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Introduction and motivation

1. Conventional imaging techniques, as in microwave imaging, are known to be capable of extracting features in
breast cancer, for instance, in case of the relatively high contrast of the permittivity 1.

2. However, in case of benign tissue the variation of the permittivity is quite low so that such modalities are limited to
be used for early detection.

Creating such missing contrasts is highly desirable. One way to do it is to use:

(1). Electromagnetic Nanoparticles. 2

(2). Micro-Bubbles. 3

1
G. Belizzi and O. M. Bucci. Microwave cancer imaging exploiting magnetic nanaparticles as contrast agent. IEEE Transactions on Biomedical Engineering, (2011).

2
idem

3
S. Qin, C. F. Caskey and K. W. Ferrara. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys Med Biol. (2009).
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Noninvasive photoacoustic imaging of a rat's cerebral cortex using nanoparticles as contrast agents. 

 

 

 

 

From: W. Li and X. Chen, Gold nanoparticles for photoacoustic imaging.  Nanomedicine (Lond). 2015 

Jan; 10(2): 299–320. 
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 (a). Multilocular pancreatic cystic mass revealing intracystic septal enhancement 45 s after 

microbubble injection with Ultrasound. (b). The pattern is confirmed at contrast-enhanced CT.  

 

 

 

From: E. Quaia, Eur Radiol (2007) 17: 1995–2008 
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Characterization of these contrast agents I:

Electromagnetic Nanoparticles

We call (Dm ,εm ,µm) an electromagnetic nanoparticle of shape Dm , diameter a of order of few tens of nanometers
and permittivity and permeability εm ,µm respectively.

We call them

1. Electric ( or Dielectric ) Nanoparticles if in addition: εm
ε0
∼ a−α ,α > 0 and µm

µ0
∼ 1 as a� 1.

This implies that the relative index of refraction is large, i.e. κ2
m

κ2
0

:= εm µm
ε0µ0

� 1 as a� 1. Hence the relative speed of

propagation cm
c0

:=
κ0
κm is small. But, the contrast of the transmission coefficient is moderate.

2. Magnetic ( or Plasmonic ) Nanoparticles if in addition εm
ε0
∼ 1 and 1

2
µm+µ0
µm−µ0

is “very close” to one of the

eigenvalues of the Neumann-Poincaré operator (i.e. the adjoint of the double layer operator). This means that the
relative speed of propagation is moderate. But the contrast of the transmission coefficient is large.

Note that the coefficients with zero as subscripts refer to the background media.
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Characterization of these contrast agents II:

Micro-Bubbles

We call (Dm ,ρm ,km) a micro-bubble of shape Dm , diameter a, of about few tens of micrometers, and mass density
and bulk modulus ρm ,km respectively.

They are called

1. Low Dense / Low Bulk Bubbles if in addition: ρm
ρ0
∼ aα and km

k0
∼ aα with α > 0 and then

c2
m

c2
0

:= ρm km
ρ0 k0

∼ 1 as a� 1. This means that the relative speed of propagation c2
m

c2
0

is moderate. But the contrast of

the transmission coefficient is large.

2. Moderate Dense / Low Bulk Bubbles if in addition: ρm
ρ0
∼ 1 and km

k0
∼ a−α ,α > 0, as a� 1. This means that

the relative speed of propagation is small. 4 But the contrast of the transmission coefficient is moderate.

Note that the coefficients with zero as subscripts refer to the background media.

4
Such bubbles are not known to exist in nature but they might be designed, see the following work: F. Zangeneh-Nejad and R. Fleury, Acoustic Analogues of

High-Index Optical Waveguide Devices. Sci Rep 8, 10401 (2018).
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Key Resonances

www.ricam.oeaw.ac.at M. Sini, Imaging with nearly resonant frequencies



Johann Radon Institute for Computational and Applied Mathematics

Some related resonances

These differences give rise to different types of resonances:

Micro-bubbles

1 the Minnaert resonance for the Low Density / Low Bulk bubbles. A surface-mode.

2 A sequence of resonances for the Moderate Density / Low Bulk bubbles. Body-modes.

Nanoparticles

1 the plasmonic sequence of resonances for plasmonic nanoparticles. Surface-modes.

