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Relativistic ideal fluids in Minkowski background

I Let (R1+3,m) be the standard Minkowski spacetime with

m :=

(
−1 0
0 I3×3

)
.

I We denote by mαβ and mαβ the components for m and m−1

respectively.

I All the indices are raised and lowered with respect to m and
m−1.

I The Greek letters are all from 0 to 3.



Relativistic fluids in Minkowski background

I The motion of the fluid is described by the fluid velocity and
several thermodynamical quantities:

I The fluid velocity is denoted by

u = uµ
∂

∂xµ
,

and satisfies

u0 > 0, uµuµ = −1.



Relativistic fluids in Minkowski background
I There are five thermodynamic quantities:

n : number density of particles

p : pressure

ρ : energy density

s : entropy per particle

θ : temperature

I They satisfy the following relation

p = n
∂ρ

∂n
− ρ, θ =

1

n

∂ρ

∂s
.

I The sound speed η is given by

η :=

√(
∂p

∂ρ

)
s

, 0 ≤ η ≤ 1.

I Here by choosing appropriate units, we assume the speed of
light is 1.



Relativistic fluids in Minkowski background

I We also need the energy-momentum tensor Tµν and the
particle current Iµ which are given by

Tµν := (p + ρ)uµuν + pmµν , Iµ = nuµ.

I The equation of motion is given by

∇µTµν = 0, ∇µIµ = 0. (1)

I Here ∇ is the canonical Levi-Civita connection of the
Minkowski metric m.



Barotropic fluids

In this work we consider barotropic fluids, namely, the pressure p is
a function of the energy density ρ only:

p = f (ρ), f ′ > 0.

Define

F (p) :=

ˆ p

0

dp′

ρ(p′) + p′
, V := eFu,

and

‖V ‖ := eF , ‖V ‖2 := −V µVµ.



Equation of motion-Alternative

The equation of motion (1) becomes

V ν∇νV µ +
1

2
∇µ
(
‖V ‖2

)
= 0, ∇µ (G (‖V ‖)V µ) = 0, (2)

where the function G is defined by

G (‖V ‖) :=
ρ+ p

‖V ‖2
.

Note that p and ρ are functions of ‖V ‖.



The hard phase model-Assumptions

I We assume the fluid is irrotational:

∇µVν −∇νVµ = 0, ⇒ V µ = ∇µφ

for a scalar function φ.

I p and ρ are given by

p =
1

2

(
‖V ‖2 − 1

)
, ρ =

1

2

(
‖V ‖2 + 1

)
,

⇒ η ≡ 1, G ≡ 1.

I We denote σ2 := ‖V ‖2. σ2 is the enthalpy.



The hard phase model with free boundary

We are interested in the following free boundary problem for hard
phase model:

I Let Ω be a spacetime domain in (R1+3,m). Ω will be part of
the unknown of our problem.

I The free boundary problem is

∇µV µ = 0, dV = 0, in Ω

σ2 = −V µVµ ≡ 1 on ∂Ω

V tangential to ∂Ω.

(3)

I The initial data satisfies

∇µσ2∇µσ2 > 0 on ∂Ω0

σ2
0 > 1 in Ω0.

(4)



Main result I: Well-posedness

Theorem
Any sufficiently regular data satisfying (4) and certain compatibility
conditions leads to a unique local-in-time solution to (3).

I The conditions (4) on initial data is the relativistic Taylor sign
condition.

I Since we are solving an initial-boundary value problem for a
hyperbolic PDE system, the initial data should satisfy certain
compatibility conditions

I Seeking the optimal regularity is not our concern in this work.



Remarks on the model

I The hard phase model has independent physical interest: It is
an idealized model for the physical situation when the
mass-energy density exceeds the nuclear saturation density
during the gravitational collapse of the degenerate core of a
massive star. In this situation, the sound speed is thought to
approach the speed of light (Christodoulou,
Friedman-Pandharipande, Lichnerowicz, Rezzolla-Zanotti,
Walecka, and Zel’dovich, etc.)

I The hard phase model captures main mathematical features
of a class of free boundary problems. Our approach in this
work can be applied to general barotropic fluids with non-zero
vorticity.



