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1. Introduction

The notion of Hopf quasigroup was introduced by Klim and Majid in [1], which is
a particular case of the notion of unital counital coassociative bialgebra introduced in [2].
Dually, the vector space of linear functionals on a finite quasigroup carries the structure
of a Hopf coquasigroup (cf. [1]), which is a counital unital associative bialgebra. These
Hopf quasigroups and Hopf coquasigroups are generalizations of Hopf algebras (see [3]).
These notions are related to cohomology modules [4], Yetter–Drinfeld Modules [5–8], and
coalgebras [9] based on digital images.

Given a locally compact abelian group G and a von Neumann algebra N, let G act on
N via a homomorphism α of G into Aut(N). Then, we have the smash product algebra
N×α G. Takesaki in 1973 introduced an action α̂ of the dual group Ĝ and proved the duality
theorem: (N ×α G)×α̂ Ĝ ∼= N⊗M (as algebras), where M is the algebra of all bounded
operators on L2(G) (see [10]). This result was extended to arbitrary locally compact groups
G independently by Landstad and Nakagami in the mid 1970s (see [11,12]).

In the above duality theorem, if we replace G by a Hopf algebra and N by an algebra,
then the authors in [13] constructed a duality theorem for any Hopf algebra H-module
algebra A over a field K under some condition “locally finite”. In particular, if H is
finite-dimensional, then the duality theorem is

(A#H)#H∗ ∼= A⊗ (H#H∗) ∼= A⊗Mn(K) ∼= Mn(A).

It is now natural to ask whether the duality theorem above in [13] holds in the frame-
work of Hopf quasigroups. This becomes our motivation of writing this paper. We will
overcome non-associativity in Hopf quasigroups and non-coassociativity in Hopf coquasi-
groups by introducing some new notions and developing new ways.

This article is organized as follows: In Section 2, we recall and investigate some basic
definitions and properties related to Hopf (co)quasigroups.

In Section 3, we introduce and study two smash products AFH for a left H-quasimodule
algebra A over a Hopf quasigroup H and B#U for a coquasi U-module algebra B over
a Hopf coquasigroup U, respectively. In Section 4, we prove our duality theorem in the
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setting of finite-dimensional Hopf quasigroups (see Theorem 1). As an application of our
result, we consider a special case of a finite quasigroup.

Throughout this paper, K is a fixed field, and all vector spaces are over K. By linear
maps, we mean K-linear maps. Unadorned ⊗ means ⊗K. Let C be a coalgebra with a
coproduct ∆. We will use the Heyneman–Sweedler’s notation (see [3]), ∆(c) = ∑ c(1) ⊗ c(2)
for all c ∈ C, for coproduct.

2. Preliminaries

In this section, some basic definitions and properties of Hopf (co)quasigroups and
smash products are recalled and investigated.

2.1. Algebras and Coalgebras

The following notions can be found in [2]. An algebra (A,∇) is a vector space A
equipped with a linear map ∇ : A⊗ A −→ A. The algebra (A,∇) is called associative
if ∇(id⊗∇) = ∇(∇⊗ id). It is customary to write ∇(x ⊗ y) = xy, ∀x, y ∈ A. A unital
algebra (A,∇, µ) is a vector space A equipped with two linear maps ∇ : A⊗ A −→ A and
µ : K −→ A such that ∇(id⊗ µ) = id = ∇(µ⊗ id). Generally, we write 1 ∈ A for µ(1K).

Dually, a coalgebra (C, ∆) is a vector space C equipped with a linear map ∆ : C −→
C⊗ C. The coalgebra (C, ∆) is called coassociative if (id⊗ ∆)∆ = (∆⊗ id)∆. A counital
coalgebra (C, ∆, ε) is a vector space C equipped with two linear maps ∆ : C −→ C⊗ C and
ε : C −→ K such that (id⊗ ε)∆ = id = (ε⊗ id)∆.

A bialgebra (A,∇, ∆) is an algebra (A,∇) and a coalgebra (A, ∆) such that ∆(xy) =
∆(x)∆(y) for all x, y ∈ A. A unital bialgebra (A,∇, µ, ∆) is a coalgebra (A, ∆) and a
unital (A,∇, µ) such that ∆(xy) = ∆(x)∆(y) and ∆(1) = 1 for all x, y ∈ A. A counital
bialgebra (A,∇, ∆, ε) is a counital coalgebra (A, ∆, ε) and an algebra (A,∇) such that
∆(xy) = ∆(x)∆(y) and ε(xy) = ε(x)ε(y) for all x, y ∈ A. A unital counital bialgebra
(A, ∆, ε,∇, µ) is both a unital bialgebra (A, ∆,∇, µ) and a counital bialgebra (A, ∆, ε,∇)
such that ε(1) = 1. A Hopf algebra always means a unital counital associative coassociative
bialgebra with an antipode (cf. [3]).

2.2. Hopf (Co)quasigroups

Recall from [1] that a Hopf quasigroup is a unital counital coassociative bialgebra
(H,∇, µ, ∆, ε) armed with a linear map S : H −→ H (called antipode) such that

∑ S(h(1))(h(2)g) = ε(h)g = ∑ h(1)(S(h(2))g), (1)

∑(hg(1))S(g(2)) = hε(g) = ∑(hS(g(1)))g(2) (2)

for any h, g ∈ H.
Dually, a Hopf coquasigroup is a counital unital associative bialgebra (H,∇, µ, ∆, ε)

equipped with a linear map S : H −→ H (called antipode) such that

∑ S(h(1))h(2)(1) ⊗ h(2)(2) = 1⊗ h = ∑ h(1)S(h(2)(1))⊗ h(2)(2), (3)

∑ h(1)(1) ⊗ S(h(1)(2))h(2) = h⊗ 1 = ∑ h(1)(1) ⊗ h(1)(2)S(h(2)) (4)

for all h ∈ H.
The following remark is helpful to compute something later.

