = (wpew)?
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21 (Wia2y Wiz ) V) — (W wz)
2(Wig) W) V(=)

Figure 2. The graphical representation of the large N rank-2 (anti)symmetric 2-point function.

There is a unique way for each of contractions.

The half-BPS Wilson loop in the rank-m symmetric representation in N' = 4 U(N)
SYM theory is holographically dual to a D3-brane with the geometry AdSs x S? and m
fundamental strings, D3-brane dual giant [37, 39]. Unlike the D5-brane giant, there is no
upper bound on the fundamental string charge m for the D3-brane dual giant.

As the large N correlators of the symmetric Wilson line operators coincide with those
of the antisymmetric Wilson line operators, the spectra of the fluctuation modes of the D3-
brane dual giant will match with that for the D5-brane giant. This would demonstrate the
large N duality between a particle outside the droplet corresponding to the D5-brane giant
and a hole inside the droplet corresponding to the D3-brane dual giant [103]. The large N
(anti)symmetric 2-point functions (5.15) admit a graphical notation for contracted tensors.
For rank-m 2-point function, we consider a tensor product of m copies of (W;W_1)U()
and take a trace of it by closing the m in-arrows and m out-arrows. We identify the trace
of n products with the normalized large N 2-point function of the charged Wilson line
operators (WW) = L(W, W_,,)V(). There exist m! contractions. The large N rank-m
(anti)symmetric 2-point function is obtained by summing over all possible permutations.
We illustrate examples in figure 2 for m = 2 and figure 3 for m = 3. We leave it future work
to examine the fluctuation modes on the D3-brane dual giant in detail and compare them
with those from the gravity side as studied in [97].

Using the conjectures (5.9) and (5.15), the generating function for the large N limit of the
2-point functions of the Wilson line operators in the rank-m (anti)symmetric representation

is given by
> AW W) V) 2 AW (1) Wiy V)
™ (m) ) am
2 )" ey = 2 ) (5.16)
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Figure 3. The graphical representation of the large N rank-3 (anti)symmetric 2-point function.
While for the top diagram there is a unique contraction, there are three for the middle and two for
the bottom. These combinatorial factors determine the coefficients in (5.11).

| -

N
14
N

(s182)" 1—q"
n (1 _ qn/2t2n)(1 _ qn/Qt—Qn)

K

(5.17)

= exp

i
L

- L= 5182 (5.18)

(s152; q%t2)oo(8152§ q%t72)oo

In the unflavored limit ¢ — 1, our result precisely reduces to the previous result in [11].

5.2 Plane partition diamonds

The large N limit of the unflavored Schur index of N'=4 U(N) and SU(N) SYM theory
are identified with a generating function for the overpartition [104] and the 3-colored
partitions [105]. Here we discuss the combinatorial interpretation of the Schur line de-
fect correlator.

When the flavored fugacity ¢ is turned off, the 2-point function (5.14) can be written as

Q
[SIE

;m' (5.19)

YU(eo) 1 = fi q" (—Qi

(Win=co)W;
( : n=1 1_q2 (q%;q

(m=o3)

N
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This admits an expansion

<W(m:oo)W(m:oo)>U(oo) (t =1 Q) = Z d(n)q%
n=0

=1+ 4¢"% +13¢ + 36¢%/% + 904> + 208¢°/? + 455¢> + 948¢"/? + 1901¢* +--- . (5.20)

The coefficient d(n) is identified with the number of the Schmidt type partitions referred to
as the plane partition diamonds of n [44, 45], that is the partitions of n = a1 + a4+ a7+ -
whose parts a; lie on the graph which is made up of chains of rhombi in such a way that
the set (ag;j—2,asi—1,as;, as;+1) corresponds to the four vertices of the i-th rhombus with
the conditions

azi—2 2 a3;—1 = A3i+1, azi—2 > a3; = A3i41- (5.21)

For example, d(1) counts the 4 plane partition diamonds {a; = 1}, {a; = 1,a2 = 1},
{a1 = 1,a3 = 1} and {a1 = 1,a2 = 1,a3 = 1} and d(2) counts the 13 plane partition
diamonds {a; = 1,a3 = l,a3 = 1,a4 = 1}, {a1 = l,a2 = 1,a3 = l,a4 = 1l,a5 = 1},
{a1 = 1,a2 = 1,a3 = l,a4 = 1,a6 = 1}, {a1 = l,a2 = 1l,a3 = l,a4 = 1l,a5 = 1,a6 =
1}, {a1 = 2}, {a1 = 2,@2 = 2}, {a1 = 2,&3 = 2}, {a1 = 2,&2 = 2,(13 = 2}, {(Il =
2,a2 = 1}, {a1 = 2,a3 = 1}, {a1 = 2,a2 = 1l,a3 = 1} {a1 = 2,a2 = 2,a3 = 1} and
{a1 = 2,@2 = 1,&3 = 2}.

