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A B S T R A C T

In this paper, we establish a necessary and sufficient condition for the solvability of the real
(𝑛 − 1) Monge–Ampère equation det1∕𝑛(𝛥𝑢𝐼 − 𝐷2𝑢) = 𝑔(𝑥, 𝑢) in bounded domains with infinite
Dirichlet boundary condition. The (𝑛−1) Monge–Ampère operator is derived from geometry and
has recently received much attention. Our result embraces the case 𝑔(𝑥, 𝑢) = ℎ(𝑥)𝑓 (𝑢) where
ℎ ∈ 𝐶∞(𝛺̄) is positive and 𝑓 satisfies the Keller–Osserman type condition. We describe the
asymptotic behavior of the solution by constructing suitable sub-solutions and super-solutions,
and obtain a uniqueness result in star-shaped domains by using a scaling technique.

. Introduction

In this paper, we investigate the (𝑛 − 1) Monge–Ampère equation

det1∕𝑛(𝛥𝑢𝐼 −𝐷2𝑢) = 𝑔(𝑥, 𝑢), 𝑥 ∈ 𝛺, (1.1)

ith an infinite Dirichlet boundary condition

𝑢(𝑥) → +∞, as 𝑑(𝑥) ∶= dist(𝑥, 𝜕𝛺) → 0, (1.2)

here det1∕𝑛 denotes the 𝑛th root of det and 𝑔 meets some natural regularity and growth conditions. In (1.1) and (1.2), 𝛺 is a
ounded domain in R𝑛(𝑛 ≥ 2), 𝑢 is the unknown function with 𝐷2𝑢 and 𝛥𝑢 being its Hessian matrix and Laplacian operator, 𝐼
enotes the 𝑛× 𝑛 identity matrix and dist(𝑥, 𝜕𝛺) denotes the distance function of the point 𝑥 to the boundary 𝜕𝛺. Since the solution
f (1.1)–(1.2) has infinite Dirichlet boundary value at the boundary, problems with infinite Dirichlet boundary conditions (1.2) are
ommonly denoted as the boundary blow-up problem.

Letting 𝜆 = (𝜆1, 𝜆2,… , 𝜆𝑛) and 𝜆̃ = (𝜆̃1, 𝜆̃2,… , 𝜆̃𝑛) be the eigenvalues of 𝐷2𝑢 and 𝛥𝑢𝐼 − 𝐷2𝑢 respectively, it is obvious that
̃𝑖 =

∑

𝑘≠𝑖 𝜆𝑘. Then the (𝑛 − 1) Monge–Ampère operator

det(𝛥𝑢𝐼 −𝐷2𝑢) = 𝜆̃1𝜆̃2 ⋯ 𝜆̃𝑛 =
∏

1≤𝑖1<⋯<𝑖𝑛−1≤𝑛
(𝜆𝑖1 +⋯ + 𝜆𝑖𝑛−1 ),

∗ Corresponding author.
E-mail addresses: jingwen_ji@seu.edu.cn (J. Ji), hydeng@nau.edu.cn (H. Deng), jiangfeida@seu.edu.cn (F. Jiang).
ttps://doi.org/10.1016/j.na.2024.113669
eceived 2 February 2024; Accepted 11 September 2024
vailable online 16 September 2024 
362-546X/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/na
https://www.elsevier.com/locate/na
mailto:jingwen_ji@seu.edu.cn
mailto:hydeng@nau.edu.cn
mailto:jiangfeida@seu.edu.cn
https://doi.org/10.1016/j.na.2024.113669
https://doi.org/10.1016/j.na.2024.113669
http://crossmark.crossref.org/dialog/?doi=10.1016/j.na.2024.113669&domain=pdf


J. Ji et al.

A

s
W
w
L

w
R
w
(
r

e

w
𝑔

w

b
w

f

Nonlinear Analysis 250 (2025) 113669 
where 𝑖1,… , 𝑖𝑛−1 ∈ {1,… , 𝑛}.
The complex form of Eq. (1.1) comes from the Gauduchon conjecture [1] in complex geometry. The related complex Monge–

mpère type equation has the form

det

(( 𝑛
∑

𝑘=1

𝜕2𝑢
𝜕𝑧𝑘𝜕𝑧̄𝑘

)

𝛿𝑥𝑖𝑥𝑗 −
𝜕2𝑢
𝜕𝑧𝑖𝜕𝑧̄𝑗

)

= 𝑓, (1.3)

ee Tosatti and Weinkove [2]. This kind of Eqs. (1.3) are closely related to the form-type Monge–Ampère equations studied by Fu,
ang and Wu [3,4], whose solutions are (𝑛−1)-plurisubharmonic functions in the sense of Harvey and Lawson [5–7]. In this paper,
e focus on the real setting to study Eq. (1.1). Following the recent study of the Dirichlet problem in the real case by Jiao and
iu [8], we refer to (1.1) as a real (𝑛−1) Monge–Ampère equation, which corresponds to (𝑛−1)-form Monge–Ampère equation in [2,9]

in the complex case. Since det(𝛥𝑢𝐼 − 𝐷2𝑢) = det𝐷2𝑢 when 𝑛 = 2, the real (𝑛 − 1) Monge–Ampère equation reduces to the standard
Monge–Ampère equation in the two dimensional case.

The boundary blow-up problem for the elliptic partial differential equations has been an interesting topic for a long time. To
our knowledge, it was first studied by Bieberbach [10] in 1916 for the boundary blow-up problem of two-dimensional semilinear
elliptic equations

{

𝛥𝑢 = 𝑓 (𝑢), in 𝛺,

𝑢(𝑥) → +∞, as 𝑑(𝑥) → 0,
(1.4)

here 𝑓 (𝑢) = 𝑒𝑢. This problem plays an important role in the theory of Riemannian surfaces with negative constant curvature. Later,
ademacher [11] extended this result to the case 𝑛 = 3 due to its application in physics. It was not until 1957 that such a problem
as considered for general nonlinearities in arbitrary dimensions. Keller [12] and Osserman [13] separately studied the problem

1.4) and provided a necessary and sufficient condition on 𝑓 for the existence of solutions in bounded domains. Since then, many
elated problems have been proposed and studied, readers can refer to [14–18].

Motivated by geometric problems, Cheng and Yau [19,20] considered the boundary blow-up problem for fully nonlinear elliptic
quations

{

det𝐷2𝑢 = 𝑔(𝑥, 𝑢), in 𝛺,

𝑢(𝑥) → +∞, as 𝑑(𝑥) → 0,
(1.5)

here 𝑔(𝑥, 𝑢) = 𝑏(𝑥)𝑒𝐾𝑢 in bounded convex domains and 𝑔(𝑥, 𝑢) = 𝑒2𝑢 in unbounded domains were studied, respectively. When
(𝑥, 𝑢) = 𝑏(𝑥)𝑢𝑝, Lazer and McKenna [21] established an existence and uniqueness theorem for (1.5) in the case 𝑝 > 𝑛 and a

nonexistence theorem in the case 0 < 𝑝 < 𝑛. Generalizing the result in [12,13] for the Laplace operator to the Monge–Ampère
operator, Matero [22] and Mohammed [23] treated the case 𝑔(𝑥, 𝑢) = 𝑏(𝑥)𝑓 (𝑢) in bounded strictly convex domains. Their results

ere extended to 𝑘-Hessian equations [24] and 𝑘-curvature equations [25].
Here in this paper, we investigate the boundary blow-up problem for the (𝑛−1) Monge–Ampère equation with general 𝑔(𝑥, 𝑢) in

ounded domains. The existence, uniqueness, and asymptotic behavior of solutions 𝑢(𝑥) to the boundary blow-up problem (1.1)–(1.2)
ill be studied.

We say a function 𝑢 ∈ 𝐶2(𝛺) is (𝑛 − 1)-convex if the matrix

𝛥𝑢𝐼 −𝐷2𝑢 > 0

or every 𝑥 ∈ 𝛺. An (𝑛 − 1)-convex function 𝑢 ∈ 𝐶2(𝛺̄) is said to be a sub-solution of (1.1) if 𝑢 satisfies

det1∕𝑛(𝛥𝑢𝐼 −𝐷2𝑢) ≥ 𝑔(𝑥, 𝑢), in 𝛺. (1.6)

Note that (1.1) is elliptic with respect to (𝑛 − 1)-convex solutions. We will look for (𝑛 − 1)-convex solutions in 𝐶∞(𝛺).
Before stating the main theorems, we shall assume that 𝑔(𝑥, 𝑧) ∈ 𝐶∞(𝛺̄×[𝜂,+∞)) (𝜂 ∈ R∪{−∞}) satisfies a subset of the following

conditions:

(𝐺1) there exist ℎ ∈ 𝐶∞(𝛺̄) and 𝑓 ∈ 𝐶∞[𝜂,+∞) such that

lim
𝑧→∞

𝑔(𝑥, 𝑧)
𝑓 (𝑧)

= ℎ(𝑥) uniformly in 𝛺

and

𝑐1𝑓 (𝑧) ≤ 𝑔(𝑥, 𝑧) ≤ 𝑐2𝑓 (𝑧) in 𝛺 × [𝜂,+∞),

where 𝑐1, 𝑐2 are two positive constants;
(𝐺2) 𝑔′𝑧 ≥ 0 in 𝛺̄ × [𝜂,+∞);
(𝐺3) there exists a constant 𝛾 > 1 such that 𝑔(𝑥, 𝛽𝑧) ≤ 𝛽𝛾𝑔(𝑥, 𝑧) for every 𝛽 ∈ (0, 1) and 𝑧 ∈ [𝜂,+∞).