2 the Mie (or dielectric) sequence of resonances for the dielectric nanoparticles. Body-modes.
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Formal characterization of the resonances-Acoustic case

Let D = z + a B be a bounded, smooth and connected subset of R3, with a ’radius’ a� 1. Let u = us + ui be the
solution of the acoustic scattering problem


div 1

ρ
∇u + ω2 1

k u = 0 in R3 ,

us := u−ui satisfies the Sommerfeld Radiation Conditions (S.R.C.)
(2.1)

where

ρ :=


ρ1 inside D,

ρ0 outside D
and k :=


k1 inside D,

k0 outside D.

(2.2)

Here ui := ui (x ,ω,d) := e
iω
√

ρ0
k0

x ·θ
is any incident plane wave propagating in the direction θ .
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From the Lippmann-Schwinger representation we have

u(x)−α divx

∫
D

Gω (x −y)∇u(y)dy −βω
2
∫

D
Gω (x −y)u(y)dy = ui (x), (2.3)

where α := 1
ρ1
− 1

ρ0
and β := 1

k1
− 1

k0
.

By integration by parts, (2.3) becomes

u(x)− γω
2
∫

D
Gω (x −y)u(y)dy + α

∫
∂D

Gω (x −y)
∂u
∂ν

(y)dy = ui (x), (2.4)

where γ := β −αρ1/k1 . In addition

(1 +
α

2
)

∂u
∂ν
− γω

2
∂ν−

∫
D

Gω (x −y)u(y)dy + α(K ω
D )∗[

∂u
∂ν

] =
∂ui

∂ν
. (2.5)
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Hence for x ∈ R3 \D, u(x) is characterized by u|D and ∂u
∂ν
|∂D which are solutions of the system:

[I− γω
2Nω ]u + α

∫
∂D

Gω (x−y)
∂u
∂ν

(y)dy = ui (x), in D (2.6)

[
1
α

+
1
2

+ (K ω
D )∗][

∂u
∂ν

]− γ

α
ω

2
∂ν−

∫
D

Gω (x −y)u(y)dy =
1
α

∂ui

∂ν
, on ∂D (2.7)

with the Newtonian (a volume-type) operator:

Nω : L2(D)−→ H2(D), Nω (u)(x) :=
∫

D
Gω (x−y)u(y)dy

and the Neumann-Poincaré (a surface-type) operator

(K ω
D )∗ : H−1/2(∂D)−→ H−1/2(∂D), (K ω

D )∗(f )(x) := pv .
∫

∂D

∂

∂νx
Gω (x −y)f (y)dy .

Key property: For ω = 0, each of these operators generates a sequence of eigenvalues: λm(N0)
m→∞−→ 0 and

σp((K 0
D)∗)⊂ (− 1

2 ,
1
2 ). In addition, we have K 0

D(1) =− 1
2 . These singular values are behind all the used resonances.
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Indeed!

[I− γ ω
2 Nω ]u + α

∫
∂D

Gω (x −y)
∂u
∂ν

(y)dy = ui (x), in D (2.8)

[
1
α

+
1
2

+ (K ω
D )∗][

∂u
∂ν

]− γ

α
ω

2
∂ν−

∫
D

Gω (x−y)u(y)dy =
1
α

∂ui

∂ν
, on ∂D. (2.9)

1. For Low Density / Low Bulk bubbles, we have γ ∼ 1 and then γω2Nω � 1 as a� 1. But as α � 1, precisely if
α ∼ a−2 as a� 1, then we can excite the eigenvalue − 1

2 of K 0
D . In this case, we have the Minnaert resonance with

surface-modes. 5

2. For Moderate Density / Low Bulk bubbles, we have α ∼ 1 and then we keep away from the full spectrum of
(K 0

D)∗. But as γ ∼ a−2 � 1, we can excite the eigenvalues of the Newtonian operators N0. This gives us a sequence
of resonances with volumetric-modes.

Using Lippmann-Schwinger equations allows to characterize all these resonances and for varying backgrounds. 6

5
First observed by H. Ammari, B. Fitzpatrick, D. Gontier, H. Lee, and H. Zhang. Minnaert resonances for acoustic waves in bubbly media. (2018).

6
A. Dabrowski, A. Ghandriche and M. Sini, Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies.

arXiv:2004.07808.
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Formal characterization of the resonances-Electromagnetic case

We deal with non-magnetic materials. The electric field E = Es + E i is solution of the electromagnetic scattering
problem 

curl curl E + ω2εµ0E = 0 in R3 ,

Es satisfies the S-M.R.C.
(2.10)

where

ε :=


ε1 inside D,

ε0 outside D.

(2.11)

Here E i is a polarized incident electric field propagating in the background medium.
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The corresponding Lippmann-Schwinger equation is:

E(x)−η divx

∫
D

∇Gω (x −y) ·E(y)dy −ω
2

η

∫
D

Gω (x−y)E(y)dy = E i (x), (2.12)

where η = ε1− ε0.

