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to general coupled system of ki-Hessian equations in a unit ball are studied via 
a fixed-point theorem. In particular, we obtain the uniqueness of nontrivial radial 
convex solution and nonexistence of nontrivial radial k-admissible solution to a 
power-type system coupled by ki-Hessian equations in a unit ball. Moreover, using 
a generalized Krein-Rutman theorem, the existence of k-admissible solutions to an 
eigenvalue problem in a general strictly (k − 1)-convex domain is also obtained.
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1. Introduction

In this paper, we consider the existence and multiplicity of nontrivial radial k-admissible solutions to the 
coupled system of the following ki-Hessian equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sk1

(
D2u1

)
= f1 (|x|,−u2) , in B,

Sk2

(
D2u2

)
= f2 (|x|,−u3) , in B,

...

Skn−1

(
D2un−1

)
= fn−1 (|x|,−un) , in B,

Skn

(
D2un

)
= fn (|x|,−u1) , in B,

ui = 0, i = 1, . . . , n, on ∂B,

(1.1)

✩ This work was supported by the National Natural Science Foundation of China (No. 11771214, No. 11901303) and the 
Fundamental Research Funds for the Central Universities.
* Corresponding author.

E-mail addresses: 20201215013@nuist.edu.cn (J. Ji), jfd2001@163.com (F. Jiang), baohuadong@nuist.edu.cn (B. Dong).
https://doi.org/10.1016/j.jmaa.2022.126217
0022-247X/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jmaa.2022.126217
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2022.126217&domain=pdf
mailto:20201215013@nuist.edu.cn
mailto:jfd2001@163.com
mailto:baohuadong@nuist.edu.cn
https://doi.org/10.1016/j.jmaa.2022.126217


2 J. Ji et al. / J. Math. Anal. Appl. 513 (2022) 126217
where k = (k1, . . . , kn), ki ∈ {1, . . . , N}, i ∈ {1, . . . , n}, B =
{
x ∈ RN : |x| < 1

}
is a unit ball, n ≥ 2 and 

N ≥ 2 are integers. The nonlinearities fi (i = 1, . . . , n) satisfy

(F) : fi ∈ C ([0, 1] × [0,+∞), [0,+∞)) , i = 1, . . . , n

and each fi is not identical to zero.
The k-Hessian operator Sk is defined by the k-th elementary symmetric function of eigenvalues of D2u, 

i.e.

Sk

(
D2u

)
:= Sk

(
λ(D2u)

)
=

∑
1≤i1<···<ik≤N

λi1 · · ·λik , k = 1, . . . , N,

where λ(D2u) = (λ1, . . . , λN ) is the vector of eigenvalues of D2u =
[

∂2u
∂xi∂xj

]
n×n

, (see [21,25] for instance). 

Notice that when k = 1, the Hessian operator reduces to the classical Laplace operator S1(D2u) =
∑N

i=1 λi =
Δu. When k = N , the Hessian operator is the Monge-Ampère operator SN (D2u) =

∏N
i=1 λi = det(D2u). In 

fact, the k-Hessian operator can be regarded as an extension of the Laplace operator and the Monge-Ampère 
operator. When k ≥ 2, the k-Hessian operator is a fully nonlinear operator.

Let u ∈ C2(Ω) and σk =
{
λ ∈ RN : Sl(λ) > 0,∀l = 1, . . . , k

}
be a convex cone and its vertex be the origin. 

If λ(D2u) ∈ σk (σk), u is said to be k-convex (uniformly k-convex) in Ω. Equivalently, if λ(−D2u) ∈ σk (σk), 
u is k-concave (uniformly k-concave) in Ω. We say u ∈ C2(Ω) ∪ C0(Ω) is k-admissible if λ(D2u) ∈ σk. 
In particular, an N -admissible function u satisfying λ(D2u) ∈ σN is said to be convex. It is clear that 
σN ⊂ · · · ⊂ σk ⊂ · · · ⊂ σ1, which implies that convex functions are contained in k-admissible functions. 
Actually, we know from [2] that for a k-Hessian equation, it is elliptic when restricted to k-admissible 
functions. For k = (k1, . . . , kn), u = (u1, . . . , un), if ui is ki-admissible and satisfies (1.1) for all i = 1, . . . , n, 
we say u is a k-admissible solution of (1.1).

Recalling that fi ∈ [0, +∞) (i = 1, . . . , n) and u ∈ C2(B) is k-admissible solution of (1.1) vanishing 
on the boundary, we can achieve that u is sub-harmonic in B from [25]. Hence, we apply the maximum 
principle to conclude that u is negative in B.

The study of k-Hessian equations plays an important role in differential geometry, fluid mechanics and 
other applied disciplines. In the past years, many authors show great interest in solutions of k-Hessian 
equations and many excellent results on k-Hessian equations have been obtained, for instance, see [1–3,9,15–
22,25]. However, there are few studies that consider the fully nonlinear coupled systems except [4–7,23,24,29]
based on our cognition. For example, by using fixed point theorem, Wang [24] established the existence, 
multiplicity and nonexistence of convex radial solutions to a coupled system of Monge-Ampère equations in 
superlinear and sublinear cases. In [7], the authors studied the existence and multiplicity of nontrivial radial 
solutions for system coupled by multiparameter k-Hessian equations and obtained sufficient conditions for 
the existence of nontrivial radial solutions to power-type coupled k-Hessian system based on a eigenvalue 
theory in cones. In particular, Cui considered a Hessian type system coupled by different k-Hessian equations 
and obtained the existence of entire k-convex radial solutions, see [4].

Inspired by the above works, we are interested in a system coupled by different k-Hessian equations with 
general nonlinearities which satisfy αi or βi-asymptotic growth conditions. In this paper, we shall establish 
the existence and multiplicity of nontrivial radial k-admissible solutions of the weakly coupled degenerated 
system (1.1). It is worth to notice that the system (1.1) contains a variety of different k-Hessian equations 
which is significantly different from that in [5,7,23,29] such that the problem we considered can contain 
Laplace equations and Monge-Ampère equations at the same time. This kind of system can represent the 
coupling of different types of elliptic equations, which makes our problem more comprehensive and more 
applicable.
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If αi, βi > 0, we let

f0
i

= lim inf
c→0+

min
0≤t≤1

fi(t, c)
cαi

, f∞
i

= lim inf
c→∞

min
0≤t≤1

fi(t, c)
cβi

,

f
0
i = lim sup

c→0+
max
0≤t≤1

fi(t, c)
cαi

, f
∞
i = lim sup

c→∞
max
0≤t≤1

fi(t, c)
cβi

.

Here, we call them αi or βi-asymptotic growth condition, super-αi or βi-asymptotic growth condition and 
sub-αi or βi-asymptotic growth condition. Compared with some N -asymptotic growth (see, for instance 
[6,8,24] where the constants αi = βi = N) in studying Monge-Ampère equations and some k-asymptotic 
growth (see, for instance [7,26,27] where the constants αi = βi = k) in studying k-Hessian equations, our 
conditions are more flexible. By imposing suitable conditions on f0

i
, f∞

i
, f0

i , f
∞
i and coordinating inequality 

relations between αi, βi and ki, we obtain existence and multiplicity results in general cases as follows.
We will assume f = {f1, . . . , fn} satisfies one of the following conditions:

(C1) f0
i
, f

∞
i ∈ (0, +∞), i = 1, . . . , n and fi(t, 0) = 0, i = 2, . . . , n;

(C2) f0
i , f

∞
i

∈ (0, +∞), i = 1, . . . , n;
(C3) f0

i
, f∞

i
∈ (0, +∞), i = 1, . . . , n and fi(t, 0) = 0, i = 2, . . . , n;

(C4) f0
i , f

∞
i ∈ (0, +∞), i = 1, . . . , n.

Theorem 1.1. (Existence theorem) Suppose that (F) and one of the following conditions hold:
(a). (C1) holds and positive constants αi, βi (i = 1, . . . , n) satisfy

n∏
i=1

αi <
n∏

i=1
ki,

n∏
i=1

βi <
n∏

i=1
ki;

(b). (C2) holds and positive constants αi, βi (i = 1, . . . , n) satisfy

n∏
i=1

αi >
n∏

i=1
ki,

n∏
i=1

βi >
n∏

i=1
ki.

Then system (1.1) has at least one nontrivial radial convex solution.

Theorem 1.1 is concerning the existence of nontrivial radial convex solutions to the weakly coupled 
degenerate system (1.1) with general nonlinear terms. Furthermore, we can consider the result of multiplicity 
as well.

