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Abstract: We introduce and study a large class of coalgebras (possibly (non)coassociative) with
group-algebraic structures Hopf (non)coassociative group-algebras. Hopf (non)coassociative group-
algebras provide a unifying framework for classical Hopf algebras and Hopf group-algebras and Hopf
coquasigroups. We introduce and discuss the notion of a quasitriangular Hopf (non)coassociative
π-algebra and show some of its prominent properties, e.g., antipode S is bijective. As an application
of our theory, we construct a new braided T-category and give a new solution to the generalized
quantum Yang–Baxter equation.
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1. Introduction

Topological quantum field theories (TQFT’s) realize topological invariants of manifolds
using ideas from quantum field theory (QFT), see [1,2]. Turaev introduced in [3] a homotopy
quantum field theory (HQFT) as a version of a TQFT for manifolds endowed with maps
into a fixed topological space and found an algebraic characterization of 2-dimensional
HQFT’s whose target space is the Eilenberg–MacLane space K(π, 1) determined by a
group π. Furthermore, he established a 3-dimensional HQFT with target space K(π, 1)
by introducing the notion of a modular π-category based on a deep connection between
the theory of braided categories and invariants of knots, links and 3-manifolds (see [4]).
This connection has been essential in the construction of quantum invariants of knots and
3-manifolds from quantum groups, see [2,5].

Turaev proposed the following open problem in [4]; Can one systematically produce
interesting modular π-categories?

Examples of such modular π-categories can be constructed from the so-called Hopf
π-(co)algebras which can be regarded as a generalization of a Hopf algebra, see [6–8]. At
present, many research works have been done for Hopf π-(co)algebras, such as Turaev’s
Hopf group-coalgebras (cf. [9]), group coalgebra Galois extensions (cf. [10]), Larson-
Sweedler theorem (cf. [11]), twisted Drinfel’d doubles (cf. [12]), double construction and
Yetter-Drinfel’d modules (cf. [13–15]). We mention that a Hopf π-coalgebra can be regarded
as a π-cograded multiplier Hopf algebra, see [16].

In 2010, Klim and Majid in [17] introduced the notion of a Hopf (co)quasigroup which
is a particular case of the notion of an H-bialgebra introduced in [18]. The further research
of this mathematical object can be found in the references about many topics, such as Hopf
modules (cf. [19]), actions (cf. [20]), twisted smash products (cf. [21]), Yetter–Drinfel’d
modules (cf. [22]), and Hopf quasicomodules (cf. [23]).

To highlight Turaev’s achievements on the modular π-categories, in this article we
prefer using the notion of a braided T-category (over π) appeared in [13] to using a modular
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π-category [6]. We will provide a new approach to a braided T-category (over π) based on
the notion of a quasitriangular Hopf (non)coassociative π-algebra.

An outline of the paper is as follows.
Section 2 provides some preliminary background needed in the paper, such as group-

algebras, group-convolution algebras, Hopf group-algebras and Turaev’s braided categories.
In Section 3, we give a new characterization of Hopf group-algebras based on the

idea from [24,25]. We mainly prove that (H, ∆) is a Hopf π-algebra if and only if ∆ is a
π-algebra homomorphism and the right and left π-Galois maps are bijective.

In Section 4, we introduce and study the notion of a Hopf non-coassociative π-algebra
which is a large class of coalgebras (possibly non-coassociative) with group-algebraic struc-
tures unifying the notions of a classical Hopf algebra, a Hopf π-algebra and a Hopf coquasi-
group. We study its algebraic properties, such as anti-(co)multiplicativity of the antipode.

In Section 5 we mainly study the notion of a crossed Hopf non-coassociative π-algebra
and give some properties of the crossing map. In addition, in Section 6, we discuss the
definition and properties of an almost cocommutative Hopf non-coassociative π-algebra
and obtain its equivalent characterization.

In the final section, we will introduce and discuss the definition of a quasitriangular
Hopf non-coassociative π-algebra H and study some main properties of H. We construct a
new braided T-category Repπ(H) over H.

Throughout the paper, we let π be a fixed group and k be a field (although much of
what we do is valid over any commutative ring). We use the Sweedler’s notation to express
the coproduct of a coalgebra C as ∆(c) = ∑ c1 ⊗ c2 (cf. [26]).

We set k∗ = k\{0}. All algebras are supposed to be over k and unitary, but not
necessarily associative. The tensor product ⊗ = ⊗k is always assumed to be over k.
If U and V are k-spaces, σU,V : U ⊗ V −→ V ⊗U will denote the flip map defined by
σU,V(u⊗ v) = v⊗ u.

We use idU for the identity map on U, although sometimes, we also write U for this
map. We use idn

U for the map id⊗ · · · ⊗ id︸ ︷︷ ︸
n

: U⊗ · · · ⊗︸ ︷︷ ︸
n−1

U −→ U⊗ · · · ⊗︸ ︷︷ ︸
n−1

U. The identity

element in a quasigroup is denoted by e.

2. Preliminaries

In this section, we recall some basic notions used later, such as group-algebras, group-
convolution algebras, Hopf group-algebras and braided T-categories.

2.1. Group-Algebras

We recall the definition of a π-algebra, following [4]. A π-algebra (over k) is a family
A = {Aα}α∈π of k-spaces endowed with a family m = {mα,β : Aα ⊗ Aβ −→ Aαβ}α,β∈π of
k-linear maps (the multiplication) and a k-linear map η : k −→ A1 (the unit) such that m is
associative in the sense that, for any α, β, γ ∈ π,

mαβ,γ(mα,β ⊗ idAγ
) = mα,βγ(idAα

⊗mβ,γ); (1)

mα,1(idAα
⊗ η) = idAα

= m1,α(η ⊗ idAα
). (2)

Note that (A1, m1,1, η) is an algebra in the usual sense of the word.
For all α, β ∈ π, h ∈ Aα, k ∈ Aβ, we write hk = mα,β(h⊗ k). The associativity axiom

gives that
(hk)l = h(kl), ∀α, β, γ ∈ π, h ∈ Aα, k ∈ Aβ, l ∈ Aγ.

Set η(1k) = 1. The unit axiom gives that h1 = h = 1h, ∀α ∈ π, h ∈ Aα.
For all α ∈ π, the k-space Aα is called the α-th component of A.
A π-algebra morphism between two π-algebras A and A′ (with multiplications m

and m′, respectively) is a family f = { fα : Aα −→ A′α}α∈π of k-linear maps such that
fαβmα,β = m′α,β( fα ⊗ fβ) and f1(1) = 1′, for all α, β ∈ π. The π-algebra isomorphism f =

{ fα : Aα −→ A′α}α∈π is a π-algebra morphism in which each fα is a linear isomorphism.
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Set Aα = Aα−1 and mα,β = mop
α−1,β−1 = mβ−1,α−1 ◦ σH

α−1 ,H
β−1 . Then comes a π-algebra

A = {Aα}α∈π with the same unit element 1 as in A and the multiplication given by
m = {mα,β}α,β∈π .

2.2. Group-Convolution Algebra

Let A = ({Aα}, m, η)α∈π be a π-algebra and (C, ∆, ε) be a (not necessarily coasso-
ciative) coalgebra with comultiplication ∆ and counit ε. For any f ∈ Homk(C, Aα) and
g ∈ Homk(C, Aβ), we define their convolution product by

f ∗ g = mα,β( f ⊗ g)∆ ∈ Homk(C, Aαβ). (3)

Using Equation (3), one verifies that the k-space

Conv(C, A) =
⊕
α∈π

Homk(C, Aα)

endowed with the convolution product ∗ and the unit element ε1, is called π-convolution
algebra, which is not necessarily a coassociative π-graded algebra.

In particular, for C = k, the associative π-graded algebra
Conv(C, A) =

⊕
α∈π

Homk(k, Aα) =
⊕

α∈π
Aα is denoted by A∗.

2.3. Hopf Group-Algebras

Recall from [3] that a Hopf group-algebra over π is a π-algebra H = ({Hα}, m =
{mα,β : Hα ⊗ Hβ −→ Hαβ}α,β∈π , η)α∈π , endowed with a family S = {Sα : Hα −→
Hα−1}α∈π of k-linear maps (the antipode) such that the following conditions hold:

each (Hα, ∆α, εα) is a counital coassociative coalgebra

with comultiplication ∆α and counit element εα;
(4)

for all α, β ∈ π, η : k −→ H1 and mα,β : Hα ⊗ Hβ −→ Hαβ

are coalgebra homomorphisms,
(5)

for all α ∈ π, mα−1,α(Sα ⊗ idHα)∆α = 1εα = mα,α−1(idHα ⊗ Sα)∆α. (6)

Let H = ({Hα, ∆α, εα}α∈π , m, η, S) be a Hopf π-algebra. Then

Sαβ(ab) = Sβ(b)Sα(a), ∀α, β ∈ π, a ∈ Hα, b ∈ Hβ; (7)

S1(1) = 1; (8)

∆α−1 Sα = σH
α−1 ,H

α−1 (Sα ⊗ Sα)∆α, ∀α ∈ π; (9)

εα−1 Sα = εα, ∀α ∈ π. (10)

2.4. Braided T-Categories

Let π be a group. A pre-T-category T (over π) is given by the following datum:

• A tensor category T .
• A family of sub categories {Tα}α∈π such that T is a disjoint union of this family and

that U ⊗V ∈ Tαβ, for any α, β ∈ π, U ∈ Tα, and V ∈ Tβ.
Furthermore, T = {Tα} satisfies the following condition:

• Denote by aut(T ) the group of the invertible strict tensor functors from T to itself,
a group homomorphism ϕ : π −→ aut(T ) : β 7→ ϕβ, the conjugation such that
ϕβ(Tα) = Tβαβ−1 for any α, β ∈ π. Then we call T a crossed T-category.

We will use the left index notation in Turaev: Given β ∈ π and an object V ∈ Tβ,

the functor ϕβ will be denoted by V(·) or β(·). We use the notation V(·) for β−1
(·). Then

we have V idU = idVU and V(g ◦ f ) = V g ◦ V f . We remark that since the conjugation
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ϕ : π −→ aut(T ) is a group homomorphism, for any V, W ∈ T , we have V⊗W(·) = V(W(·))
and 1(·) = V(V(·)) = V(V(·)) = idT and that since, for any V ∈ T , the functor V(·) is strict,
we have V( f ⊗ g) = V f ⊗ V g, for any morphism f and g in T , and V1 = 1. In addition, we
will use T (U, V) for a set of morphisms (or arrows) from U to V in T .

Recall from [13] or [6] that a braided T-category (over π) is a crossed T-category T
endowed with a braiding, i.e., with a family of isomorphisms

c = {cU,V ∈ T (U ⊗V, (UV)⊗V)}U,V∈T

satisfying the following conditions:

� for any arrow f ∈ Tα(U, U
′
) with α ∈ π, g ∈ Tβ(V, V

′
), we have

((αg)⊗ f ) ◦ cU,V = cU′ ,V′ ◦ ( f ⊗ g);

� for all U, V, W ∈ T , we have

cU⊗V,W = aU⊗VW,U,V ◦ (cU,VW ⊗ idV) ◦ a−1
U,VW,V ◦ (idU ⊗ cV,W) ◦ aU,V,W , (11)

cU,V⊗W = a−1
UV,UW,U ◦ (idUV ⊗ cU,W) ◦ aUV,U,W ◦ (cU,V ⊗ idW) ◦ a−1

U,V,W ; (12)

� for any U, V ∈ T , α ∈ π, ϕα(cU,V) = cϕα(U),ϕα(V).

3. A New Characterization of Hopf Group-Algebras

Based on the idea from [24,25], in this section we mainly show that H is a Hopf π-
algebra if and only if ∆ is a π-algebra homomorphism and the right and left π-Galois maps
both have inverses.

Proposition 1. If H is a Hopf π-algebra, then the families of linear maps T1 = {Tα,β
1 : Hα ⊗

Hβ −→ Hα ⊗ Hαβ} (called the left π-Galois map) and T2 = {Tα,β
2 : Hα ⊗ Hβ −→ Hαβ ⊗ Hβ}

(called the right π-Galois map), defined, respectively, by

Tα,β
1 (a⊗ b) = ∆α(a)(1⊗ b) and Tα,β

2 (a⊗ b) = (a⊗ 1)∆β(b)

are bijective.

Proof. Define two families of linear maps

R1 = {Rα,β
1 : Hα ⊗ Hβ −→ Hα ⊗ Hα−1β}, and R2 = {Rα,β

2 : Hα ⊗ Hβ −→ Hαβ−1 ⊗ Hβ},

respectively, by

Rα,β
1 (a⊗ b) = ((idHα ⊗ Sα)∆α(a))(1⊗ b) and Rα,β

2 (a⊗ b) = (a⊗ 1)((Sβ ⊗ idHβ
)∆β(b)).

By a straightforward application of the properties of S one can show that Rα,αβ
1 is the inverse

of Tα,β
1 and that Rαβ,β

2 is the inverse of Tα,β
2 .

If the antipode S has an inverse, then also the other families of linear maps, defined by

Tα,β
3 (a⊗ b) = ∆α(a)(b⊗ 1) and Tα,β

4 (a⊗ b) = (1⊗ a)∆β(b)

are bijections. This follows, e.g., from the fact that Scop = {Scop
α = S−1

α−1}α∈π will be the
antipode if we set Hcop

α = Hα as an algebra and replace ∆α by the opposite comultiplication
∆cop

α = σHα ,Hα ∆α.
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We now discuss some results if H = {Hα}α∈π is a unital, but not necessarily associa-
tive, group algebra over k with a family ∆ = {∆α : Hα −→ Hα ⊗ Hα}α∈π of coassociative
comultiplications, a family of linear maps, such that the families of linear maps T1 and T2
are bijections.

Define a family of maps E = {Eα : Hα −→ H1}α∈π by

Eα(a)b = mα,α−1β(T
α,α−1β
1 )−1(a⊗ b)

where mα,α−1β denotes multiplication, considered as a linear map from Hα ⊗ Hβ to Hβ and

where Tα,α−1β
1 is defined as before by Tα,α−1β

1 (a⊗ b) = ∆α(a)(1⊗ b) ∈ Hα ⊗ Hβ.

Lemma 1. For all a, b ∈ Hα, we have (Hαβ ⊗ Eβ)((a⊗ 1)∆β(b)) = ab⊗ 1.

Proof. By the coassociativity of ∆α, one can easily obtain

(mα,β ⊗ Hβ ⊗ Hβγ)(Hα ⊗ ∆β ⊗ Hβγ)(Hα ⊗ Hβ ⊗mβ,γ)(Hα ⊗ ∆β ⊗ Hγ)

=(Hαβ ⊗ Hβ ⊗mβ,γ)(Hαβ ⊗ ∆β ⊗ Hγ)(mα,β ⊗ Hβ ⊗ Hγ)(Hα ⊗ ∆β ⊗ Hγ).

Assume a ∈ Hα, b ∈ Hβ and, since T1 is surjective, let

a⊗ b =
n

∑
i=1

∆α(ai)(1⊗ bi).

If we apply ∆α ⊗ Hβ and then multiply with c ⊗ 1 ⊗ 1 to the both sides of the above
equation, where c ∈ Hγ, on the left, by the direct conclusion of coassociativity given above,
we can obtain

(c⊗ 1)∆α(a)⊗ b = Tα,α−1β
1

(
∑(ϕ⊗ Hα)((c⊗ 1)∆α(ai))⊗ bi

)
.

By the definition of Eα we get

Eα((ϕ⊗ Hα)((c⊗ 1)∆α(a)))b = ∑(ϕ⊗ Hα)((c⊗ 1)∆α(ai))bi.

So

(ϕ⊗ Hβ)((Hγα ⊗ Eα)((c⊗ 1)∆α(a))(1⊗ b)) = Eα((ϕ⊗ Hα)((c⊗ 1)∆α(a)))b

= ∑(ϕ⊗ Hα)((c⊗ 1)∆α(ai))bi

= (ϕ⊗ Hβ)
(
(c⊗ 1)∑ ∆α(ai)(1⊗ bi)

)
= (ϕ⊗ Hβ)((c⊗ 1)(a⊗ b)).

Because this holds for all ϕ, we get

(Hγα ⊗ Eα)((c⊗ 1)∆α(a))(1⊗ b) = (ca⊗ 1)(1⊗ b).

This gives the required formula.

Lemma 2. Eα(Hα) ⊆ k1.

Proof. By the surjectivity of T2, defined by Tαβ−1,β
2 (x⊗ y) = (x⊗ 1)∆β(y) ∈ Hα ⊗ Hβ, we

see that a⊗ Eβ(b) ∈ Hα ⊗ 1 for all a in Hα and b in Hβ. This gives the result.

Define a family of linear maps

ε = {εα : Hα −→ k}α∈π
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by εα(a)1 = Eα(a).

Remark 1. The formula in Lemma 1 can be rewritten as

(Hαβ ⊗ εβ)((a⊗ 1)∆β(b)) = ab.

It can be concluded that the associativity of m = {mα,β : Hα ⊗ Hβ −→ Hαβ}α,β∈π

holds if and only if (Hα,βγ ⊗ εβγ)((a⊗ 1)∆βγ(bc)) = (Hαβ ⊗ εβ)((a⊗ 1)∆β(b))c.
By the definition of ε, we also get

(εα ⊗ Hβ)(a⊗ b) = Eα(a)b = mα,α−1β(T
α,α−1β
1 )−1(a⊗ b)

and, by the surjectivity of T1; hence,

(εα ⊗ Hαβ)(∆α(x)(1⊗ y)) = xy.

These formulas just mean

(Hα ⊗ εα)∆α = Hα = (εα ⊗ Hα)∆α.

It shows that, for any α ∈ π, (Hα, ∆α, εα) is a coalgebra.

Define a family of maps F = {Fα : Hα −→ H1}α∈π by aFβ(b) = mαβ−1,β(T
αβ−1,β
2 )−1(a⊗

b) where mαβ−1,β denotes multiplication, considered as a linear map from Hαβ−1 ⊗ Hβ to

Hα and where Tαβ−1,β
2 is defined as before by Tαβ−1,β

2 (a⊗ b) = (a⊗ 1)∆β(b).
Similar to Lemmas 1 and 2, we have

Lemma 3. For all a ∈ Hα and b ∈ Hβ, we have (Fα ⊗ Hαβ)(∆α(a)(1⊗ b)) = 1⊗ ab.

Lemma 4. Fα(Hα) ⊆ k1.

Define a family of linear maps

ε = {εα : Hα −→ k}α∈π

by εα(a)1 = Fα(a).

Remark 2. The formula in Lemma 3 can be rewritten as

(εα ⊗ Hαβ)(∆α(a)(1⊗ b)) = ab.