By integration by parts, (2.12) becomes

E(x)−ηω
2
∫

D
Gω (x −y)E(y)dy + η∇

∫
∂D

Gω (x −y)E ·ν(y)dy = E i (x). (2.13)

In addition
(1 +

η

2
)E ·ν−ηµ0ω

2
ν ·
∫

D
Gω (x −y)E(y)dy + η(K ω

D )∗[E ·ν] = E i ·ν , on ∂D. (2.14)
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Hence for x ∈ R3 \D, E(x) is characterized by E |D and E ·ν |∂ D which are solutions of the system:

[I−ηω
2Nω ]E + η∇

∫
∂D

Gω (x −y)E ·ν(y)dy = E i (x), in D (2.15)

[
1
η

+
1
2

+ (K ω
D )∗][E ·ν]−ω

2
ν ·
∫

D
Gω (x −y)E(y)dy =

1
η

E i ·ν , on ∂D. (2.16)

1. For dielectric nanoparticles, we have η � 1. Hence 1
η
� 1, however we keep away from the full spectrum of

(K 0
D)∗ as the sources are average-zero. But if in addition η ∼ a−2 � 1, then we can excite the eigenvalues of the

Newtonian operators N0. This gives us the sequence of Mie (or dielectric) resonances. 7

2. Observe that if η is negative (i.e. negative permittivity) then we can excite the sequence of eigenvalues of
(K 0

D)∗. This gives us the sequence of electric plasmonics. 8

7
Published, for scalar waves, in T. Meklachi, S. Moskow, and J.C. Schotland, (2018) and in H. Ammari, A. Dabrowski, B. Fitzpatrick, P. Millien, and M. Sini (2019).

8
Studied in a series of works by H. Ammari et al. using boundary integral equations (i.e. indirect methods).
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Summary on the existence of the resonances

1. Acoustic bubbles:

For Low Density / Low Bulk bubbles, we have the Minnaert resonance with surface-modes.

For Moderate Density / Low Bulk bubbles, we have a sequence of resonances with volumetric-modes.

2. Electromagnetic nanoparticles:

For dielectric nanoparticles, we have the sequence of Mie (or dielectric) resonances with
volumetric-modes.

For negative (real part of the) permittivity, we have the sequence of plasmonic resonances with
surface-modes.
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Acoustic Imaging Using Resonating Bubbles
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Expansion of the fields: Single bubble case-I

Let D := z + a B be the bubble of center z injected in the body to image Ω.

Let V := V s + V i be the total field generated by the background (ρ0 ,k0) without the bubble.

We set U := Us + U i be the total field generated by the background (ρ,k) in the presence of one bubble.

Here V i = U i := eiκ0θ ·x be the incident plane wave where κ0 := ω

√
ρ0,∞
k0,∞

and θ is the direction of incidence.
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Expansion of the fields: Single bubble case-II

Recall the acoustic model:


div 1

ρ
∇U + ω2 1

k U = 0 in R3 ,

Us := U−U i satisfies the Sommerfeld Radiation Conditions (S.R.C.)
(3.1)

where

ρ :=


ρ1 inside D,

ρ0 outside D
and k :=


k1 inside D,

k0 outside D
(3.2)

and ρ0 and k0 are variable coefficients which are constant outside the target domain Ω.

Here we take the scales k1 := k̄1 a2 and ρ1 := ρ̄1 a2.

With these scales, we have existence of the Minnaert resonance.
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Expansion of the fields: Single bubble case-III

We have the expansion:

U∞(x̂ ,θ ,ω) = V ∞(x̂ ,θ ,ω)− 1
k1

ω2
M

ω2−ω2
M
|B| a V (z,−x̂ ,ω) V (z,θ ,ω) + O(a) (3.3)

where k1 = k1 a2, and

ωM = ωM (z) :=

√
k1/ρ0(z)

A∂B
( The Minnaert resonance! ) (3.4)

with A∂B :=−
∫

∂B
∫

∂B
(x−y)·ν(x)

4π|x−y | dxdy .
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Solution of the inverse problem using one bubble-I

We use as data the multiple frequencies backscattered fields:

U∞(−θ ,θ ,ω)

with one incident direction θ and a band of frequencies

[ωmin
M , ω

max
M ]

where

ω
min
M <

√√√√ k1(
maxΩ ρ0(z)

)
A∂B

and ω
max
M >

√√√√ k1(
minΩ ρ0(z)

)
A∂B

.
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Solution of the inverse problem using one bubble-II

1. We have the property: |U∞(−θ ,θ ,ω)| � 1⇐⇒ ω ∼ ωM (z). From this, we recover the function ωM (z), z ∈Ω.

2. We recover the density ρ0(z) =
k1

ω2
M (z) A

∂B
, z ∈Ω.