Let

Gi = max
{
fi(t, vi+1(t)) : (t, vi+1(t)) ∈ [0, 1] × [0, G

1
ki+1
i+1 ]

}
, i = 1, . . . , n− 1,

Gn = max
{
fn(t, v1(t)) : (t, v1(t)) ∈ [0, 1] × [0, r04 ]

}
,

G̃i = max
{
fi(t, vi+1(t)) : (t, vi+1(t)) ∈ [0, 1] × [0, G̃

1
ki+1
i+1 ]

}
, i = 2, . . . , n− 1,

G̃n = max {fn(t, v1(t)) : (t, v1(t)) ∈ [0, 1] × [0, R0]} ,

Ei = min
{
fi(t, vi+1(t)) : (t, vi+1(t)) ∈ [ 14 ,

3
4 ] × [ 14Γi+1E

1
ki+1
i+1 , G̃

1
ki+1
i+1 ]

}
, i = 1, . . . , n− 1,

En = min
{
fn(t, v1(t)) : (t, v1(t)) ∈ [ 1 , 3 ] × [ 1R0, R0]

}
.
4 4 4



4 J. Ji et al. / J. Math. Anal. Appl. 513 (2022) 126217
Theorem 1.2. (Multiplicity theorem) Suppose that (F) and one of the following conditions hold:
(c). (C3) holds, positive constants αi, βi (i = 1, . . . , n) satisfy

n∏
i=1

αi <

n∏
i=1

ki,

n∏
i=1

βi >

n∏
i=1

ki,

and there exists a positive constant r0 such that r0 > G
1
k1
1 ;

(d). (C4) holds, positive constants αi, βi(i = 1, . . . , n) satisfy

n∏
i=1

αi >
n∏

i=1
ki,

n∏
i=1

βi <
n∏

i=1
ki,

and there exists a positive constant R0 such that R0 < Γ1E
1
k1
1 . Then system (1.1) has at least two nontrivial 

radial convex solutions.

Remark 1.1. Theorem 1.1 and Theorem 1.2 show that the existence and multiplicity of nontrivial radial 
convex solutions to system (1.1) respectively, see the penultimate paragraph in this section for more detailed 
explanations of convex solutions. Since the convex solutions are contained in the k-admissible solutions, 
Theorems 1.1 and 1.2 show the existence and multiplicity of k-admissible solutions as well.

Remark 1.2. It is worth to mention that the condition (C1) and (C3) can be replaced by fmk
(t, 0) = 0, k ∈

{1, . . . , n − 1}, where {m1, . . . , mn−1} ⊂ {1, . . . , n} and we describe as fi(t, 0) = 0, i = 2, . . . , n for the sake 
of proof.

Specifically, we also study the uniqueness and nonexistence of nontrivial radial solutions to a power-type 
coupled system of k-Hessian equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sk1

(
D2u1

)
= (−u2)γ1 , in B,

Sk2

(
D2u2

)
= (−u3)γ2 , in B,

...

Skn−1

(
D2un−1

)
= (−un)γn−1 , in B,

Skn

(
D2un

)
= (−u1)γn , in B,

ui = 0, i = 1, . . . , n, on ∂B,

(1.2)

where γi (i = 1, . . . , n) are positive constants.
It is obvious that system (1.2) is a special case of system (1.1). By the definitions of αi or βi-asymptotic 

growth condition, the growth of nonlinearities of the power-type system (1.2) satisfies αi = βi = γi, 
which asserts the existence of nontrivial radial convex solutions to system (1.2) by Theorem 1.1 when ∏n

i=1 γi �=
∏n

i=1 ki. Next, we go further to study the uniqueness of nontrivial radial convex solution to 
system (1.2) in Theorem 1.3.

Theorem 1.3. (Uniqueness theorem) Suppose that positive constant 
∏n

i=1 γi satisfies

n∏
i=1

γi <
n∏

i=1
ki,

then system (1.2) has a unique nontrivial radial convex solution.
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Here, we get the uniqueness result of nontrivial radial convex solution to system (1.2) in the assumption 
of 
∏n

i=1 γi <
∏n

i=1 ki. Besides, we obtain the nonexistence of nontrivial radial k-admissible solution in B
when 

∏n
i=1 γi =

∏n
i=1 ki.

Theorem 1.4. (Nonexistence theorem) Suppose that positive constant 
∏n

i=1 γi satisfies

n∏
i=1

γi =
n∏

i=1
ki,

then system (1.2) admits no nontrivial radial k-admissible solution.

When 
∏n

i=1 γi =
∏n

i=1 ki, we are interested in the existence of nonzero k-admissible solutions for the 
eigenvalue problem: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sk1

(
D2u1

)
= λ1 (−u2)γ1 , in Ω,

Sk2

(
D2u2

)
= λ2 (−u3)γ2 , in Ω,

...

Skn−1

(
D2un−1

)
= λn−1 (−un)γn−1 , in Ω,

Skn

(
D2un

)
= λn (−u1)γn , in Ω,

ui = 0, i = 1, . . . , n, on ∂Ω,

(1.3)

with positive parameters λi (i = 1, . . . , n), where Ω ∈ RN is a bounded, smooth and strictly (k− 1)-convex 
domain, N ≥ 2.

In fact, Wang has proved the existence of a positive eigenvalue λ∗ for a single k-Hessian equation with 
f(u) = λ|u|k(k < N) in [25]. When λ = λ∗, the corresponding eigenfunction ϕ∗ is nonzero k-admissible and 
that any other eigenfunction would be a positive constant multiple of ϕ∗. Since λ∗ acts like a bifurcation 
point for system (1.3), we can be reminiscent of the generalized Krein-Rutman theorem in [13] to obtain 
the existence of k-admissible solutions to eigenvalue problem (1.3).

Theorem 1.5. (Eigenvalue problem) Suppose that Ω ∈ RN is a bounded, smooth and strictly (k − 1)-convex 
domain, positive constant 

∏n
i=1 γi satisfies

n∏
i=1

γi =
n∏

i=1
ki,

then system (1.3) admits a nonzero k-admissible solution if and only if λ1λ
γ1
k2
2 · · ·λ

∏n−1
i=1 γi∏n
i=2 ki

n = λk1
0 , where 

λ0 �= 1 is a positive constant, such that the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sk1

(
D2(u1

λ0
)
)

= (−u2)γ1 , in Ω,

Sk2

(
D2u2

)
= (−u3)γ2 , in Ω,

...

Skn−1

(
D2un−1

)
= (−un)γn−1 , in Ω,

Skn

(
D2un

)
= (−u1)γn , in Ω,

u = 0, i = 1, . . . , n, on ∂Ω,

(1.4)
i
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has a nonzero k-admissible solution.

Note that the existence of nonzero k-admissible solution of (1.4) is guaranteed by a generalized Krein-
Rutman theorem, see Section 5 for details.

In this article, we study the existence and multiplicity of radial convex solutions to system (1.1), the 
uniqueness of radial convex solution and nonexistence of radial k-admissible solution to system (1.2), and 
the existence of radial k-admissible solutions to the related eigenvalue problem (1.3). The reasons why 
Theorems 1.1, 1.2 and 1.3 are only restricted to the convex solutions will be further explained in Remarks 2.1
and 4.1. The improvement from convex solutions to k-admissible solutions in Theorem 1.1, Theorem 1.2
and Theorem 1.3 is still an interesting problem, which attracts us to find another way or technique to solve 
this problem in a sequel.

The rest of the paper is organized as follows. In Section 2, we make some preliminary calculations of C2

radial solutions and present a fixed point theorem in Theorem 2.1. In Section 3, we give the proof of existence 
and multiplicity results for system (1.1) with general nonlinearities by using the fixed point theorem. In 
Section 4, the uniqueness and nonexistence results for power-type coupled system (1.2) which is a special 
case of (1.1) are considered. In Section 5, by overcoming the difficulties caused by verifying the condition 
of generalized Krein-Rutman theorem which to prove the operator is strong, we obtain the existence of 
nonzero k-admissible solutions to the eigenvalue problem (1.3) in a general strictly (k − 1)-convex domain.

2. Preliminaries

To study radial classical solutions of system (1.1), we assume u(|x|) = u(t) be the radial function with 

t =
√∑N

i=1 x
2
i , then it follows from Lemma 2.1 in [14] that the k-Hessian operator becomes

Sk(D2u) = Ck−1
N−1u

′′(t)(u
′(t)
t

)k−1 + Ck
N−1(

u′(t)
t

)k, t ∈ (0, 1).

Then we can convert (1.1) to the following system of ordinary differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ck1−1
N−1 u

′′
1(t)(u

′
1(t)
t )k1−1 + Ck1

N−1(
u′

1(t)
t )k1 = f1(t,−u2), 0 < t < 1,

Ck2−1
N−1 u

′′
2(t)(u

′
2(t)
t )k2−1 + Ck2

N−1(
u′

2(t)
t )k2 = f2(t,−u3), 0 < t < 1,

...
C

kn−1−1
N−1 u′′

n−1(t)(
u′
n−1(t)

t )kn−1−1 + C
kn−1
N−1 (u

′
n−1(t)

t )kn−1 = fn−1(t,−un), 0 < t < 1,

Ckn−1
N−1 u′′

n(t)(u
′
n(t)
t )kn−1 + Ckn

N−1(
u′
n(t)
t )kn = fn(t,−u1), 0 < t < 1,

ui(1) = u′
i(0) = 0, i = 1, . . . , n.