It can be concluded that the associativity of m = {mα,β : Hα ⊗ Hβ −→ Hαβ}α,β∈π

holds if and only if (εαβ ⊗ Hαβγ)(∆αβ(ab)(1⊗ c)) = a(εβ ⊗ Hβγ)(∆β(b)(1⊗ c)).
By the definition of ε, we also get

(Hα ⊗ εβ)(a⊗ b) = aFβ(b) = mαβ−1,β(T
αβ−1,β
2 )−1(a⊗ b)

and, by the surjectivity of T2; hence,

(Hαβ ⊗ εβ)((x⊗ 1)∆β(y)) = xy.

These formulas just mean

(Hα ⊗ εα)∆α = Hα = (εβ ⊗ Hα)∆α.

It shows that, for any α ∈ π, (Hα, ∆α, εα) is a coalgebra.
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Due to the loss of the associativity of m = {mα,β}α,β∈π , the counit family ε = {εα}α∈π

is not necessarily a π-algebra homomorphism even when ∆ = {∆α}α∈π is a π-algebra
homomorphism. From now on, every group algebra will tacitly be assumed to carry the
associativity of its multiplication and we also suppose that ∆ = {∆α}α∈π is a π-algebra
homomorphism.

We will show that ε = {εα}α∈π satisfies the usual properties of the counit family in
Hopf group-algebra theory.

Lemma 5. ε = {εα}α∈π is a π-algebra homomorphism.

Proof. By Lemma 1, we have

(Hαβγ ⊗ εβγ)((a⊗ 1)∆βγ(bc)) = a(bc)

for all a ∈ Hα, b ∈ Hβ, c ∈ Hγ. Then

(Hαβγ ⊗ εβγ)((a⊗ 1)∆β(b)∆γ(c)) = a(bc) = (ab)c = (Hαβ ⊗ εβ)((a⊗ 1)∆β(b))c.

By the surjectivity of T2 we get

(Hαγ ⊗ εβγ)((a⊗ b)∆γ(c)) = (Hα ⊗ εβ)(a⊗ b)c = aεβ(b)c = εβ(b)ac

= εβ(b)(Hαγ ⊗ εγ)((a⊗ 1)∆γ(c))

for all a ∈ Hα, b ∈ Hβ, c ∈ Hγ. Again by the surjectivity of T2 we get

(Hα ⊗ εβγ)(a⊗ bc) = εβ(b)(Hα ⊗ εγ)(a⊗ c).

This means
aεβγ(bc) = aεβ(b)εγ(c).

Set α = 1 and a = 1, we have
εβγ(bc) = εβ(b)εγ(c).

Since (Hα ⊗ εα)∆α = Hα = (εα ⊗ Hα)∆α, we obtain

1 = H1(1) = (ε1 ⊗ H1)∆1(1) = (ε1 ⊗ H1)(1⊗ 1) = ε1(1)1

whereby ε1(1) = 1k.

Remark that, by a similar reasoning, we can also claim that ε = {εα}α∈π is a π-algebra
homomorphism.

In fact, for all α ∈ π, εα = εα. In order to check this result, we need the following
lemma.

Lemma 6. For all a ∈ Hα, b ∈ Hβ, mαβ−1,β

((
Tαβ−1,β

2

)−1
(a⊗ b)

)
= aεβ(b).

Proof. Assume a ∈ Hα, b ∈ Hβ and, since T2 is surjective, let

a⊗ b = Tαβ−1,β
2

(
n

∑
i=1

ai ⊗ bi

)
=

n

∑
i=1

(ai ⊗ 1)∆β(bi).
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Hence,

mαβ−1,β

((
Tαβ−1,β

2

)−1
(a⊗ b)

)
= mαβ−1,β

((
Tαβ−1,β

2

)−1
Tαβ−1,β

2

(
n

∑
i=1

ai ⊗ bi

))

= mαβ−1,β

(
n

∑
i=1

ai ⊗ bi

)
=

n

∑
i=1

aibi =
n

∑
i=1

aibi(1)εβ(bi(2)) = (Hα ⊗ εβ)
n

∑
i=1

(aibi(1) ⊗ bi(2))

= (Hα ⊗ εβ)
n

∑
i=1

(mαβ−1,β ⊗ Hβ)(Hαβ−1 ⊗ ∆β)(ai ⊗ bi) = (Hα ⊗ εβ)(a⊗ b) = aεβ(b).

Lemma 7. For all α ∈ π, εα = εα.

Proof. For all a ∈ Hα, b ∈ Hβ, by the definition of F, we have

aεβ(b) = aFβ(b) = mαβ−1,β

((
Tαβ−1,β

2

)−1
(a⊗ b)

)
.

By Lemma 6, we also get

mαβ−1,β

((
Tαβ−1,β

2

)−1
(a⊗ b)

)
= aεβ(b).

It follows that aεβ(b) = aεβ(b).

We have constructed a counit family ε = {εα}α∈π satisfying the usual properties of
the counit family in Hopf group-algebra theory.

We will construct an antihomomorphism S = {Sα}α∈π that has the properties of the
antipode in the Hopf group-algebra theory.

Definition 1. Define a family of linear maps S = {Sα : Hα → Hα−1}α∈π by

Sα(a)b = (εα ⊗ Hα−1β)(T
α,α−1β
1 )−1(a⊗ b)

for all a ∈ Hα, b ∈ Hβ.

Lemma 8. (Hγα ⊗ Sα)((c⊗ 1)∆α(a))(1⊗ b) = (c⊗ 1)(Tα,α−1β
1 )−1(a⊗ b).

Proof. As in the proof of Lemma 1, for ϕ ∈ H∗γα and a ∈ Hα, b ∈ Hβ, c ∈ Hγ, we get

(ϕ⊗ Hα)((c⊗ 1)∆α(a))⊗ b = Tα,α−1β
1 (∑(ϕ⊗ Hα)((c⊗ 1)∆α(ai))⊗ bi

if a⊗ b =
n
∑

i=1
∆α(ai)(1⊗ bi). Then, by the definition of S, we get

Sα((ϕ⊗ Hα)((c⊗ 1)∆α(a)))b = (εα ⊗ Hα−1β)
(
∑(ϕ⊗ Hα)((c⊗ 1)∆α(ai))⊗ bi

)
= (ϕ⊗ Hα−1β)

(
∑(Hγα ⊗ εα)((c⊗ 1)∆α(ai))⊗ bi

)
= (ϕ⊗ Hα−1β)

(
∑ cai ⊗ bi

)
= (ϕ⊗ Hα−1β)

(
(c⊗ 1)(Tα,α−1β

1 )−1(a⊗ b)
)

.

Hence,

(ϕ⊗Hα−1β)((Hγα⊗Sα)((c⊗ 1)∆α(a))(1⊗ b)) = (ϕ⊗Hα−1β)

(
(c⊗ 1)(Tα,α−1β

1 )−1(a⊗ b)
)

.
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This is true for all ϕ ∈ H∗γα and hence proves the result.

Lemma 9. For all a ∈ Hα, b ∈ Hβ and c ∈ Hγ, we have

mγα,α−1β((Hγα ⊗ Sα)((c⊗ 1)∆α(a))(1⊗ b)) = cεα(a)b.

Proof. We get this formula if we apply mγα,α−1β on the equation in Lemma 8 because

mγα,α−1β((Hγα ⊗ Sα)((c⊗ 1)∆α(a))(1⊗ b)) = mγα,α−1β((c⊗ 1)(Tα,α−1β
1 )−1(a⊗ b))

= cmα,α−1β((T
α,α−1β
1 )−1(a⊗ b)) = c(Eα(a)b) = cεα(a)b.

Lemma 10. Sαβ(ab) = Sβ(b)Sα(a) for all a ∈ Hα and b ∈ Hβ .

Proof. We have

mγαβ,β−1α−1δ((Hγαβ ⊗ Sαβ)((c⊗ 1)∆α(a)∆β(b))(1⊗ d))

= mγαβ,β−1α−1δ((Hγαβ ⊗ Sαβ)((c⊗ 1)∆αβ(ab))(1⊗ d))

= cεαβ(ab)d = cεα(a)dεβ(b) = mγα,α−1δ((Hγα ⊗ Sα)((c⊗ 1)∆α(a))(1⊗ d))εβ(b)

for all a ∈ Hα, b ∈ Hβ, c ∈ Hγ and d ∈ Hδ. By the surjectivity of T2, we get

mγβ,β−1α−1δ((Hγβ ⊗ Sαβ)((c⊗ a)∆β(b))(1⊗ d))

= mγ,α−1δ((Hγ ⊗ Sα)(c⊗ a)(1⊗ d))εβ(b) = cSα(a)dεβ(b) = cεβ(b)Sα(a)d

= mγβ,β−1α−1δ((Hγβ ⊗ Sβ)((c⊗ 1)∆β(b))(1⊗ Sα(a)d))

for all a ∈ Hα, b ∈ Hβ, c ∈ Hγ and d ∈ Hδ. Again by the surjectivity of T2, we get

mγ,β−1α−1δ((Hγ ⊗ Sαβ)(c⊗ ab)(1⊗ d)) = mγ,β−1α−1δ((Hγ ⊗ Sβ)(c⊗ b)(1⊗ Sα(a)d))

whence cSαβ(ab)d = cSβ(b)Sα(a)d.

Define another one family of linear maps S̄ = {S̄α : Hα → Hα−1}α∈π by

aS̄β(b) = (Hαβ−1 ⊗ εβ)(T
αβ−1,β
2 )−1(a⊗ b)

for all a ∈ Hα, b ∈ Hβ.
Completely similar as in Lemma 8, we get here that

Lemma 11. (c⊗ 1)(S̄α ⊗ Hαβ)(∆α(a)(1⊗ b)) =
(
(Tγα−1,α

2 )−1(c⊗ a)
)
(1⊗ b).

Lemma 12. mγα−1,αβ((c⊗ 1)(Sα ⊗ Hαβ)(∆α(a)(1⊗ b))) = cεα(a)b.

Proof. By Lemma 11, we get

(c⊗ 1)(S̄α ⊗ Hαβ)(∆α(a)(1⊗ b)) =
(
(Tγα−1,α

2 )−1(c⊗ a)
)
(1⊗ b).

And if we apply mγα−1,αβ to the both sides of the above equation, we get the formula in the
statement of the lemma with S̄ instead of S because

mγα−1,α

(
(Tγα−1,α

2 )−1(c⊗ a)
)
= cεα(a).
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We now show that S = S′. Indeed, we have, by definition,

aS̄β(b) = ∑ aiεβ(bi)

if a⊗ b = ∑(ai ⊗ 1)∆β(bi). If we apply Hα ⊗ Sβ and multiply with 1⊗ c to the both sides
of the equation: a⊗ b = ∑(ai ⊗ 1)∆β(bi), we get

a⊗ Sβ(b)c = ∑(Hα ⊗ Sβ)
(
(ai ⊗ 1)∆β(bi)

)
(1⊗ c).

And if we apply mα,β−1γ to the both sides of the above equation, we obtain, using Lemma 9,
that

aSβ(b)c = ∑ aiεβ(bi)c = aS̄β(b)c.

This shows that Sβ(b) = S̄β(b). This proves the lemma; the formula was already proven
for S̄.

Apropos of Lemmas 9 and 12, by setting β = γ = 1 and b = c = 1, we have the usual
formulas

mα,α−1(Hα ⊗ Sα)∆α(a) = εα(a)1, mα−1,α(Sα ⊗ Hα)∆α(a) = εα(a)1.

We have constructed an antihomomorphism S = {Sα}α∈π that has the properties of
the antipode in the Hopf group-algebra theory.

From the above discussion, we get the following the main result.

Theorem 1. If H = {Hα}α∈π is a unital associative group algebra over k with a family ∆ = {∆α :
Hα −→ Hα ⊗ Hα}α∈π of coassociative comultiplications, then H is a Hopf π-algebra if and only
if ∆ is a π-algebra homomorphism and the right and left π-Galois maps both have inverses.

4. Hopf (Non)coassociative Group-Algebras

We begin by the main definition of this paper which is slightly dual to the notion of a
quasigroup Hopf group-coalgebra studied in [27].

Definition 2. A Hopf non-coassociative group-algebra over π is a π-algebra H = ({Hα}, m =
{mα,β : Hα ⊗ Hβ −→ Hαβ}α,β∈π , η)α∈π , endowed with a family S = {Sα : Hα −→ Hα−1}α∈π

of k-linear maps (the antipode) such that the following conditions hold:

• Each (Hα, ∆α, εα) with comultiplication ∆α and counit εα

is a not necessarily coassociative coalgebra;
(13)

• for all α, β ∈ π, η : k −→ H1 and mα,β : Hα ⊗ Hβ −→ Hαβ

are coalgebra homomorphisms;
(14)

• f or α ∈ π,(mα−1,α ⊗ idHα)(Sα ⊗ idHα ⊗ idHα)(idHα ⊗ ∆α)∆α

= η ⊗ idHα =(mα,α−1 ⊗ idHα)(idHα ⊗ Sα ⊗ idHα)(idHα ⊗ ∆α)∆α;
(15)

• f or α ∈ π,(idHα ⊗mα−1,α)(idHα ⊗ Sα ⊗ idHα)(∆α ⊗ idHα)∆α

= idHα ⊗ η =(idHα ⊗mα,α−1)(idHα ⊗ idHα ⊗ Sα)(∆α ⊗ idHα)∆α.
(16)

We remark that the notion of a Hopf non-coassociative group-algebra is not self-dual
and that (H1, m1,1, η, ∆1, ε1, S1) is a (classical) Hopf coquasigroup. Let π = {1}, H = H1
is a (classical) Hopf coquasigroup. One can easily verify that a Hopf non-coassociative
group-algebra is a Hopf π-algebra if and only if its coproduct is coassociative.

In this paper, a Hopf non-coassociative group-algebra over π is called Hopf non-
coassociative π-algebra.
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Remark 3.

(1) The axiom (14) amounts to that, for any α, β ∈ π, a ∈ Hα and b ∈ Hβ,

∆1(1) = 1⊗ 1, ε1(1) = 1k,

∆αβ(ab) = ∆α(a)∆β(b), εαβ(ab) = εα(a)εβ(b).

(2) In terms of Sweedler’s notation, the axiom (15) gives that, for any α ∈ π, h ∈ Hα,

Sα(h(1))h(2)(1) ⊗ h(2)(2) = 1⊗ h = h(1)Sα(h(2)(1))⊗ h(2)(2). (17)

(3) In terms of Sweedler’s notation, the axiom (16) gives that, for any α ∈ π, h ∈ Hα,

h(1)(1) ⊗ Sα(h(1)(2))h(2) = h⊗ 1 = h(1)(1) ⊗ h(1)(2)Sα(h(2)). (18)

Definition 3. Let H be a Hopf non-coassociative group-algebra. Then, for all α ∈ π and a ∈ Hα,

(1) H is commutative if mα,α−1 = mα−1,α.
(2) H is cocommutative if each ∆α is cocommutative.
(3) H is flexible if

a(1)a(2)(2) ⊗ a(2)(1) = a(1)(1)a(2) ⊗ a(1)(2).

(4) H is alternative if

a(1)a(2)(1) ⊗ a(2)(2) = a(1)(1)a(1)(2) ⊗ a(2), a(1) ⊗ a(2)(1)a(2)(2) = a(1)(1) ⊗ a(1)(2)a(2).

(5) H is called Moufang if

a(1)a(2)(2)(1) ⊗ a(2)(1) ⊗ a(2)(2)(2) = a(1)(1)(1)a(1)(2) ⊗ a(1)(1)(2) ⊗ a(2).

A Hopf non-coassociative group-algebra H is said to be of finite type if, for all α ∈
π, Hα is finite dimensional (over k). Note that it does not mean that

⊕
α∈π

Hα is finite-

dimensional (unless Hα 6= 0, for all but a finite number of α ∈ π).
The antipode S = {Sα}α∈π of H is said to be bijective if each Sα is bijective. We will

later show that it is bijective whenever H is quasitriangular (see Theorem 12).

Example 1. Let (H, m, ∆, ε, S) be a Hopf coquasigroup and the group π act on H by Hopf coquasi-
group endomorphisms.

(1) Set Hπ = {Hα}α∈π where the coalgebra Hα is a copy of H for each α ∈ π. Fix an identifi-
cation isomorphism of coalgebras iα : H −→ Hα. For α, β ∈ π, one defines a multiplication
mα,β : Hα ⊗ Hβ −→ Hαβ by

mα,β(iα(h)⊗ iβ(a)) = (iαβ(ha))

for any h, a ∈ H. The counit ε1 : H1 −→ k is defined by ε1(i1(h)) = ε(h) for h ∈ H. For
any α ∈ π, the antipode Sα : Hα −→ Hα−1 is given by Sα(iα(h)) = iα−1(S(h)). All the
axioms of a Hopf non-coassociative π-algebra for Hπ follow directly from definitions.

(2) Let Hπ be the same family of coalgebras {Hα = H} with the same counit, the multiplication
mα,β : Hα ⊗ Hβ −→ Hαβ and the antipode Sα : Hα −→ Hα−1 defined by

mα,βiα(β(h))⊗ iβ(a) = iαβ(h)

Sα(iα(h)) = iα−1(α(S(h))) = iα−1(S(α(h))

where h, a ∈ H. The axioms of a Hopf non-coassociative π-algebra for Hπ follow from defini-
tions. Both Hπ and Hπ are extensions of H since Hπ

1 = Hπ
1 = H1 as Hopf coquasigroups.
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Example 2.

(1) Let A = ({Aα}, m, η)α∈π be a π-algebra. Set

Aop
α = Aα−1 and mop

α,β = mβ−1,α−1 ◦ σA
α−1 ,A

β−1 .

Then Aop = ({Aop
α }, mop, η)α∈π is a π-algebra, called opposite to A.

If H = {Hα}α∈π is a Hopf non-coassociative group-algebra whose antipode S = {Sα}α∈π

is bijective, then the opposite π-algebra Hop, where Hop
α = Hα−1 as a coalgebra, is a Hopf

non-coassociative π-algebra with antipode Sop = {Sop
α = S−1

α }α∈π .
(2) Let H = ({Hα, ∆α, εα}α∈π , m, η, S) be a Hopf non-coassociative π-algebra. Suppose that the

antipode S = {Sα}α∈π of H is bijective. For any α ∈ π, let Hcop
α be the coopposite coalgebra

to Hα. Then Hcop = {Hcop
α }α∈π , endowed with the multiplication and unit of H and with the

antipode Scop = {Scop
α = S−1

α−1}α∈π , is a Hopf non-coassociative π-algebra called coopposite
to H.

(3) Let H = ({Hα, ∆α, εα}α∈π , m, η, S) be a Hopf non-coassociative π-algebra. Even if the
antipode of H is not bijective, one can always define a Hopf non-coassociative π-algebra
opposite and coopposite to H by setting

Hop,cop
α = Hcop

α−1 , mop,cop
α,β = mop

α,β, 1op,cop = 1, and Sop,cop
α = Sα−1 .