Remark 1. Let H be a Hopf quasigroup or a coquasigroup with antipode S.

(1) A Hopf (co)quasigroup is a Hopf algebra if and only its (co)product is (co)associative;
(2) About S, we have

∑ S(h(1))h(2) = ∑ h(1)S(h(2)) = ε(h)1,

S(hg) = S(g)S(h), ∆(S(h)) = ∑ S(h(2))⊗ S(h(1))
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for all h, g ∈ H;
(3) If S is a bijective antipode S with an inverse S−1, then

∑ S−1(h(2))h(1) = ∑ h(2)S
−1(h(1)) = ε(h)1,

S−1(hg) = S−1(g)S−1(h), S−1(1) = 1,

∆(S−1(h)) = ∑ S−1(h(2))⊗ S−1(h(1)), ε(S−1(h)) = ε(h)

for all h, g ∈ H.

If H is a finite dimensional Hopf quasigroup with antipode S, then its linear dual
H∗ is not Hopf quasigroup but a Hopf coquasigroup with antipode S∗, and one has the
non-degenerate bilinear form

〈, 〉 : H∗ × H −→ K

given by 〈h∗, h〉 = h∗(h) for all h∗ ∈ H∗ and h ∈ H. Let h∗ ∈ H∗ and h ∈ H. Then, we have
〈S∗(h∗), h〉 = 〈h∗, S(h)〉, and the left action of h∗ on h (denoted by h∗ ⇀ h) is given by

h∗ ⇀ h = ∑〈h∗, h(2)〉h(1). (5)

Similarly the right action of h∗ on h is denoted by h ↼ h∗ and is given by

h ↼ h∗ = ∑〈h∗, h(1)〉h(2). (6)

Proposition 1. Let H be a finite dimensional Hopf quasigroup. Let h∗, l∗ ∈ H and h ∈ H. Then

(a) h∗ ⇀ (l∗ ⇀ h) = (h∗l∗) ⇀ h;
(b) (h ↼ h∗) ↼ l∗ = h ↼ (h∗l∗).

Proof. (a) We compute:

h∗ ⇀ (l∗ ⇀ h) = ∑〈l∗, h(2)〉〈h∗, h(1)(2)〉h(1)(1)
= ∑〈l∗, h(3)〉〈h∗, h(2)〉h(1)
= ∑〈h∗l∗, h(2)〉h(1) = (h∗l∗) ⇀ h;

(b) follows similarly.

Proposition 2. Let H be a finite dimensional Hopf quasigroup. Let h∗ ∈ H and h, l ∈ H. Then

(a) ∆(h∗ ⇀ h) = ∑ h(1) ⊗ (h∗ ⇀ h(2));
(b) ∆(h ↼ h∗) = ∑(h(1) ↼ h∗)⊗ h(2);
(c) h∗ ⇀ (hl) = ∑(h∗(1) ⇀ h)(h∗(2) ⇀ l);

(d) (hl) ↼ h∗ = ∑(h ↼ h∗(1))(l ↼ h∗(2)).

Proof. (a) We compute:

∆(h∗ ⇀ h) = ∑〈h∗, h(2)〉h(1)(1) ⊗ h(1)(2)
= ∑〈h∗, h(2)(2)〉h(1) ⊗ h(2)(1) = ∑ h(1) ⊗ (h∗ ⇀ h(2));

(b)–(d) follow similarly.

2.3. Quasimodules

Let H be a Hopf quasigroup. The following notion is given in [5].
We say that (M, .) is a left H-quasimodule if M is a vector space and . : H⊗M −→ M

is a linear map (called the left quasiaction) satisfying 1 . m = m and

∑ h(1) . (S(h(2)) . m) = ∑ S(h(1)) . (h(2) . m) = ε(h)(l . m) (7)
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for all h ∈ H and m ∈ M.

Remark 2. (1) If H has an invertible antipode S with an inverse S−1, then

∑ S−1(h(2)) . (h(1) . m) = ∑(h(2)) . (S
−1(h(1)) . m) = ε(h)(l . m) (8)

for all h ∈ H and m ∈ M;
(2) Similarly, we can define a right H-quasimodule. We say that (M, /) is a right H-

quasimodule if M is a vector space, and / : M ⊗ H −→ M is a linear map (called the right
quasiaction) satisfying 1 / m = m and

∑(m / h(1)) / S(h(2)) = ∑(m / S(h(1))) / h(2) = mε(h)

for all h ∈ H, m ∈ M.

Example 1. Let H be a finite dimensional Hopf quasigroup.

(1) Then, (H∗,⇀) is a left H-quasimodule. In fact, e.g., we have

∑ h(1) ⇀ (S(h(2)) ⇀ h∗) = ∑〈S(h(2)), h∗(2)〉〈h(1), h∗(1)(2)〉h
∗
(1)(1)

= ∑〈h(2), S∗(h∗(2))〉〈h(1), h∗(1)(2)〉h
∗
(1)(1)

= ∑〈h, h∗(1)(2)S
∗(h∗(2))〉h

∗
(1)(1)

(4)
= ∑ ε(h)h∗.

for any h, l ∈ H and h∗ ∈ H∗;
(2) Similarly, (H∗,↼) is a right H-quasimodule.

3. Two Smash Products

In this section, we will consider two smash products for Hopf quasigroups and Hopf
coquasigroup in order to obtain our duality theorem.