The function 𝑓 in (𝐺1) will be further assumed to satisfy a subset of the following conditions:

(𝐹1) 𝑓 ∶ R → (0,+∞) is non-decreasing (or 𝑓 ∶ [𝜂,+∞) → [0,+∞) is non-decreasing, 𝑓 (𝜂) = 0, 𝑓 (𝑠) > 0 as 𝑠 > 𝜂);
2 



J. Ji et al.

T

T
e

a
𝑦

T
f

w

(
a
b
s

Nonlinear Analysis 250 (2025) 113669 
(𝐹2) the function

𝛹 (𝑎) = ∫

+∞

𝑎
(𝐹 (𝑡))−

𝑛−1
2𝑛−1 d𝑡

is well defined for every 𝑎 ∈ [𝜂,+∞), where 𝐹 (𝑡) = ∫ 𝑡𝜂 𝑓
𝑛
𝑛−1 (𝑠) d𝑠 if 𝜂 ∈ R, and 𝐹 (𝑡) = ∫ 𝑡0 𝑓

𝑛
𝑛−1 (𝑠) d𝑠 if 𝜂 = −∞.

The condition (𝐹2) can be regarded as the Keller–Osserman type condition for (𝑛− 1) Monge–Ampère equation, see [18] for the
detailed discussion. Conditions (𝐹1)-(𝐹2) can include two special kinds of nonlinearities

𝑓 (𝑧) = 𝑎 + 𝑒𝑏𝑧 (𝑎 ≥ 0, 𝑏 > 0), and 𝑓 (𝑧) = 𝑘(𝑧 − 𝜂)𝑝 (𝑘 > 0, 𝑝 > 1).

The former one allows 𝑓 to be increasing and strictly positive in R. The latter 𝑓 is increasing and positive for 𝑧 > 𝜂 and 𝑓 (𝜂) = 0.
hese two particular nonlinearities correspond to the two alternative cases in condition (𝐹1).

Now, we establish the main results of this paper.

heorem 1.1. Let 𝛺 be a bounded, strictly convex domain with smooth boundary 𝜕𝛺. Assume that (𝐺1), (𝐺2) and (𝐹1) hold, then there
xists an (𝑛 − 1)-convex solution 𝑢 ∈ 𝐶∞(𝛺) of the problem (1.1)–(1.2) if and only if (𝐹2) holds.

Since 𝛺 is a bounded domain in R𝑛 with 𝐶2 boundary, there exists 𝑅1 > 0 such that for any 𝑦 ∈ 𝜕𝛺, 𝐵𝑅1
(𝑥1) ⊂ 𝛺 with 𝑦 ∈ 𝜕𝐵𝑅1

(𝑥1)
nd 𝑥1 ∈ 𝛺. Furthermore, since 𝛺 is strictly convex, there exists 𝑅2 > 0 such that for any 𝑦 ∈ 𝜕𝛺, 𝐵𝑅2

(𝑥2) ⊃ 𝛺 is tangent to 𝜕𝛺 at
and 𝑥2 ∈ R𝑛. Then we can characterize the boundary blow-up rate of 𝑢(𝑥) in terms of the distance of 𝑥 to 𝜕𝛺.

heorem 1.2. Let 𝛺 be a bounded, strictly convex domain with smooth boundary 𝜕𝛺. Assume that (𝐺1), (𝐺2), (𝐹1) and (𝐹2) hold. Then
or any (𝑛 − 1)-convex solution 𝑢 of the problem (1.1)–(1.2), there exist positive constants 𝑅1, 𝑅2 such that

[

𝑐𝑛1𝑎(𝑛)𝑅1
]

1
2𝑛−1 ≤ lim inf

𝑥→𝜕𝛺

𝛹 (𝑢(𝑥))
𝑑(𝑥)

≤ lim sup
𝑥→𝜕𝛺

𝛹 (𝑢(𝑥))
𝑑(𝑥)

≤
[

𝑐𝑛2𝑎(𝑛)𝑅2
]

1
2𝑛−1 , (1.7)

here 𝑎(𝑛) = (2𝑛−1)𝑛−1
(𝑛−1)𝑛 , 𝑑(𝑥) = dist(𝑥, 𝜕𝛺), 𝑐1, 𝑐2 are the constants in condition (𝐺1), and 𝛹 is the function in condition (𝐹2).

In Theorem 1.2, the limit lim𝑥→𝜕𝛺
𝛹 (𝑢(𝑥))
𝑑(𝑥) exists provided that 𝛺 is a ball.

When 𝛺 is a bounded star-shaped domain, we state the uniqueness of the problem (1.1)–(1.2) under the (𝐺3) condition.

Theorem 1.3. Suppose 𝛺 is star-shaped (with respect to a point 𝑥0 ∈ 𝛺) and 𝑔 satisfies (𝐺3), then the problem (1.1)–(1.2) has at most
one (𝑛 − 1)-convex solution.

A direct consequence of Theorems 1.1 and 1.3 is that there exists a unique (𝑛 − 1)-convex solution 𝑢 ∈ 𝐶∞(𝛺) of the problem
(1.1)–(1.2) in a bounded, strictly convex domain 𝛺 with smooth boundary 𝜕𝛺 when (𝐺1), (𝐺2), (𝐺3), (𝐹1) and (𝐹2) hold, see
Remark 5.1.

Building upon the work [8] for the finite Dirichlet boundary value problem, this paper delves deeper into the infinite Dirichlet
boundary value problem for real (𝑛 − 1) Monge–Ampère equation in the bounded strictly convex domain, using a Keller–Osserman
type condition in [18]. The key point is to construct sub-solutions based on the strict convexity of the domain. A highlight of this
paper is that the (F2) condition is not only a sufficient condition for the existence of (𝑛 − 1)-convex solution but also a necessary
condition for the existence of (𝑛 − 1)-convex solution.

The paper is organized as follows. In Section 2, we recall the existence result of the Dirichlet boundary value problem for the
𝑛 − 1) Monge–Ampère equation in [8] and comparison principle in [26]. A computation on the determinant is also presented as
lemma, which will be used to construct sub-solutions in the subsequent sections. In Section 3, we first obtain a uniform upper

ound of solutions to (1.1) in any bounded domain. Then we establish a necessary and sufficient condition for the existence of radial
olutions to the problem (1.1)–(1.2) in a ball and their explicit asymptotic estimates. In Section 4, we prove that the condition (𝐹2)

is the necessary and sufficient condition for the solvability of the problem (1.1)–(1.2) in strictly convex domains, based on the
construction of suitable sub- and super-solutions. In Section 5, we establish the asymptotic behavior of the problem (1.1)–(1.2) near
the boundary in terms of the distance of 𝑥 to 𝜕𝛺, and further prove the uniqueness result under the condition (𝐺3) in star-shaped
domains.

2. Preliminaries

In this section, we present some preliminary lemmas and propositions that will be useful in the subsequent sections.
We consider the Dirichlet problem

{

det1∕𝑛(𝛥𝑢𝐼 −𝐷2𝑢) = 𝑔(𝑥, 𝑢), in 𝛺,

𝑢(𝑥) = 𝑘, on 𝜕𝛺,
(2.1)

where 𝑘 is a positive integer. The existence of classical solutions for the problem (2.1) can be found in [8], where the right hand
side term 𝑔 also depends on ∇𝑢. In particular, we state the existence result for problem (2.1).
3 
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Lemma 2.1 (Existence). Let 𝛺 be a bounded domain with smooth boundary 𝜕𝛺, and 𝑔 be a positive smooth function satisfying (𝐺2). Assume
that there exists an (𝑛 − 1)-convex sub-solution 𝑢 ∈ 𝐶2(𝛺̄) satisfying (1.6) with 𝑢 = 𝑘 on 𝜕𝛺. Then there exists a unique (𝑛 − 1)-convex
solution 𝑢 ∈ 𝐶∞(𝛺̄) of the problem (2.1).

In [8], the existence of solutions to (2.1) was proved by the continuity method and degree theory under the assumptions that 𝑢
is a sub-solution and 𝑔 satisfies sup(𝑥,𝑧)∈𝛺×R

−𝑔′𝑧(𝑥,𝑧)
𝑔(𝑥,𝑧) <∞. In addition, the uniqueness of the solution can be obtained by (𝐺2), and in

Lemma 2.1 the condition (𝐺2) naturally implies that sup(𝑥,𝑧)∈𝛺×R
−𝑔′𝑧(𝑥,𝑧)
𝑔(𝑥,𝑧) <∞ holds.

Under condition (𝐺2), the comparison principle holds for the (𝑛 − 1) Monge–Ampère Eq. (1.1). For convenience, we present a
comparison principle for general second-order elliptic partial differential equations, namely Theorem 17.1 in [26].

Lemma 2.2 (Comparison principle). Suppose 𝐹 [𝑢] ∶= 𝐹 (𝑥, 𝑢,𝐷𝑢,𝐷2𝑢) is a real function defined on the set 𝛤 = 𝛺 × R × R𝑛 × R𝑛×𝑛, we
denote (𝑥, 𝑧, 𝑝, 𝑟) as a point in 𝛤 . Let 𝑢, 𝑣 ∈ 𝐶2(𝛺) ∩ 𝐶0(𝛺̄) satisfy 𝐹 [𝑢] ≥ 𝐹 [𝑣] in 𝛺, 𝑢 ≤ 𝑣 on 𝜕𝛺, if

(i) the function 𝐹 is continuously differentiable with respect to the 𝑧, 𝑝, 𝑟 variables in 𝛤 ;
(ii) the operator 𝐹 is elliptic on all functions of the form 𝜃𝑢 + (1 − 𝜃)𝑣, 0 ≤ 𝜃 ≤ 1;
(iii) the function 𝐹 is non-increasing in 𝑧 for each (𝑥, 𝑝, 𝑟) ∈ 𝛺 × R𝑛 × R𝑛×𝑛,

then we have

𝑢 ≤ 𝑣, in 𝛺̄.