Definition 4. Let H = {Hα}α∈π and H′ = {H′α}α∈π be Hopf non-coassociative π-algebras.
A Hopf non-coassociative π-algebra morphism between H and H′ is a π-algebra morphism f =
{ fα : Hα −→ H′α}α∈π between H and H′ such that, for any α ∈ π, fα is a coalgebra morphism
and fα−1 ◦ Sα = S′α ◦ fα. The Hopf non-coassociative π-algebra isomorphism f = { fα : Hα −→
H′α}α∈π is a Hopf non-coassociative π-algebra morphism in which each fα is a linear isomorphism.

Let us first remark that, when π is a finite group, there is a one-to-one correspondence
between (isomorphic classes of) π-algebras and (isomorphic classes of) π-graded algebras.
Recall that an algebra (A, m, η) is π-graded if A admits a decomposition as a direct sum of
k-spaces A =

⊕
α∈π

Aα such that

Aα Aβ ⊂ Aαβ, ∀α, β ∈ π.

1 ∈ A1.

Let us denote by πα : Aα −→ A the canonical injection. Then {Aα}α∈π is a π-algebra
with multiplication {m(πα ⊗πβ)|Aα ⊗ Aβ} and unit η. Conversely, if A = ({Aα}, m, η)α∈π

is a π-algebra, then Ã =
⊕

α∈π
Aα is a π-graded algebra with multiplication m̃ and unit η̃

given on the summands by

m̃|Aα ⊗ Aβ = mα,β and η̃ = η.

Let now H = ({Hα, ∆α, εα}, m, 1, S)α∈π be a Hopf non-coassociative group-algebra,
where π is a finite group. Then the algebra (H̃, m̃, η̃), defined as above, is a Hopf coquasi-
group with comultiplication ∆̃, counit element ε̃, and antipode S̃ given by

∆̃|Hα = ∆α ε̃ = ∑
α∈π

εα, S̃ = ∑
α∈π

Sα.

In what follows, we study structure properties for a Hopf non-coassociative π-algebra.
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Theorem 2. Let H = ({Hα, ∆α, εα}α∈π , m, η, S) be a Hopf non-coassociative π-algebra. Then

mα−1,α(Sα ⊗ idHα)∆α = 1εα = mα,α−1(idHα ⊗ Sα)∆α, ∀α ∈ π. (19)

Sαβ(ab) = Sβ(b)Sα(a), ∀α, β ∈ π, a ∈ Hα, b ∈ Hβ; (20)

S1(1) = 1; (21)

∆α−1 Sα = σH
α−1 ,H

α−1 (Sα ⊗ Sα)∆α, ∀α ∈ π; (22)

εα−1 Sα = εα, ∀α ∈ π. (23)

Proof. Equation (19) is directly obtained by applying idH1 ⊗ εα to Equation (17) in the
definition of a Hopf nonassociative π-coalgebra. We now show Equation (20) as follows:

Sαβ(ab) = Sαβmα,β(a⊗ b) = Sαβmα,βσHβ ,Hα(b⊗ a) = 1Sαβmα,βσHβ ,Hα(b⊗ a)

=m1,β−1α−1(1⊗ Sαβmα,βσHβ ,Hα(b⊗ a))

=m1,β−1α−1(idH1 ⊗ Sαβmα,βσHβ ,Hα)(1⊗ b⊗ a)

=m1,β−1α−1(idH1 ⊗ Sαβmα,βσHβ ,Hα)(Sβ(b(1))b(2)(1) ⊗ b(2)(2) ⊗ a)

=m1,β−1α−1(Sβ(b(1))b(2)(1) ⊗ Sαβmα,βσHβ ,Hα(b(2)(2) ⊗ a))

=m1,β−1α−1(Sβ(b(1))b(2)(1) ⊗ Sαβmα,β(a⊗ b(2)(2)))

=m1,β−1α−1(Sβ(b(1))b(2)(1) ⊗ Sαβ(ab(2)(2)))

=(Sβ(b(1))b(2)(1))Sαβ(ab(2)(2)) = (Sβ(b(1))1b(2)(1))Sαβ(ab(2)(2))

=m1,β−1α−1(mβ−1,1,β(Sβ(b(1))⊗ 1⊗ b(2)(1))⊗ Sαβmα,β(a⊗ b(2)(2)))

=m1,β−1α−1(mβ−1,1,β ⊗ Sαβmα,β)(Sβ(b(1))⊗ 1⊗ b(2)(1) ⊗ a⊗ b(2)(2)))

=m1,β−1α−1(mβ−1,1,β ⊗ Sαβmα,β)(idH
β−1 ⊗ idH1 ⊗ σHα ,Hβ

⊗ idHβ
)

(Sβ(b(1))⊗ 1⊗ a⊗ b(2)(1) ⊗ b(2)(2)))

=m1,β−1α−1(mβ−1,1,β ⊗ Sαβmα,β)(idH
β−1 ⊗ idH1 ⊗ σHα ,Hβ

⊗ idHβ
)

(Sβ(b(1))⊗ Sα(a(1))a(2)(1) ⊗ a(2)(2) ⊗ b(2)(1) ⊗ b(2)(2)))

=m1,β−1α−1(mβ−1,1,β ⊗ Sαβmα,β)(Sβ(b(1))⊗ Sα(a(1))a(2)(1) ⊗ b(2)(1) ⊗ a(2)(2) ⊗ b(2)(2)))

=m1,β−1α−1(mβ−1,1,β(Sβ(b(1))⊗ Sα(a(1))a(2)(1) ⊗ b(2)(1))⊗ Sαβmα,β(a(2)(2) ⊗ b(2)(2))))

=m1,β−1α−1(Sβ(b(1))(Sα(a(1))a(2)(1))b(2)(1) ⊗ Sαβ(a(2)(2)b(2)(2))))

=(Sβ(b(1))(Sα(a(1))a(2)(1))b(2)(1))Sαβ(a(2)(2)b(2)(2))

=Sβ(b(1))Sα(a(1))(a(2)(1)b(2)(1)Sαβ(a(2)(2)b(2)(2)))

=Sβ(b(1))Sα(a(1))((a(2)b(2))(1)Sαβ((a(2)b(2))(2)))

=Sβ(b(1))Sα(a(1))ε(a(2)b(2)) = Sβ(b(1))Sα(a(1))ε(a(2))ε(b(2))

=Sβ(b(1)ε(b(2)))Sα(a(1)ε(a(2))) = Sβ(b)Sα(a).

Thus, Sαβ(ab) = Sβ(b)Sα(a), ∀α, β ∈ π, a ∈ Hα, b ∈ Hβ.
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To show Equation (22), for all, α ∈ π, h ∈ Hα, we have that

(Sα ⊗ Sα)∆α(h) = Sα(h(1))⊗ Sα(h(2))

=(mα−1,1 ⊗mα−1,1)(idH
α−1 ⊗ σH

α−1 ,H1 ⊗ idH1)(idH
α−1 ⊗ idH

α−1 ⊗ σH1,H1)

(Sα(h(1))⊗ Sα(h(2))⊗ 1⊗ 1)

=(mα−1,1 ⊗mα−1,1)(idH
α−1 ⊗ σH

α−1 ,H1 ⊗ idH1)(idH
α−1 ⊗ idH

α−1 ⊗ σH1,H1)

(Sα(h(1))⊗ Sα(h(2))⊗ ∆(1))

=(mα−1,1 ⊗mα−1,1)(idH
α−1 ⊗ σH

α−1 ,H1 ⊗ idH1)(idH
α−1 ⊗ idH

α−1 ⊗ σH1,H1)

(Sα(h(1))⊗ Sα(h(2)(1)(1))⊗ ∆(h(2)(1)(2)Sα(h(2)(2))))

=(mα−1,1 ⊗mα−1,1)(idH
α−1 ⊗ σH

α−1 ,H1 ⊗ idH1)(idH
α−1 ⊗ idH

α−1 ⊗ σH1,H1)

(Sα(h(1))⊗ Sα(h(2)(1)(1))⊗ ∆(h(2)(1)(2))∆(Sα(h(2)(2))))

=(mα−1,1 ⊗mα−1,1)(idH
α−1 ⊗ σH

α−1 ,H1 ⊗ idH1)(idH
α−1 ⊗ idH

α−1 ⊗ σH1,H1)

(Sα(h(1))⊗ Sα(h(2)(1)(1))⊗ ∆(h(2)(1)(2))∆Sα(h(2)(2)))

=(mα−1,1 ⊗mα−1,1)(idH
α−1 ⊗ σH

α−1 ,H1 ⊗ idH1)(idH
α−1 ⊗ idH

α−1 ⊗ σH1,H1)

(Sα(h(1))⊗ Sα(h(2)(1)(1))⊗ (h(2)(1)(2)(1) ⊗ h(2)(1)(2)(2))(Sα(h(2)(2))(1) ⊗ Sα(h(2)(2))(2)))

=(mα−1,1 ⊗mα−1,1)(idH
α−1 ⊗ σH

α−1 ,H1 ⊗ idH1)(idH
α−1 ⊗ idH

α−1 ⊗ σH1,H1)

(Sα(h(1))⊗ Sα(h(2)(1)(1))⊗ h(2)(1)(2)(1)Sα(h(2)(2))(1) ⊗ h(2)(1)(2)(2)Sα(h(2)(2))(2))

=Sα(h(1))(h(2)(1)(2)(2)Sα(h(2)(2))(2))⊗ Sα(h(2)(1)(1))(h(2)(1)(2)(1)Sα(h(2)(2))(1))

=Sα(h(1))(h(2)(1)(2)(2)Sα(h(2)(2))(2))⊗ (Sα(h(2)(1)(1))h(2)(1)(2)(1))Sα(h(2)(2))(1)
=Sα(h(1))(h(2)(1)Sα(h(2)(2))(2))⊗ Sα(h(2)(2))(1) = (Sα(h(1))h(2)(1))Sα(h(2)(2))(2) ⊗ Sα(h(2)(2))(1)
=(Sα(h(1))h(2)(1) ⊗ 1)(Sα(h(2)(2))(2) ⊗ Sα(h(2)(2))(1))

=(Sα(h(1))h(2)(1) ⊗ 1)σH
α−1 ,H

α−1 ∆α−1 Sα(h(2)(2))

=(1⊗ 1)σH
α−1 ,H

α−1 ∆α−1 Sα(h) = σH
α−1 ,H

α−1 ∆α−1 Sα(h).

Thus, ∆α−1 Sα = σH
α−1 ,H

α−1 (Sα ⊗ Sα)∆α, ∀α ∈ π.

Using Equation (19), we obtain Equation (21):

m1,1(S1 ⊗ idH1)∆1(1) = 1ε1(1) =⇒ S1(1)1 = 1 =⇒ S1(1) = 1.

We can obtain Equation (23) also by Equation (19): ∀α ∈ π, h ∈ Hα,

mα−1,α(Sα ⊗ idHα)∆α(h) = 1εα(h) =⇒ Sα(h(1))h(2) = 1εα(h)

=⇒ε1(Sα(h(1))h(2)) = ε1(1εα(h)) =⇒ εα−1(Sα(h(1)))εα(h(2)) = ε1(1)εα(h)

=⇒εα−1(Sα(h(1)εα(h(2)))) = 1kεα(h) =⇒ εα−1(Sα(h)) = εα(h),

i.e., εα−1 Sα = εα, ∀α ∈ π.

Corollary 1. The antipode of a Hopf non-coassociative π-algebra is unique.

Proof. If S, Ŝ are two antipodes on a Hopf non-coassociative π-algebra H, then they are
equal in that, for any α ∈ π and h ∈ Hα,

Ŝα(h) = Ŝα(h(1)εα(h(2))) = Ŝα(h(1))εα(h(2))1 = Ŝα(h(1))
(

h(2)(1)Sα(h(2)(2))
)

=
(

Ŝα(h(1))h(2)(1)
)

Sα(h(2)(2)) = 1Sα(h) = Sα(h).
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Corollary 2. Let H = {Hα}α∈π be a Hopf non-coassociative π-algebra with the antipode S =
{Sα}α∈π . Then Sα is the unique convolution inverse of idHα in the convolution algebra Conv(Hα, H),
for all α ∈ π.

Proof. Equation (19) says that Sα is a convolution inverse of idHα in the convolution algebra
Conv(Hα, H), for all α ∈ π. Fix α ∈ π. Let Tα be a right convolution inverse of idHα in the
convolution algebra Conv(Hα, H). For all h ∈ Hα, we compute

Sα(h) =Sα ∗ (idHα ∗ Tα)(h) = Sα(h(1))(idHα ∗ Tα)(h(2)) = Sα(h(1))(h(2)(1)Tα(h(2)(2)))

=(Sα(h(1))h(2)(1))Tα(h(2)(2))
by Equation (17)
========== 1Tα(h) = Tα(h)

=⇒ Tα =Sα.

Fix α ∈ π. Let Tα now be a left convolution inverse of idHα in the convolution algebra
Conv(Hα, H). Similarly, we have Tα = Sα. Therefore, Sα is the unique convolution inverse
of idHα in the convolution algebra Conv(Hα, H), for all α ∈ π.

Similarly, one can get

Corollary 3. Let H = {Hα}α∈π be a Hopf non-coassociative π-algebra with the antipode S =
{Sα}α∈π . Then idHα is the unique convolution inverse of Sα in the convolution algebra Conv(Hα, H),
for all α ∈ π.

Corollary 4. Let H = ({Hα, ∆α, εα}α∈π , m, η, S) be a Hopf non-coassociative π-algebra. Then
{α ∈ π, |Hα 6= 0} is a subgroup of π.

Proof. Set G = {α ∈ π, |Hα 6= 0}. Since ε1(1) = 1k 6= 0, we first have 0 6= 1 ∈ H1, i.e.,
H1 6= 0, and so 1 ∈ G.

Now let α ∈ G whereby Hα 6= 0, then there exists 0 6= a ∈ Hα. Using Equation (13),
one can see that a(1)εα(a(2)) = εα(a(1))a(2) = a 6= 0. It follows that ∃h ∈ Hα, s.t. εα(h) 6= 0.
Then let β ∈ G. In a similar manner, one can also obtain that ∃g ∈ Hβ, s.t. εβ(g) 6= 0. Thus,
εαβ(hg) = εα(h)εβ(g) 6= 0, i.e., 0 6= hg ∈ Hαβ and so αβ ∈ G.

Finally, let α ∈ G. By Equation (23), εα−1 Sα(h) = εα(h) 6= 0. Therefore 0 6= Sα(h) ∈
Hα−1 and hence α−1 ∈ G.

The following theorem sheds considerable light on the concept of a Hopf
non-coassociative π-algebra morphism.

Theorem 3. Let H = {Hα}α∈π and H′ = {H′α}α∈π be Hopf non-coassociative π-algebras. A
π-algebra morphism f = { fα : Hα −→ H′α}α∈π between H and H′ such that, for any α ∈ π, fα

is a coalgebra morphism satisfies fα−1 ◦ Sα = S′α ◦ fα, for all α ∈ π.

Proof. Consider the convolution inverse of fα in the convolution algebra Conv(Hα, H′),

S′α ◦ fα ∗ fα(h) = S′α ◦ fα(h(1)) fα(h(2)) = S′α
(
( fα(h))(1)

)
( fα(h))(2) = ε′α( fα(h))1′ = εα(h)1′,

whence S′α ◦ fα is a left convolution inverse of fα in the convolution algebra Conv(Hα, H′),

fα ∗ fα−1 ◦ Sα(h) = fα(h(1)) fα−1 ◦ Sα(h(2)) = f1

(
h(1)Sα(h(2))

)
= f1(εα(h)1) = εα(h)1′,

whence fα−1 ◦Sα is a right convolution inverse of fα in the convolution algebra Conv(Hα, H′),
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fα−1 ◦ Sα(h) = (S′α ◦ fα ∗ fα) ∗ fα−1 ◦ Sα(h) = S′α ◦ fα ∗ fα(h(1)) fα−1 ◦ Sα(h(2))

=
(

S′α ◦ fα(h(1)(1)) fα(h(1)(2))
)

fα−1 ◦ Sα(h(2)) = S′α ◦ fα(h(1)(1))
(

fα(h(1)(2)) fα−1 ◦ Sα(h(2))
)

= S′α ◦ fα(h(1)(1)) f1

(
h(1)(2)Sα(h(2))

)
= S′α ◦ fα(h) f1(1) = S′α ◦ fα(h)1′ = S′α ◦ fα(h),

from which we obtain fα−1 ◦ Sα = S′α ◦ fα. This completes the proof.

By looking into the proof of Theorem 3, we note that fα−1 ◦ Sα = S′α ◦ fα and fα are
convolution inverses in the convolution algebra Conv(Hα, H′). More precisely, we claim:

Corollary 5. If f = { fα : Hα −→ H′α}α∈π is a Hopf non-coassociative π-algebra morphism
between H and H′. Then:

(1) fα−1 ◦ Sα = S′α ◦ fα is the unique convolution inverse of fα in the convolution algebra
Conv(Hα, H′);

(2) fα is the unique convolution inverse of fα−1 ◦ Sα = S′α ◦ fα in the convolution algebra
Conv(Hα, H′).

Proof. We first establish part (1). Fix α ∈ π. Let Tα be a right convolution inverse of fα in
the convolution algebra Conv(Hα, H′).

fα−1 ◦ Sα(h) = fα−1 ◦ Sα ∗ ( fα ∗ Tα)(h) = fα−1 ◦ Sα(h(1)) fα ∗ Tα(h(2))

= fα−1 ◦ Sα(h(1))
(

fα(h(2)(1))Tα(h(2)(2))
)
=
(

fα−1 ◦ Sα(h(1)) fα(h(2)(1))
)

Tα(h(2)(2))

= f1

(
Sα(h(1))h(2)(1)

)
Tα(h(2)(2)) = f1(1)Tα(h) = 1′Tα(h) = Tα(h).

Fix α ∈ π. Let Tα now be a left convolution inverse of fα in the convolution algebra
Conv(Hα, H′). Similarly, we have fα−1 ◦ Sα(h) = Tα(h).

fα−1 ◦ Sα = S′α ◦ fα is therefore the unique convolution inverse of fα in the convolution
algebra Conv(Hα, H′), for all α ∈ π.

We now turn to part (2). Fix α ∈ π. Let Tα be a right convolution inverse of fα−1 ◦ Sα =
S′α ◦ fα in the convolution algebra Conv(Hα, H′).

fα(h) = fα ∗ ( fα−1 ◦ Sα ∗ Tα)(h) = fα(h(1)) fα−1 ◦ Sα ∗ Tα(h(2))

= fα(h(1))
(

fα−1 ◦ Sα(h(2)(1))Tα(h(2)(2))
)
=
(

fα(h(1)) fα−1 ◦ Sα(h(2)(1))
)

Tα(h(2)(2))

= f1

(
h(1)Sα(h(2)(1))

)
Tα(h(2)(2)) = f1(1)Tα(h) = 1′Tα(h) = Tα(h).

Fix α ∈ π. Let Tα now be a left convolution inverse of fα−1 ◦ Sα = S′α ◦ fα in the convolution
algebra Conv(Hα, H′). Similarly, we have fα(h) = Tα(h). Therefore, fα is the unique
convolution inverse of fα−1 ◦ Sα = S′α ◦ fα in the convolution algebra Conv(Hα, H′), for all
α ∈ π.