3.1. Quasimodule Algebra over Hopf Quasigroup

Definition 1. Let H be a Hopf quasigroup. Then,

(1) A unital algebra A is said to be a left H-quasimodule algebra if A is a left H-quasimodule
such that, for all a, b ∈ A,

h . 1A = ε(h)1A; (9)

h . (ab) = ∑(h(1) . a)(h(2) . b); (10)

(2) If A is a left H-quasimodule algebra, one can define a smash product AFH = A⊗ H with a
product given by

(aFx)(bFy) = ∑ a(x(1) . b)Fx(2)y (11)

for any a, b ∈ A and x, y ∈ H.

Remark 3. (1) It follows immediately from Equation (3) above that (aFx)(1Fy) = ∑ aFxy and
(aF1)(bFy) = ∑ abFy, for any a, b ∈ A and x, y ∈ H;

(2) The study of smash product is also referred to the papers [14,15].

Example 2. (1) Let H be a Hopf quasigroup. Then K is a left H-quasimodule algebra with the
trivial action given by h . a = ε(h)a, for h ∈ H, a ∈ K. Thus, we have KFH ∼= H;
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(2) Let H be a finite-dimensional Hopf coquasigroup. Then, H∗ is a finite-dimensional Hopf
quasigroup. A unital associative algebra H can be regarded as a left H∗-quasimodule algebra with
⇀. Hence, we can form smash product HFH∗ with the following product:

(hFh∗)(lFl∗) = ∑〈h∗(1), l(2)〉hl(1)Fh∗(2)l
∗ (12)

for any h, l ∈ A and h∗, l∗ ∈ H∗.

In fact, by Example 1, we just check (1) and (2). In fact, for any h, l ∈ H and h∗ ∈ H∗,
it is obvious that h∗ ⇀ 1H = 〈h∗, 1H〉1H . For (2), we have

h∗ ⇀ (hl) = ∑〈h∗, h(2)l(2)〉h(1)l(1)
= ∑〈h∗(1), h(2)〉〈h∗(2), l(2)〉h(1)l(1) = (h∗(1) ⇀ h)(h∗(2) ⇀ l).

Furthermore, it is easy to check that H is not a left H∗-module.

Proposition 3. With notations as above, then, AFH is a unital algebra with unit 1AF1H .
Furthermore, AFH is an associative algebra if and only if H is a Hopf algebra, and A is the usual
left H-module algebra.

Proof. Obviously, AFH is a unital algebra with unit 1AF1H . Furthermore, for any a, b,∈ A
and x, y, z ∈ H, we have

[(aFx)(bFy)](cFz) = ∑[a(x(1) . b)Fx(2)y](cFz)

= ∑[a(x(1) . b)][(x(2)y)(1) . c]F(x(2)y)(2)z

= ∑[a(x(1) . b)][x(2)(1)y(1) . c]F[x(2)(2)y(2)]z

= ∑[a(x(1) . b)][x(2)y(1) . c]F[x(3)y(2)]z

and

(aFx)[(bFy)(cFz)] = ∑(aFx)[b(y(1) . c)Fy(2)z]

= ∑ a[x(1) . (b(y(1) . c))]Fx(2)[y(2)z]

= ∑ a[(x(1)(1) . b)(x(1)(2) . (y(1) . c))]Fx(2)[y(2)z]

= ∑ a[(x(1) . b)(x(2) . (y(1) . c))]Fx(3)[y(2)z].

If AFH is associative, then we have

(x(1)y(1)) . c⊗ [x(2)y(2)]z = (x(1) . (y(1) . c))⊗ x(2)[y(2)z]

by taking a = b = 1, and
(ab)c = a(bc)

by taking x = y = z = 1. It is easy to obtain that H is a Hopf algebra, and A is the usual
left H-module algebra.

Conversely, it is obvious.

3.2. Coquasi Module Algebra over Hopf Coquasigroup

The following notion is different from the one in [15,16].

Definition 2. Let H be a Hopf coquasigroup. Then,

(1) A unital algebra A is called a left coquasi H-module algebra if A is a left H-module such
that, for all a, b ∈ A,

h · 1A = ε(h)1A, (13)
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and
h · (ab) = (h(1) · a)(h(2) · b); (14)

(2) If A is a left coquasi H-module algebra, we can define the smash product A#H = A⊗ H with
a multiplication given by

(a#h)(b#l) = ∑ a(h(1) · b)#h(2)l (15)

where a, b ∈ A and h, l ∈ H.

Example 3. (1) Let H be a Hopf coquasigroup. Then K is a left coquasi H-module algebra with the
trivial action given by h · a = ε(h)a, for h ∈ H, a ∈ K. Thus, we have K#H ∼= H;

(2) Let H be a finite-dimensional Hopf quasigroup. Then, H∗ be a finite-dimensional Hopf
coquasigroup. A unital algebra H can be regarded as a left coquasi H∗-module algebra with ⇀.
Hence, we can form smash product H#H∗ with the following product:

(h#h∗)(l#l∗) = ∑〈h∗(1), l(2)〉hl(1)#h∗(2)l
∗ (16)

for any h, l ∈ H and h∗, l∗ ∈ H∗. In fact, for any h, l ∈ H and h∗, l∗ ∈ H∗

(h∗l∗) ⇀ h = ∑ h(1)〈h∗l∗, h(2)〉
= ∑ h(1)〈h∗, h(2)(1)〉〈l∗, h(2)(2)〉
= ∑ h(1)(1)〈h∗, h(1)(2)〉〈l∗, h(2)〉
= ∑(h∗ ⇀ h(1))〈l∗, h(2)〉
= h∗ ⇀ (l∗ ⇀ h)

and so H is a left H∗-module. It is easy to see that h∗ ⇀ 1H = 〈h∗, 1H〉1H . By Proposition 2(c),
we obtain Equation (6).