If for any positive integer 𝑘, there exists an (𝑛 − 1)-convex sub-solution 𝑢𝑘 ∈ 𝐶2(𝛺̄) satisfying (1.6) with 𝑢𝑘 = 𝑘 on 𝜕𝛺, by
Lemma 2.1, there exists a unique (𝑛 − 1)-convex solution 𝑢𝑘 of the problem (2.1). Then we have a family of solutions 𝑢𝑘 ∈ 𝐶∞(𝛺̄),
𝑘 = 1, 2,…. Based on the existence result in Lemma 2.1 and the comparison principle in Lemma 2.2, we get the following observation
on the solution of (2.1).

Proposition 2.1. Let 𝛺 be a bounded domain with smooth boundary 𝜕𝛺, and 𝑔 be a positive smooth function satisfying (𝐺2). Assume
that there exist (𝑛 − 1)-convex sub-solutions 𝑢𝑘, 𝑢𝑘+1 ∈ 𝐶2(𝛺̄) satisfying (1.6) with 𝑢𝑘 = 𝑘 on 𝜕𝛺 and 𝑢𝑘+1 = 𝑘 + 1 on 𝜕𝛺, respectively.
Then there exist (𝑛 − 1)-convex solutions 𝑢𝑘, 𝑢𝑘+1 ∈ 𝐶∞(𝛺̄) of problem (2.1) satisfying 𝑢𝑘 = 𝑘 on 𝜕𝛺 and 𝑢𝑘+1 = 𝑘 + 1 on 𝜕𝛺, respectively.
Moreover, we have

𝑢𝑘 ≤ 𝑢𝑘+1, in 𝛺̄.

Proof. Under the assumptions of 𝛺, 𝑔, and the sub-solutions 𝑢𝑘, 𝑢𝑘+1 ∈ 𝐶2(𝛺̄), the solutions 𝑢𝑘, 𝑢𝑘+1 ∈ 𝐶∞(𝛺̄) can be obtained
mmediately from Lemma 2.1. Let 𝐹 [𝑢] ∶= 𝐹 (𝑥, 𝑢,𝐷𝑢,𝐷2𝑢) = det1∕𝑛(𝛥𝑢𝐼−𝐷2𝑢)−𝑔(𝑥, 𝑢). It is clear that 𝐹 is elliptic with respect to (𝑛−1)-
onvex functions. Due to 𝑔′𝑧(𝑥, 𝑧) ≥ 0 in 𝛺 × R, the function 𝐹 is non-increasing in 𝑧 at each point 𝑥 ∈ 𝛺. Since 𝐹 [𝑢𝑘] = 𝐹 [𝑢𝑘+1] = 0
n 𝛺 and 𝑘 = 𝑢𝑘 < 𝑢𝑘+1 = 𝑘 + 1 on 𝜕𝛺, it follows from Lemma 2.2 that 𝑢𝑘 ≤ 𝑢𝑘+1 in 𝛺̄. □

Proposition 2.1 shows that 𝑢𝑘 is non-decreasing in 𝑘. In fact, the non-decreasing monotonicity of 𝑢𝑘 with respect to 𝑘 still holds
even if 𝑘 is a general positive constant, (not just a positive integer).

Finally, we provide a computation of the determinant that will be helpful in constructing sub-solutions in Section 4.

emma 2.3. Let 𝑢 be a 𝐶2 strictly convex function in an open set 𝛺 in R𝑛, let 𝜙 ∈ 𝐶2 be a function defined on an interval containing the
range of 𝑢. If 𝑤 = 𝜙(𝑢), then

det𝐷2𝑤 =
[

(𝜙′(𝑢))𝑛 + 𝜙′′(𝑢)(𝜙′(𝑢))𝑛−1(𝐷𝑢)𝑇 (𝐷2𝑢)−1𝐷𝑢
]

det𝐷2𝑢, in 𝛺, (2.2)

where 𝐴𝑇 denotes the transpose of matrix 𝐴.

Proof. For any point 𝑥 ∈ 𝛺, by rotating the coordinates, we let

𝐷𝑢(𝑥) = (𝑢𝑥1 (𝑥), 0,… , 0), 𝑢𝑥𝑖𝑥𝑗 (𝑥) = 𝑢𝑥𝑖𝑥𝑖 (𝑥)𝛿𝑖𝑗 for 𝑖, 𝑗 = 2,… , 𝑛,

here 𝛿𝑖𝑗 denotes the usual Kronecker delta. Then at the point 𝑥, we have

𝑤𝑥1𝑥1 (𝑥) = 𝜙′′(𝑢)𝑢2𝑥1 (𝑥) + 𝜙
′(𝑢)𝑢𝑥1𝑥1 (𝑥),

𝑤𝑥1𝑥𝑖 (𝑥) = 𝑤𝑥𝑖𝑥1 (𝑥) = 𝜙′(𝑢)𝑢𝑥1𝑥𝑖 (𝑥) = 𝜙′(𝑢)𝑢𝑥𝑖𝑥1 (𝑥) for 𝑖 = 2,… , 𝑛,

𝑤 (𝑥) = 𝜙′(𝑢)𝑢 (𝑥)𝛿 for 𝑖, 𝑗 = 2,… , 𝑛,
𝑥𝑖𝑥𝑗 𝑥𝑖𝑥𝑖 𝑖𝑗
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where 𝑢𝑥𝑖 =
𝜕𝑢
𝜕𝑥𝑖

and 𝑢𝑥𝑖𝑥𝑗 =
𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗
, 𝑖, 𝑗 = 1,… , 𝑛. The determinant of {𝑤𝑥𝑖𝑥𝑗 } can be expressed as

det𝐷2𝑤 =

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝜙′′𝑢2𝑥1 + 𝜙
′𝑢𝑥1𝑥1 𝜙′𝑢𝑥1𝑥2 𝜙′𝑢𝑥1𝑥3 ⋯ 𝜙′𝑢𝑥1𝑥2

𝜙′𝑢𝑥2𝑥1 𝜙′𝑢𝑥2𝑥2 0 ⋯ 0

𝜙′𝑢𝑥3𝑥1 0 𝜙′𝑢𝑥3𝑥3 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

𝜙′𝑢𝑥𝑛𝑥1 0 0 ⋯ 𝜙′𝑢𝑥𝑛𝑥𝑛

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

=

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝜙′′𝑢2𝑥1 𝜙′𝑢𝑥1𝑥2 ⋯ 𝜙′𝑢𝑥1𝑥2

0 𝜙′𝑢𝑥2𝑥2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝜙′𝑢𝑥𝑛𝑥𝑛

|

|

|

|

|

|

|

|

|

|

|

|

|

|

+

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝜙′𝑢𝑥1𝑥1 𝜙′𝑢𝑥1𝑥2 ⋯ 𝜙′𝑢𝑥1𝑥2
𝜙′𝑢𝑥2𝑥1 𝜙′𝑢𝑥2𝑥2 ⋯ 0

⋮ ⋮ ⋱ ⋮

𝜙′𝑢𝑥𝑛𝑥1 0 ⋯ 𝜙′𝑢𝑥𝑛𝑥𝑛

|

|

|

|

|

|

|

|

|

|

|

|

|

|

= 𝜙′′(𝑢)(𝜙′(𝑢))𝑛−1𝑢2𝑥1

𝑛
∏

𝑖=2
𝑢𝑥𝑖𝑥𝑖 + (𝜙′(𝑢))𝑛 det𝐷2𝑢

= 𝜙′′(𝑢)(𝜙′(𝑢))𝑛−1𝑢∗𝑥1𝑥1𝑢
2
𝑥1

+ (𝜙′(𝑢))𝑛 det𝐷2𝑢,

(2.3)

here 𝑢∗𝑥𝑖𝑥𝑗 denotes the cofactor of the (𝑖, 𝑗)-th entry of the matrix {𝑢𝑥𝑖𝑥𝑗 } for 𝑖, 𝑗 = 1,… , 𝑛. Since 𝑢 is strictly convex and the matrix
𝑢𝑥𝑖𝑥𝑗 } is symmetric, we use the formula for the inverse of a matrix to deduce

𝑢∗𝑥1𝑥1𝑢
2
𝑥1

= (det𝐷2𝑢)𝑢𝑥1𝑥1𝑢2𝑥1 = det𝐷2𝑢
𝑛
∑

𝑖,𝑗=1
𝑢𝑥𝑖𝑥𝑗 𝑢𝑥𝑖𝑢𝑥𝑗 = (det𝐷2𝑢)(𝐷𝑢)𝑇 (𝐷2𝑢)−1𝐷𝑢, (2.4)

t 𝑥, where {𝑢𝑥𝑖𝑥𝑗 } is the inverse of the matrix {𝑢𝑥𝑖𝑥𝑗 } for 𝑖, 𝑗 = 1,… , 𝑛. By substituting (2.4) into (2.3), we thus get (2.2). □

Note that the formula (2.2) in Lemma 2.3 is already used in [23]. An alternative proof of Lemma 2.3 can be found in [21].

. Blow-up estimates in a ball

In this section, we present three lemmas on radially symmetric solutions of (1.1) when 𝑔(𝑥, 𝑧) is independent of 𝑥 and 𝛺 is a ball
f radius 𝑅. In Lemma 3.1, we give a uniform upper bound for this solution. As a consequence, in Lemma 3.2, a radial solution of
1.1)–(1.2) exists if and only if condition (𝐹2) holds. Finally, we establish an explicit version of the blow-up rate of a radial solution
o (3.1) in Lemma 3.3.