The following two corollaries can be directly deduced from Theorems 2 and 3.

Corollary 6. If H is a Hopf non-coassociative π-algebra, then the map S : H −→ Hop,cop (where
both are opposite and Sop,cop = {Sop,cop

α = Sα−1}α∈π) is a Hopf non-coassociative π-algebra
isomorphism.

Corollary 7. If H is a Hopf non-coassociative π-algebra with an invertible antipode S, then the
map S : H −→ Hop,cop (where both are opposite and Sop,cop = {Sop,cop

α = Sα−1}α∈π) is a Hopf
non-coassociative π-algebra isomorphism.

Theorem 4. Let H be a Hopf non-coassociative π-algebra. Then for any α ∈ π, Sα−1 Sα = idHα if
H is commutative or cocommutative.
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Proof. For any α ∈ π. Let h ∈ Hα. If H is commutative, we have

Sα−1 Sα(h) = Sα−1 Sα(h(1)ε(h(2))) = Sα−1 Sα(h(1))ε(h(2))

= Sα−1 Sα(h(1))(Sα(h(2)(1))h(2)(2)) = (Sα−1 Sα(h(1))Sα(h(2)(1)))h(2)(2)
= S1(h(2)(1)Sα(h(1)))h(2)(2) = S1(Sα(h(1))h(2)(1))h(2)(2) = S1(1)h = 1h = h.

It follows that Sα−1 Sα = idHα .
Similar to the case of H being cocommutative.

Theorem 5. Let H be a Hopf non-coassociative π-algebra such that each S−1
α exists, for all α ∈ π.

Then the following identities are equivalent:

(1) a(2)(1)Sα(a(1))⊗ a(2)(2) = a(2)Sα(a(1)(2))⊗ a(1)(1) = 1⊗ a, for all α ∈ π, a ∈ Hα.
(2) a(2)(2) ⊗ Sα(a(2)(1))a(1) = a(1)(1) ⊗ Sα(a(2))a(1)(2) = a⊗ 1, for all α ∈ π, a ∈ Hα.
(3) Sα−1 Sα = idHα , for all α ∈ π.

Proof. Let α ∈ π and a ∈ Hα. We have

Sα−1 Sα(a) = Sα−1 Sα(a(1)εα(a(2))) = Sα−1 Sα(a(1))εα(a(2)) = Sα−1 Sα(a(1))(εα(a(2))1)

=Sα−1 Sα(a(1))(Sα(a(2)(1))a(2)(2)) = S1(a(2)(1)Sα(a(1)))a(2)(2).

If (1) holds, we then find that Sα−1 Sα(a) = S1(1)a = a, which implies that (3) holds.
If (3) is satisfied, then one has

1⊗ a = a(1)Sα(a(2)(1))⊗ a(2)(2) = a(1)Sα(a(2)(1))⊗ Sα−1 Sα(a(2)(2))

= a(1)Sα(a(2))(2) ⊗ Sα−1(Sα(a(2))(1))

= Sα−1 Sα(a(1))Sα(a(2))(2) ⊗ Sα−1(Sα(a(2))(1))

= Sα−1(Sα(a)(2))Sα(a)(1)(2) ⊗ Sα−1(Sα(a)(1)(1)).

Applying Sα to the second tensor factor we obtain

1⊗ Sα(a) = Sα−1(Sα(a)(2))Sα(a)(1)(2) ⊗ SαSα−1(Sα(a)(1)(1))

= Sα−1(Sα(a)(2))Sα(a)(1)(2) ⊗ Sα(a)(1)(1).

So (2) holds since S is bijective.
We have shown (1) =⇒ (3) =⇒ (2).
Similarly one proves (2) =⇒ (3) =⇒ (1).

Theorem 6. Let H be a Hopf non-coassociative π-algebra with a bijective antipode S and S−1 the
composite inverse to S. Then

S−1
α−1(h(2))h(1) = h(2)S

−1
α−1(h(1)) = εα(h)1, S−1

(αβ)−1(hg) = S−1
β−1(g)S−1

α−1(h), S−1
1 (1) = 1

∆α−1(S−1
α−1(h)) =S−1

α−1(h(2))⊗ S−1
α−1(h(1)), εα−1(S−1

α−1(h)) = εα(h)

for all α, β ∈ π, h ∈ Hα and g ∈ Hβ.

Proof. The proof is straightforward.
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Theorem 7. Let H be a Hopf non-coassociative π-algebra such that each S−1
α exists, for all α ∈

π, a ∈ Hα. Then the following identities are equivalent:

(1) a(1)a(2)(2)(1) ⊗ a(2)(1) ⊗ a(2)(2)(2) = a(1)(1)(1)a(1)(2) ⊗ a(1)(1)(2) ⊗ a(2).
(2) a(1)(1)(1) ⊗ a(1)(1)(2)a(2) ⊗ a(1)(2) = a(1) ⊗ a(2)(1)a(2)(2)(2) ⊗ a(2)(2)(1).
(3) a(1)(1)a(2)(2) ⊗ a(1)(2) ⊗ a(2)(1) = a(1)(1)a(2) ⊗ a(1)(2)(1) ⊗ a(1)(2)(2).

Proof. (1) =⇒ (2) Let T = (idHα ⊗ σHα ,Hα ⊗ idHα). Then

a(1)a(2)(2)(1) ⊗ a(2)(1) ⊗ a(2)(2)(2) = a(1)(1)(1)a(1)(2) ⊗ a(1)(1)(2) ⊗ a(2)
=⇒(mα,α ⊗ id2

Hα
)T(id2

Hα
⊗ ∆α)(idHα ⊗ ∆α)∆α(a)

=(mα,α ⊗ idHα ⊗ idHα)T(∆α ⊗ id2
Hα
)(∆α ⊗ idHα)∆α(a)

=⇒(mα,α ⊗ idHα ⊗ idHα)T(id
2
Hα
⊗ ∆α)(idHα ⊗ ∆α)∆α(Sα−1(b))

=(mα,α ⊗ id2
Hα
)T(∆α ⊗ id2

Hα
)(∆α ⊗ idHα)∆α(Sα−1(b))

=⇒(mα,α ⊗ id2
Hα
)T(id2

Hα
⊗ ∆α)(idHα ⊗ ∆α)(Sα−1(b(2))⊗ Sα−1(b(1)))

=(mα,α ⊗ idHα ⊗ idHα)T(∆α ⊗ id2
Hα
)(∆α ⊗ idHα)(Sα−1(b(2))⊗ Sα−1(b(1)))

=⇒(mα,α ⊗ id2
Hα
)T(id2

Hα
⊗ ∆α)(Sα−1(b(2))⊗ Sα−1(b(1)(2))⊗ Sα−1(b(1)(1)))

=(mα,α ⊗ id2
Hα
)T(∆α ⊗ id2

Hα
)(Sα−1(b(2)(2))⊗ Sα−1(b(2)(1))⊗ Sα−1(b(1)))

=⇒(mα,α ⊗ id2
Hα
)T(Sα−1(b(2))⊗ Sα−1(b(1)(2))⊗ Sα−1(b(1)(1)(2))⊗ Sα−1(b(1)(1)(1)))

=(mα,α ⊗ id2
Hα
)T(Sα−1(b(2)(2)(2))⊗ Sα−1(b(2)(2)(1))⊗ Sα−1(b(2)(1))⊗ Sα−1(b(1)))

=⇒(mα,α ⊗ id2
Hα
)(Sα−1(b(2))⊗ Sα−1(b(1)(1)(2))⊗ Sα−1(b(1)(2))⊗ Sα−1(b(1)(1)(1)))

=(mα,α ⊗ id2
Hα
)(Sα−1(b(2)(2)(2))⊗ Sα−1(b(2)(1))⊗ Sα−1(b(2)(2)(1))⊗ Sα−1(b(1)))

=⇒Sα−1(b(2))Sα−1(b(1)(1)(2))⊗ Sα−1(b(1)(2))⊗ Sα−1(b(1)(1)(1))

=Sα−1(b(2)(2)(2))Sα−1(b(2)(1))⊗ Sα−1(b(2)(2)(1))⊗ Sα−1(b(1))

=⇒Sα−1α−1(b(1)(1)(2)b(2))⊗ Sα−1(b(1)(2))⊗ Sα−1(b(1)(1)(1))

=Sα−1α−1(b(2)(1)b(2)(2)(2))⊗ Sα−1(b(2)(2)(1))⊗ Sα−1(b(1))

=⇒b(1)(1)(2)b(2) ⊗ b(1)(2) ⊗ b(1)(1)(1) = b(2)(1)b(2)(2)(2) ⊗ b(2)(2)(1) ⊗ b(1)
=⇒b(1)(1)(1) ⊗ b(1)(1)(2)b(2) ⊗ b(1)(2) = b(1) ⊗ b(2)(1)b(2)(2)(2) ⊗ b(2)(2)(1)
=⇒a(1)(1)(1) ⊗ a(1)(1)(2)b(2) ⊗ a(1)(2) = a(1) ⊗ a(2)(1)b(2)(2)(2) ⊗ a(2)(2)(1).

Similarly, (1) implies (2).
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(3) =⇒ (1)

a(1)(1)a(2)(2) ⊗ a(1)(2) ⊗ a(2)(1) = a(1)(1)a(2) ⊗ a(1)(2)(1) ⊗ a(1)(2)(2)
=⇒a(1)(1)(1)a(1)(2)(2)Sα(a(2))(2) ⊗ a(1)(1)(2) ⊗ a(1)(2)(1)Sα(a(2))(1)
=a(1)(1)(1)a(1)(2)Sα(a(2))(2) ⊗ a(1)(1)(2)(1) ⊗ a(1)(1)(2)(2)Sα(a(2))(1)

=⇒a(1)(1)(1)(a(1)(2)Sα(a(2)))(2) ⊗ a(1)(1)(2) ⊗ (a(1)(2)Sα(a(2)))(1)
=a(1)(1)(1)a(1)(2)Sα(a(2))(2) ⊗ a(1)(1)(2)(1) ⊗ a(1)(1)(2)(2)Sα(a(2))(1)

=⇒a(1) ⊗ a(2) ⊗ 1 = a(1)(1)(1)a(1)(2)Sα(a(2))(2) ⊗ a(1)(1)(2)(1) ⊗ a(1)(1)(2)(2)Sα(a(2))(1)
=⇒a(1) ⊗ a(2) ⊗ 1 = a(1)(1)(1)a(1)(2)Sα(a(2)(1))⊗ a(1)(1)(2)(1) ⊗ a(1)(1)(2)(2)Sα(a(2)(2))

=⇒a(1) ⊗ a(2)(1) ⊗ Sα(a(2)(2))1 = a(1)(1)(1)a(1)(2)Sα(a(2)(1))⊗ a(1)(1)(2) ⊗ 1Sα(a(2)(2))

=⇒a(1) ⊗ a(2)(1) ⊗ Sα(a(2)(2)) = a(1)(1)(1)a(1)(2)Sα(a(2)(1))⊗ a(1)(1)(2) ⊗ Sα(a(2)(2))

=⇒a(1) ⊗ a(2)(1) ⊗ S−1
α (Sα(a(2)(2))) = a(1)(1)(1)a(1)(2)Sα(a(2)(1))⊗ a(1)(1)(2) ⊗ S−1

α (Sα(a(2)(2)))

=⇒a(1) ⊗ a(2)(1) ⊗ a(2)(2) = a(1)(1)(1)a(1)(2)Sα(a(2)(1))⊗ a(1)(1)(2) ⊗ a(2)(2)
=⇒a(1)a(2)(2)(1) ⊗ a(2)(1) ⊗ a(2)(2)(2) = a(1)(1)(1)a(1)(2)Sα(a(2)(1))a(2)(2)(1) ⊗ a(1)(1)(2) ⊗ a(2)(2)(2)
=⇒a(1)a(2)(2)(1) ⊗ a(2)(1) ⊗ a(2)(2)(2) = a(1)(1)(1)a(1)(2)1⊗ a(1)(1)(2) ⊗ a(2)
=⇒a(1)a(2)(2)(1) ⊗ a(2)(1) ⊗ a(2)(2)(2) = a(1)(1)(1)a(1)(2) ⊗ a(1)(1)(2) ⊗ a(2).

Similarly, (1) implies (3).

We have observed that if H is a Hopf non-coassociative π-algebra with antipode S then
Hop,cop is a Hopf non-coassociative π-algebra with antipode Sop,cop = {Sop,cop

α = Sα−1}α∈π .
Furthermore, the following theorem says, if Hop or Hcop is a Hopf non-coassociative π-
algebra, then S is bijective, and vice versa.

Proposition 2. Suppose that H is a Hopf non-coassociative π-algebra with antipode S over the
field k. Then the following are equivalent:

(a) Hop = {Hop
α = Hα−1}α∈π is a Hopf non-coassociative π-algebra.

(b) Hcop = {Hcop
α = Hα}α∈π is a Hopf non-coassociative π-algebra.

(c) S is bijective.

If S is bijective, then Hop and Hcop have antipodes Sop = {Sop
α = S−1

α }α∈π and Scop =
{Scop

α = S−1
α−1}α∈π , respectively.

Proof. Since Hcop = (Hop)op,cop and Hop = (Hcop)op,cop, the parts (a) and (b) are equivalent.
If the part (c) holds, then it is easy to check that Part (a) holds. Conversely, suppose that

Hop is a Hopf non-coassociative π-algebra with antipode T = {Tα}α∈π . Then Tα(h(1))h(2) =
ε

op
α (h)1 = h(1)Tα(h(2)), or equivalently, h(2)Tα(h(1)) = εα−1(h)1 = Tα(h(2))h(1), for h ∈

Hop
α = Hα−1 . Applying S1 to the left-hand side of the above equation, we have

(Sα ◦ Tα)(h(1))Sα−1(h(2)) = εα−1(h)1.

Replacing h with Sα(h) in this equation, one has

εα−1(Sα(h))1 = Tα(Sα(h)(2))Sα(h)(1),

or equivalently,
εα(h)1 = Tα ◦ Sα(h(1))Sα(h(2)).

Therefore Tα ◦ Sα and Sα−1 ◦ Tα−1 are both left inverses of Sα in the convolution algebra
Conv(Hα, H). It follows from Corollary 3 that Sα−1 ◦ Tα−1 = idHα = Tα ◦ Sα which estab-
lishes that the part (a) implies that the part (c).
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Theorem 8. Let H be a commutative flexible Hopf non-coassociative π-algebra. Then

a(1)Sα(a(2)(2))⊗ a(2)(1) = a(1)(1)Sα(a(2))⊗ a(1)(2), ∀α ∈ π, a ∈ Hα.

Proof. ∀α ∈ π, a ∈ Hα. Since H is flexible, we have that

a(1)(1)a(2) ⊗ a(1)(2) = a(1)a(2)(2) ⊗ a(2)(1)

=⇒(a(1)(1)a(2))Sα(a(1)(2)(2))⊗ a(1)(2)(1) = (a(1)a(2)(2))Sα(a(2)(1)(2))⊗ a(2)(1)(1)
=⇒a(1)(1)(a(2)Sα(a(1)(2)(2)))⊗ a(1)(2)(1) = a(1)(a(2)(2)Sα(a(2)(1)(2)))⊗ a(2)(1)(1)
=⇒a(1)(1)(Sα(a(1)(2)(2))a(2))⊗ a(1)(2)(1) = a(1)(1)(1)(Sα(a(1)(2))a(2))⊗ a(1)(1)(2)
=⇒a(1)(1)Sα(a(1)(2)(2))a(2) ⊗ a(1)(2)(1) = a(1)Sα(a(2)(1)(2))a(2)(2) ⊗ a(2)(1)(1)
=⇒a(1)(1)(1)Sα(a(1)(1)(2)(2))a(1)(2)Sα(a(2))⊗ a(1)(1)(2)(1) = a(1)(1)Sα(a(2))⊗ a(1)(2)u

In the end of this section, we study how to construct an coassociator for any Hopf
non-coassociative π-algebra.

Definition 5. In any Hopf non-coassociative π-algebra, we define the coassociator

Φ = {Φα : Hα −→ Hα ⊗ Hα ⊗ Hα}α∈π by

(∆α ⊗ idHα)∆α(a) = (idHα ⊗ ∆α)∆α(a(1)(1))Φα(a(1)(2))(idH
α−1 ⊗ ∆α−1)∆α−1(Sα(a(2)))

for all α ∈ π and a ∈ Hα.

Remark 4. For the next theorem, we will use some convenient notation. Let H be a Hopf non-
coassociative π-algebra. ∀α ∈ π, a ∈ Hα, we write Φα(a) = Φ

(1)
a ⊗Φ

(2)
a ⊗Φ

(3)
a .

Theorem 9. Let H be a Hopf non-coassociative π-algebra. Then

(1) The associator Φ = {Φα}α∈π exists and is uniquely determined as
Φα(a) = Sα(a(1))(1)a(2)(1)(1)(1)a(2)(2)(1) ⊗ Sα(a(1))(2)(1)a(2)(1)(1)(2)a(2)(2)(2)(1)
⊗Sα(a(1))(2)(2)a(2)(1)(2)a(2)(2)(2)(2), ∀α ∈ π, a ∈ Hα.

(2) (εα ⊗ εα ⊗ idHα)Φα(a) = (εα ⊗ idHα ⊗ εα)Φα(a)
= (idHα ⊗ εα ⊗ εα)Φα(a) = a, ∀α ∈ π, a ∈ Hα.

(3) Φ
(1)
a Sα(Φ

(2)
a )⊗Φ

(3)
a = Sα(Φ

(1)
a )Φ

(2)
a ⊗Φ

(3)
a , ∀α ∈ π, a ∈ Hα.

(4) Φ
(1)
a ⊗ Sα(Φ

(2)
a )Φ

(3)
a = Φ

(1)
a ⊗Φ

(2)
a Sα(Φ

(3)
a ), ∀α ∈ π, a ∈ Hα.

(5) (Φ
(1)
a )(1)Sα(Φ

(3)
a )⊗ (Φ

(1)
a )(2)Sα(Φ

(2)
a ) = Sα((Φ

(1)
a )(1))Φ

(3)
a ⊗ Sα((Φ

(1)
a )(2))Φ

(2)
a

= Φ
(1)
a Sα((Φ

(3)
a )(2))⊗Φ

(2)
a Sα((Φ

(3)
a )(1)) = Sα(Φ

(1)
a )(Φ

(3)
a )(2) ⊗ Sα(Φ

(2)
a )(Φ

(3)
a )(1)

= Sα(Φ
(1)
a )(Φ

(2)
a )(1) ⊗ Sα((Φ

(2)
a )(2))Φ

(3)
a = Sα(Φ

(1)
a )(Φ

(3)
a )(2) ⊗ Sα(Φ

(2)
a )(Φ

(3)
a )(1),

∀α ∈ π, a ∈ Hα.