Proposition 4. Let A be a left coquasi H-module algebra. If A is a unital associative algebra, then
A#H is a unital associative algebra with unit 1A#1H if and only if

∑ h(1) · (ab)⊗ h(2) = ∑(h(1) · a)(h(2)(1) · b)⊗ h(2)(2). (17)

Proof. Obviously, A#H is a unital algebra with unit 1A#1H . Furthermore, for any a, b,∈ A
and x, y, z ∈ H, we have

[(a#x)(b#y)](c#z) = ∑[a(x(1) · b)#x(2)y](c#z)

= ∑[a(x(1) · b)][(x(2)y)(1) · c]#(x(2)y)(2)z

= ∑[a(x(1) · b)][x(2)(1)y(1) · c]#[x(2)(2)y(2)]z
= ∑ a[(x(1) · b)(x(2)(1) · (y(1) · c))]#x(2)(2)[y(2)z]
(16)
= ∑ a[x(1) · (b(y(1) · c))]#x(2)[y(2)z]

= ∑(a#x)[b(y(1) · c)#y(2)z]

= (a#x)[(b#y)(c#z)].

Obviously, A#H = (A#1H)(1A#H).

Remark 4. (1) In [16], we replace Equation (13) with Equation (16) to define a left quasi H-
module algebra;

(2) The unital algebra H#H∗ in Example 3 is not associative.
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Proposition 5. Let H be a finite-dimensional Hopf quasigroup. If A is a left H-quasimodule
algebra, then AFH becomes a left coquasi H∗-module algebra via

h∗ · (aFh) = aF(h∗ ⇀ h)

for any h∗ ∈ H∗, a ∈ A and h ∈ H. Then, we have a smash product (AFH)#H∗.

Proof. By the proof of Example 3, it is easy to obtain that AFH is a left H∗-module.
We now prove Equations (13) and (14). For Equation (13), we have, for h∗ ∈ H∗,

h∗ · (1AF1H) = 1AF(h∗ ⇀ 1H) = 〈h∗, 1H〉1AF1H .

As for Equation (14), we compute for h∗ ∈ H∗, a, b ∈ A and h, l ∈ H,

h∗ · [(aFh)(bFl)]

= ∑ h∗ · [a(h(1) · b)Fh(2)l]

= ∑ a(h(1) · b)Fh∗ ⇀ (h(2)l)

= ∑ a(h(1) · b)F(h∗(1) ⇀ h(2))(h
∗
(2) ⇀ l)

= ∑ a(h(1) · b)Fh(2)l(1)〈h∗(1), h(3)〉〈h∗(2), l(2)〉

= ∑ a(h(1)(1) · b)Fh(1)(2)l(1)〈h∗(1), h(2)〉〈h∗(2), l(2)〉

= ∑(aFh(1))(bFl(1))〈h∗(1), h(2)〉〈h∗(2), l(2)〉

= ∑[aFh∗ ⇀ h][bFh∗(2)(1) ⇀ l]

= ∑[h∗(1) · (aFh)][h∗(2) · (bFl)].

Then, we have a smash product (AFH)#H∗.

4. Duality Theorem

In this section, let H be a finite-dimensional Hopf quasigroup and A a left H-quasimodule
algebra. We will prove our duality theorem.

Lemma 1. Let Q be a Hopf coquasigroup and B a left coquasi H-module algebra. Then, there is a
unital homomorphism

ΛB,Q : B#Q −→ End(B) (18)

given by ΛB,Q(a#h)(b) = a(h · b) for any h ∈ Q and a, b ∈ B. Furthermore, if B is associative,
then ΛB,Q is an algebra homomorphism.

Proof. It is easy to see that ΛB,Q(1B#1Q)(1B) = 1B. If B is associative, then, for any h, l ∈ Q
and a, b, c ∈ B, we have

ΛB,Q[(a#h)(b#l)](c) = ∑ ΛB,Q(a(h(1) · b)#h(2)l)(c)

= ∑[(a(h(1)) · b)][(h(2)l) · c]
= ∑ a[(h(1) · b)(h(2) · (l · c))]
= a[h · [b(l · c)]]
= [ΛB,Q(a#h) ◦ΛB,Q(b#l)](c).

Remark 5. For Equation (9), in the special case where B = H, a Hopf quasigroup, and Q = H∗,
the Hopf coquasigroup. By Example 3(2), we have H#H∗. Then, there is a unital algebra anti-
homomorphism

ΓH,H∗ : H∗ −→ End(H) (19)
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given by ΓH,H∗(h∗)(h) = h ↼ h∗ for any h ∈ H and h∗ ∈ H∗.

Let H be a finite-dimensional Hopf quasigroup and A a left H-quasimodule algebra.
Then, we have the smash product AFH. By using the map Λ from Equation (9) and
Proposition 2, we define:

Φ = ΛAFH, : (AFH)#H∗ −→ End(AFH)

and by the left regular representation λl : A End(A), a 7→ (x 7→ ax), one defines

Ψ = λl ⊗ΛH,H∗ : A⊗ (H#H∗) −→ End(AFH).

That is,
Φ((aFh)#h∗)(bFl) = (aFh)(bF(h∗ ⇀ l))

and
Ψ(a⊗ (h#h∗))(bFl) = abFh(h∗ ⇀ l)

for any a, b ∈ A, h, l ∈ H and h∗ ∈ H∗.

Remark 6. We notice that id⊗ ΓH,H∗(h∗) = Ψ(1⊗ v) for some v ∈ H#H∗ for h∗ ∈ H∗.