3. Choose ω± so that ω2
± = ω2

M (z)±a, a� 1. Then from the formula

U∞(−θ ,θ ,ω+)−U∞(−θ ,θ ,ω−) =−
ω2

M (z)

k1
|B| [V (z,θ ,ωM (z))]2 + O(a)

we recover V (z,θ ,ωM (z)) up to a sign.

4. Recover k0(z),z ∈Ω, using numerical differentiation: k−1
0 (z) =−

∇·(ρ
−1
0 ∇V (z,θ ,ωM (z)))

ω2
M (z) V (z,θ ,ωM (z))

.
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Solution of the inverse problem using bubbles-Disadvantages and Solutions

Possible zeros of the total fields V (z,θ ,ωM (z)):

Answer: Use multiple directions of incidence θ .

Numerical differentiation:

Answer: Use two injected bubbles which are close to each other.

We can recover not only the total field V but also the Green’s function GωM on the ’centers’ of the two
bubbles.

From the singularities of GωM , we recover the bulk k0.

Idea of the proof: use the Foldy-Lax paradigm which is justifed for nearly resonating frequencies.
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Summary on the Acoustic imaging using resonating bubbles9

1. Injecting single bubbles and using the generated backscattered field in one incident direction, sent at multiple
frequencies, we can reconstruct the

1 the density ρ0 via direct and stable formulas,

2 the bulk k0 with numerical differentiation.

2. Injecting double and close bubbles (i.e. dimers), we can avoid the numerical differentiation.

9
A. Dabrowski, A. Ghandriche and M. Sini, Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies.

arXiv:2004.07808.
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Photo-Acoustic Imaging Using Resonating

Nanoparticles
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Photo-acoustic imaging using nanoparticles-A general model

Let E , T and p stand respectively for the electric field, the heat temperature and the acoustic pressure.

The Photo-acoustic experiment is based on the following model coupling these three quantities:

curl curl E −ω2 ε µ0 E = 0, E := Es + E i , in R3 ,

ρ0cp
∂T
∂ t
−∇ ·κ∇T = ω ℑ(ε) |E |2 δ0(t), in R3×R+ ,

1
c2

∂ 2p
∂ t2 −∆p = ρ0 β0

∂ 2T
∂ t2 , in R3×R+ ,

where ρ0 is the mass density, cp the heat capacity, κ is the heat conductivity, c is the wave speed and β0 the
thermal expansion coefficient. To the last two equations, we supplement the homogeneous initial conditions:

T = p =
∂p
∂ t

= 0, at t = 0.
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The 2D mathematical model is 10


∂ 2

t p(x , t)−c2
s (x)∆x p(x , t) = 0 in R2×R+ .

p(x ,0) =
ω β0
cp ℑ(ε)(x) |E3 |2(x), in R2

∂t p(x ,0) = 0 in R2

(4.1)

here cs is the velocity of sound in the medium that is smooth and cs −1 is supported in a smooth and compact set
Ω. The constants β0 and cp are known and ω is an incident frequency.

The source u := E3, in the Transverse-Electric regime, is solution of:


∆u + ω2µ0ε u = 0 in R2 ,

u(x) := us(x) + ei ω
√

µ0ε0 x

us satisfies the S.R.C..

(4.2)

where ε = ε1 inside D, ε = ε0 outside D and ε0 = 1 outside Ω (D ⊂Ω).

10
F. Triki, M. Vauthrin. Mathematical modelization of the Photoacoustic effect generated by the heating of metallic nanoparticles. (2018).

www.ricam.oeaw.ac.at M. Sini, Imaging with nearly resonant frequencies



Johann Radon Institute for Computational and Applied Mathematics

Photo-acoustic imaging using nanoparticles-II

The goal is to recover ε in Ω from the measure of the pressure p(x , t), x ∈ ∂Ω and t ∈ (0,T ) for large enough T .

1 Acoustic Inversion: Recover the source term ℑ(ε)(x) |u|2(x), x ∈Ω, from the measure of the pressure
p(x , t), x ∈ ∂Ω and t ∈ (0,T ).