(2.1)

Equivalently, we seek nonnegative k-concave solutions for convenience by making a simple transformation 
vi = −ui (i = 1, . . . , n) in (2.1), which leads to the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ck1−1
N−1 (−v1)′′(t)( (−v1)′(t)

t )k1−1 + Ck1
N−1(

(−v1)′(t)
t )k1 = f1(t, v2), 0 < t < 1,

Ck2−1
N−1 (−v2)′′(t)( (−v2)′(t)

t )k2−1 + Ck2
N−1(

(−v2)′(t)
t )k2 = f2(t, v3), 0 < t < 1,

...
C

kn−1−1
N−1 (−vn−1)′′(t)( (−vn−1)′(t)

t )kn−1−1 + C
kn−1
N−1 ( (−vn−1)′(t)

t )kn−1 = fn−1(t, vn), 0 < t < 1,

Ckn−1
N−1 (−vn)′′(t)( (−vn)′(t)

t )kn−1 + Ckn

N−1(
(−vn)′(t)

t )kn = fn(t, v1), 0 < t < 1,

v (1) = v′(0) = 0, i = 1, . . . , n.

(2.2)
i i



J. Ji et al. / J. Math. Anal. Appl. 513 (2022) 126217 7
By integration, we get from (2.2) that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1(t) =
∫ 1
t

(
k1

τN−k1

∫ τ

0
sN−1

C
k1−1
N−1

f1 (s, v2(s)) ds
) 1

k1
dτ, 0 ≤ t ≤ 1,

v2(t) =
∫ 1
t

(
k2

τN−k2

∫ τ

0
sN−1

C
k2−1
N−1

f2 (s, v3(s)) ds
) 1

k2
dτ, 0 ≤ t ≤ 1,

...

vn−1(t) =
∫ 1
t

(
kn−1

τN−kn−1

∫ τ

0
sN−1

C
kn−1−1
N−1

fn−1 (s, vn(s)) ds
) 1

kn−1
dτ, 0 ≤ t ≤ 1,

vn(t) =
∫ 1
t

(
kn

τN−kn

∫ τ

0
sN−1

Ckn−1
N−1

fn (s, v1(s)) ds
) 1

kn

dτ, 0 ≤ t ≤ 1.

Considering the Banach space X := C[0, 1], for v = (v1, . . . , vn) ∈ X × · · · ×X︸ ︷︷ ︸
n

, we define ||v|| =
∑n

i=1 ||vi(t)|| =
∑n

i=1 sup
t∈[0,1]

|vi(t)|. Let K be a cone in X defined as

K :=
{
v ∈ X : v(t) ≥ 0, t ∈ [0, 1], min

1
4≤t≤ 3

4

v(t) ≥ 1
4 ||v||

}
. (2.3)

We define the operators Ti : K → X (i = 1, . . . , n) to be

T1(v2)(t) =
1∫

t

⎛
⎝ k1

τN−k1

τ∫
0

sN−1

Ck1−1
N−1

f1 (s, v2(s)) ds

⎞
⎠

1
k1

dτ,

T2(v3)(t) =
1∫

t

⎛
⎝ k2

τN−k2

τ∫
0

sN−1

Ck2−1
N−1

f2 (s, v3(s)) ds

⎞
⎠

1
k2

dτ,

...

Tn−1(vn)(t) =
1∫

t

⎛
⎝ kn−1

τN−kn−1

τ∫
0

sN−1

C
kn−1−1
N−1

fn−1 (s, vn(s)) ds

⎞
⎠

1
kn−1

dτ,

Tn(v1)(t) =
1∫

t

⎛
⎝ kn
τN−kn

τ∫
0

sN−1

Ckn−1
N−1

fn (s, v1(s)) ds

⎞
⎠

1
kn

dτ.

Note that each image of operator is a nonnegative k-concave function on [0, 1] and we define T1(v2) =
v1, T2(v3) = v2, · · · , Tn(v1) = vn in K. Thus, by the concavity of vi (i = 1, . . . , n), it is easy to see that 
Ti (i = 1, . . . , n) maps K into itself. Besides, by standard arguments, we know that every operator is 
completely continuous.

Next, we define a composite operator Tv1 = T1T2 · · ·Tn(v1), which is also completely continuous from 
K to K. We can see that positive solutions of (2.2) are equivalent to nonzero fixed points of operator 
T in cone K. If v = (v1, . . . , vn) ∈ C[0, 1] × · · · × C[0, 1]︸ ︷︷ ︸

n

is a positive solution of (2.2), then v1 must 

be a nonzero fixed point of T in K; conversely if v1 ∈ K \ {0} is a fixed point of T , we can define 
vn = Tn(v1), vn−1 = Tn−1(vn), · · · , v2 = T2(v3) such that (v1, . . . , vn) ∈ C[0, 1] × · · · × C[0, 1]︸ ︷︷ ︸ solves (2.2).
n
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Remark 2.1. As we shall see in the last two paragraphs, we let each Ti (i = 1 . . . , n) maps K to itself 
which implies that v′(t) = (−u)′(t) is nonincreasing from Lemma 2.2 in [24]. On the other hand, the 
eigenvalues of the second derivative of radial classical function in a unit ball can be represented by λ(D2u) =
(u′′(t), u

′(t)
t , . . . , u

′(t)
t ), t ∈ [0, 1], we combine this with the definition of k-admissible function, an immediate 

consequence is that we essentially achieve the (N − 1)-admissible function in RN , that is, all u
′(t)
t ≥ 0. To 

sum up, all eigenvalues of the Hessian matrix of nontrivial radial k-admissible solutions of system (1.1) and 
system (1.2) are nonnegative and exist in its closure of convex cone, which can draw our conclusion.

The proofs of our existence and multiplicity results are based on the following well-known fixed point 
theorem of cone, (see Theorem 2.3.4 in Guo and Lakshmikantham [10]).

Theorem 2.1. Let X be a Banach space and K is a cone in X. Assume that Ω1, Ω2 are bounded open subsets 
of X with 0 ∈ Ω1, Ω1 ⊂ Ω2 and let

T : K ∩ (Ω2 \ Ω1) → K

be completely continuous such that either

(i) ||Tu|| ≥ ||u||, u ∈ K ∩ ∂Ω1 and ||Tu|| ≤ ||u||, u ∈ K ∩ ∂Ω2; or
(ii) ||Tu|| ≤ ||u||, u ∈ K ∩ ∂Ω1 and ||Tu|| ≥ ||u||, u ∈ K ∩ ∂Ω2

holds, where || · || is a norm in X, ΩR = {u ∈ K : ||u|| < R} and ∂ΩR = {u ∈ K : ||u|| = R}. Then T has a 
fixed point in K ∩ (Ω2 \ Ω1).

3. Existence and multiplicity

In this section, we apply the fixed point theorem of cone in Theorem 2.1 to prove the existence and 
multiplicity results in Theorem 1.1 and Theorem 1.2. To simplify notation, we denote v1 by vn+1.

3.1. Existence

In order to prove the Theorem 1.1, we first introduce two useful lemmas.

Lemma 3.1. Assume (F) holds. Let η, m > 0 and vi ∈ K, i = 1, . . . , n. If for any t ∈ [ 14 , 
3
4 ] and i = 1, . . . , n, 

we have

fi (t, vi+1(t)) ≥ ηvmi+1(t),

then

Ti(vi+1)(
1
4) ≥ Γiη

1
ki (1

4)
m
ki ||vi+1||

m
ki , i = 1, . . . , n,

where Γi are positive constants given by Γi =
∫ 3

4
1

(
ki

τN−ki

∫ τ
1

sN−1

C
ki−1 ds

) 1
ki

dτ, i = 1, . . . , n.

4 4 N−1
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Proof. For v1 ∈ K, we have

Tn(v1)(
1
4) =

1∫
1
4

⎛
⎝ kn
τN−kn

τ∫
0

sN−1

Ckn−1
N−1

fn (s, v1(s)) ds

⎞
⎠

1
kn

dτ

≥

3
4∫

1
4

⎛
⎜⎝ kn
τN−kn

τ∫
1
4

sN−1

Ckn−1
N−1

ηvm1 (s) ds

⎞
⎟⎠

1
kn

dτ

≥

3
4∫

1
4

⎛
⎜⎝ kn
τN−kn

τ∫
1
4

sN−1

Ckn−1
N−1

η

(
1
4 ||v1||

)m

ds

⎞
⎟⎠

1
kn

dτ

=Γnη
1

kn

(
1
4 ||v1||

) m
kn

.

For vi ∈ K (i = 2, . . . , n), we have similar calculations. Here we omit them for simplicity. �
Lemma 3.2. Assume (F) holds. Let ε, d > 0 and vi ∈ K, i = 1, . . . , n. If for any t ∈ [0, 1] and i = 1, . . . , n, 
we have

fi (t, vi+1(t)) ≤ εvdi+1(t),

then

Ti(vi+1)(t) <
(
ε||vi+1||d

) 1
ki , i = 1, . . . , n.