Historical results on related models

I Gaseous models: Makino, Rendall (Existence for a class of
solutions), Hadzić-Shkoller-Speck, Jang-LeFloch-Masmoudi
(A priori estimates), Trakhinin (Existence using Nash-Moser)

I Liquid models: Oliynyk (Existence for a similar liquid model
using different methods), Ginsberg (A priori estimates for the
same model with smallness assumption on initial data).



Comparison with Newtonian problem

I The Newtonian free boundary problem for incompressible
irrotational fluid is

∇ · Ṽ = 0, ∇× Ṽ = 0 in Ω̃t

Ṽt + (Ṽ · ∇)Ṽ = −∇P̃ in Ω̃t

P̃ ≡ 0 on ∂Ω̃t

(1, Ṽ ) tangential to ∪t>0 (t, ∂Ω̃t).

(5)

I Hopf Lemma implies the Taylor sign condition

− ∂P̃

∂ñ
≥ ct > 0 on ∂Ω̃t (6)

I Here P̃ is the pressure. Ṽ is the fluid velocity. Ω̃t is the
unknown domain occupied by fluid at time t. ñ is the outward
unit normal to ∂Ω̃t .



Ideas to solve the Newtonian problem: Wu (97,99)

I Reducing the problem to the boundary.

I Differentiating the momentum equation in (5) with respect to
D̃t := ∂t + Ṽ · ∇ to obtain the system:(

D̃2
t + ã∇ñ

)
Ṽ = −∇D̃t p̃ on ∂Ω̃t

∆Ṽ = 0 in Ω̃t .
(7)

I Here ∇ñ is the standard Dirichlet-Neumann operator, and

ã := −∂P̃
∂ñ .

I Using boundary integrals we express ã and ∇Dt p̃ in terms of
the boundary values of Ṽ and its derivatives.

I It turns out that the first equation in (7) is a quasilinear
equation of Ṽ .



Ideas to solve the Newtonian problem:
Christodoulou-Lindblad (00)

I Instead of using boundary integrals, one considers the elliptic
problems:

∆P̃ = −(∂i Ṽ
`)∂`Ṽ

i in Ω̃t , P̃ = 0 on ∂Ω̃t

∆Dt P̃ = G (∂Ṽ , ∂2P̃) in Ω̃t , Dt P̃ = 0 on ∂Ω̃t .
(8)

I Here G (∂Ṽ , ∂2P̃) consists of the product between ∂Ṽ and
∂2P̃, as well as a cubic expression of ∂Ṽ .

I The elliptic equations (8) recover the regularity of P̃ and Dt P̃.



Back to hard phase model

I Let DV := V µ∂µ, and n be the outward unit normal to ∂Ω.

I

σ2 ≡ 1 on ∂Ω ⇒ ∇σ2 = −an on ∂Ω

a =
√
∇µσ2∇µσ2 > 0.

I Differentiating the equation DVV
µ + 1

2∇
µσ2 = 0 by DV on

∂Ω, the original system (3) becomes(
D2
V +

1

2
a∇n

)
V µ = −1

2
∇µDVσ

2 on ∂Ω

2V µ = 0 in Ω.

(9)



Quasilinear system

I The operator ∇n in (9) is the hyperbolic Dirichlet-Neumann
map. It is not clear at all whether this operator is positive or
not.

I σ2 and DVσ
2 satisfy the following wave equations with

Dirichlet boundary data:

2σ2 = −2(∇µV ν)(∇µVν), σ2 ≡ 1 on ∂Ω. (10)

2DVσ
2 = 4(∇µV ν)(∇µ∇νσ2) + 4(∇λV ν)(∇λV µ)(∇νVµ) in Ω

DVσ
2 ≡ 0 on ∂Ω.

(11)



Well-posedness: Main ingredients of the proof

I A priori estimates for the system (9), (10) and (11).

I Higher order regularity: Commuting Dk
V . Note that DV is

defined globally both in the interior of Ω and ∂Ω, and
tangential to ∂Ω. Using the equation we show that D2

V ∼ ∂x .

I Galerkin method to construct approximation sequences and
prove the convergence of the sequences.