2 Electromagnetic Inversion: Recover the permittivity ε(x), x ∈Ω from ℑ(ε)(x) |u|2(x), x ∈Ω.

The data (i.e. the pressure) is collected:

Before injecting any particle. (Ammari, Arridge, Bal, Stefanov, Scherzer, Seo, Uhlmann and many other
contributors) using multiple internal data for suitable incident waves.

After injecting a single particle. (Triki-Vauthrin, with plasmonic nanoparticles).

After injecting a double (and close) particles.

After injecting a cluster of particles.

www.ricam.oeaw.ac.at M. Sini, Imaging with nearly resonant frequencies



Johann Radon Institute for Computational and Applied Mathematics

Some Known Acoustic Inversions. Natterer’s book and Kuchment-Kunyansky (EJAM-2008).

1 If the speed of propagation cs is constant and Ω is a disc of radius R, then

ℑ(ε)(x) |u|2(x) =
1

2πR

∫
∂Ω

∫ 2R

0
(∂r r ∂r M(ℑ(ε) |u|2))(p, r) log(|r2−|x −p|2 |)dr dσ(p) (4.3)

where

M(ℑ(ε) |u|2)(x , r) =
2ωβ0
cpπ

∫ cs r

0

p(x , t)√
r2− t2

dt . (4.4)

2 Otherwise (under certain conditions as the non-trapping one)

ℑ(ε)(x) |u|2(x) =
cp

ω β0
∑
k

(ℑ(ε)(x) |u|2)k ψk (x)

where
(ℑ(ε)(x) |u|2)k = λ

−2
k gk (0)−λ

−3
k

∫
∞

0
sin(λk t)g′′k (t)dt (4.5)

with

gk (t) =
∫

S
p(x , t)

∂ψk
∂ν

(x)dx (4.6)

and (λk ,ψk ) is the sequence of eigen-elements of −c−2
s (x)∆ with zero DBC in ∂Ω.
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Let the permittivity ε0(·), of the medium, be W 1,∞−smooth in Ω and the permeability µ0 to be constant and positive.

Here, we assume that the injected nanoparticles enjoy the properties:

ℜεp ∼ a−2| log(a)|−1 and ℑεp ∼ a−2 | log(a)|−1−h−s , s ≥ 0.

The frequency of the incidence ω is chosen close to the dielectric resonance ωn0 :

ω
2
n0

:=
(

µ0 εp λn0

)−1
,

as follows
ω

2 := ω
2
± := ℜ(ω

2
n0

)(1±| log(a)|−h), 0 < h < 1 (4.7)

where λn0 is an eigenvalue of the Newtonian operator acting as:

A0u(x) :=
∫

D
− 1

2π
ln(|x −y |)u(y)dy .
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Let x ∈ ∂Ω and t ≥ diam(Ω). Under the condition 0≤ s < max{h,1−h}, we have the following expansions of the
pressure:

1 Injecting one nanoparticle. In this case, we have the expansion

(p+ + p−−2p0)(t ,x) =
−t ω β0

cp (t2−|x −z|2)3/2 2 ℑ(εp)
∫

D
|u1(x)|2dx +O

(
| log(a)|max(−1,2h−2)). (4.8)

2 Injecting two close dielectric nanoparticles. We have the following expansion

(p+ + p−−2p0)(t ,x) =
−t ω β0

cp (t2−|x −z|2)3/2 4 ℑ(εp)
∫

D
|u2(x)|2dx +O

(
| log(a)|max(−1,2h−2)). (4.9)

where D is any one of the two nanoparticles.
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Acoustic Inversion

Measuring p+(x , t), p−(x , t) and p0(x , t) for

two single points x1 6= x2 in ∂Ω at two single times t1 6= t2,

we can

1. localize the center of the injected single nanoparticle z and estimate
∫
D |u1(x)|2dx .

2. estimate the center of the two injected nanoparticles z1,z2 (but we do not distinguish them). In addition, we can
estimate

∫
D |u2(x)|2dx . Here D is any of the two nanoparticles.
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Electromagnetic Inversion I

Injecting one nanoparticle. In this case, we have the following approximation

∫
D
|u1 |2(x)dx =

|u0(z)|2(
∫
D en0 (x)dx)2

|1−ω2µ0εpλn0 |
2 +O

(
a2). (4.10)

Hence, we can extract the internal phaseless information |u0(z)|. Recall that u0 is solution of

∆u0 + ω
2

µ0εu0 = 0. (4.11)

This means that measuring before and after injecting one nanoparticle and scanning Ω with such nanoparticles, we
transform the photo-acoustic problem to the

inverse problem of reconstructing ε from internal phaseless data |u0 | with u0 solution of (4.11).
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Electromagnetic Inversion II

Injecting two closely spaced nanoparticles located at z1 and z2. In this case, we have at hand

∫
D
|u1|2(x)dx and

∫
D
|u2|2(x)dx .