Proof. Since v1(t) ∈ K, ∀t ∈ [0, 1], we have

Tn(v1)(t) ≤
1∫

0

⎛
⎝ kn
τN−kn

τ∫
0

sN−1

Ckn−1
N−1

fn (s, v1(s)) ds

⎞
⎠

1
kn

dτ

≤
1∫

0

⎛
⎝ kn
τN−kn

τ∫
0

sN−1

Ckn−1
N−1

εvd1(s) ds

⎞
⎠

1
kn

dτ

≤1
2

(
kn

NCkn−1
N−1

) 1
kn (

ε||v1||d
) 1

kn

<
(
ε||v1||d

) 1
kn ,

(3.1)

where the fact 1
2

(
kn

NCkn−1
N−1

) 1
kn

< 1 is used in the last inequality, which is easily checked. For vi ∈ K (i =

2, . . . , n), we also have similar conclusions. �
On the basis of the above preparations, we give the proof for the existence result in Theorem 1.1 with 

the aid of the fixed point theorem of cone.
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Proof of Theorem 1.1. (a). It follows from f0
i

∈ (0, +∞) (i = 1, . . . , n) that for any given ε1 ∈
(0, min{f0

i
, i = 1, . . . , n}), there exists a constant r1 ∈ (0, 1) such that

fi (t, vi+1(t)) ≥ (f0
i
− ε1)vαi

i+1, 0 ≤ vi+1 ≤ r1, (3.2)

for any t ∈ [0, 1] and i = 1, . . . , n. Let

L1 := Γ1 · · ·Γ

∏n−1
i=1 αi∏n−1
i=1 ki

n (f0
1 − ε1)

1
k1 · · · (f0

n
− ε1)

∏n−1
i=1 αi∏n
i=1 ki (1

4)
α1
k1

+···+
∏n
i=1 αi∏n
i=1 ki

be a positive constant. Since fi(t, 0) = 0 for i = 2, . . . , n, there exists another constant r2:

0 < r2 < min
{
r1, L

∏n
i=1 ki∏n

i=1 ki−
∏n
i=1 αi

1

}

such that

fi (t, vi+1(t)) ≤ rki
1 , 0 ≤ vi+1 ≤ r2, (3.3)

for any t ∈ [0, 1] and i = 2, . . . , n. For v1 ∈ K ∩ ∂Ωr2 , it follows from Lemma 3.2 and (3.3) that

vi(t) = Ti(vi+1)(t) < r1, i = 2, . . . , n

which shows that for any v1 ∈ K ∩ ∂Ωr2 , we have vi ∈ (0, r1), for all i = 1, . . . , n. Then by Lemma 3.1 and 
(3.2), we get

Ti(vi+1)(
1
4) ≥ Γi(f0

i
− ε1)

1
ki (1

4)
αi
ki ||vi+1||

αi
ki , i = 1, . . . , n.

This suggests that for any v1 ∈ K ∩ ∂Ωr2 , we have

||Tv1|| = sup
t∈[0,1]

|T1T2 · · ·Tn(v1)(t)|

≥T1T2 · · ·Tn(v1)(
1
4)

≥Γ1(f0
1 − ε1)

1
k1 (1

4)
α1
k1 ||T2(v3)||

α1
k1

≥Γ1(f0
1 − ε1)

1
k1 (1

4)
α1
k1 |T2(v3)(

1
4)|

α1
k1

≥Γ1Γ
α1
k1
2 (f0

1 − ε1)
1
k1 (f0

2 − ε1)
α1

k1k2 (1
4)

α1
k1

+α2α2
k1k2 ||T3(v4)||

α1α2
k1k2

...

≥L1||v1||
∏n
i=1 αi∏n
i=1 ki .

Notice that ||v1|| = r2 < L

∏n
i=1 ki∏n

i=1 ki−
∏n
i=1 αi

1 and 
∏n

i=1 αi <
∏n

i=1 ki, then

L1||v1||
∏n
i=1 αi∏n
i=1 ki

||v1||
= L1∏n

i=1 ki−
∏n
i=1 αi∏n ki

> 1,

||v1|| i=1
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which implies that

||Tv1|| > ||v1||, v1 ∈ K ∩ ∂Ωr2 . (3.4)

On the other hand, it can be obtained from f
∞
i ∈ (0, +∞) that for any given ε2 > 0, there exists a 

constant R1 > 1 such that for any t ∈ [0, 1] and i = 1, . . . , n,

fi (t, vi+1(t)) ≤ (f∞
i + ε2)vβi

i+1, vi+1 ≥ R1. (3.5)

Furthermore, by the continuity of fi (i = 1, . . . , n), there exist constants Mi(R1) > 0 (i = 1, . . . , n) such 
that for any (t, vi+1(t)) ∈ [0, 1] × [0, R1],

fi (t, vi+1(t)) ≤ Mi(R1), i = 1, . . . , n. (3.6)

Combining (3.5) with (3.6), we have for any (t, vi+1(t)) ∈ [0, 1] × [0,+∞),

fi (t, vi+1(t)) ≤ Mi(R1) + (f∞
i + ε2)vβi

i+1, i = 1, . . . , n. (3.7)

Then from the Lemma 3.2 and (3.7), we have for any t ∈ [0, 1],

Ti(vi+1)(t) ≤
[
Mi(R1) + (f∞

i + ε2)||vi+1||βi

] 1
ki

, i = 1, . . . , n.

Let

H := M1(R1)
1
k1 + · · · + (f∞

1 + ε2)
1
k1 · · · (f∞

n−1 + ε2)
∏n−2
i=1 βi∏n−1
i=1 ki Mn(R1)

∏n−1
i=1 βi∏n
i=1 ki ,

L2 := (f∞
1 + ε2)

1
k1 · · · (f∞

n + ε2)
∏n−1
i=1 βi∏n
i=1 ki .

Thus, there exists a large constant R2:

R2 > max
{
R1, 2H, (2L2)

∏n
i=1 ki∏n

i=1 ki−
∏n
i=1 βi

}

such that for any v1 ∈ K ∩ ∂ΩR2 and t ∈ [0, 1],

Tv1(t) =T1T2 · · ·Tn(v1)(t)

≤
[
M1(R1) + (f∞

1 + ε2)||T2(v3)||β1
] 1

k1

≤M1(R1)
1
k1 +

[
(f∞

1 + ε2)||T2(v3)||β1
] 1

k1

≤M1(R1)
1
k1 + (f∞

1 + ε2)
1
k1 M2(R1)

β1
k1k2 + (f∞

1 + ε2)
1
k1 (f∞

2 + ε2)
β1

k1k2 ||v3||
β1β2
k1k2

...

≤H + L2||v1||
∏n
i=1 βi∏n
i=1 ki .

Since 
∏n

βi <
∏n

ki, we get that for any v1 ∈ K ∩ ∂ΩR2 ,
i=1 i=1
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H + L2||v1||
∏n
i=1 βi∏n
i=1 ki

||v1||
= H

||v1||
+ L2

||v1||
∏n
i=1 ki−

∏n
i=1 βi∏n

i=1 ki

< 1,

which implies that

||Tv1|| < ||v1||, v1 ∈ K ∩ ∂ΩR2 . (3.8)

Therefore, combining with (3.4) and (3.8), it follows from Theorem 2.1 that T has at least one fixed point 
in K ∩

(
ΩR2 \ Ωr2

)
.

(b). By the assumption of f0
i ∈ (0, +∞), for any given η1 > 0, there exists a positive constant r3 < 1

such that for any t ∈ [0, 1] and i = 1, . . . , n,

fi (t, vi+1(t)) ≤ (f0
i + η1)vαi

i+1, vi+1 ∈ [0, r3]. (3.9)

Let

L3 := (f0
1 + η1)

1
k1 (f0

2 + η1)
α1

k1k2 · · · (f0
n + η1)

∏n−1
i=1 αi∏n
i=1 ki .

Since f
0
i ∈ (0, +∞), there exists another constant r4:

0 < r4 < min
{
r3, L

∏n
i=1 ki∏n

i=1 ki−
∏n
i=1 αi

3

}

such that for i = 2, . . . , n,

fi(t, vi+1(t)) ≤ rki
3 , (t, vi+1(t)) ∈ [0, 1] × [0, r4]. (3.10)

Then for any v1 ∈ K ∩ ∂Ωr4 , it follows from Lemma 3.2 and (3.10) that

vi(t) = Ti(vi+1)(t) ≤ r3, (t, vi+1(t)) ∈ [0, 1] × [0, r4], i = 2, . . . , n.