Let us study the degeneracy of the excitation modes of the D3-branes wrapping the
AdSs x S? (or equivalently the D5-branes wrapping the AdSy x S*). The growth of the
number d(n) of operators with large scaling dimension can be studied from the infinite
product (5.19). Making use of the Meinardus Theorem [106], we get the asymptotic growth

7 T

The exact numbers d(n) and the values dasymp(n) obtained from the formula (5.22) are
listed as follows:

n d(n)
10 6955

daSymp(”)
8982.37

100
1000
5000

10000

4.66051 x 1016
1.80784 x 1060
4.77308 x 10140
1.86714 x 10201

5.05848 x 1016
1.85552 x 1069
4.82904 x 10140
1.88260 x 10201

(5.23)

It should be compared with the asymptotic growth of the number of the states in the absence
of the line operators, which is equal to the number of the overpartitions is given by [28]

- 1 1 1/2
p(n) ~ o (1 — 7rn1/2> exp [’7‘(’71 } . (5.24)

It would be interesting to elucidate the combinatorial aspects of the enumeration of the
operators in the large N limit and their asymptotic behaviors from the holographically
dual supergravity.
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A Definitions and notations

A.1 g-shifted factorial

We have used the following notation of g-shifted factorial:

n—1 n
(@a)o:=1, (qn=][0-ad"), (ga)n=]]0-d"),
k=0 k=1

ﬁ 1-— aq ﬁ 1-— q
k=0 k=1
( ) (CL, Q) ( )007

where a and ¢ are complex variables.

A.2 Twisted Weierstrass functions

We define the twisted Weierstrass function by®

and

0 0

P Lb] (z,7) = 0 Dl @) p [4 (2,7)
(=¥ 1+ Ak TgntA
k’—l)' 1—g-1gntr

where ¢ = 2™,

B Multiple Kronecker theta series

(A.1)

(A.2)

(A.3)

The multiple Kronecker theta series (3.15) plays a role of elementary blocks of the Schur

index and the Schur line defect correlators. They can be written in terms of the twisted

Weierstrass functions. In this appendix, we show several examples.

8The P [g] (2, 7) defined here is the same as Py [3,] (2miz, 7) in [34].
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B.1 Q(lo,li;10,m1)

In general the multiple Kronecker theta series (3.15) for £k = 1 is expandable from the
equation (3.27). They show up in the closed-form expression of the Schur line defect
2-point functions.

The simplest example is l[p = [; = 1. We have

5—2p—n

Q(l, 1;0,m;u; &, Q) = Z (1 — qu)(l - U,qp-l-n)

PEZL
( e g )
—q" = 1-— qu 1 — qu+n
= [(nm + (—n)ge| Q105 u; €% )
52
= [(”)qé + (_”)q,ﬁ} Py [1] (v, 7), (B.1)

where we have assumed that n is non-zero integer.
When lp =2, 11 =1 and n # 0 we have

Q(2,1;0,n;u;§; )
B & 5—3}7 & 3p B 2n€—n §—3p
1—q”p€Z(1—qu) l—q QZ

1—ugP (1—q")? v ugptn
= ()4 eQ(2: 01 €259) + (1 — q*"§*3”>(—n>q,gQ(1; 0;u; &% q), (B.2)

Q(1,2;0,n;u;&;q)

_ £—2n 5—31) N qn§—2n Z £—3p N qn£—2n £—3p
(1 _ qTL)Q pEZ 1 — qu 1 — q’n pEZ (1 — qu+n)2 (]_ _ qn)Q peZ 1 — qu+n
3
= (—1)geQ(2;0;u;£2;q) + (1 — ¢"€") ()2 cQ(1; 05 u; €% q). (B.3)

It follows that
Q(2,1;0,m5u;&5q) + Q(152;0,n5u; €5 q)
2 N2
— 1[(71)(]’5 + (_n)%f} P2 [Q§3‘| (y,f;—) B [ <n>q,€ + ( n)q,{ ]Pl [53] (y77-). (B'4)

u 1 (M)gen  (=n)gen 1

For ly + I1 = 3 there are three types. When n # 0, we have

Q(3,1;0,n5u;&;q)
— (1)qeQ(3;0;u;¢5;q) —q " (—n); (Q(2;0;u;€%5q)
+(1—g ") (—n); £Q(1;0;u;6% )