A priori estimates-Positivity of the hyperbolic DN map

I Main idea: Multiplying both the boundary equation(
D2
V + 1

2a∇n

)
V = ... and the equation 2V = 0 by DVV ,

and integrate on Ω and ∂Ω. We obtain the following positive
energy

ˆ
Ωt

|∂t,xV |2 dx +

ˆ
∂Ωt

1

a
|DVV |2 dS . (12)

Here Ωt and ∂Ωt are the x0 = t-slices of Ω and ∂Ω
respectively.

I Let us illustrate the idea with a simpler model, where B is the
unit ball:

2u = F in [0,T ]× B(
∂2
t + ∂r

)
u = f on [0,T ]× ∂B

(13)



Positivity of the hyperbolic DN map

I Multiplying the system (13) by ∂tu, we have

1

2
∂t(∂tu)2 + (∂tu)(∂ru) = (∂tu)f on ∂B

1

2
∂t
(
(∂tu)2 + |∇u|2

)
−∇ · (∂tu∇u) = −F · ∂tu in B.

(14)

I Integrating the second equation in (14) on [0,T ]× B:

1

2

ˆ
B
|∂t,xu(T )|2 dx − 1

2

ˆ
B
|∂t,xu(0)|2 dx

−
ˆ T

0

ˆ
∂B

(∂tu)(∂ru) dS dt = −
ˆ T

0

ˆ
B
F · ∂tu dx dt

(15)



Positivity of the hyperbolic DN map

I Integrating the first equation in (14) on [0,T ]× ∂B:

1

2

ˆ
∂B
|∂tu(T )|2 dS − 1

2

ˆ
∂B
|∂tu(0)|2 dS

+

ˆ T

0

ˆ
∂B

(∂tu)(∂ru) dS dt =

ˆ T

0

ˆ
∂B

(∂tu)f dS dt

(16)

I Adding (15) and (16), we obtain

1

2

ˆ
B
|∂tu(T )|2 dx +

1

2

ˆ
∂B
|∂tu(T )|2 dS

=
1

2

ˆ
B
|∂tu(0)|2 dx +

1

2

ˆ
∂B
|∂tu(0)|2 dS

−
ˆ T

0

ˆ
B
F · ∂tu dx dt +

ˆ T

0

ˆ
∂B

(∂tu)f dS dt.

(17)



Boundary equation-Source term

I To control the source term of the RHS of the equation(
D2
V + 1

2a∇n

)
V = ..., we need to control

ˆ T

0

ˆ
∂Ωt

|∇DVσ
2|2 dS dt.

I We consider the following wave equation with Dirichlet data:

2DVσ
2 = G in Ω, DVσ

2 ≡ 0 on ∂Ω. (18)

I We use the multiplier vectorfield V + αn to derive an energy
identity for (18). Here the constant α > 0 is sufficiently small
such that V + αn is timelike with respect to the Minkowski
metric.



IBVP for wave

I Again we illustrate the idea with the following simpler model
for (18):

2u = G in [0,T ]× B, u ≡ 0 on [0,T ]× ∂B. (19)

I Denote the multiplier vectorfield ∂t + α∂r by

∂t + α∂r := Q = Qµ∂µ.

I A direct calculation shows

2u · Qu =∇µ
(

(Qu)(∇µu)− 1

2
Qµ (∇νu) (∇νu)

)
+

1

2
(∇µQµ) (∇νu) (∇νu)− (∇µQν) (∇µu) (∇νu)

I The last two terms on the RHS above are of lower order.



IBVP for wave -conti

I Q being timelike implies that the flux on {T} × B is positive
and controls the standard energy

´
B |∂t,xDVσ

2(T )|2.

I On [0,T ]× ∂B, we obtain

α

2

ˆ T

0

ˆ
∂B

(∇νu) (∇νu) dS dt ' α

2

ˆ T

0

ˆ
∂B
|∂ru|2 dS dt,

since

∂tu = ∂θu = 0 on [0,T ]× ∂B.

Here θ is the angular variable on ∂B.



Hk(Ωt)-bounds

I To obtain the L∞-control in the a priori estimates, we need
the control of ∂kxV in L2(Ωt).

I The energy controls Dk
VV ∈ H1(Ωt) and Dk+1

V V ∈ L2(∂Ωt).