Proof. The proof of this theorem consists of a long tedious computation. We just show
readers as follows for the part (1). The other are similar.

(1) ∀α ∈ π, a ∈ Hα, we have that
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Sα(a(1))(1)a(2)(1)(1)(1)a(2)(2)(1) ⊗ Sα(a(1))(2)(1)a(2)(1)(1)(2)a(2)(2)(2)(1) ⊗ Sα(a(1))(2)(2)a(2)(1)(2)a(2)(2)(2)(2)
=(Sα(a(1))(1) ⊗ Sα(a(1))(2)(1) ⊗ Sα(a(1))(2)(2))

(a(2)(1)(1)(1) ⊗ a(2)(1)(1)(2) ⊗ a(2)(1)(2))(a(2)(2)(1) ⊗ a(2)(2)(2)(1) ⊗ a(2)(2)(2)(2))

=(Sα(a(1))(1) ⊗ Sα(a(1))(2)(1) ⊗ Sα(a(1))(2)(2))(a(2)(1)(1)(1)(1) ⊗ a(2)(1)(1)(1)(2)(1) ⊗ a(2)(1)(1)(1)(2)(2))

Φα(a(2)(1)(1)(2))

(Sα(a(2)(1)(2))(1) ⊗ Sα(a(2)(1)(2))(2)(1) ⊗ Sα(a(2)(1)(2))(2)(2))(a(2)(2)(1) ⊗ a(2)(2)(2)(1) ⊗ a(2)(2)(2)(2))

=(Sα(a(1))(1)a(2)(1)(1)(1)(1) ⊗ Sα(a(1))(2)(1)a(2)(1)(1)(1)(2)(1) ⊗ Sα(a(1))(2)(2)a(2)(1)(1)(1)(2)(2))

Φα(a(2)(1)(1)(2))

(Sα(a(2)(1)(2))(1)a(2)(2)(1) ⊗ Sα(a(2)(1)(2))(2)(1)a(2)(2)(2)(1) ⊗ Sα(a(2)(1)(2))(2)(2)a(2)(2)(2)(2))

=((Sα(a(1))a(2)(1)(1)(1))(1) ⊗ (Sα(a(1))a(2)(1)(1)(1))(2)(1) ⊗ (Sα(a(1))a(2)(1)(1)(1))(2)(2))

Φα(a(2)(1)(1)(2))

((Sα(a(2)(1)(2))a(2)(2))(1) ⊗ (Sα(a(2)(1)(2))a(2)(2))(2)(1) ⊗ (Sα(a(2)(1)(2))a(2)(2))(2)(2))

=((Sα(a(1))a(2)(1))(1) ⊗ (Sα(a(1))a(2)(1))(2)(1) ⊗ (Sα(a(1))a(2)(1))(2)(2))

Φα(a(2)(2))(1(1) ⊗ 1(2)(1) ⊗ 1(2)(2))

=((Sα(a(1))a(2)(1))(1) ⊗ (Sα(a(1))a(2)(1))(2)(1) ⊗ (Sα(a(1))a(2)(1))(2)(2))Φα(a(2)(2))

=(1(1) ⊗ 1(2)(1) ⊗ 1(2)(2))Φα(a)

=Φα(a),
and

(a(1)(1)(1) ⊗ a(1)(1)(2)(1) ⊗ a(1)(1)(2)(2))Φα(a(1)(2))(Sα(a(2))(1) ⊗ Sα(a(2))(2)(1) ⊗ Sα(a(2))(2)(2))

=(a(1)(1)(1) ⊗ a(1)(1)(2)(1) ⊗ a(1)(1)(2)(2))(Sα(a(1)(2)(1))(1)a(1)(2)(2)(1)(1)(1)a(1)(2)(2)(2)(1)
⊗ Sα(a(1)(2)(1))(2)(1)a(1)(2)(2)(1)(1)(2)a(1)(2)(2)(2)(2)(1) ⊗ Sα(a(1)(2)(1))(2)(2)a(1)(2)(2)(1)(2)a(1)(2)(2)(2)(2)(2))

(Sα(a(2))(1) ⊗ Sα(a(2))(2)(1) ⊗ Sα(a(2))(2)(2))

=a(1)(1)(1)Sα(a(1)(2)(1))(1)a(1)(2)(2)(1)(1)(1)a(1)(2)(2)(2)(1)Sα(a(2))(1)
⊗ a(1)(1)(2)(1)Sα(a(1)(2)(1))(2)(1)a(1)(2)(2)(1)(1)(2)a(1)(2)(2)(2)(2)(1)Sα(a(2))(2)(1)
⊗ a(1)(1)(2)(2)Sα(a(1)(2)(1))(2)(2)a(1)(2)(2)(1)(2)a(1)(2)(2)(2)(2)(2)Sα(a(2))(2)(2)

=(a(1)(1)Sα(a(1)(2)(1)))(1)a(1)(2)(2)(1)(1)(1)(a(1)(2)(2)(2)Sα(a(2)))(1)
⊗ (a(1)(1)Sα(a(1)(2)(1)))(2)(1)a(1)(2)(2)(1)(1)(2)(a(1)(2)(2)(2)Sα(a(2)))(2)(1)
⊗ (a(1)(1)Sα(a(1)(2)(1)))(2)(2)a(1)(2)(2)(1)(2)(a(1)(2)(2)(2)Sα(a(2)))(2)(2)

=1(1)a(1)(1)(1)(1)(a(1)(2)Sα(a(2)))(1) ⊗ 1(2)(1)a(1)(1)(1)(2)(a(1)(2)Sα(a(2)))(2)(1)
⊗ 1(2)(2)a(1)(1)(2)(a(1)(2)Sα(a(2)))(2)(2)

=a(1)(1)(1)(1)(a(1)(2)Sα(a(2)))(1) ⊗ a(1)(1)(1)(2)(a(1)(2)Sα(a(2)))(2)(1) ⊗ a(1)(1)(2)(a(1)(2)Sα(a(2)))(2)(2)
=a(1)(1)1(1) ⊗ a(1)(2)1(2)(1) ⊗ a(2)1(2)(2) = a(1)(1) ⊗ a(1)(2) ⊗ a(2).

5. Crossed Hopf Non-Coassociative π-Algebras

In this section we mainly study the notion of a crossed Hopf non-coassociative π-
algebra and give some properties of the crossing map.
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Definition 6. A Hopf non-coassociative π-algebra H = ({Hα, ∆α, εα}α∈π , m, η, S) is said to be
crossed provided it is endowed with a family ϕ = {ϕβ : Hα −→ Hβαβ−1}α,β∈π of k-linear maps
(the cocrossing) such that

Feach ϕβ : Hα −→ Hβαβ−1 is a coalgebra isomorphism, (24)

Feach ϕβ preserves the multiplication, i.e., for all α, β, γ ∈ π,

F ϕβmα,γ = mβαβ−1,βγβ−1(ϕβ ⊗ ϕβ), (25)

Feach ϕβ preserves the unit, i.e., ϕβ(1) = 1, (26)

Fϕ is multiplicative in the sense that ϕββ′ = ϕβ ϕβ′ for all β, β′ ∈ π. (27)

The following result is straightforward.

Lemma 13. Let H be a crossed Hopf non-coassociative π-algebra with cocrossing ϕ. Then

(a) ϕ1|Hα
= idHα for all α ∈ π;

(b) ϕ−1
β = ϕβ−1 for all β ∈ π;

(c) ϕ preserves the antipode, i.e., ϕβSα = Sβαβ−1 ϕβ for all α, β ∈ π;
(d) if λ = (λα)α∈π is a left (resp. right) π-integral in H and β ∈ π, then (ϕβ(λβ−1αβ))α∈π is

also a left (resp. right) π-integral on H;
(e) if g = (gα)α∈π is a π-grouplike element of H and β ∈ π, then (gβαβ−1 ϕβ)α∈π is also a

π-grouplike element of H.

Let H be a crossed Hopf non-coassociative π-algebra with cocrossing ϕ. If the antipode
of H is bijective, then the opposite (resp. coopposite) coquasigroup Hopf π-algebra to H
(see Example 2) is crossed with cocrossing given by

ϕ
op
β |H

op
α = ϕβ|Hα−1 (resp. ϕ

cop
β |H

cop
α = ϕβ|Hα)

for all α, β ∈ π.
Let H = ({Hα, mα, 1α}, ∆, ε, S, ϕ) be a crossed Hopf non-coassociative π-algebra. Simi-

lar to ([4], Section 11.6), its mirror H̄ is defined by the following procedure: set H̄α = Hα−1

as a coalgebra, m̄α,β = mβ−1α−1β,β−1(ϕβ−1 ⊗ idH
β−1 ), 1̄ = 1, S̄α = ϕαSα−1 , ϕ̄β|H̄α = ϕβ|Hα−1 .

It is also a crossed Hopf non-coassociative π-algebra.

6. Almost Cocommutative Hopf Non-Coassociative π-Algebras

The aim of this section is to discuss the definition and properties of an almost cocom-
mutative Hopf non-coassociative π-algebra and to obtain its equivalent condition.

Definition 7. A crossed Hopf non-coassociative π-algebra (H, ϕ) with a bijective antipode S is
called almost cocommutative if there exists a family R = {Rα,β ∈ Hα ⊗ Hβ}α,β∈π of invertible
elements (the R-matrix) such that, for any α, β, γ ∈ π and x ∈ Hγ,

∆cop
γ (x) · (ϕγ−1 ⊗ ϕγ−1)(Rα,β) = Rα,β · ∆γ(x), (28)

and the family R is invariant under the crossing, i.e., for any α, β, γ ∈ π,

(ϕγ ⊗ ϕγ)(Rα,β) = Rγαγ−1,γβγ−1 . (29)

Note that (H1, R1,1) is an almost cocommutative Hopf coquasigroup. It is customary

to write R(1)
α,β ⊗ R(2)

α,β for Rα,β.
Equation (28) in Definition 7 can be written equivalently as:

∆cop
γ (x) · Rα,β = (ϕγ ⊗ ϕγ)(Rα,β) · ∆γ(x),
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for any α, β, γ ∈ π and x ∈ Hγ.
It is obvious that, for any α, β, γ ∈ π,(

(ϕγ ⊗ ϕγ)(Rα,β)
)−1

= (ϕγ ⊗ ϕγ)
(

R−1
α,β

)
.

The family R−1 is therefore invariant under the crossing, i.e., for any α, β, γ ∈ π,

(ϕγ ⊗ ϕγ)
(

R−1
α,β

)
= R−1

γαγ−1,γβγ−1 .

Our first proposition generalizes the basic fact about almost cocommutative Hopf
non-coassociative π-algebras.

Note that (H1, R1,1) is an almost cocommutative Hopf coquasigroup. It is customary

to write R(1)
α,β ⊗ R(2)

α,β for Rα,β.
Our first proposition generalizes the basic fact about almost cocommutative Hopf

non-coassociative π-algebras.

Proposition 3. Let H be a crossed Hopf non-coassociative π-algebra, and V, W left π-modules over
H, then V ⊗W = {Vα ⊗Wα}α∈π is also a left π-module over H. If H is almost cocommutative,
then V ⊗W ∼= W ⊗V as left π-modules over H.

Proof. Similar as in the Hopf coquasigroup case, we define

h · (v⊗ w) = h(1) · v⊗ h(2) · w

for all h ∈ Hα and v ∈ Vβ, w ∈ Wβ. It is easy to see that V ⊗W is a left π-module over H.
If H is almost cocommutative with R ∈ H ⊗ H. Then for all v ∈ Vα, w ∈Wα, define

cR1,1
Vα ,Wα

: Vα ⊗Wβ →Wα ⊗Vα, cR1,1
Vα ,Wα

(v⊗ w) = R(2)
1,1 w⊗ R(1)

1,1 v

By Equation (28), cR1,1
Vα ,Wα

is an isomorphism with inverse given by

(
cR1,1

Vα ,Wα

)−1
: Wα ⊗Vα → Vα ⊗Wα,

(
cR1,1

Vα ,Wα

)−1
(w⊗ v) = U(1)

1,1 v⊗U(2)
1,1 w

where R−1
1,1 = U1,1 = U(1)

1,1 ⊗U(2)
1,1 .

Recall from Theorem 4 that if H be cocommutative, then S2 = idH . This fact can also
be generalized.

Proposition 4. Let H be an almost cocommutative Hopf non-coassociative π-algebra. Then
S2 = {Sα−1 ◦ Sα}α∈π is an inner automorphism of H. More precisely, let uβ−1 = Sβ

(
R(2)

1,β

)
R(1)

1,β,

where R1,β = R(1)
1,β ⊗ R(2)

1,β. Then, we have

(1) uα is invertible, Sα−1 ◦Sα(h) = uαhu−1
α = (Sα(uα))

−1hSα(uα), Sα ◦Sα−1(h) = uαhu−1
α =

(Sα(uα))
−1hSα(uα) and S1 ◦ S1(h) = uαhu−1

α = (Sα(uα))
−1hSα(uα);

(2) uαSα(uα) is relatively central for Hα ∪ H1 ∪ Hα−1 ;
(3) ϕβ(uα) = uβαβ−1 .

Proof. We first show that uαh = S1 ◦ S1(h)uα, for all h ∈ H1. Since H be almost cocommu-
tative, we have

h(2) ⊗ R(1)
1,α−1 h(1)(1) ⊗ R(2)

1,α−1 h(1)(2) = h(2) ⊗ h(1)(2)R
(1)
1,α−1 ⊗ h(1)(1)R

(2)
1,α−1 ,
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i.e.,
h(2) ⊗ R(2)

1,α−1 h(1)(2) ⊗ R(1)
1,α−1 h(1)(1) = h(2) ⊗ h(1)(1)R

(2)
1,α−1 ⊗ h(1)(2)R

(1)
1,α−1 .

Thus

S1 ◦ S1

(
h(2)

)
Sα−1

(
R(2)

1,α−1 h(1)(2)
)

R(1)
1,α−1 h(1)(1) = S1 ◦ S1

(
h(2)

)
Sα−1

(
h(1)(1)R

(2)
1,α−1

)
h(1)(2)R

(1)
1,α−1 .

Since S is antimultiplicative, hence

S1 ◦ S1

(
h(2)

)
S1

(
h(1)(2)

)
Sα−1

(
R(2)

1,α−1

)
R(1)

1,α−1 h(1)(1)

=S1 ◦ S1

(
h(2)

)
Sα−1

(
R(2)

1,α−1

)
S1

(
h(1)(1)

)
h(1)(2)R

(1)
1,α−1 ,

i.e.,
S1

(
h(1)(2)S1

(
h(2)

))
uαh(1)(1) = S1 ◦ S1(h)uα.

Following the axiom (16) of Hopf non-coassociative π-algebra, we have

uαh = S1 ◦ S1(h)uα, for all h ∈ H1. (30)

The following two equalities can be verified in a similar way.

uαh = Sα−1 ◦ Sα(h)uα, for all h ∈ Hα. (31)

uαh = Sα ◦ Sα−1(h)uα, for all h ∈ Hα−1 . (32)

We next show that uα is invertible. Write R−1
1,α−1 = U1,α = U(1)

1,α ⊗U(2)
1,α . Applying m1,1 ◦ σH1,H1 ◦

(idH1 ⊗ S1) to both sides of R(1)
1,α−1U(1)

1,α ⊗ R(2)
1,α−1U(2)

1,α = 1⊗ 1 yields Sα

(
U(2)

1,α

)
uαU(1)

1,α = 1 from

which Sα

(
U(2)

1,α

)
S1 ◦ S1

(
U(1)

1,α

)
uα = 1 follows by Equation (30). Observe that we have not

used the fact that S is bijective at this point. Since S is bijective we can use Equation (32) to
calculate 1 = Sα

(
U(2)

1,α

)
uαU(1)

1,α = Sα ◦ Sα−1 ◦ S−1
α−1

(
U(2)

1,α

)
uαU(1)

1,α = uαS−1
α−1

(
U(2)

1,α

)
U(1)

1,α . We
have shown that uα has a left inverse and a right inverse. uα is therefore invertible. By
Equations (30)–(32), the three equations below can be therefore deduced:

S1 ◦ S1(h) = uαhu−1
α , for all h ∈ H1. (33)

Sα−1 ◦ Sα(h) = uαhu−1
α , for all h ∈ Hα. (34)

Sα ◦ Sα−1(h) = uαhu−1
α , for all h ∈ Hα−1 . (35)

Applying S1 to Equation (33) and replacing h by S−1
1 (h) yields the formula S1 ◦ S1(h) =

(Sα(uα))
−1hSα(uα).

Applying Sα to Equation (34) and replacing h by S−1
α (h) gives rise to the formula

Sα ◦ Sα−1(h) = (Sα(uα))
−1hSα(uα).

Applying Sα−1 to Equation (35) and replacing h by S−1
α−1(h) gives birth to the formula

Sα−1 ◦ Sα(h) = (Sα(uα))
−1hSα(uα).

To check that uαSα(uα) is relatively central for Hα, we will prove that for all g ∈ Hα,
guαSα(uα) = uαSα(uα)g.

Let h = Sα(uα)gSα−1
(
u−1

α

)
, then

Sα−1 ◦ Sα(h) = uαhu−1
α = uαSα(uα)gSα−1

(
u−1

α

)
u−1

α

and

Sα−1 ◦ Sα(h) = (Sα(uα))
−1hSα(uα) = (Sα(uα))

−1Sα(uα)gSα−1

(
u−1

α

)
Sα(uα) = g.
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So
g = uαSα(uα)gSα−1

(
u−1

α

)
u−1

α

i.e., guαSα(uα) = uαSα(uα)g for all g ∈ Hα.
To check that uαSα(uα) is relatively central for H1, we will prove that for all g ∈ H1,

guαSα(uα) = uαSα(uα)g.
Let h = Sα(uα)gSα−1

(
u−1

α

)
, then

S1 ◦ S1(h) = uαhu−1
α = uαSα(uα)gSα−1

(
u−1

α

)
u−1

α

and

S1 ◦ S1(h) = (Sα(uα))
−1hSα(uα) = (Sα(uα))

−1Sα(uα)gSα−1

(
u−1

α

)
Sα(uα) = g.

So
g = uαSα(uα)gSα−1

(
u−1

α

)
u−1

α

i.e., guαSα(uα) = uαSα(uα)g for all g ∈ H1.
To check that uαSα(uα) is relatively central for Hα−1 , we will prove that for all g ∈ Hα−1 ,

guαSα(uα) = uαSα(uα)g.
Let h = Sα(uα)gSα−1

(
u−1

α

)
, then

Sα ◦ Sα−1(h) = uαhu−1
α = uαSα(uα)gSα−1

(
u−1

α

)
u−1

α

and

Sα ◦ Sα−1(h) = (Sα(uα))
−1hSα(uα) = (Sα(uα))

−1Sα(uα)gSα−1

(
u−1

α

)
Sα(uα) = g.