3
= (1)g,Q(3,0:u;63;q) —¢"€" (n)2 £ Q(2: 05 u;%: ) —q2”£2”(7(g);§162(1; 0;u;€%q), (B.5)
q b
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Q(2,2;0,n5u;;q)

= [(n)g,fr(—n)g,g}Q(Q;O;U;£2;Q)—2q_”£_"(1—q_”€_4")(—n)f},g62(1;0;U;£4;q)

= M2+ (-n)2e| Q2 0;us8% ) —2[ "€ () e+ " (-1 | Q105w Y g),  (B6)
Q(1;3;0,n;u;&;q)

= (—n)g.£Q(3:05u;£55q) —q"€* ()] ¢Q(2;0;u; %3 q)
+ |26+ (—n)2¢| Q(2:0;u:6% ) (1-4"€™) ()3 cQ(1;0; 4365 q)

4 —ne—n —2n ¢+—2n (—TL)3
= (—n)q.eQ(3,0;u;€3;9) —q " (—n); cQ(2;0;u;6%5 ) — g 2nE T ﬁ@(l;&wf‘*;q)-
q b
(B.7)
In terms of the twisted Weierstrass function they can be written as
Q(3,1;0,n5u;§;9)+Q(1,3;0,n3u;59)
_ (n)ge+(=n)ge & &
= a2 et (p |7 )2y | 1| 00r)
nen 2 + —ne—n(_.,\2 4 2n ¢2n 3 —2n¢—2n(_ ,,\3 4
_q 5 (n)q,g q 5 ( n)q7§P2 qf (Z/,T)—(q 5 (n)q7§+q € ( n)q7§>P1 § (Z/,T),
u 1 (n)ger 1 (—n)ges 1 1
(B.8)
Q(2,2;0,n3u;€59)
(n)zet(=n)ie  [qt nen Mo |4
—fPQ 1 (v, 7)+2¢"¢ mpl 1 (v, 7). (B.9)

B.2  Q(lo,l1,12;0,n0,n1,n2)
We present several examples of the multiple Kronecker theta series (3.15) for & = 2. They
appear in the Schur line defect 3-point functions of the charged Wilson line operators. We
assume that n; and ny are non-zero integers.
For lp =11 = la = 1 the function (3.15) is given by
Q(1,1,1;0,n1,n25u; &5 q)

= [(nl)q,ﬁ(nQ)q,ﬁ + (_nl)q,é(_nl + n2)q,§ + (_n2)q,£(_n2 + nl)q,&]@(h 0; u; 533 Q)

52
= [(nl)q@(ng)q,é + (_nl)q{(_nl + n2)q,£ + (_n2)q,£(_n2 + nl)q,i] Py [1 (v,7). (B.10)
When Iy = 2, [; = [y = 1 we have the expansion

Q(2,1,1;0,n1,n2;14; €5 q)
= (n1)qe(n2)q.cQ(2; 03 u; €% q)
— g () gmSimna) (T g7 4 9) ()] ¢ (—na); (Q(1; 05 u; €% )
+ (—n1)2 e (—n1 4 12)q,eQ(1;0;us €% q)
+ (=n2)2 ¢(—na +n1)g.eQ(1;0;u; €% q). (B.11)

RN RN

’g
3

’
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This leads to

Q(27 1a 1a 07 ni, N2 u; ga Q)

1 4 n n n n —MNn —n
= (n1)q(n2)ge— P2 [qf ] (v,7) + [—q R P e e [ P I

4
+ (=m1)7 (=1 +n2)ge + (—n2)7 ¢ (—n2 + nl)qg] Py [1] (v, 7). (B.12)

FOI"ZOI?),ll:lQ:l

Q(?),l,l,O,Tll,TlQ,U,g,q)

= (n1) g6 (n2) 4,6 Q(3;0;u;€ ¥ 3.9)
g A (g =g ) (—m)] (126 Q(2: 0503 )

_|_q—(m+n2)§—4(m+n2)(_3q—n1_3q—n2+q—2n1 +q—2n2 g2 +3)(—n1)3(—n2)3Q(1;0;u;§5)
+(=11)3 (—n1412),eQ(1;0;u; %)
+(fn2)375(7n2+n1)q,562(1;0;u;§5). (B.13)

Forlo:4,l1:l2:1

Q(4,1,1;0,n1,n2;u;&;q)