We study the classical radial solution of the problem (1.1)–(1.2) with 𝑔 depending only on 𝑢 in a finite ball 𝐵𝑅(0), 𝑅 <∞. Setting
= |𝑥|, the corresponding problem of (1.1)–(1.2) can be written as

{

det1∕𝑛(𝛥𝑣(𝑟)𝐼 −𝐷2𝑣(𝑟)) = 𝑓 (𝑣(𝑟)), 𝑟 ∈ [0, 𝑅),

𝑣(𝑟) → +∞, as 𝑟 → 𝑅.
(3.1)

emma 3.1. Assume (𝐹1) and (𝐹2) hold, then for every (𝑛−1)-convex solution of det1∕𝑛(𝛥𝑣𝐼 −𝐷2𝑣) = 𝑓 (𝑣) in a ball 𝐵𝑅(0) with constant
alue 𝛼 > 0 on the boundary, there exists a decreasing function 𝜁 (𝛿) with lim𝛿→0 𝜁 (𝛿) = +∞ such that

𝑣(𝑟) ≤ 𝜁 (𝑅 − 𝑟), 𝑥 ∈ 𝛺. (3.2)

roof. We consider the Dirichlet boundary problem:
{

det1∕𝑛(𝛥𝑣𝐼 −𝐷2𝑣) = 𝑓 (𝑣), in 𝐵𝑅(0),

𝑣(𝑥) = 𝛼, on 𝜕𝐵𝑅(0),
(3.3)

here 𝑓 is defined as in (𝐺1). In fact, the existence and uniqueness of (𝑛 − 1)-convex solution 𝑣 ∈ 𝐶∞(𝐵𝑅(0)) of (3.3) is guaranteed
y Lemma 2.1 under the existence of a strict sub-solution 𝑣 to (3.3). More specifically, this strict sub-solution has the form

𝑣(𝑟) = 𝛼 − ∫

𝑅

𝑟

𝑡2−𝑛

𝑛 − 1

[

∫

𝑡

0
𝑛𝑠𝑛−1 (𝑓 (𝛼) + 1)

𝑛
𝑛−1 d𝑠

]

𝑛−1
𝑛

d𝑡, 𝑟 ∈ (0, 𝑅), (3.4)

hich satisfies (3.3) with 𝑓 (𝑣) replaced by 𝑓 (𝛼) + 1. We notice that 𝑣 must be a radial function. Otherwise, if 𝑣 is not spherically
symmetric, a different solution could be obtained by rotating 𝑣, which contradicts the uniqueness of the solution. Therefore
𝑣(𝑥) = 𝑣(𝑟), 𝑟 = |𝑥|, 𝑟 ∈ [0, 𝑅]. Since 𝑣 is a function depending on 𝛼, we can define a function 𝜁 (𝛿) by

𝜁 (𝛿) ∶= 𝜁 (𝑅 − 𝑟) = lim 𝑣(𝑟),

𝛼→+∞
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where 𝛿 = 𝑅 − 𝑟. Then lim𝛿→0 𝜁 (𝛿) = lim𝛼→+∞ 𝑣(𝑅) = +∞. Since 𝑓 satisfies (𝐹1), it follows from Proposition 2.1 that 𝑣 is a
non-decreasing function of 𝛼. For every 𝛼, we obtain the desired inequality (3.2) at each point in 𝐵𝑅(0).

It remains to show that 𝜁 (𝑅 − 𝑟) is finite so that (3.2) is not trivial, and that 𝜁 (𝛿) is a decreasing function of 𝛿. To this end, we
must examine 𝑣, the solution of (3.3). With some proper calculations, we can see that 𝑣 satisfies

(𝑛 − 1)
𝑣′(𝑟)
𝑟

(

𝑣′′(𝑟) + (𝑛 − 2)
𝑣′(𝑟)
𝑟

)𝑛−1
= 𝑓 𝑛(𝑣(𝑟)), 𝑟 ∈ (0, 𝑅), (3.5)

𝑣′(0) = 0, and 𝑣(𝑅) = 𝛼. (3.6)

e see that each 𝛼 uniquely determines the initial value 𝑣(0). In this sense, we can regard 𝑣(0) as a function of 𝛼, which is increasing
n 𝛼. Therefore 𝛼 itself is uniquely determined by 𝑣(0). Thus we can replace 𝑣(𝑅) = 𝛼 in (3.6) by 𝑣(0) =∶ 𝑣̃0. Setting

𝑣0 ∶= lim
𝛼→+∞

𝑣̃0 = lim
𝛼→+∞

𝑣(0),

e shall show that 𝑣(𝑅) = +∞ for some finite 𝑣0.
Multiplying by 𝑟

(2𝑛−1)(𝑛−2)
𝑛−1 𝑣′(𝑟), we can rewrite (3.5) in the form

[

(

𝑟𝑛−2𝑣′(𝑟)
)

2𝑛−1
𝑛−1

]′
= 2𝑛 − 1

(𝑛 − 1)
𝑛
𝑛−1

𝑟
(2𝑛−1)(𝑛−2)

𝑛−1
[

𝑟𝑓 𝑛(𝑣(𝑟))
]

1
𝑛−1 𝑣′(𝑟)

= 2𝑛 − 1

(𝑛 − 1)
𝑛
𝑛−1

𝑟2𝑛−3𝐹 ′(𝑣(𝑟)).
(3.7)

ntegrating (3.7) from 0 to 𝑟 and taking the first equality in (3.6) into account, we have
(

𝑟𝑛−2𝑣′(𝑟)
)

2𝑛−1
𝑛−1 = 2𝑛 − 1

(𝑛 − 1)
𝑛
𝑛−1

[

𝑟2𝑛−3𝐹 (𝑣(𝑟)) − (2𝑛 − 3)∫

𝑟

0
𝑡2𝑛−4𝐹 (𝑣(𝑡)) d𝑡

]

. (3.8)

Since the integral term in (3.8) is positive, we can obtain

𝑣′(𝑟) ≤
[

𝑎(𝑛)𝑟(𝐹 (𝑣(𝑟)))𝑛−1
]

1
2𝑛−1 ,

which provides a lower bound for 𝑟
1

2𝑛−1 ,

[𝑎(𝑛)𝑟]
1

2𝑛−1 ≥ [𝐹 (𝑣(𝑟))]−
𝑛−1
2𝑛−1 𝑣′(𝑟), (3.9)

here 𝑎(𝑛) = (2𝑛−1)𝑛−1
(𝑛−1)𝑛 . In order to get an upper bound for 𝑟

1
2𝑛−1 , by rewriting (3.5) we get

[

(𝑟𝑛−2𝑣′(𝑟))
𝑛
𝑛−1

]′
= 𝑛

(𝑛 − 1)
𝑛
𝑛−1

𝑟𝑛−1𝑓
𝑛
𝑛−1 (𝑣(𝑟)), 𝑟 ∈ (0, 𝑅). (3.10)

rom (3.10), we get

𝑣′(𝑟) = 𝑟2−𝑛

𝑛 − 1

(

∫

𝑟

0
𝑛𝑠𝑛−1(𝑓 (𝑣(𝑠)))

𝑛
𝑛−1 d𝑠

)
𝑛−1
𝑛
. (3.11)

ccording to (𝐹1), we see that 𝑣′(𝑟) ≥ 0 for 𝑟 ≥ 0. Thus, 𝑣 is a non-decreasing function. From (3.11) and (𝐹1) it follows immediately

𝑣′(𝑟)
𝑟

≤ 𝑓 (𝑣(𝑟))
𝑛 − 1

, 𝑟 ∈ (0, 𝑅). (3.12)

Substituting (3.12) into (3.5), we get

𝑣′′(𝑟)
(

𝑣′(𝑟)
𝑟

)
1
𝑛−1

=
( 1
𝑛 − 1

(𝑓 (𝑣(𝑟))𝑛)
)

1
𝑛−1 − (𝑛 − 2)

(

𝑣′(𝑟)
𝑟

)
𝑛
𝑛−1

≥
( 1
𝑛 − 1

)

𝑛
𝑛−1 [𝑓 (𝑣(𝑟))]

𝑛
𝑛−1 .

ultiplying both sides of the above inequality by 𝑣′(𝑟), we have
[

(

𝑣′(𝑟)
)
2𝑛−1
𝑛−1

]′
≥ 2𝑛 − 1

𝑛 − 1

( 1
𝑛 − 1

)

𝑛
𝑛−1 𝑟

1
𝑛−1 𝐹 ′(𝑣(𝑟)).

Integrating the above inequality from 0 to 𝑟 and using the first equality in (3.6), we get

𝑣′(𝑟) ≥
( 2𝑛 − 1
𝑛 − 1

)

𝑛−1
2𝑛−1

( 1
𝑛 − 1

)

𝑛
2𝑛−1

[

∫

𝑟

0
𝑠

1
𝑛−1 𝐹 ′(𝑣(𝑠)) d𝑠

]
𝑛−1
2𝑛−1

=
( 2𝑛 − 1)

𝑛−1
2𝑛−1

( 1 )

𝑛
2𝑛−1

[

𝑟
1
𝑛−1 𝐹 (𝑣(𝑟)) − 1 𝑟

𝑠
2−𝑛
𝑛−1 𝐹 (𝑣(𝑠)) d𝑠

]
𝑛−1
2𝑛−1

.