Lemma 2. With notations above, Φ and Ψ do not preserve multiplication. However, we have

(i) Φ((aFh)#h∗) = Φ((aF1)#ε) ◦Φ((1Fh)#h∗);
(ii) Ψ(a⊗ (h#h∗)) = Ψ(a⊗ (1#ε)) ◦Ψ(1⊗ (h#h∗));
(iii) Φ((1Fh)#h∗) = Φ((1Fh)#ε) ◦Φ((1F1)#h∗);
(iv) Ψ(1⊗ (h#h∗)) = Ψ(1⊗ (h#ε)) ◦Ψ(1⊗ (1#h∗)).

Proof. For any a, b ∈ A, h, l ∈ H and h∗ ∈ H∗, we have

Φ((aFh)#h∗)(bFl)

= (aFh)(bF(h∗ ⇀ l))

= a(h(1) . b)Fh(2)(h
∗ ⇀ l))

= (aF1)[(h(1) . b)Fh(2)(h
∗ ⇀ l)]

= Φ((aF1)#ε)[(h(1) . b)Fh(2)(h
∗ ⇀ l)]

= Φ((aF1)#ε)((1Fh)(bFh∗ ⇀ l)

= [Φ((aF1)#ε) ◦Φ((1Fh)#h∗)](bFl).

Similarly,

Ψ(a⊗ (h#h∗))(bFl)

= abFh(h∗ ⇀ l)

= Ψ(a⊗ (1#ε))(b⊗ h(h∗ ⇀ l))

= [Ψ(a⊗ (1#ε)) ◦Ψ(1⊗ (h#h∗))](bFl).

(iii) and (iv). Straightforward.

Lemma 3. With notations above, Φ and Ψ are injective linear maps.
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Proof. In order to prove that Φ and Ψ are injective maps, we consider the following
injective linear maps Φ′, Ψ′ and Θ:

Φ′ : (AFH)#H∗ −→ End(AFH), Φ′((aFh)#h∗)(bFl) = 〈h∗, l〉(aFh)(bF1),

Ψ′ : A⊗ (H#H∗) −→ End(AFH), Ψ′(a⊗ (h#h∗))(bFl) = 〈h∗, l〉abFh,

Θ : End(AFH) −→ End(AFH), Θ( f )(bFl) = ∑[ f (bFl(2))](1Fl(1))

for any a, b ∈ A, h, l ∈ H, h∗ ∈ H∗ and f ∈ End(AFH).
Let x ∈ Ker(Φ′) and write x = ∑n

i=1 yiFh∗i, where yi ∈ AFH and {h∗1 , h∗2 , · · · , h∗n}
is a linearly independent subset of H∗. Choose h1, h2, ·hn such that h∗i (hj) = δij, with
1 ≤ i, j,≤ n. Then, 0 = Φ′(x)(1Fki) = yi for all i, so that x = 0. Thus, Φ′ is injective.

Similarly, we can prove that Ψ′ is injective.
To see that Θ is injective (actually it is bijective), we construct a left inverse for Θ. We

define Υ : End(AFH) −→ End(AFH) by

Υ( f )(bFl) = ∑[ f (bFl(2))](1FS−1(l(1))).

Then, we compute

(Υ ◦Θ)( f )(bFl) = ∑[Θ( f )(bFl(2))](1FS−1(l(1)))

= ∑[[ f (bFl(2)(2))](1Fl(2)(1))](1FS−1(l(1)))

= ∑[[ f (bFl(2))](1Fl(1)(2))](1FS−1(l(1)(1)))

= ∑ uiF(vil(1)(2))S
−1(l(1)(1)))

(3)
= ∑ uiFviε(l(1))

= ∑ f (bFl(2))ε(l(1))

= f (bFl)

where we write f (bFl(2)) = ∑i ui ⊗ vi, use the Remark after Definition 1, and use the
coassociativity in the Hopf quasigroup.

Similarly, we also have:

(Θ ◦ Υ)( f )(bFl) = ∑[Υ( f )(bFl(2))](1Fl(1))

= ∑[[ f (bFl(2)(2))](1FS−1(l(2)(1))](1Fl(1))

= ∑[[ f (bFl(2))](1FS−1(l(1)(2))](1Fl(1)(1))

= ∑ uiF(viS−1(l(1)(2)))l(1)(1)
(3)
= ∑ uiFviε(l(1))

= ∑ f (bFl(2))ε(l(1))

= f (bFl).

Therefore, Υ is a two-sided inverse for Θ.
Next, we will show that Φ = Θ ◦Φ′ and Ψ = Θ ◦Ψ′. For the first one, we have
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(Θ ◦Φ′)((aFh)#h∗)(bFl) = Θ[Φ′((aFh)#h∗)](bFl)

= ∑ Φ′((aFh)#h∗)(bFl(2))(1Fl(1))

= ∑[(aFh)(bF1)](1Fl(1))〈h∗, l(2)〉
= ∑[a(h(1) . b)Fh(2)l(1)]〈h∗, l(2)〉
= ∑(aFh)(bFl(1))〈h∗, l(2)〉
= (aFh)(bF(h∗ ⇀ l))

= Φ((aFh)#h∗)(bFl),

and, for the second one, we compute as follows:

(Θ ◦Ψ′)(a⊗ (h#h∗))(bFl) = Θ[Ψ′(a⊗ (h#h∗))](bFl)

= ∑[Ψ′(a⊗ (h#h∗))(bFl(2))](1Fl(1))

= ∑(abFh)(1Fl(1))〈h∗, l(2)〉
= ∑(abFhl(1))〈h∗, l(2)〉
= abFh(h∗ ⇀ l)

= Ψ(a⊗ (h#h∗))(bFl).

This shows that Φ and Ψ are injective linear maps.

Corollary 1. Let H be a finite-dimensional Hopf quasigroup of dimension n < ∞. Then, ΛH,H∗ is
a bijective linear map, so that H#H∗ ∼= End(H) ∼= Mn(K), the algebra of n× n matrices over K.