Thus, by Lemma 3.2 and (3.9), we get

Ti(vi+1)(t) ≤
[
(f0

i + η1)||vi+1||αi

] 1
ki

, i = 1, . . . , n,

for any t ∈ [0, 1]. For v1 ∈ K ∩ ∂Ωr4 , we have

||Tv1|| = sup
t∈[0,1]

|T1T2 · · ·Tn(v1)(t)|

≤
[
(f0

1 + η1)||T2(v3)||α1
] 1

k1

≤(f0
1 + η1)

1
k1

[
(f0

2 + η1)||T3(v4)||α2
] α1

k1k2

≤(f0
1 + η1)

1
k1 (f0

2 + η1)
α1

k1k2

[
(f0

3 + η1)||T4(v5)||α3
] α1α2

k1k2k3

...

≤L ||v ||
∏n
i=1 αi∏n
i=1 ki .
3 1
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Recalling that 
∏n

i=1 αi >
∏n

i=1 ki, then

L3||v1||
∏n
i=1 αi∏n
i=1 ki

||v1||
= L3

||v1||
∏n
i=1 ki−

∏n
i=1 αi∏n

i=1 ki

< 1,

which implies that

||Tv1|| < ||v1||, v1 ∈ K ∩ ∂Ωr4 . (3.11)

On the other hand, it follows from f∞
i

∈ (0, +∞) that for any given η2 ∈ (0, min{f∞
i
, i = 1, . . . , n}), 

there exists a constant R3 > 1 such that

fi (t, vi+1(t)) ≥ (f∞
i

− η2)vβi

i+1, vi+1 ≥ R3, (3.12)

for any t ∈ [0, 1] and i = 1, . . . , n. Let

L4 := Γ1 · · ·Γ

∏n−1
i=1 βi∏n−1
i=1 ki

n (f∞
1 − η2)

1
k1 · · · (f∞

n
− η2)

∏n−1
i=1 βi∏n
i=1 ki (1

4)
β1
k1

+···+
∏n
i=1 βi∏n
i=1 ki .

There exists another constant R4:

R4 >

{
4R3, L

∏n
i=1 ki∏n

i=1 ki−
∏n
i=1 βi

4 , L5

}
(3.13)

such that for any v1 ∈ K ∩ ∂ΩR4 , we have

min
1
4≤t≤ 3

4

v1(t) ≥
1
4 ||v1|| = 1

4R4 > R3, (3.14)

where

L5 := max
l∈{2,...,n}

⎛
⎜⎜⎜⎝ 4R3

Γl · · ·Γ

∏n−1
i=l

βi∏n−1
i=l

ki
n (f∞

l
− η2)

1
kl · · · (f∞

n
− η2)

∏n−1
i=l

βi∏n
i=l

ki (1
4 )

βl
kl

+···+
∏n
i=l

βl∏n
i=l

kl

⎞
⎟⎟⎟⎠

∏n
i=l ki∏n
i=l

βi

.

Here in L5, when l = n we set 
∏n−1

i=l βi∏n−1
i=l ki

= 1, so that the terms 
∏n−1

i=l βi∏n−1
i=l ki

make sense for all i = 2, . . . , n. 
Combining (3.12) and (3.13), it follows from Lemma 3.1 that for any v1 ∈ K ∩ ∂ΩR4 ,

||vn|| ≥ vn(1
4) = Tn(v1)(

1
4) ≥ Γn(f∞

n
− η2)

1
kn (1

4)
βn
kn ||v1||

βn
kn > 4R3,

||vn−1|| ≥ vn−1(
1
4) = Tn−1(vn)(1

4) ≥ Γn−1(f∞
n−1 − η2)

1
kn−1 (1

4)
βn−1
kn−1 ||vn||

βn−1
kn−1 > 4R3,

...

||v2|| ≥ v2(
1
4) = T2(v3)(

1
4) ≥ Γ2(f∞

2 − η2)
1
k2 (1

4)
β2
k2 ||v3||

β2
k2 > 4R3.

(3.15)

From (3.14) and (3.15), we get that for any v1 ∈ K ∩ ∂ΩR4 ,
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min
1
4≤t≤ 3

4

vi(t) ≥
1
4 ||vi|| ≥ R3, i = 1, . . . , n.

Then by Lemma 3.1, we deduce that

Tv1(
1
4) =T1T2 · · ·Tn(v1)(

1
4)

≥Γ1(f∞
1 − η2)

1
k1 (1

4)
β1
k1 ||T2(v3)||

β1
k1

≥Γ1(f∞
1 − η2)

1
k1 (1

4)
β1
k1

(
Γ2(f∞

2 − η2)
1
k2 (1

4)
β2
k2 ||T3(v4)||

β2
k2

) β1
k1

...

≥L4||v1||
∏n
i=1 βi∏n
i=1 ki .

Since 
∏n

i=1 βi >
∏n

i=1 ki, it follows from

L4||v1||
∏n
i=1 βi∏n
i=1 ki

||v1||
= L4

||v1||
∏n
i=1 ki−

∏n
i=1 βi∏n

i=1 ki

> 1

that

||Tv1|| > ||v1||, v1 ∈ K ∩ ∂ΩR4 . (3.16)

Therefore, from Theorem 2.1 combining (3.11) and (3.16), we obtain that T has at least one fixed point 
in K ∩

(
ΩR4 \ Ωr4

)
. �

3.2. Multiplicity

In Section 3.1, applying the fixed-point theorem in Theorem 2.1, we achieve the existence result in a cone 
with different combinations of asymptotic growth condition and relations of αi, βi and ki. In order to obtain 
the multiplicity of nontrivial radial convex solutions of (1.1), we recombine the conditions in Theorem 1.1
and find two kinds of “intermediate state” as in (3.17) and (3.19).

Proof of Theorem 1.2. (c). As we assumed, for any (t, v1(t)) ∈ [0, 1] × [0, r04 ], we have

||v1|| ≤ 4 min
1
4≤t≤ 3

4

v1(t) ≤ r0.

Then for v1 ∈ K ∩ ∂Ωr0 , by the definition of Gn, we have

vn(t) = Tn(v1)(t) ≤
1∫

0

⎛
⎝ kn
τN−kn

τ∫
0

sN−1

Ckn−1
N−1

fn (s, v1(s)) ds

⎞
⎠

1
kn

dτ

≤
1∫

0

⎛
⎝ kn
τN−kn

τ∫
0

sN−1

Ckn−1
N−1

Gn

⎞
⎠

1
kn

dτ

=1
2

(
knGn

NCkn−1

) 1
kn
N−1
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<G
1

kn
n ,

for any t ∈ [0, 1]. Similarly, for v1 ∈ K ∩ ∂Ωr0 , we have vi(t) ≤ G
1
ki
i (i = 2, . . . , n − 1), ∀t ∈ [0, 1]. Therefore, 

by the definition of G1, we have

Tv1(t) =T1T2 · · ·Tn(v1)(t)

=
1∫

t

⎛
⎝ k1

τN−k1

τ∫
0

sN−1

Ck1−1
N−1

f1 (s, v2(s)) ds

⎞
⎠

1
k1

dτ

≤
1∫

0

⎛
⎝ k1

τN−k1

τ∫
0

sN−1

Ck1−1
N−1

G1 ds

⎞
⎠

1
k1

dτ

=1
2

(
k1G1

NCk1−1
N−1

) 1
k1

<G
1
k1
1 , ∀t ∈ [0, 1],

where the fact 12( k1
NC

k1−1
N−1

)
1
k1 = 1

2Ck1
N

< 1 is used in the last inequality. For v1 ∈ K∩∂Ωr0 , we have ||v1|| = r0. 

Thanks to G
1
k1
1 < r0, we have

||Tv1|| < ||v1||, v1 ∈ K ∩ ∂Ωr0 . (3.17)

Since 
∏n

i=1 αi <
∏n

i=1 ki, 
∏n

i=1 βi >
∏n

i=1 ki, it follows from Theorem 1.1 that there exist sufficient small 
constant r2 ∈ (0, r0) and sufficient large constant R4 > r0 such that

||Tv1|| ≥ ||v1||, v1 ∈ K ∩ ∂Ωr2 and ||Tv1|| ≥ ||v1||, v1 ∈ K ∩ ∂ΩR4 . (3.18)

Due to (3.17), we have Tv1 �= v1 for any v1 ∈ K ∩∂Ωr0 , which shows that T has no fixed point in K ∩∂Ωr0 . 
Otherwise, if there exists a fixed point v1 ∈ K ∩ ∂Ωr0 such that Tv1 = v1, then we have ||Tv1|| = ||v1||, 
which contradicts with (3.17). Combining (3.17) and (3.18), it follows from Theorem 2.1 that there exist at 
least two fixed points of T in K ∩

(
Ωr0 \ Ωr2

)
and K ∩

(
ΩR4 \ Ωr0

)
respectively.

(d). For v1 ∈ K ∩ ∂ΩR0 , by the definition of G̃n, we have

vn(t) = Tn(v1)(t) ≤
1∫

0

⎛
⎝ kn
τN−kn

τ∫
0

sN−1

Ckn−1
N−1

fn (s, v1(s)) ds

⎞
⎠

1
kn

dτ

≤
1∫

0

⎛
⎝ kn
τN−kn

τ∫
0

sN−1

Ckn−1
N−1

G̃n ds

⎞
⎠

1
kn

dτ

=1
2

(
knG̃n

NCkn−1
N−1

) 1
kn

<G̃
1

kn
n , ∀t ∈ [0, 1].