(3.13)
𝑛 − 1 𝑛 − 1 𝑛 − 1 ∫0
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Noticing that 𝑣(𝑟) is convex in 𝐵𝑅(0), then the term 𝑠−1𝐹 (𝑣(𝑠)) is non-decreasing for 0 < 𝑠 < 𝑅, so is 𝑠
2−𝑛
𝑛−1 𝐹 (𝑣(𝑠)). By (3.13) we have

𝑣′(𝑟) ≥
( 2𝑛 − 1
𝑛 − 1

)

𝑛−1
2𝑛−1

( 1
𝑛 − 1

)

𝑛
2𝑛−1

[

𝑟
1
𝑛−1 𝐹 (𝑣(𝑟)) − 1

𝑛 − 1
𝑟

1
𝑛−1 𝐹 (𝑣(𝑟))

]

𝑛−1
2𝑛−1

=
[

𝑏(𝑛)𝑟(𝐹 (𝑣(𝑟)))𝑛−1
]

1
2𝑛−1 ,

which shows that

[𝑏(𝑛)𝑟]
1

2𝑛−1 ≤ [𝐹 (𝑣(𝑟))]−
𝑛−1
2𝑛−1 𝑣′(𝑟), (3.14)

where 𝑏(𝑛) = [(2𝑛−1)(𝑛−2)]𝑛−1

(𝑛−1)3𝑛−2 .
Integrating (3.9) and (3.14), we have

[𝑏(𝑛)]
1

2𝑛−1
∫

𝑟

0
𝑡

1
2𝑛−1 d𝑡 ≤ ∫

𝑣(𝑟)

𝑣̃0
(𝐹 (𝑡))−

𝑛−1
2𝑛−1 d𝑡 ≤ [𝑎(𝑛)]

1
2𝑛−1

∫

𝑟

0
𝑡

1
2𝑛−1 d𝑡. (3.15)

rom (3.15) we have

𝑐(𝑛)

[

∫

𝑣(𝑟)

𝑣̃0
(𝐹 (𝑡))−

𝑛−1
2𝑛−1 d𝑡

]
2𝑛−1
2𝑛

≤ 𝑟 ≤ 𝐶(𝑛)

[

∫

𝑣(𝑟)

𝑣̃0
(𝐹 (𝑡))−

𝑛−1
2𝑛−1 d𝑡

]
2𝑛−1
2𝑛

, (3.16)

here 𝑐(𝑛) ∶= [𝑎(𝑛)]−
1
2𝑛 ( 2𝑛

2𝑛−1 )
2𝑛−1
2𝑛 , and 𝐶(𝑛) ∶= [𝑏(𝑛)]−

1
2𝑛 ( 2𝑛

2𝑛−1 )
2𝑛−1
2𝑛 . Letting 𝑟 → 𝑅 in (3.16) and 𝛼 → +∞, we get

𝑐(𝑛)

[

∫

+∞

𝑣0
(𝐹 (𝑡))−

𝑛−1
2𝑛−1 d𝑡

]
2𝑛−1
2𝑛

≤ 𝑅 ≤ 𝐶(𝑛)

[

∫

+∞

𝑣0
(𝐹 (𝑡))−

𝑛−1
2𝑛−1 d𝑡

]
2𝑛−1
2𝑛

. (3.17)

f 𝑣0 = +∞, by (F2), the integral ∫ +∞
𝑣0

(𝐹 (𝑡))−
𝑛−1
2𝑛−1 d𝑡 = 0, which contracts with the second inequality in (3.17). Then we know that

𝑣0 < +∞. We have proved that 𝛼 = 𝑣(𝑅) is infinite for some finite 𝑣0.
We can see that for each value 𝑣0, 𝑣 becomes infinite at some value of 𝑟 in the range shown by (3.16). Let us denote by 𝛿(𝑣0)

the corresponding value of 𝑟 when 𝑣 becomes infinite.
The function 𝛿(𝑣0) is continuous and non-increasing. If it increases, then two solutions corresponding to different values of 𝑣0

must equal some value of 𝑟. However, this is impossible because the solution of the ordinary differential Eq. (3.5) with prescribed
values on the sphere is unique. For 𝑟 = 𝛿(𝑣0), letting 𝛼 → +∞ in (3.16), we have

𝑐(𝑛)

[

∫

+∞

𝑣0
(𝐹 (𝑡))−

𝑛−1
2𝑛−1 d𝑡

]
2𝑛−1
2𝑛

≤ 𝑟 ≤ 𝐶(𝑛)

[

∫

+∞

𝑣0
(𝐹 (𝑡))−

𝑛−1
2𝑛−1 d𝑡

]
2𝑛−1
2𝑛

, (3.18)

y (F2), the integral ∫ +∞
𝑣0

(𝐹 (𝑡))−
𝑛−1
2𝑛−1 d𝑡 → 0 as 𝑣0 → +∞. Thus, according to (3.18), 𝛿(𝑣0) has the same behavior as ∫ +∞

𝑣0
(𝐹 (𝑡))−

𝑛−1
2𝑛−1 d𝑡,

hat is

lim
𝑣0→+∞

𝛿(𝑣0) = 0.

e now define 𝜁 (𝛿) as the ‘‘inverse’’ of 𝛿(𝑣0), namely, 𝜁 (𝛿) = min{𝑣0|𝛿(𝑣0) = 𝑅}. This function is the desired 𝜁 (𝛿) of this lemma,
hich is decreasing and satisfies lim𝛿→0 𝜁 (𝛿) = +∞. Thus, we complete the proof. □

In Lemma 3.1, we get a uniform upper bound estimate for 𝑣 that satisfies det1∕𝑛(𝛥𝑣𝐼 − 𝐷2𝑣) = 𝑓 (𝑣) in a ball with prescribed
onstant boundary, which is an extension of the result of Keller [12] for the Laplace operator to the (𝑛−1) Monge–Ampère operator.

The next lemma shows that the condition (𝐹2) is a necessary and sufficient condition for the solvability of the problem (3.1).

emma 3.2. Assume 𝑓 satisfies (𝐹1), the problem (3.1) admits an (𝑛 − 1)-convex solution if and only if (𝐹2) holds.

roof. Sufficiency. Indeed, by the argument in Lemma 3.1, if (𝐹1) holds and 𝑣 exists as in (3.4), then (3.3) admits a unique (𝑛− 1)-
convex solution 𝑣𝛼 ∈ 𝐶∞(𝐵𝑅(0)) for any constant 𝛼. This solution 𝑣𝛼 is radially symmetric. Otherwise, we could get another solution
y rotating 𝑣𝛼 , but by comparison principle, 𝑣𝛼 is unique. Moreover, by Proposition 2.1 the sequence {𝑣𝛼} is increasing in 𝛼 at every
oint of 𝐵𝑅(0). If 𝑓 satisfies (𝐹1) and (𝐹2), then Lemma 3.1 shows that all of the {𝑣𝛼} are uniformly bounded above (in 𝛼) at each
oint 𝑥 in 𝐵𝑅(0). By Theorem 1.2 in [8], we get an estimate of the 𝐶2-norm of 𝑣𝛼 ,

‖𝑣𝛼‖𝐶2(𝛺̄′) ≤ 𝐶,

here the domain 𝛺′ is any closed subdomain of 𝐵𝑅(0) that does not contain a point of 𝜕𝐵𝑅(0), the constant 𝐶 depends on |𝑣𝛼|𝐶1(𝛺̄′),
𝑣|𝐶2(𝛺̄′), |𝑓 |𝐶2 and inf 𝑓 . Thus the Arzelà–Ascoli theorem asserts that there exists a subsequence {𝑣𝛼𝑖}

∞
𝑖=1 of {𝑣𝛼} which converges

niformly to a limit 𝑣. Since {𝑣𝛼} is (𝑛 − 1)-convex radial solution of (3.3) and the convergence 𝑣𝛼𝑖 (𝑥) → 𝑣(𝑥) holds in 𝐶2(𝐵𝑅(0)),
hen the limit 𝑣 ∈ 𝐶2(𝐵𝑅(0)) is an (𝑛 − 1)-convex radial solution of (3.3). As 𝑥 approaches 𝜕𝐵𝑅(0), 𝑣(𝑥) increases infinitely, since

𝛼 = 𝛼 becomes infinite on 𝜕𝐵𝑅(0). Thus 𝑣 is the desired solution of the problem (3.1).
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Necessity. Assume on the contrary that there exists 𝑎0 ≥ 𝜂 such that

𝛷(𝑡) ∶= ∫

𝑡

𝑎0
(𝐹 (𝜏))−

𝑛−1
2𝑛−1 d𝜏 → +∞, as 𝑡 → +∞, (3.19)

nd (3.1) admits an (𝑛− 1)-convex solution 𝑣. We assume 𝑎0 > 𝑣(0). From Step 3 of the proof of Theorem 1.1 in [18], we know that
(𝐹1) and (3.19) imply the Cauchy problem

⎧

⎪

⎨

⎪

⎩

𝑢′(𝑟) = 𝑟2−𝑛

𝑛 − 1

(

∫

𝑟

0
𝑛𝑠𝑛−1𝑓

𝑛
𝑛−1 (𝑢(𝑠)) d𝑠

)
𝑛−1
𝑛
, 𝑟 ∈ [0,∞),

𝑢(0) = 𝑎0,

(3.20)

admits an entire solution 𝑢(𝑟) ∈ 𝐶2[0,∞). In other words, 𝑢(𝑟) is a radial solution to the equation in (3.1) and can be extended to
the whole space, where 𝑅 = ∞. According to (𝐹1) and (3.20), 𝑢 is positive and bounded in 𝐵𝑅(0). By comparison principle, we get
𝑢 ≤ 𝑣 in 𝐵𝑅(0), which contradicts the fact that 𝑢(0) > 𝑣(0). □

We can characterize the boundary blow-up rate of 𝑣(𝑟) to the problem (3.1) in terms of 𝑅 − 𝑟 as follows.