I Using the boundary equation
(
D2
V + 1

2a∇n

)
V = ... we have

∇nV ' D2
VV + l.o.t.

The Trace Theorem implies

‖∇nV ‖
H

1
2 (∂Ωt)

.
∥∥D2

VV
∥∥
H1(Ωt)

. “Energy forD2
VV ” (20)



Hk(Ωt)-bounds -conti

I On the other hand, we have

0 = 2V = ∂t,xDVV + AV ,

where A is an elliptic operator on Ωt . This together with (20)
gives control on ‖V ‖H2(Ωt) in terms of the energy (i.e., the

H1(Ωt)-norm) for D2
VV .

I This finally shows D2
V ∼ ∇x .



Newtonian limit-Rescaled quantities

I To study the Newtonian limit as the speed of light approaches
infinity, we of course cannot set the speed of light c = 1
anymore.

I Now the pressure p and energy density ρ are given by

p =
1

2
c−2

(
σ2 − c4

)
, ρ =

1

2
c−4

(
σ2 + c6

)
.

I The sound speed η = c and on the boundary ∂Ω we have
σ2 ≡ c4.

I The initial data satisfies

σ2
0 ≥ c4 in Ω0

σ2
0 = c4 on ∂Ω0

∇µσ2
0∇µσ2

0 ≥ c2
0c

4 > 0 on ∂Ω0.

(21)



Rescaled quantities and time variable

I Instead of V , σ2, we work with the rescaled quantities

V := c−1V , σ2 := c−2σ2 − c2 (22)

I Here V , σ are to be shown of order O(1) as c →∞.

I In addition to the standard time variable t in the proof of the
well-posedness, we also work with the rescaled time variable
t ′ := c−1t. Therefore we have

∂

∂t
= c−1 ∂

∂t ′
m = −c2(dt ′)2 +

3∑
i=1

(dx i )2

2 = − 1

c2
∂2
t′ +

3∑
i=1

∂2
i .

I Note that V
0 ' c as c →∞



Rescaled energy

I We strive for an a priori estimate which is independent of c .
Therefore the energy must be of order O(1) as c →∞.

I Systematically, let E [V ](t) and E [DVσ
2](t) be the energies

we bound in the above a priori estimate. A direct observation
shows that

E [V ](t) ' c, E [DVσ
2](t) ' c , as c →∞.

The reason for this is that V
0 ' c , which appears in the

definition of E [V ] and E [DVσ
2].

I To get an order O(1) energy, we need to consider the rescaled
energies

c−1E [V ](t), c−1E [DVσ
2](t).



Sources in the energy estimates

I Systematically, the energy estimates have the following form

c−1E [V ](T ) + c−1E [DVσ
2](T )

.“Initial data of order O(1)” + c−1

ˆ T

0
“Nonlinear sources” dt

I The “Nonlinear sources” above is of order O(1) as c →∞.

I This observation implies that in the time variable t, we can
extend the solution given by the well-posedness theorem up to
the scale t ' c , and in the time variable t ′ up to the scale
t ′ ' 1.

I This is crucial because t ′ is the time variable for the
Newtonian problem.



The discrepancy for energy hierarchy given by the a priori
estimates

I Suppose as c →∞, Θ is a quantity of order O(1). Then ∂tΘ
must be of order O(c−1) and ∂iΘ = O(1). However, the a
priori estimate gives the same estimate for ∂tΘ = O(1). In
the Newtonian limit, we need the improved estimate
∂tΘ = O(c−1).

I To overcome this difficulty, we look at σ2:

σ2 = (V
0 − c)2 −

3∑
i=1

(V
i
)2 + 2c(V

0 − c) (23)

The a priori estimate shows that V
0 − c ,V

i
, σ2 remains

bounded as c →∞, which in turn shows

V
0 − c = O(c−1) as c →∞.

I Differentiating (23) in ∂t , we get

∂tV
0

= O(c−1) as c →∞.



Main result II-Newtonian limit

Finally we have the result on Newtonian limit, which can be
roughly stated as following:

Theorem
The rescaled solution (V , σ) to the free boundary problem (3)-(4)
converges to the solution to the free boundary problem (5) as
c →∞.



Thank you!