Proof. By Example 2(1), we have KFH ∼= H and so Ψ = ΛH,H∗ , so that ΛH,H∗ is injective.
Observe that dim(H#H∗) = n2 = dim(End(H)) and so ΛH,H∗ is a bijective linear map.

We next define a map Ξ ∈ End(AFH) by

Ξ(bFl) = ∑(S−1(l(1)) . b)Fl(2)

for any b ∈ A and l ∈ H.

Lemma 4. With notations above, Ξ is invertible with inverse Ω given by

Ω(bFl) = ∑(l(1) . b)Fl(2)

for any b ∈ A and l ∈ H.

Proof. For any b ∈ A and l ∈ H, we have

Ξ(Ω(bFl)) = ∑ Ξ[(l(1) . b)Fl(2)]

= ∑(S−1(l(2)(1)) . (l(1) . b))Fl(2)(2)
= ∑(S−1(l(1)(2)) . (l(1)(1) . b))Fl(2)
= ∑ ε(l(1))bFl(2)
= ∑ bFl,

and so Ξ ◦Ω = id. Meanwhile, we have
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Ω(Ξ(bFl)) = ∑ Ω[(S−1(l(1)) . b)Fl(2)]

= ∑(l(2)(1) . (S
−1(l(1)) . b))Fl(2)(2)

= ∑(l(1)(2) . (S
−1(l(1)(1)) . b))Fl(2)

= ∑ ε(l(1))bFl(2)
= ∑ bFl,

and thus Ω ◦ Ξ = id.

Let H be a finite-dimensional Hopf quasigroup of dimension n < ∞. Let {h∗1 , h∗2 , · · · , h∗n}
be a basis of H∗ and {h1, h2, · · · , hn} be its dual basis for H, i.e., so that h∗i (hj) = δij, with
1 ≤ i, j,≤ n.

Remark 7. With notations above, let a ∈ A and ai = hi . a with i ∈ {1, 2, · · · , n}. For any
h ∈ H, we let h = ∑i kihi with ki ∈ K. Then, h . a = ∑i ki(hi . a) = ∑i kiai. However,
〈h∗j , h〉 = 〈h∗j , ∑i kihi〉 = k j, and so

h . a = ∑
i
〈h∗i , h〉ai. (20)

Lemma 5. With the notations above, fix a ∈ A so that ai = hi . a with i ∈ {1, 2, · · · , n} and, for
any b ∈ A, h, l ∈ H and h∗ ∈ H∗, we have the following identities:

(i) Ω ◦Ψ(1⊗ (1#h∗)) ◦ Ξ = Φ((1F1)#h∗);
(ii) Ω ◦Ψ(a⊗ (1#ε)) ◦ Ξ = ∑n

i=1 Φ((aiF1)#ε) ◦Ω ◦ (id⊗ ΓH,H∗(h∗i )) ◦ Ξ;
(iii) Ξ ◦Φ((aF1)#ε) ◦Ω = ∑n

i=1 Ψ((ai ⊗ (1#ε)) ◦ (id⊗ ΓH,H∗(S∗−1(h∗i ));
(iv) [Ω ◦Ψ(1⊗ (h#ε)) ◦ Ξ](bFl) = Φ((1Fhl(2))#ε)(S−1(l(1) . b)F1).

Proof. For any b ∈ A and l ∈ H.
(i) We check as follows:

[Ω ◦Ψ(1⊗ (1#h∗)) ◦ Ξ](bFl)

= ∑[Ω ◦Ψ(1⊗ (1#h∗))](S−1(l(1)) . b)Fl(2)
= ∑ Ω[(S−1(l(1)) . b)F(h∗ ⇀ l(2))]

= ∑[[(h∗ ⇀ l(2))](1) . (S
−1(l(1)) . b)]F[(h∗ ⇀ l(2))](2)

= ∑[(h∗ ⇀ l(2))(1) . (S
−1(l(1)) . b)]F[(h∗ ⇀ l(2))(2)]

= ∑[l(2)(1) . (S
−1(l(1)) . b)]F(h∗ ⇀ l(2)(2)) by Proposition 1.3(a)

= ∑[l(1)(2) . (S
−1(l(1)(1)) . b)]F(h∗ ⇀ l(2))

= ∑ bF(h∗ ⇀ l)

= Φ((1F1)#h∗)(bFl).



Mathematics 2023, 11, 1401 12 of 16

For (ii), we have

[Ω ◦Ψ(a⊗ (1#ε)) ◦ Ξ](bFl)

= ∑[Ω ◦Ψ(a⊗ (1#ε))](S−1(l(1)) . b)Fl(2)
= ∑ Ω[a(S−1(l(1)) . b)F(ε ⇀ l(2))]

= ∑ Ω[a(S−1(l(1)) . b)Fl(2)]

= ∑[l(2)(1)[a(S
−1(l(1)) . b)]]Fl(2)(2)

= ∑[l(2)(1)(1) . a][l(2)(1)(2) . (S
−1(l(1)) . b)]Fl(2)(2)

= ∑[l(2) . a][l(3) . (S
−1(l(1)) . b)]Fl(4)

(11)
= ∑

n

∑
i=1
〈h∗i , l(2)〉ai[l(3) . (S

−1(l(1)) . b)]Fl(4)

= ∑
n

∑
i=1

(aiF1)[l(3) . (S
−1(l(1)) . b)Fl(4)]〈h∗i , l(2)〉

= ∑
n

∑
i=1

[Φ((aiF1)#ε)][l(3) . (S
−1(l(1)) . b)Fl(4)]〈h∗i , l(2)〉

= ∑
n

∑
i=1

[Φ((aiF1)#ε)][l(2) ↼ h∗i . (S
−1(l(1)) . b)Fl(3)]