= (1) g,¢(n2)g,eQ(4:0;u; €35 )
—q g (g g 1 9) (—na) ¢ (—n2)g £ Q(3:0;u36%5)

g (TN (3T 30T g TN g g T2 43) (<) (—n2) P Q(2: 03156%)
—q (M) mBm ) (_Gg T G g £ Ag TR pAg T

—q T =TI T T g ) (< )g () e Q(1505us €% )
+(=n1)g e (—n1+12)4,6Q(1;0;us€%)

+(—n2)j ¢ (—n2+n1)g eQ(1;0;u;£5). (B.14)

For10:2,l1:2,l2:1

Q(2,2,1;0,n1,n2;u; €5 q)

= (n1)2 ¢ (n2)qeQ(2; 0515 €35 q)
) (g g ) ()1 O €
+ (—n1)7 (=11 4 n2)q.eQ(2; 05 u; £3:q)
Y Y (VR 1)(—n1)2”§(—n1 + ng)agQ(l; 0; u; £°)

+ (—n2)%(—n2 + n1)*Q(1; 0;u; €% ). (B.15)
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For10:3,l1:2,l2:1

Q(3,2,1;0,n1,n2; ;€3 q)
= (n1)2 ¢(n2)q,eQ(3;0;u; €% q)
— g Gmtn2)gSntne) =i (g g 94T — 3) ()3 ()2 Q(250;u; €% q)
— g Gratna) gmlmina) =2 (T ggn2 4 gmAM  3q7 2 4 207 4 6)
x (—n1)ge(—n2)3 Q(1;0;u; €% q)
+ (—n1)3 e (—n1 4 12)q.eQ(2; 05 u; €5 q)
g2 (g 4 30712 4 1) (—na)g e (—ma + n2)2 Q15 0;u; €% )
+ (—n2)?(—na +11)?Q(1; 03 u; £% ). (B.16)

F0r10:4,l1:2,12:1

Q(4,2,1;0,n1,n92;u;&; Q)
= (11)2 ¢ (n2)qeQ(4; 0;u; €73 )
— g rtna) =St Im (g 97— 3) (<) o (—n)2Q(3; 055 €55 )
— g~ @Gmtna)emdlmtne) =2y (_gomm_gaTm2 4 g m2m 30722 4 9T )
X (—n1)d ¢ (—n2)3 cQ(2; 0515 €25 )
— g CrAn2) e=5(ndn2)=2m (1047 4 90T — 52N — 15¢7 "2 — 10¢7™ 2
g dg I 4 3T 4207 — 10) (=) ¢ (—n2) *Q(1; 054 €T3 )
+ (=00t e(—n1 + n2)g Q20,4635 )
+ g (=B 4 + 1) (=) (=1 4 n2); cQ(1; 04575 q)
+ (—na)ge(—na +m1)2 Q1 0;u; €75 q). (B.17)

FOI‘ZOZQ,ll:Q,lQ:l

Q(27 27 27 07 ny,n2;u; 57 q)
= (n1)2 ¢ (n2)2 ¢Q(2;0;u; £%; )
+ 2¢ Bratan2) ¢=S(ntn2) (g g g7 9y ()3 (—ng)3 (Q(150;u; €% q)
+ (—n1)2 ¢ (—n2)7 (Q(2;05u; €% q)
+2¢"TMEMTI (=27 4 g7 + 1) (=) o (—n2)d (Q(150;u; €% q)
+ (—n1)2 ¢ (—n2)7 (Q(2;05u; €% q)
2™ TR (22072 7™M 4 1) (=) e (—n2)s cQ(1505u; €% q). (B.18)

B.3 Q(1,1,---,1;{n;})

The multiple Kronecker theta series with o =1; = --- =l = 1 appears in the U(k + 1)
(k 4 1)-point function of the charged Wilson line operators. It can be expanded in terms of
the Kronecker theta function (3.17) by the relation (3.32).
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For example,

Q(1,1;0,n3u;£;q) = [(n)ge + (—n)qe] Q(1;0;u; €% q),
Q(1,1,1;0,n1,n9;u; §:q) = [(m)q,g(m)q,g + (—n1)ge(—n1 +n2)g e

+ (—=n2)ge(—n2 + nl)q,g]Q(l; 0;u; €% q),

Q(1,1,1,1;0,n1,n2,n3;u; &5 q) = |(n1)g,e(n2)q,e(13)g,e

C Spectral zeta functions

Cc1 Zzf

(—n1 +”2)q,£(_”l +”3)q,€
(=n2 +n1)ge(—n2 +n3)ge
(

(—n3)q.6(=n3 +n1)ge(—nz + ”2)q,€}

(B.19)