Besides, by the definition of En, we get that for any v1 ∈ K ∩ ∂ΩR0 ,
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vn(1
4) = Tn(v1)(

1
4) =

1∫
1
4

⎛
⎝ kn
τN−kn

τ∫
0

sN−1

Ckn−1
N−1

fn (s, v1(s)) ds

⎞
⎠

1
kn

dτ

≥

3
4∫

1
4

⎛
⎜⎝ kn
τN−kn

τ∫
1
4

sN−1

Ckn−1
N−1

En ds

⎞
⎟⎠

1
kn

dτ

=ΓnE
1

kn
n ,

then

min
1
4≤t≤ 3

4

vn(t) ≥ 1
4 ||vn|| ≥

1
4vn(1

4) ≥ 1
4ΓnE

1
kn
n .

Thus for any t ∈ [ 14 , 
3
4 ], we have 1

4ΓnE
1

kn
n ≤ vn(t) ≤ G̃

1
kn
n . Repeating the above steps, we have 1

4ΓiE
1
ki
i ≤

vi(t) ≤ G̃
1
ki
i , for any t ∈ [ 14 , 

3
4 ], (i = 2, . . . , n). It follows from the assumption of E1 that for any v1 ∈

K ∩ ∂ΩR0 ,

Tv1(
1
4) =T1T2 · · ·Tn(v1)(

1
4)

=
1∫

1
4

⎛
⎝ k1

τN−k1

τ∫
0

sN−1

Ck1−1
N−1

f1 (s, T2(v3)(s)) ds

⎞
⎠

1
k1

dτ

≥

3
4∫

1
4

⎛
⎝ k1

τN−k1

τ∫
0

sN−1

Ck1−1
N−1

E1 ds

⎞
⎠

1
k1

dτ

≥Γ1E
1
k1
1 > R0,

which deduce that

||Tv1|| > ||v1||, v1 ∈ K ∩ ∂ΩR0 . (3.19)

Moreover, since 
∏n

i=1 αi >
∏n

i=1 ki, 
∏n

i=1 βi <
∏n

i=1 ki, we know from Theorem 1.1 that there exist 
sufficient small constant r4 ∈ (0, R0) and sufficient large constant R2 > R0 such that

||Tv1|| ≤ ||v1||, v1 ∈ K ∩ ∂ΩR2 and ||Tv1|| ≤ ||v1||, v1 ∈ K ∩ ∂Ωr4 . (3.20)

Due to (3.19), we have Tv1 �= v1 for any v1 ∈ K ∩ ∂ΩR0 , which shows that fixed point of T can not exist 
on K ∩ ∂ΩR0 . Otherwise, if there exists a fixed point v1 ∈ K ∩ ∂ΩR0 such that Tv1 = v1, then we have 
||Tv1|| = ||v1||, which contradict with (3.19). Thus, basing on (3.19) and (3.20), it follows from Theorem 2.1
that there exist at least two fixed points of T in K ∩

(
ΩR0 \ Ωr4

)
and K ∩

(
ΩR2 \ ΩR0

)
respectively.

Remark 3.1. If we do not prove Tv1 �= v1 for any v1 ∈ K ∩ ∂Ωr0 in the proof of (c), by taking 0 < r2 <

r0 < r′ < R4, there also exist at least two fixed points of T : v1 ∈ K ∩
(
Ωr0 \ Ωr2

)
and v2 ∈ K ∩

(
ΩR4 \ Ωr′

)
. 

Similarly, if we do not prove Tv1 �= v1 for any v1 ∈ K ∩ ∂ΩR0 , we can alternatively take 0 < r4 < R′ <

R0 < R2 such that v1 ∈ K ∩
(
ΩR′ \ Ωr4

)
and v2 ∈ K ∩

(
ΩR2 \ ΩR0

)
. �
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4. Uniqueness and nonexistence

In this section, we study the uniqueness and nonexistence results for a special case of the system (1.1)
where the nonlinearities are power functions with respect to u.

4.1. Uniqueness

In [12], the authors gave a proof of uniqueness and approximation by iterations of the solution to a 
general Dirichlet problem of Monge-Ampère equation. Here, we will use their method to prove Theorem 1.3. 
We first introduce the definition of u0-sublinear operator and a corresponding existence result.

Definition 4.1. Let P be a cone from a Banach space Y . With some u0 ∈ P positive, A : P → P is called 
u0-sublinear if

(i) for any x > 0, there exist positive constants θ1 and θ2 which depend on x, such that

θ1u0 ≤ Ax ≤ θ2u0;

(ii) for any θ1u0 ≤ x ≤ θ2u0 and 0 < ξ < 1, there always exists some η > 0 such that

A(ξx) ≥ (1 + η)ξAx.

Lemma 4.1. An increasing and u0-sublinear operator A can have at most one positive fixed-point.

The proof can be found in [12], we omit it here.

Proof of Theorem 1.3. Let X := C[0, 1] and cone P := {v ∈ X : v(t) ≥ 0, t ∈ [0, 1]}. It is easy to see that 
K ⊂ P , where K is defined in (2.3). We define Ti (i = 1, . . . , n) and composite operator T = T1T2 · · ·Tn as 
in Section 2. The existence of nontrivial radial convex solutions to system (1.2) is obtained in Theorem 1.1
and therefore investigate T has at most one fixed-point in K is enough. By Lemma 4.1, it suffices to verify 
that T : K → K is an increasing and u0-sublinear for some u0 positive in C[0, 1]. By the definitions of Ti, 
it is clear that each Ti (i = 1, . . . , n) is a increasing operator, so is the composite operator T , then we just 
need to prove that T satisfies the Definition 4.1.

Firstly, we show that T satisfies the Definition 4.1 (i).

Tv1(t) =
1∫

t

⎛
⎝ k1

τN−k1

τ∫
0

sN−1

Ck1−1
N−1

vγ1
2 (s) ds

⎞
⎠

1
k1

dτ

≤||v2||
γ1
k1

1∫
t

⎛
⎝ k1

τN−k1

τ∫
0

sN−1

Ck1−1
N−1

ds

⎞
⎠

1
k1

dτ

≤||T2(v3)||
γ1
k1

(
k1

NCk1−1
N−1

) 1
k1

1∫
t

τ dτ

≤

⎡
⎢⎣

1∫ ⎛⎝ k2

τN−k2

τ∫
sN−1

Ck2−1
N−1

vγ2
3 (s) ds

⎞
⎠

1
k2

dτ

⎤
⎥⎦

γ1
k1

(1 − t)

0 0
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≤||v3||
γ1γ2
k1k2 (1 − t)

...

≤||v1||
∏n
i=1 γi∏n
i=1 ki (1 − t).

Here, let u0 = 1 − t, t ∈ [0, 1) and θ2 = ||v1||
∏n
i=1 γi∏n
i=1 ki , then Tv1(t) ≤ θ2u0. Set

Γ :=
(

9
32

) γ1
k1

+···+
∏n−1
i=1 γi∏n−1
i=1 ki

(
k1

4γ1NCk1−1
N−1

) 1
k1

· · ·
(

kn

4γnNCkn−1
N−1

)∏n−1
i=1 γi∏n
i=1 ki

||v1||
∏n
i=1 γi∏n
i=1 ki

be a positive constant which depends only on ||v1||. Next, let c ∈ (1
4 , 

3
4 ) be a fixed number. Notice that 

Tv1(t) is decreasing with t, we have for t ∈ [0, c),

Tv1(t) ≥Tv1(c) =
1∫

c

⎛
⎝ k1

τN−k1

τ∫
0

sN−1

Ck1−1
N−1

vγ1
2 (s) ds

⎞
⎠

1
k1

dτ

≥

3
4∫

c

⎛
⎝ k1

τN−k1

τ∫
0

sN−1

Ck1−1
N−1

(1
4 ||v2||)γ1 ds

⎞
⎠

1
k1

dτ

≥
(

k1

4γ1NCk1−1
N−1

) 1
k1 ( 9

32 − 1
2c

2
)
||T2(v3)||

γ1
k1

...

≥Γ
(

9
32 − 1

2c
2
)

≥Γ
(

9
32 − 1

2c
2
)

(1 − t),

where we use the fact min0≤t≤ 3
4
v(t) ≥ 1

4 ||v|| in the above inequality which follows from (2.3) combining 
with the concavity of vi (i = 1, . . . , n) and v′i(0) = 0. For t ∈ [c, 1), we let

ζ(τ) :=

⎛
⎝ 1
τN−k1

τ∫
0

sN−1(1 − s)γ1 ds

⎞
⎠

1
k1

, τ ∈ [c, 1].