So
g = uαSα(uα)gSα−1

(
u−1

α

)
u−1

α

i.e., guαSα(uα) = uαSα(uα)g for all g ∈ Hα−1 .

ϕβ(uα) = ϕβ

(
Sα−1

(
R(2)

1,α−1

)
R(1)

1,α−1

)
= ϕβ

(
Sα−1

(
R(2)

1,α−1

))
ϕβ

(
R(1)

1,α−1

)
= Sβα−1β−1

(
ϕβ

(
R(2)

1,α−1

))
ϕβ

(
R(1)

1,α−1

)
= Sβα−1β−1

(
R(2)

1,βα−1β−1

)
R(1)

1,βα−1β−1 = uβαβ−1 .

This completes the proof.

Corollary 8.

(1) Sα−1 ◦ Sα(uα) = uα;
(2) Sα ◦ Sα−1(u−1

α ) = u−1
α ;

(3) Sα(uα) = uαSα(uα)u−1
α . In particular, uα and Sα(uα) commute;

(4) Sα−1(u−1
α ) = uαSα−1(u−1

α )u−1
α . In particular, uα and Sα−1(u−1

α ) commute;
(5) ϕβ(u−1

α ) = u−1
βαβ−1 .

Proof. Part (1) is straightforward from Proposition 4. Apropos of part (2), we calculate as
follows:

Sα−1 ◦ Sα(uα)Sα ◦ Sα−1(u−1
α ) = S1 ◦ S1(uαu−1

α ) = S1 ◦ S1(1) = 1,

and also
Sα ◦ Sα−1(u−1

α )Sα−1 ◦ Sα(uα) = S1 ◦ S1(u−1
α uα) = S1 ◦ S1(1) = 1.

Thus Sα−1 ◦ Sα(uα) and Sα ◦ Sα−1(u−1
α ) are inverses, from which Sα ◦ Sα−1(u−1

α ) = u−1
α .
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To show part (3), we use part (1) and Proposition 4 to calculate

Sα(uα) = Sα ◦ Sα−1 ◦ Sα(uα) = uαSα(uα)u−1
α ,

whereby uα and Sα(uα) commute.
To establish part (4), we use part (3) to make the following calculation:

Sα−1(u−1
α ) = (Sα(uα))

−1 =
(

uαSα(uα)u−1
α

)−1
= uα(Sα(uα))

−1u−1
α = uαSα−1(u−1

α )u−1
α ,

whereby uα and Sα−1(u−1
α ) commute.

It remains to check part (5). Observe that

ϕβ(u−1
α )ϕβ(uα) = ϕβ(u−1

α uα) = ϕβ(1) = 1

and also that
ϕβ(uα)ϕβ(u−1

α ) = ϕβ(uαu−1
α ) = ϕβ(1) = 1.

Thus ϕβ(uα) and ϕβ(u−1
α ) are inverses.

It follows from Proposition 4 that

ϕβ(u−1
α ) =

(
ϕβ(uα)

)−1
= u−1

βαβ−1 .

Corollary 9. Sβ−1 ◦ Sβ(h) = uαhϕβ−1(u−1
α ) = ϕβ

(
(Sα(uα))−1)hSα(uα).

Proof. We first show that uαh = Sβ−1 ◦ Sβ(h)ϕβ−1(uα), for all h ∈ Hβ. Since H is almost
cocommutative, we have

h(2) ⊗ R(1)
1,α−1 h(1)(1) ⊗ R(2)

1,α−1 h(1)(2) = h(2) ⊗ h(1)(2)ϕβ−1(R(1)
1,α−1)⊗ h(1)(1)ϕβ−1(R(2)

1,α−1),

i.e.,

h(2) ⊗ R(2)
1,α−1 h(1)(2) ⊗ R(1)

1,α−1 h(1)(1) = h(2) ⊗ h(1)(1)R
(2)
1,β−1α−1β

⊗ h(1)(2)R
(1)
1,β−1α−1β

.

Thus

Sβ−1 ◦ Sβ

(
h(2)

)
Sα−1β

(
R(2)

1,α−1 h(1)(2)
)

R(1)
1,α−1 h(1)(1)

= Sβ−1 ◦ Sβ

(
h(2)

)
Sα−1β

(
h(1)(1)R

(2)
1,β−1α−1β

)
h(1)(2)R

(1)
1,β−1α−1β

.

Using that S is antimultiplicative we have

Sβ−1 ◦ Sβ

(
h(2)

)
Sβ

(
h(1)(2)

)
Sα−1

(
R(2)

1,α−1

)
R(1)

1,α−1 h(1)(1)

=Sβ−1 ◦ Sβ

(
h(2)

)
Sβ−1α−1β

(
R(2)

1,β−1α−1β

)
Sβ

(
h(1)(1)

)
h(1)(2)R

(1)
1,β−1α−1β

i.e.,
S1

(
h(1)(2)Sβ

(
h(2)

))
uαh(1)(1) = Sβ−1 ◦ Sβ(h)uβ−1αβ.

Following the axiom (16) of coquasigroup Hopf π-algebra, we have

uαh = Sβ−1 ◦ Sβ(h)uβ−1αβ, for all h ∈ Hβ.

It follows that

Sβ−1 ◦ Sβ(h) = uαhu−1
β−1αβ

= uαh
(

ϕβ−1(uα)
)−1

= uαhϕβ−1(u−1
α ), for all h ∈ Hβ.
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Applying Sβ to this expression and replacing h by S−1
β (h) yields the following calcula-

tion:

Sβ◦Sβ−1(h) =
(

Sβ−1αβ(uβ−1αβ)
)−1

hSα(uα) =
(

Sβ−1αβ(ϕβ−1(uα))
)−1

hSα(uα)

=
(

ϕβ−1(Sα(uα))
)−1

hSα(uα) = ϕβ−1

(
(Sα(uα))

−1
)

hSα(uα),

or equivalently, Sβ−1 ◦ Sβ(h) = ϕβ

(
(Sα(uα))−1)hSα(uα).

Corollary 10. For any α ∈ π, gϕβ−1(uα)Sα(uα) = uα ϕβ(Sα(uα))g for all g ∈ Hβ. In particular,
u1S1(u1) is a central element of H.

Proof. Let h = ϕβ(Sα(uα))gSα−1
(
u−1

α

)
, then

Sβ−1 ◦ Sβ(h) = uαhϕβ−1

(
u−1

α

)
= uα ϕβ(Sα(uα))gSα−1

(
u−1

α

)
ϕβ−1

(
u−1

α

)
and

Sβ−1 ◦ Sβ(h) =ϕβ

(
(Sα(uα))

−1
)

hSα(uα)

=ϕβ

(
(Sα(uα))

−1
)

ϕβ(Sα(uα))gSα−1

(
u−1

α

)
Sα(uα)

=ϕβ

(
(Sα(uα))

−1Sα(uα)
)

gS1

(
uαu−1

α

)
= ϕβ(1)gS1(1) = g.

So
g = uα ϕβ(Sα(uα))gSα−1

(
u−1

α

)
ϕβ−1

(
u−1

α

)
i.e., gϕβ−1(uα)Sα(uα) = uα ϕβ(Sα(uα))g for all g ∈ Hβ.

It is well-known that the two equivalent conditions for a Hopf coquasigroup to be
almost cocommutative have been obtained in [17]. Next in a similar way we will prove one
equivalent condition for a Hopf non-coassociative π-algebra to be almost cocommutative.

Set Hα = Hα−1 , mα,β = mop
α−1,β−1 = mβ−1,α−1 ◦ σH

α−1 ,H
β−1 , ∆α = ∆cop

α−1 , εα = εα−1 and

Sα = Sα−1 . Recall from the statement (3) in Example 2 that

H =
(
{Hα}α∈π , m = {mα,β}α,β∈π , 1, ∆ = {∆α}α∈π , εα, S = {Sα}α∈π

)
is again a Hopf non-coassociative π-algebra where we write mα,β(a⊗ b) = a · b = ba.

We can now define π-module actions of H = {Hα}α∈π = {Hα−1}α∈π on H∗ by

(h ⇀ p)(g) = p(g · h) and (q ↼ h)(g) = q(h · g)

for all g ∈ Hα−1 = Hα, h ∈ Hβ−1 = Hβ and p ∈ H∗βα, q ∈ H∗αβ.
Fix γ ∈ π, and define π-module actions of H on {Homk(H∗α , Hαγ)}α∈π by

(h
γ−→ f )(p) = f

(
h(1) ⇀ p

)
· h(2) and ( f

γ←− h)(q) = ϕγ−1

(
h(1) · ϕγ ◦ f

(
q ↼ h(2)

))
for all h ∈ Hβ, p ∈ H∗βα, q ∈ H∗αβ and f ∈ Homk(H∗α , Hαγ).

It is easy to check that

h ⇀ (p ↼ g) = (h ⇀ p) ↼ g

whereby
h

γ−→ ( f
γ←− g) = (h

γ−→ f )
γ←− g

for all p ∈ H∗α and f ∈ Homk(H∗α , Hαγ).
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Therefore, we can define

h
γ−⇁ f = h(1)

γ−→ f
γ←− Sβ

(
h(2)

)
∈ Homk

(
H∗

βαβ−1 , Hβαβ−1γ

)
for all h ∈ Hβ and f ∈ Homk(H∗α , Hαγ). It is obvious that

g
γ−⇁ (h

γ−⇁ f ) = (gh)
γ−⇁ f and 1

γ−⇁ f = f .

Next we will prove that there is a close relationship between the π-module actions
γ−→ and

γ←− of H on {Homk(H∗α , Hαγ)}α∈π .

Lemma 14. We have h
γ−→ f =

(
h(1)

γ−⇁ f
)

γ←− h(2), for all h ∈ Hβ and f ∈ Homk(H∗α , Hαγ).

Proof. Let h ∈ Hβ and f ∈ Homk(H∗α , Hαγ), then(
h(1)

γ−⇁ f
)

γ←− h(2) =
(

h(1)(1)
γ−→ f

γ←− Sβ

(
h(1)(2)

))
γ←− h(2)

=
(

h(1)(1)
γ−→ f

)
γ←−
(

Sβ

(
h(1)(2)

)
h(2)

)
= h

γ−→ f
γ←− 1 = h

γ−→ f .

The third equality follows from the axioms of a coquasigroup Hopf π-algebra.

Now, we give an equivalent condition for a Hopf non-coassociative π-algebra to be
almost cocommutative, provided the family R is invariant under the crossing.

Proposition 5. Let H be a Hopf non-coassociative π-algebra and R = {Rα,β = R(1)
α,β ⊗ R(2)

α,β ∈

Hα ⊗ Hβ}α,β∈π . Define f ∈ Homk(H∗α , Hαγ) by f (p) = p
(

R(2)
γα,α

)
ϕγ−1

(
R(1)

γα,α

)
, ∀p ∈ H∗α .

Give {Homk
(

H∗α , Hβ

)
}α∈π the π-module structures over H described above. Then the following

are equivalent:

(1) for all α, β, γ ∈ π and h ∈ Hγ, we have

h(2)ϕγ−1

(
R(1)

α,β

)
⊗ h(1)ϕγ−1

(
R(2)

α,β

)
= R(1)

α,βh(1) ⊗ R(2)
α,βh(2);

(2) for all h ∈ Hβ and f ∈ Homk(H∗α , Hαγ), we have

( f
γ←− h) = ϕγ−1 ◦ (h −→

γ
f̃ ),

where −→
γ

is formally similar to the π-module action
γ−→ and f̃ is an associated function defined

by f̃ (p) = p
(

ϕβ−1

(
R(2)

γα,α

))
ϕβ−1

(
R(1)

γα,α

)
, for any p ∈ H∗

β−1αβ
.

Proof. (1)⇒ (2) For all h ∈ Hβ, p ∈ H∗αβ and f ∈ Homk(H∗α , Hαγ),

( f
γ←− h)(p) = ϕγ−1

(
h(1) · ϕγ ◦ f

(
p ↼ h(2)

))
= ϕγ−1

(
h(1) · ϕγ

((
p ↼ h(2)

)(
R(2)

γα,α

)
ϕγ−1

(
R(1)

γα,α

)))
= ϕγ−1

(
h(1) · ϕγ

(
p
(

h(2) · R
(2)
γα,α

)
ϕγ−1

(
R(1)

γα,α

)))
= p

(
h(2) · R

(2)
γα,α

)
ϕγ−1

(
h(1) · ϕγ

(
ϕγ−1

(
R(1)

γα,α

)))
= p

(
h(2) · R

(2)
γα,α

)
ϕγ−1

(
h(1) · R

(1)
γα,α

)
= p

(
R(2)

γα,αh(2)
)

ϕγ−1

(
R(1)

γα,αh(1)
)

.
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Since h(2)ϕβ−1

(
R(1)

γα,α

)
⊗ h(1)ϕβ−1

(
R(2)

γα,α

)
= R(1)

γα,αh(1) ⊗ R(2)
γα,αh(2), thus

p
(

R(2)
γα,αh(2)

)
ϕγ−1

(
R(1)

γα,αh(1)
)

=p
(

h(1)ϕβ−1

(
R(2)

γα,α

))
ϕγ−1

(
h(2)ϕβ−1

(
R(1)

γα,α

))
.

It follows that

( f
γ←− h)(p) = p

(
h(1)ϕβ−1

(
R(2)

γα,α

))
ϕγ−1

(
h(2)ϕβ−1

(
R(1)

γα,α

))
= p

(
ϕβ−1

(
R(2)

γα,α

)
· h(1)

)
ϕγ−1

(
ϕβ−1

(
R(1)

γα,α

)
· h(2)

)
= ϕγ−1

(
p
(

ϕβ−1

(
R(2)

γα,α

)
· h(1)

)
ϕβ−1

(
R(1)

γα,α

)
· h(2)

)
= ϕγ−1

((
h(1) ⇀ p

)(
ϕβ−1

(
R(2)

γα,α

))
ϕβ−1

(
R(1)

γα,α

)
· h(2)

)
= ϕγ−1

(
f̃
(

h(1) ⇀ p
)
· h(2)

)
= ϕγ−1 ◦ (h −→

γ
f̃ )(p),

for all h ∈ Hβ, p ∈ H∗αβ and f̃ ∈ Homk
(

H∗
β−1αβ

, Hβ−1γαβ

)
.

(2)⇒ (1) For all h ∈ Hβ, p ∈ H∗αβ and f ∈ Homk(H∗α , Hαγ), we have

( f
γ←− h)(p) = ϕγ−1 ◦ (h −→

γ
f̃ )(p).

Thus

p
(

R(2)
γα,αh(2)

)
ϕγ−1

(
R(1)

γα,αh(1)
)
= p

(
h(1)ϕβ−1

(
R(2)

γα,α

))
ϕγ−1

(
h(2)ϕβ−1

(
R(1)

γα,α

))
,

i.e.,

(p⊗ ϕγ−1)
(

R(2)
γα,αh(2) ⊗ R(1)

γα,αh(1)
)
= (p⊗ ϕγ−1)

(
h(1)ϕβ−1

(
R(2)

γα,α

)
⊗ h(2)ϕβ−1

(
R(1)

γα,α

))
.

Then we have

R(2)
γα,αh(2) ⊗ R(1)

γα,αh(1) = h(1)ϕβ−1

(
R(2)

γα,α

)
⊗ h(2)ϕβ−1

(
R(1)

γα,α

)
This completes the proof.

The following corollary is a direct conclusion.

Corollary 11. Let H be an almost cocommutative Hopf non-coassociative π-algebra with an

invertible antipode S. Then h 1−⇁ f = ε1(h) f , for all h ∈ H1.

7. Quasitriangular Hopf Non-Coassociative π-Algebras

In the current section, we will introduce and discuss the definition of a quasitriangular
Hopf non-coassociative π-algebra and study its main properties. We construct a new Tu-
raev’s braided monoidal category Repπ(H) over a quasitriangular Hopf non-coassociative
π-algebra H.
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Definition 8. A quasitriangular Hopf non-coassociative π-algebra is a crossed Hopf non-coassociative
π-algebra (H, ϕ) with a familyR = {Rα,β ∈ Hα ⊗ Hβ}α,β∈π of elements (the R-matrix) satisfying
Equations (28) and (29) such that, for any α, β, γ ∈ π,

(idHαβ
⊗ ∆γ)(Rαβ,γ) = (Rα,γ)13 · (Rβ,γ)12, (36)

(∆α ⊗ idHβγ
)(Rα,βγ) = (Rα,β)13 · (Rα,γ)23, (37)

(εα ⊗ idH1)Rα,1 = 1, (38)

(idH1 ⊗ εα)R1,α = 1 (39)

where, for k-spaces P, Q and r = Σj pj ⊗ qj ∈ P ⊗ Q, we set r12 = r ⊗ 1 ∈ P ⊗ Q ⊗ H1,
r23 = 1⊗ r ∈ H1 ⊗ P⊗Q and r13 = Σj pj ⊗ 1⊗ qj ∈ P⊗ H1 ⊗Q.

Note thatR1,1 is a (classical) R-matrix for the Hopf coquasigroup H1.
We find that a quasitriangular Hopf non-coassociative π-algebra also constructs a

solution to the generalized quantum Yang–Baxter equation and a much stronger property
of its antipode holds which are similar as a quasitriangular Hopf coquasigroup in [23].

Example 3. Let H be a quasitriangular Hopf non-coassociative π-algebra with R-matrix R =
{Rα,β}α,β∈π .

(1) We can consider the coopposite crossed Hopf non-coassociative π-algebra Hop to H . It is
quasitriangular by settingRop

α,β = (Sα ⊗ idH
β−1 )(Rα,β−1).

(2) Consider again the coopposite crossed Hopf non-coassociative π-algebra Hop to H . It is
quasitriangular by settingRop

α,β = σβ−1,α−1(Rβ−1,α−1).

Lemma 15. If (H,R) is quasitriangular, then the following additional properties hold:

(1)
(

1⊗ (εα ⊗ idHβ
)Rα,β

)
· Rα,γ = Rα,βγ;

(2) Rα,β ·
(

1⊗ (εα ⊗ idHγ)Rα,γ

)
= Rα,βγ;

(3) ((idHα ⊗ εγ)Rα,γ ⊗ 1) · Rβ,γ = Rαβ,γ;

(4) Rα,γ ·
(
(idHβ

⊗ εγ)Rβ,γ ⊗ 1
)
= Rαβ,γ.

Proof. We only need to show part (1) since the proof of other parts is similar. Applying εα⊗
idHα ⊗ idHβγ

to both sides of Equation (37), we obtain Rα,βγ = (εα ⊗ idHα ⊗ idHβγ
)(∆α ⊗

idHβγ
)(Rα,βγ) = (εα ⊗ idHα ⊗ idHβγ

)
(
(Rα,β)13 · (Rα,γ)23

)
whence

(
1⊗ (εα ⊗ idHβ

)Rα,β

)
·

Rα,γ = Rα,βγ.