Lemma 3.3. Let 𝑣(𝑟) be a solution of problem (3.1), if (𝐹1) and (𝐹2) hold, then

lim
𝑟→𝑅

𝛹 (𝑣(𝑟))
𝑅 − 𝑟

= [𝑎(𝑛)𝑅]
1

2𝑛−1 ,

here 𝑎(𝑛) = (2𝑛−1)𝑛−1
(𝑛−1)𝑛 .

roof. By Lemma 3.1, we have that (3.5) and the first equality in (3.6) hold, and that 𝑣(𝑅) = +∞. Thus, from (3.7), we can also
btain (3.9). Integrating (3.9) from 𝑟 to 𝑅, we get

∫

𝑣(𝑅)

𝑣(𝑟)
(𝐹 (𝑡))−

𝑛−1
2𝑛−1 d𝑡 ≤ [𝑎(𝑛)]

1
2𝑛−1

∫

𝑅

𝑟
𝑡

1
2𝑛−1 d𝑡

= [𝑎(𝑛)]
1

2𝑛−1
2𝑛 − 1
2𝑛

(𝑅
2𝑛

2𝑛−1 − 𝑟
2𝑛

2𝑛−1 ).
(3.21)

ince lim𝑟→𝑅
𝑅

2𝑛
2𝑛−1 −𝑟

2𝑛
2𝑛−1

𝑅−𝑟 = 2𝑛
2𝑛−1𝑅

1
2𝑛−1 and 𝑣(𝑅) = +∞, from (3.21) we obtain that

lim sup
𝑟→𝑅

𝛹 (𝑣(𝑟))
𝑅 − 𝑟

≤ [𝑎(𝑛)𝑅]
1

2𝑛−1 . (3.22)

o prove the reverse inequality, we use (3.7) again, but this time we integrate the equality from 𝑟1 to 𝑟. For 0 < 𝑟1 < 𝑟 < 𝑅, we have
(

𝑟𝑛−2𝑣′(𝑟)
)

2𝑛−1
𝑛−1 =

(

𝑟𝑛−21 𝑣′(𝑟1)
)

2𝑛−1
𝑛−1 + [𝑎(𝑛)𝑟]

1
𝑛−1

∫

𝑟

𝑟1
𝑡2𝑛−3𝐹 ′(𝑣(𝑡)) d𝑡,

amely

(

𝑣′(𝑟)
)
2𝑛−1
𝑛−1 =

[

( 𝑟1
𝑟

)𝑛−2
𝑣′(𝑟1)

]
2𝑛−1
𝑛−1

+ [𝑎(𝑛)𝑟]
1
𝑛−1

∫

𝑟

𝑟1

( 𝑡
𝑟

)2𝑛−3
𝐹 ′(𝑣(𝑡)) d𝑡

=
[

( 𝑟1
𝑟

)𝑛−2
𝑣′(𝑟1)

]
2𝑛−1
𝑛−1

+ [𝑎(𝑛)𝑟]
1
𝑛−1

[

𝐹 (𝑣(𝑟)) − 𝐹 (𝑣(𝑟1))
]

+ [𝑎(𝑛)𝑟]
1
𝑛−1

∫

𝑟

𝑟1

[

( 𝑡
𝑟

)2𝑛−3
− 1

]

𝐹 ′(𝑣(𝑡)) d𝑡.

(3.23)

It is readily checked that the last integral in (3.23) is negative. Moreover, we have
|

|

|

|

|

∫

𝑟

𝑟1

[

( 𝑡
𝑟

)2𝑛−3
− 1

]

𝐹 ′(𝑣(𝑡)) d𝑡
|

|

|

|

|

≤
[

1 −
( 𝑟1
𝑅

)2𝑛−3
]

[

𝐹 (𝑣(𝑟)) − 𝐹 (𝑣(𝑟1))
]

. (3.24)

hen for any 𝜀 > 0, we choose 𝑟1 such that 1 −
(

𝑟1
𝑅

)2𝑛−3
< 𝜀. Substituting (3.24) into (3.23), we have

(

𝑣′(𝑟)
)
2𝑛−1
𝑛−1 ≥

[

( 𝑟1
𝑟

)𝑛−2
𝑣′(𝑟1)

]
2𝑛−1
𝑛−1

+ [𝑎(𝑛)𝑟]
1
𝑛−1 (1 − 𝜀)

[

𝐹 (𝑣(𝑟)) − 𝐹 (𝑣(𝑟1))
]

≥ [𝑎(𝑛)𝑟]
1
𝑛−1 (1 − 𝜀)

[

𝐹 (𝑣(𝑟)) − 𝐹 (𝑣(𝑟1))
]

, 𝑟1 < 𝑟 < 𝑅.

(3.25)

Since 𝐹 (𝑣) is increasing function with 𝐹 (𝑣) → +∞ as 𝑣 → +∞, for 𝜀 > 0, there exists 𝑟2 > 0 such that

𝐹 (𝑣(𝑟)) > 1 − 𝜀𝐹 (𝑣(𝑟 )), 𝑟 > 𝑟 .

𝜀 1 2
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Then for max{𝑟1, 𝑟2} < 𝑟 < 𝑅, (3.25) yields
(

𝑣′(𝑟)
)
2𝑛−1
𝑛−1 ≥ [𝑎(𝑛)𝑟]

1
𝑛−1 (1 − 2𝜀)𝐹 (𝑣(𝑟)),

which shows that

[𝐹 (𝑣(𝑟))]−
𝑛−1
2𝑛−1 𝑣′(𝑟) ≥ [𝑎(𝑛)]

1
2𝑛−1 (1 − 2𝜀)

𝑛−1
2𝑛−1 𝑟

1
2𝑛−1 . (3.26)

ntegrating (3.26) from 𝑟 to 𝑅, we get

∫

𝑣(𝑅)

𝑣(𝑟)
[𝐹 (𝑡)]−

𝑛−1
2𝑛−1 d𝑡 ≥ [𝑎(𝑛)]

1
2𝑛−1 (1 − 2𝜀)

𝑛−1
2𝑛−1

∫

𝑅

𝑟
𝑡

1
2𝑛−1 d𝑡

= [𝑎(𝑛)]
1

2𝑛−1 (1 − 2𝜀)
𝑛−1
2𝑛−1

2𝑛 − 1
2𝑛

(𝑅
2𝑛

2𝑛−1 − 𝑟
2𝑛

2𝑛−1 ).
(3.27)

When 𝑟1 is close enough to 𝑅, there exists 𝑟2 sufficiently close to 𝑅 such that 𝜀 → 0. Since 𝜀 is arbitrary and 𝑣(𝑅) = +∞, by taking
the limit on both sides of (3.27), we obtain

lim inf
𝑟→𝑅

𝛹 (𝑣(𝑟))
𝑅 − 𝑟

≥ [𝑎(𝑛)𝑅]
1

2𝑛−1 . (3.28)

ombining (3.22) and (3.28), the proof is done. □

. Existence

In this section, we give a proof of Theorem 1.1, which states that the condition (𝐹2) is a necessary and sufficient condition for
he solvability of the boundary blow-up problem (1.1)–(1.2).

roof of Theorem 1.1. First, we prove the sufficiency. From Lemma 2.1, we can see that (2.1) admits a solution 𝑢𝑘 ∈ 𝐶∞(𝛺̄),
rovided that there exists a corresponding sub-solution 𝑢 ∈ 𝐶2(𝛺̄) satisfying

det1∕𝑛(𝛥𝑢𝐼 −𝐷2𝑢) ≥ 𝑔(𝑥, 𝑢) in 𝛺, 𝑢|𝜕𝛺 = 𝑘, (4.1)

or 𝑘 ∈ Z+. Therefore, there exists a sequence {𝑢𝑘}∞𝑘=1, which is increasing with respect to 𝑘 in 𝛺̄ in view of Proposition 2.1. Indeed,
e can prove that such sub-solution 𝑢 in (4.1) exists for each 𝑘 ∈ Z+ under the strict convexity of the domain 𝛺.

Since 𝛺 is a bounded, strictly convex domain in R𝑛 with smooth boundary, from Theorem 1.1 in [27], there exists a unique
trictly convex solution 𝜓 ∈ 𝐶∞(𝛺̄) satisfying

det𝐷2𝜓 = 1 in 𝛺, 𝜓|𝜕𝛺 = 0. (4.2)

hus 𝜓 can be referred as the defining function for 𝛺 such that 𝜓 = 0, 𝐷𝜓 ≠ 0 on 𝜕𝛺 and the matrix {𝜓𝑥𝑖𝑥𝑗 } is positive definite in
𝛺̄. Then no eigenvalue of {𝜓𝑥𝑖𝑥𝑗 } can be zero at any point of 𝛺̄ and the trace of {𝜓𝑥𝑖𝑥𝑗 } is positive in 𝛺̄. By maximum principle,
𝜓 < 0 in 𝛺 and the eigenvalues of {𝜓𝑥𝑖𝑥𝑗 } are strictly positive in 𝛺̄. Therefore, there exists a positive constant 𝛼 such that

{𝜓𝑥𝑖𝑥𝑗 } ≥ 𝛼𝐼, in 𝛺.