Based on the Foldy-Lax approximation for frequencies near resonances, we derive the following expansion

log(|k |)(z) = 2πγ−

∫
D |u2 |

2(x)dx∫
D |u1 |2(x)dx

− (1−CΦ0)2

∫
D |u2 |2(x)dx∫
D |u1 |2(x)dx

−2(1−CΦ0)

+ O(| log(a)|max{h−1,1−2h}), a� 1, (4.12)

where γ is the Euler constant, Φ0 :=− 1
2π

ln |z1−z2 | and

C :=
∫
D [ 1

ω2µ0ℜεp
I−A0]−1(1)(x)dx =

ω2µ0ℜεp
1−ω2µ0ℜεpλn0

(∫
D en0 (x)dx

)2

+ O(| log(a)|−1), a� 1.

As

|k |(z) = ω
2 |ε0 |µ0 = ω

2
(
|εr |2 +

|σΩ|2

ω2

)1/2
µ0 , (4.13)

then using two different resonances ωn0 and ωn1 , we can reconstruct both the permittivity εr (z) and the
conductivity σΩ(z).
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Imaging using a cluster of contrast agents-I

We inject a cluster of contrast agents (Dm ,εm ,µ0),m = 1,2, ...,M inside Ω.

Assumptions:

1 We have both ℜεm ∼ εmr a−2 and ℑεm ∼ εmi a−2+h , with h ∈ (0,1).

2 1−
ω2

n0
ω2 = lM ah , with lM 6= 0 and h ∈ (0,1).

3 There exists a function K such that

1
[a−1+h ]

[a−1+h ]

∑
j 6=m

f (zj )

|zj −zm |
−
∫

Ω

f (z)

|z−zm |
K (z)dz = o(1)‖f‖C0(Ω)

,uniformly for zj and as a� 1. (4.14)

This means we use a cluster of M particles of the order M ∼ ah−1, 0 < h < 1 and a� 1.
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Imaging using a cluster of contrast agents-II

Under these assumptions, we have u(x ,θ)−uK (x ,θ) = o(1), as a� 1. where

(
∆ + ω

2
n0

εK (x)µ0

)
ut

K = 0, in R3 , ut
K = us

K + eiκ0x ·θ ,
∂us

K
∂ |x |

− iκ0us
K = o

(
1
|x |

)
, |x | → ∞, (4.15)

with ℜεK := ℜε−K |B|lM
εmr χΩ . and ℑεK = ℑε + K |B|lM

εmr χΩ.

Choosing lM > 0, we have

ℜεK (x) < 0, for x ∈Ω and εK (x)− ε can be large .

We can use lM � 1 or K � 1 to enhance these contrasts.
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Imaging using a cluster of contrast agents-III.

1 From the measured pressure after injecting the cluster, we recover the pressure due to the effective medium
εK (via homogenization). The advantage here is that we use a sparse cluster of nanoparticles with nearly
resonating frequencies however.

2 From this data, we recover ℑεK |uK |2 and hence |uK |2 as εK (x)− ε is large and known.

3 This phaseless total internal field corresponds to a locally coercive Helmholtz wave propagator. By
homogenization we switch the sign of the index of refraction as for metamaterials (in material sciences).

4 Due to coercivity, the corresponding least square functional has a positive second Gateau-derivative. Hence
it is a convex functional. Already observed by I. Knowles.

5 The slope of the functional is sharper as lM � 1 or K � 1.
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Summary and perspectives

1 Imaging with contrast agents is among the promising modalities that are at the cutting edge of modern
medical imaging.

2 We have a clear correspondence between the critical scales of the contrasting materials and the actual
resonances.

3 Using nearly resonating frequencies provides simple and direct links between the measured data and the
background coefficients.

4 We have demonstrated this in two frameworks: Acoustic Bubbles and Electromagnetic Nanoparticles in their
simplest models however.

5 Combination of imaging techniques with homogenization might be applied successfully to different
modalities as Raman Imaging and MREIT.

THANK YOU
More details by email at mourad.sini@oeaw.ac.at or in www.//people.ricam.oeaw.ac.at/m.sini/
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