Lemma 16. Let (H,R) be a quasitriangular Hopf non-coassociative π-algebra, and writeRα,β =

R(1)
α,β ⊗R

(2)
α,β. Then, for any α ∈ π, Rα,1 is invertible. More precisely, we have R−1

α,1 = (Sα ⊗
idH1)Rα,1.

Proof. Using Equation (38) and applying (mα−1,α⊗ idH1) ◦ (Sα⊗ idHα ⊗ idH1) and (mα,α−1 ⊗
idH1) ◦ (idHα ⊗ Sα ⊗ idH1) to both sides of Equation (37), we obtain

1⊗ 1 = 1εα

(
R(1)

α,1

)
⊗R(2)

α,1 = Sα

(
R(1)

α,1

)
R̂(1)

α,1 ⊗R
(2)
α,1R̂

(2)
α,1

and
1⊗ 1 = 1εα

(
R(1)

α,1

)
⊗R(2)

α,1 = R(1)
α,1Sα

(
R̂(1)

α,1

)
⊗R(2)

α,1R̂
(2)
α,1

where R̂α,1 = Rα,1. ThusRα,1 and (Sα ⊗ idH1)Rα,1 are inverses.
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Theorem 10. Let (H,R) be a quasitriangular Hopf non-coassociative π-algebra, and writeRα,β =

R(1)
α,β ⊗R

(2)
α,β. ThenR is invertible andR−1

α,β−1 = (Sα ⊗ idHβ
)Rα,β.

Proof. Applying (mα−1,α ⊗ idHβ
) ◦ (Sα ⊗ idHα ⊗ idHβ

) to both sides of Equation (37) yields:

1⊗ εα(R(1)
α,β)R

(2)
α,β = Sα

(
R(1)

α,β

)
R(1)

α,1 ⊗R
(2)
α,βR

(2)
α,1 ,

or equivalently,
1⊗ (εα ⊗ idHβ

)Rα,β = (Sα ⊗ idHβ
)
(
Rα,β

)
· Rα,1.

Multiplying both sides on the left byRα,β−1 , by using Lemma 15, we obtain

Rα,1 = Rα,β−1 · (Sα ⊗ idHβ
)
(
Rα,β

)
· Rα,1.

Hence,Rα,β−1 · (Sα ⊗ idHβ
)
(
Rα,β

)
= 1 follows by the invertiblity ofRα,1.

Applying (mα,α−1 ⊗ idHβ
) ◦ (idHα ⊗ Sα ⊗ idHβ

) to both sides of Equation (37) yields:

1⊗ εα(R(1)
α,β)R

(2)
α,β = R(1)

α,1Sα

(
R(1)

α,β

)
⊗R(2)

α,1R
(2)
α,β,

or equivalently,
1⊗ (εα ⊗ idHβ

)Rα,β = Rα,1 · (Sα ⊗ idHβ
)
(
Rα,β

)
.

Multiplying both sides on the right byRα,β−1 , by using Lemma 15, we obtain

Rα,1 = Rα,1 · (Sα ⊗ idHβ
)
(
Rα,β

)
· Rα,β−1 .

Hence, (Sα ⊗ idHβ
)
(
Rα,β

)
· Rα,β−1 = 1 follows by the invertiblity ofRα,1.

ThereforeRα,β−1 is invertible andR−1
α,β−1 = (Sα ⊗ idHβ

)
(
Rα,β

)
.

Theorem 11. If (H,R) is quasitriangular, then the following additional properties hold:

(1) (Sβ ⊗ Sγ)Rβ,γ = Rβ−1,γ−1 ;
(2) R1,α =

(
idH1 ⊗ Sα−1

)
R−1

1,α ;

(3) Rα−1,β =
(

idH
α−1 ⊗ Sβ−1

)
R−1

α,β;

(4) R satisfies the generalized quantum Yang–Baxter equation:

(Rδ,λ)12(Rα,β)13(Rα,γ)23 = (Rα,β)23(Rα,γ)13((ϕα−1 ⊗ ϕα−1)Rδ,λ)12.

Proof. We first establish part (1). Using Lemma 15 and Theorem 10, we apply (Sαβ ⊗
idH1) ◦ (idHαβ

⊗mγ−1,γ) ◦ (idHαβ
⊗ Sγ ⊗ idHγ) to both sides of Equation (36) to obtain

(Sαβ ⊗ S1)
(
Rα,γ · R−1

β−1,γ

)
= (Sαβ ⊗ S1)

(
R(1)

αβ,γεγ

(
R(2)

αβ,γ

)
⊗ 1
)

=Sαβ

(
R(1)

αβ,γεγ

(
R(2)

αβ,γ

))
⊗ 1 = Sαβ

(
R(1)

αβ,γ

)
⊗ Sγ

(
R(2)

αβ,γ(1)

)
R(2)

αβ,γ(2)

=Sβ

(
R(1)

β,γ

)
Sα

(
R(1)

α,γ

)
⊗ Sγ

(
R(2)

β,γ

)
R(2)

α,γ = (Sβ ⊗ Sγ)Rβ,γ ·
(

Sα ⊗ idHγ

)
Rα,γ

=(Sβ ⊗ Sγ)Rβ,γ · R−1
α,γ−1 ,

i.e., (Sβ ⊗ Sγ)Rβ,γ = (Sαβ ⊗ S1)
(
Rα,γ · R−1

β−1,γ

)
· Rα,γ−1 . Thus part (1) follows by setting

α = β−1.
Parts (2) and (3) follow directly from part (1) and Theorem 10.
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To show part (4), we use Equation (37) to calculate

(Rδ,λ)12(Rα,β)13(Rα,γ)23 = (Rδ,λ)12(∆α ⊗ idHβγ
)(Rα,βγ)

=Rδ,λ∆α(R(1)
α,βγ)⊗R

(2)
α,βγ = ∆cop

α (R(1)
α,βγ)(ϕα−1 ⊗ ϕα−1)Rδ,λ ⊗R

(2)
α,βγ

=(Rα,β)23(Rα,γ)13((ϕα−1 ⊗ ϕα−1)Rδ,λ)12.

ThusR satisfies the generalized quantum Yang–Baxter equation.

Proposition 6. Let (H,R) be a quasitriangular Hopf non-coassociative π-algebra. For any
α ∈ π, set uα = Sα−1

(
R(2)

1,α−1

)
R(1)

1,α−1 . Then uα is invertible, u−1
α = R(2)

1,α−1 S1 ◦ S1

(
R(1)

1,α−1

)
,

Sβ−1 ◦ Sβ(h) = uαhu−1
β−1αβ

= uαh
(

ϕβ−1(uα)
)−1

= uαh
(

ϕβ−1(u−1
α )
)

, ϕβ(uα) = uβαβ−1 and

ϕβ(u−1
α ) = u−1

βαβ−1 , for all h ∈ Hβ.

Proof. The calculations in the proof of Corollary 9 and Proposition 4 showed that uαh =

Sβ−1 ◦ Sβ(h)uβ−1αβ holds and Sα

(
U(2)

1,α

)
S1 ◦ S1

(
U(1)

1,α

)
uα = 1 where R−1

1,α−1 = U(1)
1,α ⊗U(2)

1,α

as well as ϕβ(uα) = uβαβ−1 . Let vα−1 = Sα

(
U(2)

1,α

)
S1 ◦ S1

(
U(1)

1,α

)
. Then vα−1 uα = 1 and

vα−1 = Sα

(
U(2)

1,α

)
S1 ◦ S1

(
U(1)

1,α

)
= Sα

(
R(2)

1,α

)
S1 ◦ S1 ◦ S1

(
R(1)

1,α

)
= R(2)

1,α−1 S1 ◦ S1

(
R(1)

1,α−1

)
by Theorems 10 and 11. Let hα = S1

(
U(1)

1,α

)
U(2)

1,α . Then vα−1 = Sα(hα). Now vα−1 =

Sα ◦ Sα−1(vα−1) by Theorem 11. Therefore, vα−1 = Sα ◦ Sα−1 ◦ Sα(hα). Since

Sα ◦ Sα−1◦Sα(hα)uαSα(uα) = uαSα(hα)Sα(uα) = uαSα2(uαhα)

= uαSα2(Sα−1 ◦ Sα(hα)uα) = uαSα(uα)Sα ◦ Sα−1 ◦ Sα(hα),

it follows that vα−1 and uαS(uα) commute. Consequently

uα(Sα(uα)vα−1 Sα−1(vα−1)) = ((uαSα(uα))vα−1)Sα−1(vα−1)

= (vα−1(uαSα(uα)))Sα−1(vα−1) = (vα−1 uα)(Sα(uα)Sα−1(vα−1))

= (vα−1 uα)S1(vα−1 uα) = 1S1(1) = 1.

We have shown that uα has a left inverse vα−1 and also has a right inverse. Therefore
uα is invertible. As uαh = Sβ−1 ◦ Sβ(h)uβ−1αβ and ϕβ(uα) = uβαβ−1 hold, our proof is
complete.

Definition 9. Let (H,R) be a quasitriangular Hopf non-coassociative π-algebra over k. The
Drinfel’d element of (H,R) is the element u = {uα}α∈π of Proposition 6. The quantum Casimir
element of H is the family {uαSα(uα)}α∈π of products.

Theorem 12. Let (H,R) be a quasitriangular Hopf non-coassociative π-algebra with the antipode
S. Then S is bijective; thus H is almost cocommutative.

Proof. We set Tα(h) = u−1
α Sα−1(h)uα. Using Proposition 6 we have

Tα(h(1)) · h(2)(1) ⊗ h(2)(2) = h(2)(1)Tα(h(1))⊗ h(2)(2) = h(2)(1)u
−1
α Sα−1(h(1))uα ⊗ h(2)(2)

=u−1
α Sα ◦ Sα−1(h(2)(1))Sα−1(h(1))uα ⊗ h(2)(2)

= u−1
α S1

(
h(1)Sα−1(h(2)(1))

)
uα ⊗ h(2)(2) = u−1

α S1(1)uα ⊗ h = u−1
α 1uα ⊗ h = 1⊗ h,

and similarly for h(1) · Tα(h(2)(1))⊗ h(2)(2) = 1⊗ h, h(1)(1) ⊗ Tα(h(1)(2)) · h(2) = h⊗ 1, and
h(1)(1) ⊗ h(1)(2) · Tα(h(2)) = h⊗ 1.
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This means that T = {Tα}α∈π is an antipode on Hop and hence the inverse of the
antipode S on H according to Proposition 2.

The following reconciles the original definition of quasitriangular Hopf non-coassociative
π-algebra with the one given here.

Proposition 7. Let H be a crossed Hopf non-coassociative π-algebra over k andR = {Rα,β}α,β∈π .
Then the following are equivalent:

(a) (H,R) is quasitriangular.
(b) H is almost cocommutative, whereR is invertible and satisfies Equations (36) and (37).

Proof. Part (a) implies part (b) by definition and Theorem 12. Suppose that the hypothesis
of part (b) holds. We only need to show that Equations (38) and (39) hold. Applying
εα ⊗ idHα ⊗ idH1 to both sides of Equation (37), we obtainRα,1 = (εα ⊗ idHα ⊗ idH1)(∆α ⊗
idH1)(Rα,1) = (εα ⊗ idHα ⊗ idH1)((Rα,1)13 · (Rα,1)23) whence (εα ⊗ idH1)Rα,1 = 1 since
Rα,1 is invertible. Similarly for (idH1 ⊗ εα)R1,α = 1.

What the entire preceding discussion illustrates is the following equivalent characteri-
zation for a quasitriangular Hopf non-coassociative π-algebra:

Definition 10. A quasitriangular Hopf non-coassociative π-algebra is a crossed Hopf
non-coassociative π-algebra (H, ϕ) with a family R = {Rα,β ∈ Hα ⊗ Hβ}α,β∈π of invertible
elements (the R-matrix) satisfying Equations (28), (29), (36) and (37).

Corollary 12. Let (H,R) be a quasitriangular Hopf non-coassociative π-algebra with a bijective
antipode S, then

(1) u−1
α = S−1

α−1 S−1
α

(
R(2)

1,α−1

)
R(1)

1,α−1 ;

(2) (Sα−1 ◦ Sα)2(h) = gαhg−1
α for all h ∈ Hα, where uα = Sα−1

(
R(2)

1,α−1

)
R(1)

1,α−1 and gα =

uα(Sα(uα))
−1;

(3) (Sα ◦ Sα−1)2(h) = gαhg−1
α for all h ∈ Hα−1 , where uα = Sα−1

(
R(2)

1,α−1

)
R(1)

1,α−1 and gα =

uα(Sα(uα))
−1;

(4) S4
1(h) = gαhg−1

α for all h ∈ H1, where uα = Sα−1

(
R(2)

1,α−1

)
R(1)

1,α−1 and gα = uα(Sα(uα))
−1;

(5) εα2(gα) = 1 and ϕβ(gα) = gβαβ−1 .

Proof. Apropos of part (1). WriteR−1
1,α−1 = U(1)

1,α ⊗U(2)
1,α . Consider the calculation:

uαS−1
α−1

(
U(2)

1,α

)
U(1)

1,α = Sα ◦ Sα−1

(
S−1

α−1

(
U(2)

1,α

))
uαU(1)

1,α

= Sα ◦ Sα−1

(
S−1

α−1

(
U(2)

1,α

))
Sα−1

(
R(2)

1,α−1

)
R(1)

1,α−1U(1)
1,α

= Sα

(
U(2)

1,α

)
Sα−1

(
R(2)

1,α−1

)
R(1)

1,α−1U(1)
1,α

= S1

(
R(2)

1,α−1U(2)
1,α

)
R(1)

1,α−1U(1)
1,α = 1,

from which we obtain u−1
α = S−1

α−1

(
U(2)

1,α

)
U(1)

1,α . We use Theorem 11 to obtain R1,α−1 =(
idH1 ⊗ Sα

)
R−1

1,α−1 = U(1)
1,α ⊗ Sα

(
U(2)

1,α

)
, or equivalently

(
idH1 ⊗ S−1

α

)
R1,α−1 = U(1)

1,α ⊗U(2)
1,α

by the bijectivity of S, thus leading to the formula:

u−1
α = S−1

α−1 S−1
α

(
R(2)

1,α−1

)
R(1)

1,α−1 .
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To establish part (2), observe from Proposition 4 that uα ∈ Hα is invertible and
Sα−1 ◦ Sα(h) = uαhu−1

α = (Sα(uα))
−1hSα(uα) for all h ∈ Hα, then

Sα−1 ◦ Sα ◦ Sα−1 ◦ Sα(h) =Sα−1 ◦ Sα

(
uαhu−1

α

)
=Sα−1 ◦ Sα(uα)Sα−1 ◦ Sα(h)Sα ◦ Sα−1

(
u−1

α

)
=uα(Sα(uα))

−1hSα(uα)u−1
α ,

or equivalently Sα−1 ◦ Sα ◦ Sα−1 ◦ Sα(h) = gαhg−1
α for all h ∈ Hα. Similarly for parts (3) and

(4). Part (5) follows from the calculations below:

εα2(gα) = εα2(uα(Sα(uα))
−1) = εα2

(
uαSα−1(u−1

α )
)

= εα(uα)εα

(
Sα−1(u−1

α )
)
= εα(uα)εα−1(u−1

α ) = ε1(uαu−1
α ) = ε1(1) = 1k

and

ϕβ(gα) = ϕβ(uα(Sα(uα))
−1) = ϕβ(uα)ϕβ((Sα(uα))

−1)

= ϕβ(uα)ϕβ

(
Sα−1(u−1

α )
)
= ϕβ(uα)Sβα−1β−1

(
ϕβ(u−1

α )
)

= uβαβ−1 Sβα−1β−1

(
u−1

βαβ−1

)
= uβαβ−1

(
Sβαβ−1

(
uβαβ−1

))−1
= gβαβ−1 .

Corollary 13. Sβ−1 ◦ Sβ ◦ Sβ−1 ◦ Sβ(h) = uα ϕβ

(
(Sα(uα))−1)h(ϕβ−1(uα)(Sα(uα))

−1
)−1

for

all β ∈ π and h ∈ Hβ, where uα = Sα−1

(
R(2)

1,α−1

)
R(1)

1,α−1 .

Proof. Observe from Propositon 4 and Corollary 9 that uα ∈ Hα is invertible and Sβ−1 ◦
Sβ(h) = uαhϕβ−1(u−1

α ) = ϕβ

(
(Sα(uα))−1)hSα(uα) for all h ∈ Hβ, then

Sβ−1 ◦ Sβ ◦ Sβ−1 ◦ Sβ(h) = Sβ−1 ◦ Sβ

(
uαhϕβ−1(u−1

α )
)

=Sα−1 ◦ Sα(uα)Sβ−1 ◦ Sβ(h)Sβ−1αβ ◦ Sβ−1α−1β

(
ϕβ−1(u−1

α )
)

=Sα−1 ◦ Sα(uα)Sβ−1 ◦ Sβ(h)Sβ−1αβ ◦ Sβ−1α−1β

(
u−1

β−1αβ

)
=uα ϕβ

(
(Sα(uα))

−1
)

hSα(uα)u−1
β−1αβ

=uα ϕβ

(
(Sα(uα))

−1
)

h
(

uβ−1αβ(Sα(uα))
−1
)−1

=uα ϕβ

(
(Sα(uα))

−1
)

h
(

ϕβ−1(uα)(Sα(uα))
−1
)−1

,

or equivalently Sβ−1 ◦ Sβ ◦ Sβ−1 ◦ Sβ(h) = uα ϕβ

(
(Sα(uα))−1)h(ϕβ−1(uα)(Sα(uα))

−1
)−1

for
all h ∈ Hβ.

Proposition 8. Let (H,R) be a quasitriangular Hopf non-coassociative π-algebra with antipode S
over k and let u = {uα}α∈π be the Drinfel’d element of (H,R). If the second tensor factor ofR1,1
is coassociative, then the following hold:

(a) ∆α(uα) =
(
σH1,H1(R1,1)R1,α−1

)−1
(uα ⊗ u1) = (uα ⊗ u1)

(
σH1,H1(R1,1)R1,α−1

)−1 and
εα(uα) = 1k.

(b) ∆α−1 Sα(uα) = (σH1,Hα(R1,α)R1,1)
−1(S1(u1)⊗ Sα(uα)).

(c) ∆αSα−1(u−1
α ) = σH1,Hα(R1,α)R1,1(S1(u−1

1 )⊗ Sα−1(u−1
α )).

(d) g1 = u1(S1(u1))
−1 is a group-like element of H1.
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Proof. To show part (a), we writeRα,β = R(1)
α,β⊗R

(2)
α,β. Therefore uα = Sα−1

(
R(2)

1,α−1

)
R(1)

1,α−1 .
Applying ∆1 ⊗ idH

α−1 ⊗ idH
α−1 and idH1 ⊗ idH1 ⊗ ∆α−1 to both sides of Equation (36),

respectively, we obtain

R(1)
1,α−1 (1) ⊗R

(1)
1,α−1 (2) ⊗R

(2)
1,α−1 (1) ⊗R

(2)
1,α−1 (2)

= R(1)
1,α−1 (1)R̂

(1)
1,α−1 (1) ⊗R

(1)
1,α−1 (2)R̂

(1)
1,α−1 (2) ⊗ R̂

(2)
1,α−1 ⊗R

(2)
1,α−1

= R(1)
1,α−1R̂

(1)
1,α−1 ⊗R

(1)
1,1 R̂

(1)
1,1 ⊗ R̂

(2)
1,α−1R̂

(2)
1,1 ⊗R

(2)
1,α−1R

(2)
1,1 .