= ∑
n

∑
i=1

[Φ((aiF1)#ε)][((l(2) ↼ h∗i )(1) . (S
−1(l(1)) . b)F((l(2) ↼ h∗i )(2)]

by Proposition 2(b)

= ∑
n

∑
i=1

[Φ((aiF1)#ε)]Ω[(S−1(l(1)) . b)F(l(2) ↼ h∗i ]

= ∑
n

∑
i=1

[Φ((aiF1)#ε) ◦Ω][(S−1(l(1)) . b)F(l(2) ↼ h∗i ]

= ∑
n

∑
i=1

[Φ((aiF1)#ε) ◦Ω ◦ (id⊗ ΓH,H∗(h∗i ))](S
−1(l(1)) . b)Fl(2)

=
n

∑
i=1

[Φ((aiF1)#ε) ◦Ω ◦ (id⊗ ΓH,H∗(h∗i )) ◦ Ξ](bFl).

For (iii), one has
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[Ξ ◦Φ((aF1)#ε) ◦Ω](bFl)

= ∑[Ξ ◦Φ((aF1)#ε)]((l(1) . b)Fl(2))

= ∑ Ξ[(aF1)((l(1) . b)Fl(2))]

= ∑ Ξ[a(l(1) . b)Fl(2)]

= ∑ S−1(l(2)(1)) . [a(l(1) . b)]Fl(2)(2)]

= ∑ S−1(l(2)) . [a(l(1) . b)]Fl(3)]

= ∑(S−1(l(3)) . a)[S−1(l(2)) . (l(1) . b)]Fl(4)]

= ∑(S−1(l(1)) . a)bFl(2)
(11)
=

n

∑
i=1
〈h∗i , S−1(l(1))〉aibFl(2)

=
n

∑
i=1

aibFl(2)〈S∗−1(h∗i ), l(1)〉

=
n

∑
i=1

aibF(l ↼ S∗−1(h∗i ))

=
n

∑
i=1

[Ψ((ai ⊗ (1#ε))](bF(l ↼ S∗−1(h∗i )))

=
n

∑
i=1

[Ψ((ai ⊗ (1#ε)) ◦ (id⊗ ΓH,H∗(S∗−1(h∗i ))](bFl).

In addition, finally, for (iv), we have

[Ω ◦Ψ(1⊗ (h#ε)) ◦ Ξ](bFl)

= ∑[Ω ◦Ψ(1⊗ (h#ε))](S−1(l(1)) . b)Fl(2)
= ∑ Ω[(S−1(l(1)) . b)Fhl(2)]

= ∑[(hl(2))(1) . (S
−1(l(1)) . b)]F(hl(2))(2)

= ∑[h(1)l(2) . (S
−1(l(1)) . b)]F(h(2)l(3))

= ∑[(h(2)l)(2) . (S
−1((h(2)l)(1))h(1) . b)]F(h(2)l)(3)

= Φ((1F(h(2)l)(2))#ε)((S−1((h(2)l)(1))h(1) . b)F1)

= Φ((1Fhl(2))#ε)(S−1(l(1) . b)F1).

This completes the proof.

Remark 8. In general, for any h ∈ H and h∗ ∈ H∗, we have

Ω ◦Ψ(1⊗ (h#h∗)) ◦ Ξ 6= Φ((1Fh)#h∗).

Lemma 6. Let B be a semigroup with a multiplication. Let H, J ⊆ B be non-empty subsets of
B. If there is an invertible element χ ∈ B so that H = χ−1 Jχ, then there exists a bijective map
ξ : H −→ J that preserves multiplication.

Proof. Define a map
ξ : H −→ J, h 7→ χhχ−1.

Obviously, we can show that ξ is bijective and ξ(hl) = χ(hl)χ−1 = χhχ−1χlχ−1 =
ξ(h)ξ(l) for h, l ∈ H.
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We are now in a position to prove the main theorem of this paper.

Theorem 1. Let H be a finite-dimensional Hopf quasigroup with bijective antipode and A a left
H-quasimodule algebra. Then,

(AFH)#H∗ ∼= A⊗ (H#H∗).

Proof. Let a ∈ A, h ∈ H and h∗ ∈ H∗. Firstly, we show that Ω ◦Ψ(a⊗ (h#h∗)) ◦ Ξ belong
to Φ((AFH)#H∗).

By the fact that a⊗ (h#h∗) = (a⊗ (1#ε))(1⊗ (h#h∗)) and Lemma 2, we have

Ω ◦Ψ(a⊗ (h#h∗)) ◦ Ξ

= Ω ◦Ψ(a⊗ (1#ε)) ◦Ψ(1⊗ (h#h∗)) ◦ Ξ

= [Ω ◦Ψ(a⊗ (1#ε)) ◦ Ξ] ◦ [Ω ◦Ψ(1⊗ (h#h∗)) ◦ Ξ] by Lemma 4 .

Thus, it suffices to show that Ω ◦ Ψ(a ⊗ (1#ε)) ◦ Ξ and Ω ◦ Ψ(1⊗ (h#h∗)) ◦ Ξ each
belong to Φ((AFH)#H∗). The first does by Lemma 5(ii). We also have

Ω ◦Ψ(1⊗ (h#h∗)) ◦ Ξ = Ω ◦Ψ(1⊗ (h#ε)) ◦Ψ(1⊗ (1#h∗)) ◦ Ξ

= [Ω ◦Ψ(1⊗ (h#ε)) ◦ Ξ] ◦ [Ω ◦Ψ(1⊗ (1#h∗)) ◦ Ξ]

∈ Φ((AFH)#H∗) by Lemma 5 (i)(iv)

which implies that the second does also.
Then, we prove similarly that Ξ ◦Φ((aFh)#h∗) ◦Ω belongs to Ψ(A⊗ (H#H∗)). Ac-

tually, it follows from Lemma 5(i)(iii)(iv).
We now obtain

Φ((AFH)#H∗) = Ξ−1 ◦Ψ(A⊗ (H#H∗)) ◦ Ξ.