We take

𝑢 = 𝑘 + 𝜇(𝑒𝜌𝜓 − 1), (4.3)

here 𝜇 and 𝜌 are positive constants to be determined. Then

𝑢 = 𝑘, on 𝜕𝛺 (4.4)

utomatically, and the (𝑖, 𝑗)th entry of the second derivative of 𝑢 is

𝑢𝑥𝑖𝑥𝑗 = 𝜇𝜌𝑒𝜌𝜓 (𝜓𝑥𝑖𝑥𝑗 + 𝜌𝜓𝑥𝑖𝜓𝑥𝑗 ), in 𝛺. (4.5)

According to 𝜓𝑥𝑖𝑥𝑗 > 0, we see from (4.5) that 𝑢𝑥𝑖𝑥𝑗 > 0 in 𝛺, that is 𝑢 is strictly convex. By the definition of (𝑛− 1) Monge–Ampère
perator, we deduce that

det(𝛥𝑢𝐼 −𝐷2𝑢) > det𝐷2𝑢, in 𝛺. (4.6)

y Lemma 2.3, the determinant of 𝐷2𝑢 can be written as

det𝐷2𝑢 = (𝜇𝜌𝑒𝜌𝜓 )𝑛 det𝐷2𝜓
[

1 + 𝜌(𝐷𝜓)𝑇 (𝐷2𝜓)−1𝐷𝜓
]

, in 𝛺.

ote that the matrix {𝜓−1
𝑥𝑖𝑥𝑗

} is strictly positive in 𝛺̄, it can be inferred that there exists a constant 𝛼̄ > 0 such that

(𝐷𝜓)𝑇 (𝐷2𝜓)−1𝐷𝜓 ≥ 𝛼̄|𝐷𝜓|2, in 𝛺. (4.7)

hen we have
2 ≥ (𝜇𝜌𝑒𝜌𝜓 )𝑛

[

1 + 𝜌𝛼̄|𝐷𝜓|2
]

, in 𝛺, (4.8)
det𝐷 𝑢
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where (4.2) and (4.7) are used. Furthermore, according to conditions (𝐺1) and (𝐹1), we see that

𝑔(𝑥, 𝑢) ≤ 𝑐2𝑓 (𝑢) ≤ 𝑐2𝑓 (𝑘), in 𝛺̄, (4.9)

where 𝑢|𝜕𝛺 = 𝑘 and the strict convexity 𝑢 are used. Since 𝜓 < 0 in 𝛺, we can first fix 𝜌 to be some positive constant, and then choose
𝜇 sufficiently large, such that

(𝜇𝜌𝑒𝜌𝜓 )𝑛
[

1 + 𝜌𝛼̄|𝐷𝜓|2
]

≥ 𝑐𝑛2𝑓
𝑛(𝑘), in 𝛺. (4.10)

ombining (4.4), (4.6), (4.8), (4.9) and (4.10), we have proved that 𝑢 in (4.3) is the required sub-solution satisfying (4.1).
Next, we show that the sequence {𝑢𝑘}∞𝑘=1 is uniformly bounded in 𝛺. For each 𝑦 ∈ 𝜕𝛺, since 𝛺 is a bounded domain in R𝑛 with

𝐶2 boundary, there exists 𝑅1 > 0 such that 𝐵𝑅1
(𝑥1) ⊂ 𝛺 with 𝑦 ∈ 𝜕𝐵𝑅1

(𝑥1) and 𝑥1 ∈ 𝛺. It follows from Lemma 3.2 that there exists
a solution 𝑈 (𝑟) of the problem

{

det1∕𝑛(𝛥𝑈 (𝑟)𝐼 −𝐷2𝑈 (𝑟)) = 𝑐1𝑓 (𝑈 (𝑟)), 𝑟 ∈ [0, 𝑅1),

𝑈 (𝑟) → +∞, as 𝑟 → 𝑅1,

where 𝑟 = |𝑥 − 𝑥1|. Note that 𝑈 (𝑟) is an increasing function. Define a function 𝑈̃ as

𝑈̃ (𝑥) =

{

𝑈 (0), if dist(𝑥, 𝜕𝛺) > 𝑅1,

𝑈 (𝑅1 − dist(𝑥, 𝜕𝛺)), if dist(𝑥, 𝜕𝛺) ≤ 𝑅1.

Since the same radius 𝑅1 may be used for every boundary point 𝑦 ∈ 𝜕𝛺, we can use the function 𝑈̃ defined above as a uniform
pper bound for {𝑢𝑘}∞𝑘=1 where 𝑢𝑘 solves (2.1), that is

𝑢𝑘(𝑥) ≤ 𝑈̃ (𝑥) (4.11)

t each point in 𝛺 and for every 𝑘 ∈ Z+. By Theorem 1.2 of [8], we get an estimate of the 𝐶2(𝛺̄)-norm of 𝑢𝑘,

‖𝑢𝑘‖𝐶2(𝛺̄) ≤ 𝐶,

or each 𝑘 ∈ Z+, where the constant 𝐶 depends on |𝑢𝑘|𝐶1(𝛺̄), |𝑢|𝐶2(𝛺̄), |𝑓 |𝐶2 and inf 𝑓 . We remark that min 𝑢1 ≤ min 𝑢𝑘 in 𝛺̄ for every
𝑘 ∈ Z+, and by (4.11), we obtain a uniform bound with respect to 𝑘. Thus the Arzelà–Ascoli theorem implies the existence of a 𝐶2

function 𝑢 and a subsequence {𝑢𝑘𝑖} that converges uniformly to 𝑢 in every closed subdomain of 𝛺. By Lemma 2.1, 𝑢𝑘 ∈ 𝐶∞(𝛺̄) is
(𝑛 − 1)-convex solution of (2.1), then the limit 𝑢 ∈ 𝐶2(𝛺) satisfies

det1∕𝑛(𝛥𝑢𝐼 −𝐷2𝑢) = lim
𝑘𝑖→∞

det1∕𝑛(𝛥𝑢𝑘𝑖𝐼 −𝐷2𝑢𝑘𝑖 ) = lim
𝑘𝑖→∞

𝑔(𝑥, 𝑢𝑘𝑖 ) = 𝑔(𝑥, 𝑢), in 𝛺.

From the standard elliptic theory it follows that 𝑢 ∈ 𝐶∞(𝛺). When 𝑥 is close to the boundary, the value of 𝑢 increases infinitely
since 𝑢𝑘 = 𝑘 becomes infinite on 𝜕𝛺 as 𝑘→ +∞. Thus 𝑢 ∈ 𝐶∞(𝛺) is the desired solution of the problem (1.1)–(1.2).

Finally, we prove the necessity, which is similar to the necessity proof in Lemma 3.2. We assume on the contrary that there
exists a constant 𝑎0 > 𝜂 such that (3.19) holds and the problem (1.1)–(1.2) admits an (𝑛−1) convex solution 𝑢 ∈ 𝐶∞(𝛺). For 𝑥0 ∈ 𝛺,
let 𝑟 = |𝑥 − 𝑥0| and 𝑎0 > 𝑢(𝑥0), under (F1) and (3.19), the Cauchy problem

⎧

⎪

⎨

⎪

⎩

𝑤′(𝑟) =
𝑐2𝑟2−𝑛

𝑛 − 1

(

∫

𝑟

0
𝑛𝑠𝑛−1𝑓

𝑛
𝑛−1 (𝑤(𝑠)) d𝑠

)
𝑛−1
𝑛
, 𝑟 ∈ [0,∞),

𝑤(0) = 𝑎0,

as an entire solution 𝑤(𝑟) ∈ 𝐶2[0,∞), where 𝑐2 is the constant in (G1), see Step 3 of the proof of Theorem 1.1 in [18]. Since (𝐹1)
nd (3.19) hold, it follows from Theorem 1.1 in [18] that there exists an entire sub-solution 𝑤 ∈ 𝐶2(R𝑛) with 𝑤(𝑥0) = 𝑎0 satisfying

det1∕𝑛(𝛥𝑤𝐼 −𝐷2𝑤) ≥ 𝑐2𝑓 (𝑤), in R𝑛. (4.12)

sing (G1) in (4.12), then 𝑤 satisfies

det1∕𝑛(𝛥𝑤𝐼 −𝐷2𝑤) ≥ 𝑔(𝑥,𝑤), in 𝛺. (4.13)

ince 𝑤 ∈ 𝐶2(𝛺̄), 𝑢 ∈ 𝐶∞(𝛺) satisfying 𝑢 → +∞ as 𝑑(𝑥) → 0, and 𝑤(𝑥0) = 𝑎0 > 𝑢(𝑥0), there exists an open subset 𝐷 containing 𝑥0
uch that 𝐷̄ ⊂ 𝛺 and

𝑢(𝑥) < 𝑤(𝑥) in 𝐷 and 𝑢(𝑥) = 𝑤(𝑥) on 𝜕𝐷.

n the other hand, 𝑢 satisfies

det1∕𝑛(𝛥𝑢𝐼 −𝐷2𝑢) = 𝑔(𝑥, 𝑢) in 𝐷 and 𝑢(𝑥) = 𝑤(𝑥) on 𝜕𝐷.

y Lemma 2.2 and recall (4.13), we obtain 𝑤 ≤ 𝑢 in 𝐷, which contradicts 𝑤(𝑥0) > 𝑢(𝑥0). Thus we prove the necessity.
In conclusion, we complete the proof of Theorem 1.1. □

emark 4.1. By constructing the family of solutions 𝑢𝑘 ∈ 𝐶∞(𝛺̄) and the comparison principle, the limit 𝑢 is the smallest large
olution of the problem (1.1)–(1.2), that is 𝑢(𝑥) ≤ 𝑢∗(𝑥) in 𝛺 for every solution 𝑢∗ of the problem (1.1)–(1.2).
10 
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Remark 4.2. Note that in the proof of the sufficiency of Theorem 1.1, we can remove the strict convexity condition of the domains,
provided that we alternatively assume that there exist strict sub-solutions 𝑢𝑘 ∈ 𝐶2(𝛺) of Eqs. (1.1) with 𝑢𝑘 = 𝑘 on 𝜕𝛺 for each integer
𝑘.

5. Asymptotic behavior and uniqueness

In this section, we establish the asymptotic behavior of solutions in smooth strictly convex domains. In addition, in star-shaped
domains, we prove the uniqueness of solutions under the condition (𝐺3).

By giving upper and lower bounds and applying Lemma 3.3, we prove the boundary asymptotic behavior of boundary blow-up
solutions of (1.1).