Using Proposition 6 and part (1) of Theoerm 11, we calculate

∆α(uα) = ∆α(Sα−1

(
R(2)

1,α−1

)
R(1)

1,α−1) = ∆α(Sα−1

(
R(2)

1,α−1

)
)∆1(R

(1)
1,α−1)

= (Sα−1

(
R(2)

1,α−1

)
(1)
⊗ Sα−1

(
R(2)

1,α−1

)
(2)

)(R(1)
1,α−1 (1) ⊗R

(1)
1,α−1 (2))

= (Sα−1

(
R(2)

1,α−1 (2)

)
⊗ Sα−1

(
R(2)

1,α−1 (1)

)
)(R(1)

1,α−1 (1) ⊗R
(1)
1,α−1 (2))

= Sα−1

(
R(2)

1,α−1 (2)

)
R(1)

1,α−1 (1) ⊗ Sα−1

(
R(2)

1,α−1 (1)

)
R(1)

1,α−1 (2)

= Sα−1

(
R(2)

1,α−1R
(2)
1,1

)
R(1)

1,α−1R̂
(1)
1,α−1 ⊗ Sα−1

(
R̂(2)

1,α−1R̂
(2)
1,1

)
R(1)

1,1 R̂
(1)
1,1

= S1

(
R(2)

1,1

)
Sα−1

(
R(2)

1,α−1

)
R(1)

1,α−1R̂
(1)
1,α−1 ⊗ S1

(
R̂(2)

1,1

)
Sα−1

(
R̂(2)

1,α−1

)
R(1)

1,1 R̂
(1)
1,1

= S1

(
R(2)

1,1

)
uαR̂(1)

1,α−1 ⊗ S1

(
R̂(2)

1,1

)
Sα−1

(
R̂(2)

1,α−1

)
R(1)

1,1 R̂
(1)
1,1

= S1

(
R(2)

1,1

)
S1 ◦ S1

(
R̂(1)

1,α−1

)
uα ⊗ S1

(
R̂(2)

1,1

)
Sα−1

(
R̂(2)

1,α−1

)
R(1)

1,1 R̂
(1)
1,1

= S1

(
R(2)

1,1

)
S1

(
R̂(1)

1,α

)
uα ⊗ S1

(
R̂(2)

1,1

)
R̂(2)

1,αR
(1)
1,1 R̂

(1)
1,1

and thus
∆α(uα) = S1

(
R̂(1)

1,αR
(2)
1,1

)
uα ⊗ S1

(
R̂(2)

1,1

)
R̂(2)

1,αR
(1)
1,1 R̂

(1)
1,1 .

Since H is quasitriangular, S is bijective by Theorem 12. Write Rα,β = R(1)
α,β ⊗R

(2)
α,β. By

Equations (28) and (29), we have

h(2) ⊗ ∆cop
γ (h(1))(ϕγ−1 ⊗ ϕγ−1)(Rα,β) = h(2) ⊗Rα,β∆γ(h(1))

=⇒ S−1
γ−1(h(2))⊗ ∆cop

γ (h(1))Rγ−1αγ,γ−1βγ = S−1
γ−1(h(2))⊗Rα,β∆γ(h(1))

=⇒ S−1
γ−1(h(2))h(1)(2)R

(1)
γ−1αγ,γ−1βγ

⊗ h(1)(1)R
(2)
γ−1αγ,γ−1βγ

= S−1
γ−1(h(2))R

(1)
α,βh(1)(1) ⊗R

(2)
α,βh(1)(2)

=⇒ R(1)
γ−1αγ,γ−1βγ

⊗ hR(2)
γ−1αγ,γ−1βγ

= S−1
γ−1(h(2))R

(1)
α,βh(1)(1) ⊗R

(2)
α,βh(1)(2)

=⇒ R(1)
γ−1αγ,γ−1βγ

R(2)
γ−1ξγ,γ−1ζγ

⊗ hR(2)
γ−1αγ,γ−1βγ

R(1)
γ−1ξγ,γ−1ζγ

= S−1
γ−1(h(2))R

(1)
α,βh(1)(1)R

(2)
γ−1ξγ,γ−1ζγ

⊗R(2)
α,βh(1)(2)R

(1)
γ−1ξγ,γ−1ζγ

,

from which we derive the commutation relation:

R(1)
γ−1αγ,γ−1βγ

R(2)
γ−1ξγ,γ−1ζγ

⊗ hR(2)
γ−1αγ,γ−1βγ

R(1)
γ−1ξγ,γ−1ζγ

= S−1
γ−1(h(2))R

(1)
α,βR

(2)
ξ,ζ h(1)(2) ⊗R

(2)
α,βR

(1)
ξ,ζ h(1)(1).

(40)
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Applying idHαβ
⊗ ∆γ ⊗ idHγ to both sides of the equation of Equation (36) we obtain

R(1)
αβ,γ ⊗R

(2)
αβ,γ(1)(1) ⊗R

(2)
αβ,γ(1)(2) ⊗R

(2)
αβ,γ(2) =

(
R(1)

αβ,γ ⊗ ∆γR(2)
αβ,γ(1) ⊗R

(2)
αβ,γ(2)

)
=
(
R(1)

α,γR
(1)
β,γ ⊗ ∆γR(2)

β,γ ⊗R
(2)
α,γ

)
= R(1)

α,γR
(1)
β,γ ⊗R

(2)
β,γ(1) ⊗R

(2)
β,γ(2) ⊗R

(2)
α,γ

= R(1)
α,γR

(1)
β,γR

(1)
1,γ ⊗R

(2)
1,γ ⊗R

(2)
β,γ ⊗R

(2)
α,γ = R(1)

α,γR
(1)
1,γR

(1)
β,γ ⊗R

(2)
β,γ ⊗R

(2)
1,γ ⊗R

(2)
α,γ,

hence
R(1)

αβ,γ ⊗ Sγ

(
R(2)

αβ,γ

)
(1)
⊗ Sγ

(
R(2)

αβ,γ

)
(2)(1)

⊗ Sγ

(
R(2)

αβ,γ

)
(2)(2)

= R(1)
αβ,γ ⊗ Sγ

(
R(2)

αβ,γ(2)

)
⊗ Sγ

(
R(2)

αβ,γ(1)

)
(1)
⊗ Sγ

(
R(2)

αβ,γ(1)

)
(2)

= R(1)
αβ,γ ⊗ Sγ

(
R(2)

αβ,γ(2)

)
⊗ Sγ

(
R(2)

αβ,γ(1)(2)

)
⊗ Sγ

(
R(2)

αβ,γ(1)(1)

)
= R(1)

α,γR
(1)
1,γR

(1)
β,γ ⊗ Sγ

(
R(2)

α,γ

)
⊗ Sγ

(
R(2)

1,γ

)
⊗ Sγ

(
R(2)

β,γ

)
.

(41)

Applying idH1 ⊗ S1 to both sides ofR(1)
α,βSα

(
R(1)

α,β−1

)
⊗R(2)

α,βR
(2)
α,β−1 = 1⊗ 1, which follows

from Theorem 10, and using part (1) of Theorem 11, we obtain

R(1)
α,βSα

(
R(1)

α,β−1

)
⊗ S1

(
R(2)

α,βR
(2)
α,β−1

)
= 1⊗ S1(1)

=⇒ R(1)
α,βSα

(
R(1)

α,β−1

)
⊗ Sβ−1

(
R(2)

α,β−1

)
Sβ

(
R(2)

α,β

)
= 1⊗ 1

=⇒ R(1)
α,βR

(1)
α−1,β ⊗R

(2)
α−1,βSβ

(
R(2)

α,β

)
= 1⊗ 1.

(42)

Using Equations (40)–(42) as well as part (1) of Theorem 11 again, we continue our calcula-
tion of

∆α(uα) = S1

(
R(1)

1,αR
(2)
1,1

)
uα ⊗ S1

(
R̂(2)

1,1

)
R(2)

1,αR
(1)
1,1 R̂

(1)
1,1

= S1

(
S−1

1 (S1

(
R̂(2)

1,1

)
(2)

)R(1)
1,αR

(2)
1,1 S1

(
R̂(2)

1,1

)
(1)(2)

)
uα ⊗R(2)

1,αR
(1)
1,1 S1

(
R̂(2)

1,1

)
(1)(1)

R̂(1)
1,1

= S1

(
S−1

1 (S1

(
R̂(2)

1,1 (1)

)
)R(1)

1,αR
(2)
1,1 S1

(
R̂(2)

1,1 (2)

)
(2)

)
uα ⊗R(2)

1,αR
(1)
1,1 S1

(
R̂(2)

1,1 (2)

)
(1)
R̂(1)

1,1

= S1

(
S−1

1 (S1

(
R̂(2)

1,1 (1)

)
)R(1)

1,αR
(2)
1,1 S1

(
R̂(2)

1,1 (2)(1)

))
uα ⊗R(2)

1,αR
(1)
1,1 S1

(
R̂(2)

1,1 (2)(2)

)
R̂(1)

1,1

= S1

(
S−1

1 (S1

(
R̂(2)

1,1 (1)(1)

)
)R(1)

1,αR
(2)
1,1 S1

(
R̂(2)

1,1 (1)(2)

))
uα ⊗R(2)

1,αR
(1)
1,1 S1

(
R̂(2)

1,1 (2)

)
R̂(1)

1,1

= S1

(
S−1

1 (S1

( ̂̂̂
R

(2)

1,1

)
)R(1)

1,αR
(2)
1,1 S1

( ̂̂R(2)

1,1

))
uα ⊗R(2)

1,αR
(1)
1,1 S1

(
R̂(2)

1,1

)
R̂(1)

1,1
̂̂R(1)

1,1
̂̂̂
R

(1)

1,1

= S1

( ̂̂̂
R

(2)

1,1R
(1)
1,αR

(2)
1,1 S1

( ̂̂R(2)

1,1

))
uα ⊗R(2)

1,αR
(1)
1,1 S1

(
R̂(2)

1,1

)
R̂(1)

1,1
̂̂R(1)

1,1
̂̂̂
R

(1)

1,1

= S1 ◦ S1

( ̂̂R(2)

1,1

)
S1

(
R(2)

1,1

)
S1

(
R(1)

1,α

)
S1

( ̂̂̂
R

(2)

1,1

)
uα ⊗R(2)

1,αR
(1)
1,1 u1

̂̂R(1)

1,1
̂̂̂
R

(1)

1,1

= S1 ◦ S1

( ̂̂R(2)

1,1

)
S1

(
R(2)

1,1

)
S1

(
R(1)

1,α

)
S1

( ̂̂̂
R

(2)

1,1

)
uα

⊗R(2)
1,αR

(1)
1,1 S1 ◦ S(1)

( ̂̂R(1)

1,1

)
S1 ◦ S1

( ̂̂̂
R

(1)

1,1

)
u1
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= ̂̂R(2)

1,1 S1

(
R(2)

1,1

)
S1

(
R(1)

1,α

) ̂̂̂
R

(2)

1,1 uα ⊗R(2)
1,αR

(1)
1,1
̂̂R(1)

1,1 S1

( ̂̂̂
R

(1)

1,1

)
u1

= S1

(
R(1)

1,α

) ̂̂̂
R

(2)

1,1 uα ⊗R(2)
1,α S1

( ̂̂̂
R

(1)

1,1

)
u1 = R−1(1)

1,α−1 R
−1(2)
1,1 uα ⊗R−1(2)

1,α−1 S1

(
R−1(1)

1,1

)
u1

= R−1
1,α−1 σH1,H1

(
R−1

1,1

)
(uα ⊗ u1) =

(
σH1,H1(R1,1)R1,α−1

)−1
(uα ⊗ u1),

from which we also have

∆α(uα) = (uα ⊗ u1)
(
σH1,H1(R1,1)R1,α−1

)−1.

Moreover,

εα(uα) = εα(Sα−1

(
R(2)

1,α−1

)
R(1)

1,α−1) = εα(Sα−1

(
R(2)

1,α−1

)
)ε1(R

(1)
1,α−1)

= εα−1

(
R(2)

1,α−1

)
ε1(R

(1)
1,α−1) = ε1(R

(1)
1,α−1 εα−1

(
R(2)

1,α−1

)
) = ε1(1) = 1k.

We have established part (a).
To see parts (b) and (c), we deduce from part (a) that

∆α−1 Sα(uα) = σH
α−1 ,H

α−1 (Sα ⊗ Sα)∆α(uα)

= Sα(u1R
(2)
1,α S1

(
R(1)

1,1

)
)⊗ Sα(uαS1

(
R(1)

1,α

)
R(2)

1,1 )

= S1S1

(
R(1)

1,1

)
Sα(R(2)

1,α)S1(u1)⊗ S1(R
(2)
1,1 )S1S1

(
R(1)

1,α

)
Sα(uα)

= S1

(
R(1)

1,1

)
R(2)

1,α−1 S1(u1)⊗R
(2)
1,1 S1

(
R(1)

1,α−1

)
Sα(uα)

= R−1(1)
1,1 R−1(2)

1,α S1(u1)⊗R
−1(2)
1,1 R−1(1)

1,α Sα(uα)

= (R−1(1)
1,1 R−1(2)

1,α ⊗R−1(2)
1,1 R−1(1)

1,α )(S1(u1)⊗ Sα(uα))

= R−1
1,1 σH1,H

α−1 (R
−1
1,α)(S1(u1)⊗ Sα(uα))

= (σH1,Hα(R1,α)R1,1)
−1(S1(u1)⊗ Sα(uα))

and the two factors commute; thus

∆αSα−1(u−1
α ) = σH1,Hα(R1,α)R1,1(S1(u−1

1 )⊗ Sα−1(u−1
α ))

and the two factors commute.
It remains to establish part (d). Consider the following calculation:

∆1(g1) = ∆1(u1(S1(u1))
−1) = ∆1(u1)∆1((S1(u1))

−1) = ∆1(u1)∆1

(
S1(u−1

1 )
)

= (u1 ⊗ u1)
(
σH1,H1(R1,1)R1,1

)−1
σH1,H1(R1,1)R1,1(S1(u−1

1 )⊗ S1(u−1
1 ))

= (u1 ⊗ u1)(S1(u−1
1 )⊗ S1(u−1

1 )) = u1S1(u−1
1 )⊗ u1S1(u−1

1 )) = g1 ⊗ g1.

In [28], the twisting theory for quasitriangular Hopf algebras was studied by a 2-
cocycle. By using the dual of cocycle (called a 2-cocycle), multiplication alteration for
bialgebras was investigated in [29,30]. In what follows, we will introduce the definition of
2-cocycle for Hopf non-coassociative π-algebra.

Definition 11. Let (H, ϕ) be a crossed Hopf non-coassociative π-algebra. If there exists a family
R = {Rα,β ∈ Hα ⊗ Hβ}α,β∈π of invertible elements (the R-matrix) such that, the family R is
invariant under the crossing, i.e., for any α, β, γ ∈ π,

(ϕγ ⊗ ϕγ)(Rα,β) = Rγαγ−1,γβγ−1 ,
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and, for any α, β, γ, δ ∈ π,

((ϕα ⊗ ϕα)Rδ,γ)12(∆α ⊗ idHβγ
)(Rα,βγ) = (Rα,β)23

(
idHαδ

⊗ ∆γ

)
(Rαδ,γ), (43)

i.e.,

R(1)
αδα−1,αγα−1 R(1)

α,βγ(1) ⊗ R(2)
αδα−1,αγα−1 R(1)

α,βγ(2) ⊗ R(2)
α,βγ = R(1)

αδ,γ ⊗ R(1)
α,βR(2)

αδ,γ(1) ⊗ R(2)
α,βR(2)

αδ,γ(2)

Then R is called a 2-cocycle.

From Theorem 11, it is easy to see that a quasitriangular Hopf non-coassociative
π-algebra is a crossed Hopf non-coassociative π-algebra with a 2-cocycle.

Definition 12. Let H be a Hopf non-coassociative π-algebra. We say that a family of M =
{Mα}α∈π is a π-representation over H if M has a right π-module structure, it means that there
is a family

ψ = {ψα,β : Mα ⊗ Hβ −→ Mαβ}α,β∈π

of k-linear maps (the π-action), such that ψ is associative in the sense that, for any α, β, γ ∈ π,

ψαβ,γ(mα,β ⊗ idAγ
) = ψα,βγ(idAα

⊗ ψβ,γ); (44)

ψα,1(idHα ⊗ 1) = idHα . (45)

We shall associate with every Hopf non-coassociative π-algebra H = ({Hα, m, 1α}, ∆α,
ε, S) a category of π-representations Repπ(H) which has a natural structure of a π-category.

Explicitly, for any α ∈ π, by an object Mα in the category Repα(H) we mean a vector
space Mα is a right H-module with a structure:

ψα = {ψα,β : Mα ⊗ Hβ −→ Mαβ}α,β∈π .

The category Repπ(H) is the disjoint union of the categories {Repα}α∈π where Repα(H) is
the category of H-modules and H-linear homomorphisms. By Proposition 3, the tensor
product and the unit object in Repπ(H) are defined in the usual way using the comultipli-
cation ∆H and the unit 1. That is,

hα · (m⊗ n) = ∑ hα(1) ·m⊗ hα(2) · n

for any m ∈ Mβ and n ∈ Nγ.
The associativity morphisms are the standard identification isomorphisms.
Furthermore, let H = ({Hα, m, 1α}, ∆α, ε, S, ϕ, R) be a quasitriangular Hopf

π-quasialgebra. The automorphism ϕα of H defines an automorphism, Φα of Repπ(H).
If Mβ is in Rep(H)β, then Φα(M) has the same underlying vector space as M and each

x ∈ Hαβα−1 acts as multiplication by ϕ−1
α (x) ∈ Hβ. Every Hβ-homomorphism M −→ N is

mapped to itself considered as a Hαβα−1-homomorphism. It is easy to check that Repπ(H)
is a crossed π-category (see [4]).

A universal R-matrix R = {Rα,β ∈ Hα⊗Hβ}α,β∈π in H induces a braiding in Repπ(H)
as follows. For M ∈ Rep(H)α) and N ∈ Rep(H)β), the braiding

cM,N : M⊗ N −→ M N ⊗M

is the composition of multiplication by Rα,β, permutation M⊗ N −→ N ⊗M. The condi-
tions defining a universal R-matrix ensure that {cM,N}M,N is a braiding.

We now obtain
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Theorem 13. Let H be any quasitriangular Hopf non-coassociative π-algebra. Then the category
Repπ(H) of π-representations is a braided T-category.
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