By Lemma 6, our theorem is proved.

Corollary 2. Let H be a finite-dimensional Hopf quasigroup with bijective antipode and A a left
H-quasimodule algebra. Then,

(AFH)#H∗ ∼= A⊗ (H#H∗) ∼= A⊗Mn(K) ∼= Mn(A).

Proof. It follows Theorem 1 and Corollary 1.

Example 4. Let Q be a quasigroup (see [17]). Then, it follows from [1] (Proposition 4.7) that
H = KQ is a Hopf quasigroup with a linear extension of the product and ∆(h) = h⊗ h, ε(h) = 1
and S(h) = h−1 on the basis elements h ∈ Q.

If Q is a finite quasigroup, then (KQ)∗ is a Hopf coquasigroup (see [1]). Explicitly,
a basis of (KQ)∗ is the set of projections {pg | g ∈ Q}; that is, for any g ∈ Q and
x = ∑h∈Q αhh ∈ KQ, pg(x) = αg ∈ K. The set {pg} consists of orthogonal idempotents
whose sum is 1. The comultiplication on (KQ)∗ is given by ∆(pg) = ∑h∈Q pgh−1 ⊗ ph, and
the counit is given by ε(pg) = δ1,g (where δ denotes the Kronecker delta).

Let A be a left KQ-quasimodule algebra. Then, we have 1 . a = a, h . (ab) = (h .
a)(h . b), and

h . (h−1 . a) = h−1 . (h . a) = a

for all h ∈ Q and a, b ∈ A.
We remark here that Q does not act as automorphism of A like a group acting as

automorphism of A. In case of group G, we know that A is a Hopf algebra KG-module
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algebra if and only if G acts as automorphism of A, and the smash product A#KG = A ∗ G
is just the skew group ring of G over A (see [18]).

In our case of quasigroup Q, we have a skew quasigroup ring A ? Q of Q over A with
a product:

(aFx)(bFy) = a(x . b)Fxy (21)

for any a, b ∈ A and x, y ∈ Q. We note that a skew quasigroup ring generally is not
associative unless (xy) . a = x . (y . a) and Q is a group.

We know that (KQ)∗ is a Hopf coquasigroup. Then, a unital algebra A is a left coquasi
(KQ)∗-module algebra if A is a left KQ-module, i.e., Q-action, such that pg · 1 = δ1,g1 and

pg · (ab) = ∑
h∈Q

(pgh−1 · a)(ph · b)

for all a, b ∈ A. Then, we have a smash product A ∗Q with a multiplication given by

(a ∗ pg)(b ∗ pl) = a(pgl−1 · b) ∗ pl

where a, b ∈ A and g, l ∈ Q.
In particular, by Example 3(2), when Q is finite, we have the smash product Q ∗ Q

with the following product:

(h ∗ pg)(q ∗ pl) = hq ∗ pq−1g

for any h, g, q, l ∈ Q.
By Corollary 2, we have

(A ? Q) ∗Q ∼= A⊗ (Q ∗Q) ∼= A⊗Mn(K) ∼= Mn(A).

In the end of this paper, we remark here that, when we consider a finite field Zp (Galois
field) with a prime p as a finite-dimensional Hopf quasigroup over Zp, we have a Hopf
algebra Zp with the coproduct ∆([a]) = [a]([1]⊗ [1]) and the counit ε([a]) = [a] for any
[a] ∈ Zp. Then, we have

(ZpFZp)#(Zp)
∗ ∼= (Zp#(Zp)

∗) ∼= Mp(Zp)

where we use the adjoint action of Zp in the smash product ZpFZp.

5. Conclusions and Further Research

As we mentioned already in the Introduction, Blattner and Montgomery obtained
in [13] the duality theorem in the setting of Hopf algebras. In particular, if H is a finite-
dimensional Hopf algebra and A is a left H-module algebra, then the duality theorem takes
the form: (A#H)#H∗ ∼= A⊗ (H#H∗) ∼= Mn(A).

The dual space of a finite-dimensional Hopf algebra is a Hopf algebra. This duality
breaks down for Hopf quasigroups, since the dual coalgebra of the algebra of a Hopf quasi-
group is no longer a co-associative. This means that the dual space of a finite-dimensional
Hopf quasigroup is not a Hopf quasigroup, but a Hopf coquasigroup, which are general-
izations of Hopf algebras.

In this paper, we have studied two kinds of smash products “F” and “#” on the tensor
product space A⊗ H associated with a finite-dimensional Hopf quasigroup H and a left
H-quasimodule algebra A. We have obtained an analogue of Blattner and Montgomery’s
duality theorem in the general finite-dimensional Hopf quasigroup case in Section 4:
(AFH)#H∗ ∼= A⊗ (H#H∗) ∼= A⊗Mn(K) ∼= Mn(A) (see Theorem 1 and Corollary 2). In
addition, we have paid special attention to the finite quasigroup case (see Example 4). It is
still not clear if the nicer results, obtained in the finite case, can be pushed forward to the
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infinite case so that better results can also be shown there. We expect, however, that this
will not be easy, neither to prove these results if they are true nor to find counter examples
if they are not.

Finally, constructing an analogue of Blattner and Montgomery’s duality theorem in
the general finite-dimensional Hopf coquasigroup is not so easy to do.
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