(B.20)

(B.21)

The 2-point functions of the Wilson line operators transforming in the antisymmetric

representation for N' = 2* U(N) SYM theory are captured by the spectral zeta functions

ZE(n), 1 < N. For | = 6 we have

2§ = (14 535§)Q(6:0)+6(s155+5753) | Q(6:0)+Q(5, 1;0,n)+Q(4,2;0,m)

+Q(3,3;0,n)+Q(2,4;0,n)+Q(1,5;0,n)} +(s7s5+s153) [15@(6;0)+24Q(5, 1;0,n)
+33Q(4,2;0,n)+36Q(3,3;0,n)+22Q(2,4;0,n)+24Q(1,5;0,n)+6Q(3,2,1;0,n,2n)
+12Q(2,3,1;0,n,2n)+18Q(1,4,1;0,n,2n)4+6Q(2,2,2;0,n,2n)+12Q(1,3,2;0,n,2n)
+6Q(1,2,3;0,m,2n)| +5753|20Q(6;0)+36Q(5,1;0,n) +54Q(4,2;0,n)
+62Q(3,3;0,n)+54Q(2,4;0,1n)+36Q(1,5;0,n)+12Q(3,2,1;0,n,2n)
+30Q(2,3,1;0,n,2n)+36Q(1,4,1;0,n,2n)+12Q(2,2,2;0,n,2n)
+30Q(1,3,2;0,n,2n)+12Q(1,2,3;0,n,2n)+6Q(1,2,2, 1;0,n,2n,3n)}.

c2 zH

(C.1)

For the 2-point functions of the Wilson line operators transforming in the rank-k symmetric

representation for N = 2* U(N) SYM theory, we need the terms with s¥s in the spectral

zeta functions Zf (n), | < N.

For [ > 4 and kK =0,1,2 we have

241 = Q(4;0) + 45152 [Q(4:0) + Q(3,1;0,m) + Q(2,2;0,n) + Q(1,3;0,m)]

+ 5252 [10@(4; 0) + 16Q(3,1;0,n) + 18Q(2,2;0,n) + 16Q(1, 3; 0, n)
+4Q(3,1;0,2n) + 4Q(2,2:0,2n) + 4Q(3, 1; 0, 2n)
+12(1,2,1;0,n,2n) + 8(2,1,1;0,n,2n) + 8(1,1,2;0,n, 2n)} ,
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73 = Q(5;0) + 55155 [Q(5:0) + Q(4,1;0,n) + Q(3,2;0,n)
+Q(2,3;0,n) + Q(1,4;0,m)| + s{s3[15Q(5; 0) + 25Q(4, 150, n) + 30Q(3,2; 0,n)
+30Q(2,3:0,n) + 25Q(1,4;0,n) + 5Q(4,1;0,n) + 5Q(3,2; 0, n)
+5Q(2,3;0,n) +5Q(1,4;0,n) + 15Q(2,2,1;0,n,2n) + 15Q(1,2,2;0,n, 2n)
+10Q(2,1,2;0,n,2n) + 20Q(1,3,1;0,n, 2n) + 10Q(3, 1,1;0, 7, 2n)
+10Q(1,1,3;0,n,2n)] (C.3)
Z§ = Q(6;0) + 65155 [Q(6;0) + Q(5,1;0,n) + Q(4,2;0,n) + Q(3,3;0,n)
+Q(2,4,0,n) + Q(1,5;0,n)] + s753[21Q(6;0) + 36Q(5,1;0,n) + 45Q(4,2;0, )
+48Q(3,3;0,n) + 45Q(2,4;0,1) 4 36Q(1,5;0,n) + 6Q(5, 1; 0, 2n)
+6Q(4,2;0,2n) + 6Q(3,3;0,2n) + 6Q(2,4;0,2n) + 6Q(1,5;0,2n)
+24Q(1,3,2;0,n, 2n) + 24Q(2,3,1;0,n, 2n) + 18Q(3,2,1;0, 7, 2n)
+18Q(1,2,3;0,n,2n) + 12Q(3,1,2;0,n,2n) + 12Q(2, 1, 3;0,n,2n)
+30Q(1,4,1;0,n,2n) + 12Q(4,1,1;0,n,2n) + 12Q(1,1,4;0, n, 2n)
+18Q(2,2,2;0,n, 2n)}. (C.4)
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