Notice that ζ(τ) ∈ C[c, 1] and ζ(τ) > 0, τ ∈ [c, 1] is well-defined, then ζ([c, 1]) is the image of a compact 
set and so is compact which shows that it is both closed and bounded. So ζ([c, 1]) has a positive absolute 
minimum. Besides, by the concavity of vi(t) (i = 1, . . . , n) and v′i(0) = vi(1) = 0, we have

vi(t) ≥ vi(0)(1 − t), ∀t ∈ [0, 1]. (4.1)

Then we have for t ∈ [c, 1),



J. Ji et al. / J. Math. Anal. Appl. 513 (2022) 126217 19
Tv1(t) =
1∫

t

⎛
⎝ k1

τN−k1

τ∫
0

sN−1

Ck1−1
N−1

vγ1
2 (s) ds

⎞
⎠

1
k1

dτ

≥
1∫

t

⎛
⎝ k1

τN−k1

τ∫
0

sN−1

Ck1−1
N−1

[v2(0)(1 − s)]γ1 ds

⎞
⎠

1
k1

dτ

=||v2||
γ1
k1

(
k1

Ck1−1
N−1

) 1
k1

1∫
t

⎛
⎝ 1
τN−k1

τ∫
0

sN−1(1 − s)γ1 ds

⎞
⎠

1
k1

dτ

≥||T2(v3)||
γ1
k1

(
k1

Ck1−1
N−1

) 1
k1

min
τ∈[c,1]

ζ(τ)
1∫

t

dτ

=

⎡
⎢⎣

1∫
0

⎛
⎝ k2

τN−k2

τ∫
0

sN−1

Ck2−1
N−1

vγ2
3 (s) ds

⎞
⎠

1
k2

dτ

⎤
⎥⎦

γ1
k1 (

k1

Ck1−1
N−1

) 1
k1

min
τ∈[c,1]

ζ(τ)(1 − t)

≥

⎡
⎢⎣

3
4∫

0

⎛
⎝ k2

τN−k2

τ∫
0

sN−1

Ck2−1
N−1

(1
4 ||v3||)γ2 ds

⎞
⎠

1
k2

dτ

⎤
⎥⎦

γ1
k1 (

k1

Ck1−1
N−1

) 1
k1

min
τ∈[c,1]

ζ(τ)(1 − t)

=||T3(v4)||
γ1γ2
k1k2

(
k1

Ck1−1
N−1

) 1
k1
(

k2

4γ2Ck2−1
N−1

) γ1
k1k2 ( 9

32

) γ1
k1

min
τ∈[c,1]

ζ(τ)(1 − t)

...

≥Γ4
γ1
k1 min

τ∈[c,1]
ζ(τ)(1 − t).

Let θ1 = min
{

Γ
( 9

32 − 1
2c

2) ,Γ4
γ1
k1 minτ∈[c,1] ζ(τ)

}
, then we have Tv1(t) ≥ θ1u0.

To verify the Definition 4.1 (ii), we have for any θ1u0 ≤ v1 ≤ θ2u0 and ξ ∈ (0, 1), T1(ξv2) =
ξ

γ1
k1 T1(v2), T2(ξv3) = ξ

γ2
k2 T2(v3), . . . , Tn(ξv1) = ξ

γn
kn Tn(v1). Notice that 

∏n
i=1 γi <

∏n
i=1 ki, then there 

exists η > 0 such that

T (ξv1) = T1T2 · · ·Tn(ξv1) = T1T2 · · ·Tn−1(ξ
γn
kn Tn(v1)) = · · · = ξ

∏n
i=1 γi∏n
i=1 ki Tv1 ≥ (1 + η)ξTv1.

Thus T is a u0-sublinear operator and T has at most one fixed-point in K by Lemma 4.1 which shows 
that the system (1.2) has a unique nontrivial radial convex solution. �
Remark 4.1. Note that we also use the convexity of ui = −vi (i = 1, . . . , n) in this subsection, namely, the 
inequality (4.1).

4.2. Nonexistence

In the case of 
∏n

i=1 γi =
∏n

i=1 ki, we can get nonexistence result by contradiction.

Proof of Theorem 1.4. Suppose, to the contrary, that v0 is a fixed-point of T in K, then Tv0 = v0. It follows 
immediately from the definition of T that v0 is a concave function satisfying v0(1) = 0 and v0(t) > 0, t ∈
[0, 1).
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On the other hand, for any v1 ∈ K, we have

||T (v1)|| =
1∫

0

⎛
⎝ k1

τN−k1

τ∫
0

sN−1

Ck1−1
N−1

vγ1
2 (s) ds

⎞
⎠

1
k1

dτ

≤||v2||
γ1
k1

1∫
0

⎛
⎝ k1

τN−k1

τ∫
0

sN−1

Ck1−1
N−1

ds

⎞
⎠

1
k1

dτ

=1
2

(
k1

NCk1−1
N−1

) 1
k1

||v2||
γ1
k1

<||v2||
γ1
k1

...

<||v1||
∏n
i=1 γi∏n
i=1 ki = ||v1||.

Here, we also use the fact 1
2

(
k1

NC
k1−1
N−1

) 1
k1

< 1 for the same reason in (3.1). Thus if we take v1 = v0 in the 

above estimate, we have ||v0|| is strictly larger than ||Tv0||. This contradicts Tv0 = v0 and concludes the 
proof. �

Remark 4.2. Due to the fact 1
2

(
k1

NC
k1−1
N−1

) 1
k1

< 1, we have a direct proof of the nonexistence theorem by 

reduction to absurdity without using the fixed-point theorem in Theorem 2.1. Therefore, we can obtain the 
nonexistence for k-admissible solutions of system (1.2) in the assumption of 

∏n
i=1 γi =

∏n
i=1 ki, (not just 

for the convex solutions of system (1.2)).

5. Eigenvalue problem

In the previous section, we proved the nonexistence of nontrivial radial convex solution to the power-type 
system (1.2) in a unit ball. Then by imposing a suitable condition on positive parameters of eigenvalue 
problem (1.3), we can also get the existence of k-admissible solution in a general strictly (k − 1)-convex 
domain. In this section, our main tool is the generalized Krein-Rutman theorem in [13].

We first recall some basic concepts:
Let E be a Banach space, M ⊂ E be a cone.

Definition 5.1. The cone M introduces a partial order in E by the relation

u ≺ v if and only if u − v ∈ M .

Definition 5.2. Define an operator A : E → E. Then

(i) A is called positive if A(M) ⊂ M ;
(ii) A is said to be homogeneous if it is positively homogeneous with degree 1;
(iii) A is monotone if it satisfies x ≺ y ⇒ A(x) ≺ A(y);
(iv) A is called strong (relative to M), if for all u, v ∈ Im(A) ∩M \ {θ}, there exist positive constants δ

and γ that depend on u and v such that u − δv ∈ M , v − γu ∈ M .
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The following is the generalized Krein-Rutman theorem developed by Jacobsen in [13].

Lemma 5.1. Let E contain a cone M , A : E → E be a completely continuous operator with A|M : M → M

homogeneous, monotone, and strong. Furthermore, assume that there exists a nonzero element ω, A(ω) ∈
Im(A) ∩M . Then there exists a constant λ0 > 0 with the following properties:

(i) There exists u ∈ M \ {θ}, with u = λ0A(u);
(ii) If v ∈ M \ {θ} and λ > 0 such that v = λA(v), then λ = λ0.

For the convenience of the reader, we also present the existence theorems in [20,25].

Lemma 5.2. (see [20]) Let Ω be a uniformly (k − 1)-convex domain in RN , k = 2, . . . , N , ϕ ∈ C0(Ω) and 
ψ ≥ 0, ∈ Lp(Ω), for p > N

2k . Then there exists a unique admissible weak solution u ∈ C0(Ω) to the problem

{
Sk

(
D2u

)
= ψ, in Ω,

u = ϕ, on ∂Ω.

Lemma 5.3. (see [25]) Assume that Ω is (k − 1)-convex, ϕ, Ω ∈ C3,1, f ∈ C1,1(Ω), and f ≥ f0 > 0. Then 
there is a unique k-admissible solution u ∈ C3,α(Ω) to the Dirichlet problem

{
Sk

(
D2u

)
= f(x), in Ω,

u = ϕ, on ∂Ω.

Proof of Theorem 1.5. Let X be a Banach space C(Ω) equipped with the supremum norm. Define a cone 
P := {u ∈ X : u(x) ≤ 0,∀x ∈ Ω}. Then by the Definition 5.1, we notice that the partial order induced by 
P implies that u ≺ v ⇐⇒ u(x) ≤ v(x), ∀x ∈ Ω.

For i = 1, . . . , n, we define T i : X → X, T i(ui+1) = ui, where ui is the unique admissible weak solution 
of the problem

{
Ski

(
D2ui

)
= |ui+1|γi , in Ω,

ui = 0, on ∂Ω.
(5.1)

Notice that we denote u1 := un+1 here. It follows from Lemma 5.2 that the admissible weak solution 
T i(ui+1) ∈ C0(Ω)(i = 1, . . . , n). Define a composite operator T := T 1T 2 · · ·Tn, which is a completely 
continuous operator. Next, we verify that T satisfies the assumptions of Lemma 5.1.