Proof of Theorem 1.2. Let 𝑥 be a point in 𝛺 near the boundary. For 𝑦 ∈ 𝜕𝛺 such that 𝑑(𝑥) = |𝑥 − 𝑦|, since 𝛺 is bounded strict
convex with smooth boundary, there exist positive constants 𝑅1 and 𝑅2 such that 𝐵𝑅1

(𝑥1) ⊂ 𝛺 ⊂ 𝐵𝑅2
(𝑥2) with 𝑦 ∈ 𝜕𝐵𝑅1

∩ 𝜕𝐵𝑅2
,

where 𝑥1 ∈ 𝛺 and 𝑥2 ∈ R𝑛. For 𝜀 > 0, we consider the following boundary blow-up problems in balls 𝐵𝑅1−𝜀 and 𝐵𝑅2+𝜀:
{

det1∕𝑛(𝛥𝑣𝜀1(𝑥)𝐼 −𝐷2𝑣𝜀1(𝑥)) = 𝑐1𝑓 (𝑣𝜀1(𝑥)), 𝑥 ∈ 𝐵𝑅1−𝜀(𝑥1),

𝑣𝜀1(𝑥) → +∞, 𝑥 → 𝜕𝐵𝑅1−𝜀(𝑥1),
(5.1)

and
{

det1∕𝑛(𝛥𝑣𝜀2(𝑥)𝐼 −𝐷2𝑣𝜀2(𝑥)) = 𝑐2𝑓 (𝑣𝜀2(𝑥)), 𝑥 ∈ 𝐵𝑅2+𝜀(𝑥2),

𝑣𝜀2(𝑥) → +∞, 𝑥 → 𝜕𝐵𝑅2+𝜀(𝑥2).
(5.2)

et 𝐿𝜀 denote a ray going from 𝑥 to 𝑦, and let 𝑥𝜀1 and 𝑥𝜀2 denote the points in 𝐿𝜀∩𝜕𝐵𝑅1−𝜀 and 𝐿𝜀∩𝜕𝐵𝑅2+𝜀, respectively. The boundary
low-up estimates of the solution 𝑢 of the problem (1.1)–(1.2) are obtained by comparing with the radial solutions of problems (5.1)
nd (5.2) in the balls 𝐵𝑅1−𝜀 and 𝐵𝑅2+𝜀, respectively.

We first prove the upper bound of 𝑢. From Lemma 3.2, (5.1) admits (𝑛 − 1)-convex solution 𝑣𝜀1(𝑟) = 𝑣𝜀1(|𝑥 − 𝑥1|) and 𝑣𝜀1(𝑟) → +∞
s 𝑟 → 𝑅1 − 𝜀, i.e.,

𝑣𝜀1(|𝑥 − 𝑥1|) → +∞, as |𝑥 − 𝑦| → 𝜀.

ince 𝑢 ∈ 𝐶2(𝐵𝑅1−𝜀), and thus 𝑢 is finite on 𝜕𝐵𝑅1−𝜀. Furthermore, 𝑣𝜀1(𝑟) = +∞ on 𝜕𝐵𝑅1−𝜀, we see that 𝑢 ≤ 𝑣𝜀1 on 𝜕𝐵𝑅1−𝜀. Since the
ondition (𝐺1) holds, it can be obtained from Lemma 2.2 that

𝑢 ≤ 𝑣𝜀1, in 𝐵𝑅1−𝜀. (5.3)

ince 𝜀 is independent of 𝑥, then for 𝑥 ∈ 𝛺, letting 𝜀 → 0, we get that lim𝜀→0
|𝑥−𝑦|
|𝑥−𝑥𝜀1|

= 1. Combining this with (5.3), we have

lim
𝑥∈𝛺,𝑥→𝑦

𝑢(𝑥) ≤ lim
𝜀→0

lim
𝑥∈𝛺,𝑥→𝑥𝜀1

𝑣𝜀1(𝑥) = lim
𝑥∈𝛺,𝑥→𝑦

𝑣1(𝑥).

where 𝑣1(𝑥) is the limit solution of the boundary blow-up problem (5.1) for 𝜀→ 0. Note that the existence of the limit solution 𝑣1(𝑥)
s guaranteed by Lemma 3.2. By Lemma 3.3, we have

lim
𝑥→𝑦

𝛹 (𝑣1(𝑥))
|𝑥 − 𝑦|

= 𝑐
𝑛

2𝑛−1
1 [𝑎(𝑛)]

1
2𝑛−1 𝑅

1
2𝑛−1
1 . (5.4)

hus by using the monotonicity of 𝛹 and (5.4), we have

lim inf
𝑥→𝑦

𝛹 (𝑢(𝑥))
|𝑥 − 𝑦|

≥ lim
𝜀→0

lim inf
𝑥→𝑥𝜀1

𝛹 (𝑣𝜀1(𝑥))
|𝑥 − 𝑦|

|𝑥 − 𝑦|
|𝑥 − 𝑥𝜀1|

= lim
𝜀→0

lim inf
|𝑥−𝑦|→𝜀

𝛹 (𝑣𝜀1(𝑥))
|𝑥 − 𝑦| − 𝜀

= lim inf
𝑥→𝑦

𝛹 (𝑣1(𝑥))
|𝑥 − 𝑦|

= 𝑐
𝑛

2𝑛−1
1 [𝑎(𝑛)]

1
2𝑛−1 𝑅

1
2𝑛−1
1 ,

or every 𝑥 ∈ 𝛺. This completes the proof of the left-hand side of the inequality in (1.7).
Similarly, 𝑢 ≥ 𝑣𝜀2 in 𝛺 can be proved by (5.2) and Lemma 2.2. Repeating the above steps and using Lemma 3.3 again, the

ight-hand side of the inequality (1.7) is also obtained. Thus, we have completed the proof. □

Next, we use a scaling technique to investigate the uniqueness of this solution in a star-shaped domain 𝛺 with respect to a point
0 ∈ 𝛺.

roof of Theorem 1.3. Assume on the contrary that 𝑢1(𝑥) and 𝑢2(𝑥) are both solutions to the problem (1.1)–(1.2), namely

det1∕𝑛(𝛥𝑢 𝐼 −𝐷2𝑢 ) = 𝑔(𝑥, 𝑢 ), in 𝛺,
1 1 1
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det1∕𝑛(𝛥𝑢2𝐼 −𝐷2𝑢2) = 𝑔(𝑥, 𝑢2), in 𝛺, (5.5)

𝑢1(𝑥), 𝑢2(𝑥) → +∞, as 𝑥→ 𝜕𝛺.

Without loss of generality, we let 𝑥0 = 0. Given two constants ℎ > 1 and 𝑝 > 1, let

𝛺ℎ = { 1
ℎ
𝑥|𝑥 ∈ 𝛺} ⊂ 𝛺,

nd

𝑤ℎ(𝑥) = 𝑝𝑢1(ℎ𝑥)

or 𝑥 ∈ 𝛺ℎ. We have

det1∕𝑛(𝛥𝑤ℎ(𝑥)𝐼 −𝐷2𝑤ℎ(𝑥)) = 𝑝ℎ2det1∕𝑛(𝛥𝑢1(ℎ𝑥)𝐼 −𝐷2𝑢1(ℎ𝑥))

= 𝑝ℎ2𝑔(ℎ𝑥, 𝑢1(ℎ𝑥))

= 𝑝ℎ2𝑔(ℎ𝑥, 1
𝑝
𝑤ℎ(𝑥))

≤ 𝑝1−𝛾ℎ2𝑔(ℎ𝑥,𝑤ℎ(𝑥)),

(5.6)

for 𝑥 ∈ 𝛺ℎ, where the condition (𝐺3) is used to obtain the inequality in (5.6). If we choose 𝑝 = 𝑝(ℎ) such that

𝑝1−𝛾 = inf
(𝑥,𝑧)∈𝛺̄ℎ×R

𝑔(𝑥, 𝑧)
ℎ2𝑔(ℎ𝑥, 𝑧)

,

then

det1∕𝑛(𝛥𝑤ℎ(𝑥)𝐼 −𝐷2𝑤ℎ(𝑥)) ≤ 𝑔(𝑥,𝑤ℎ(𝑥)), in 𝛺ℎ. (5.7)

Since 𝛾 > 1 and 𝑝 > 1, we see that

𝑝(ℎ) → 1 as ℎ → 1. (5.8)

Note that 𝑤ℎ(𝑥) → +∞ as 𝑑(𝑥, 𝜕𝛺ℎ) → 0 and 𝑢2 → +∞ as 𝑑(𝑥) → 0 and 𝑢2 is a continuous function on 𝛺̄ℎ, thus 𝑢2(𝑥) has a finite
value on 𝜕𝛺ℎ. We claim that 𝑢2(𝑥) ≤ 𝑤ℎ(𝑥) for all 𝑥 ∈ 𝛺ℎ. Assuming on the contrary that 𝑢2(𝑥0) > 𝑤ℎ(𝑥0) for some 𝑥0 ∈ 𝛺ℎ. There
exists a subdomain 𝐷 of 𝛺ℎ such that 𝑥0 ⊂ 𝐷, 𝐷̄ ⊂ 𝛺ℎ, 𝑢2(𝑥) > 𝑤ℎ(𝑥) in 𝐷, and 𝑢2(𝑥) = 𝑤ℎ(𝑥) on 𝜕𝐷. However, since (5.5) and (5.7)
hold in 𝐷, it is obvious from Lemma 2.2 that for any ℎ > 1, we get

𝑢2(𝑥) ≤ 𝑝(ℎ)𝑢1(ℎ𝑥)

for all 𝑥 ∈ 𝛺ℎ, which is a contradiction to 𝑢2(𝑥0) > 𝑤ℎ(𝑥0). Since every 𝑥 ∈ 𝛺 is contained in 𝛺ℎ, letting ℎ → 1 and recalling (5.8),
we get 𝑢2(𝑥) ≤ 𝑢1(𝑥) in 𝛺.

By the same argument, we can also get 𝑢1(𝑥) ≤ 𝑢2(𝑥) in 𝛺.
Thus, the solution to the problem (1.1)–(1.2) is unique. □

Remark 5.1. Since any convex domain is a star-shaped domain, it follows from Theorem 1.3 that the solution in Theorem 1.1
is unique when the additional condition (𝐺3) holds. Furthermore, the special case 𝑔(𝑥, 𝑢) = 𝑏(𝑥)𝑢𝑝 (𝑝 > 1) naturally satisfies the
condition (𝐺3).
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