Due to the k-convexity property of the admissible weak solution and the boundary data, we have T (X) ⊆
P , which implies that T is positive and the operator T maps P into itself. For t > 0, we have

T 1(tu2) = t
γ1
k1 T 1(u2), T 2(tu3) = t

γ2
k2 T 2(u3), · · · , Tn(tu1) = t

γn
kn Tn(u1).

Since the assumption 
∏n

i=1 γi =
∏n

i=1 ki, we deduce that

T (tu1) = t

∏n
i=1 γi∏n
i=1 ki T (u1) = tT (u1),

which implies that T is homogeneous. By comparison principle in Lemma 2.1 in [20] and the definition of 
T i, we get that T i (i = 1, . . . , n) are all monotone, so is T . Finally, we just have to verify that T is strong, 
that is, for all u, v ∈ Im(T ) ∩P \ {θ}, there exist δ > 0 and γ > 0 such that u − δv ≤ 0 in Ω and v− γu ≤ 0
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in Ω. If u ∈ Im(T ) ∩ P \ {θ}, then there exists a function v ∈ X \ {θ} such that u = Tv = T 1T 2 · · ·Tn(v), 
where u is nonzero k-admissible and strictly negative in Ω satisfying

{
Sk1

(
D2u

)
= |v|γ1 , in Ω,

u = 0, on ∂Ω.

It follows from Lemma 5.2 that u = Tv ∈ C0(Ω). Notice that v is also the solution of (5.1) satisfying 
v ∈ C0(Ω), we let v attains its minimum at x0 ∈ Ω and G := max |v|γ1 = (−v(x0))γ1 , then we have 
0 < |v|γ1 ≤ G in Ω. Consider a function ω which satisfies

{
Sk1

(
D2ω

)
= G, in Ω,

ω = 0, on ∂Ω.

Then, it follows from Lemma 5.3 that ω ∈ C2,α(Ω). By comparison principle in Lemma 2.1 in [20], we have 
ω ≤ u ≤ 0, in Ω and ω = u = 0, on ∂Ω. Thus, for some small t > 0, we have

0 ≤ u(x− tν) − u(x)
−t

≤ ω(x− tν) − ω(x)
−t

, for x ∈ ∂Ω,

where ν is the unit outer normal vector field on ∂Ω. Take a limit in the last inequality, we have

0 ≤ lim sup
t→0+

u(x− tν) − u(x)
−t

≤ lim sup
t→0+

ω(x− tν) − ω(x)
−t

=∂ω(x)
∂ν

, for x ∈ ∂Ω.

With the same argument, there also exists ω̃ ∈ C2,α(Ω) such that

0 ≤ lim sup
t→0+

v(x− tν) − v(x)
−t

≤ lim sup
t→0+

ω̃(x− tν) − ω̃(x)
−t

=∂ω̃(x)
∂ν

, for x ∈ ∂Ω,

(5.2)

then by Hopf Lemma in [11], we have

lim inf
t→0+

u(x− tν) − u(x)
−t

> 0, on ∂Ω. (5.3)

By choosing a sufficiently small constant δ1 > 0, we have

lim inf
t→0+

(u− δ1v)(x− tν) − (u− δ1v)(x)
−t

= lim inf
t→0+

u(x− tν) − u(x)
−t

− δ1 lim sup
t→0+

v(x− tν) − v(x)
−t

>0, on ∂Ω,

where (5.2) and (5.3) are used in the last inequality. Since u, v are the solutions of (5.1) which satisfy 
u = v = 0 on ∂Ω. Then for x ∈ ∂Ω, there exists a constant t0 > 0 such that

(u− δ1v)(x− tν) < 0, for t < t0. (5.4)
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Now, (5.4) implies that

u− δ1v < 0, in Ωt0 := {x ∈ Ω|dist(x, ∂Ω) < t0},

where dist(x, ∂Ω) denotes the distance from x to ∂Ω. For x ∈ Ω \ Ωt0 , we set

δ2 := inf
x∈Ω\Ωt0

u(x)
v(x) > 0.

Fixing a constant δ ≤ min{δ1, δ2}, then we have

u− δv ≤ u− δ1v < 0, in Ωt0 and u− δv ≤ u− δ2v ≤ 0, in Ω \ Ωt0 ,

which implies

u− δv ≤ 0, in Ω.

The same argument shows that there exists a constant γ such that v − γu ≤ 0 in Ω. Now we have shown 
that T is strong. Moreover, N (T ) := {u ∈ P |T (u) = 0} = {0}.

Combining this with Lemma 5.1 (i), we obtain that there exists u∗
1 ∈ P \ {θ} and constant λ0 > 0 such 

that u∗
1 = λ0T (u∗

1) = λ0T 1T 2 · · ·Tn(u∗
1). Let u∗

n = Tn(u∗
1), . . . , u∗

2 = T 2(u∗
3). Then (u∗

1, u
∗
2, . . . , u

∗
n) is a 

solution of the following system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sk1

(
D2(u1

λ0
)
)

= (−u2)γ1 , in Ω,

Sk2

(
D2u2

)
= (−u3)γ2 , in Ω,

...

Skn−1

(
D2un−1

)
= (−un)γn−1 , in Ω,

Skn

(
D2un

)
= (−u1)γn , in Ω,

ui = 0, i = 1, . . . , n, on ∂Ω.

By Lemma 5.1 (ii), if there exist u0 ∈ P \ {θ} and λ1 > 0 such that u0 = λ1T (u0), then λ1 = λ0.
For this reason, the eigenvalue problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sk1

(
D2u1

)
= λ̃ (−u2)γ1 , in Ω,

Sk2

(
D2u2

)
= (−u3)γ2 , in Ω,

...

Skn−1

(
D2un−1

)
= (−un)γn−1 , in Ω,

Skn

(
D2un

)
= (−u1)γn , in Ω,

ui = 0, i = 1, . . . , n, on ∂Ω,

(5.5)

admits a solution (k-admissible solution) if and only if λ̃ = λk1
0 .

Next, we prove that the system (1.3) has a nonzero k-admissible solution if and only if

λ1λ
γ1
k2
2 · · ·λ

∏n−1
i=1 γi∏n
i=2 ki

n = λk1
0 .
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In fact, if (u1, . . . , un) is a k-admissible solution of the system (1.3), then

Skn
(D2un) = λn(−u1)γn ,

which implies that

Skn

(
D2(λ− 1

kn
n un)

)
= (−u1)γn .

Let ũn = λ
− 1

kn
n un, we have Skn

(D2ũn) = (−u1)γn and

Skn−1(D2un−1) = λn−1(−un)γn−1 = λn−1λ
γn−1
kn

n (−ũn)γn−1 .

By the same argument, we let

ũn−1 = λ
− 1

kn−1
n−1 λ

− γn−1
kn−1kn

n un−1,

...

ũ2 = λ
− 1

k2
2 λ

− γ2
k2k3

3 · · ·λ
−
∏n−1
i=2 γi∏n
i=2 ki

n u2,

therefore we have Skn−1(D2ũn−1) = (−ũn)γn−1 , · · · , Sk1(D2u1) = λ1λ
γ1
k2
2 · · ·λ

∏n−1
i=1 γi∏n
i=2 ki

n (−ũ2)γ1 . From the 
previous discussion, we know that (5.5) admits a k-admissible solution if and only if λ̃ = λk1

0 . So, 

λ1λ
γ1
k2
2 · · ·λ

∏n−1
i=1 γi∏n
i=2 ki

n = λk1
0 .

On the other hand, if λ1λ
γ1
k2
2 · · ·λ

∏n−1
i=1 γi∏n
i=2 ki

n = λk1
0 , we let λ̃ = λ1λ

γ1
k2
2 · · ·λ

∏n−1
i=1 γi∏n
i=2 ki

n . Then λ̃ = λk1
0 , which 

implies that (5.5) has a k-admissible solution (u1, . . . , un). Define

u∗
2 = λ

1
k2
2 λ

γ2
k2k3
3 · · ·λ

∏n−1
i=2 γi∏n
i=2 ki

n u2,

...

u∗
n−1 = λ

1
kn−1
n−1 λ

γn−1
kn−1kn
n un−1,

u∗
n = λ

1
kn
n un.

Then (u1, u∗
2, . . . , u

∗
n) is a k-admissible solution of system (1.3). �

Remark 5.1. It is necessary to emphasis that if we define different composite operator, for example T :=
T 2 · · ·TnT 1, etc, then we can let λ̃ be related to each ki (i = 1, . . . , n). Here, we only take λ̃ = λk1

0 for a 
detailed explanation.

Remark 5.2. Here, we point out that our proof of the strong property of T is different from that in [28]. 
We overcome the difficult caused by the non-differentiability of solutions to degenerate k-Hessian equations 
and find the corresponding sub-solutions equipped with the higher regularity. Thanks to the Hopf lemma 
in [11] which applied to the non-differentiable function, we derive the proof.
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