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Abstract: We introduce and study a large class of coalgebras (possibly (non)coassociative) with
group-algebraic structures Hopf (non)coassociative group-algebras. Hopf (non)coassociative group-
algebras provide a unifying framework for classical Hopf algebras and Hopf group-algebras and Hopf
coquasigroups. We introduce and discuss the notion of a quasitriangular Hopf (non)coassociative
rt-algebra and show some of its prominent properties, e.g., antipode S is bijective. As an application
of our theory, we construct a new braided T-category and give a new solution to the generalized
quantum Yang-Baxter equation.

Keywords: braided T-category; quantum Yang-Baxter equation; Hopf (non)coassociative

group-algebra; quasitriangular Hopf (non)coassociative 7r-algebra
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1. Introduction

Topological quantum field theories (TQFT’s) realize topological invariants of manifolds
using ideas from quantum field theory (QFT), see [1,2]. Turaev introduced in [3] a homotopy
quantum field theory (HQFT) as a version of a TQFT for manifolds endowed with maps
into a fixed topological space and found an algebraic characterization of 2-dimensional
HQFT’s whose target space is the Eilenberg—MacLane space K(7,1) determined by a
group 7t. Furthermore, he established a 3-dimensional HQFT with target space K(7t,1)
by introducing the notion of a modular 7r-category based on a deep connection between
the theory of braided categories and invariants of knots, links and 3-manifolds (see [4]).
This connection has been essential in the construction of quantum invariants of knots and
3-manifolds from quantum groups, see [2,5].

Turaev proposed the following open problem in [4]; Can one systematically produce
interesting modular 77-categories?

Examples of such modular 7r-categories can be constructed from the so-called Hopf
1t-(co)algebras which can be regarded as a generalization of a Hopf algebra, see [6-8]. At
present, many research works have been done for Hopf 77-(co)algebras, such as Turaev’s
Hopf group-coalgebras (cf. [9]), group coalgebra Galois extensions (cf. [10]), Larson-
Sweedler theorem (cf. [11]), twisted Drinfel’d doubles (cf. [12]), double construction and
Yetter-Drinfel’d modules (cf. [13-15]). We mention that a Hopf 7r-coalgebra can be regarded
as a rt-cograded multiplier Hopf algebra, see [16].

In 2010, Klim and Majid in [17] introduced the notion of a Hopf (co)quasigroup which
is a particular case of the notion of an H-bialgebra introduced in [18]. The further research
of this mathematical object can be found in the references about many topics, such as Hopf
modules (cf. [19]), actions (cf. [20]), twisted smash products (cf. [21]), Yetter—Drinfel’'d
modules (cf. [22]), and Hopf quasicomodules (cf. [23]).

To highlight Turaev’s achievements on the modular 7r-categories, in this article we
prefer using the notion of a braided T-category (over 7r) appeared in [13] to using a modular
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rt-category [6]. We will provide a new approach to a braided T-category (over 7) based on
the notion of a quasitriangular Hopf (non)coassociative 7r-algebra.

An outline of the paper is as follows.

Section 2 provides some preliminary background needed in the paper, such as group-
algebras, group-convolution algebras, Hopf group-algebras and Turaev’s braided categories.

In Section 3, we give a new characterization of Hopf group-algebras based on the
idea from [24,25]. We mainly prove that (H, A) is a Hopf 7-algebra if and only if A is a
rt-algebra homomorphism and the right and left 7-Galois maps are bijective.

In Section 4, we introduce and study the notion of a Hopf non-coassociative rr-algebra
which is a large class of coalgebras (possibly non-coassociative) with group-algebraic struc-
tures unifying the notions of a classical Hopf algebra, a Hopf 7r-algebra and a Hopf coquasi-
group. We study its algebraic properties, such as anti-(co)multiplicativity of the antipode.

In Section 5 we mainly study the notion of a crossed Hopf non-coassociative rr-algebra
and give some properties of the crossing map. In addition, in Section 6, we discuss the
definition and properties of an almost cocommutative Hopf non-coassociative r-algebra
and obtain its equivalent characterization.

In the final section, we will introduce and discuss the definition of a quasitriangular
Hopf non-coassociative rr-algebra H and study some main properties of H. We construct a
new braided T-category Rep,(H) over H.

Throughout the paper, we let 7t be a fixed group and k be a field (although much of
what we do is valid over any commutative ring). We use the Sweedler’s notation to express
the coproduct of a coalgebra C as A(c) = Y c1 ® ¢a (cf. [26]).

We set k* = k\{0}. All algebras are supposed to be over k and unitary, but not
necessarily associative. The tensor product ® = ®y is always assumed to be over k.
If U and V are k-spaces, oy : U® V — V ® U will denote the flip map defined by
ouv(U®v) =v® u.

We use idy; for the identity map on U, although sometimes, we also write U for this
map. We use id}; forthemap id ® -+ - ®id : U®---@U — U®---®U. The identity

—_———— —— ——
n n—1 n—1
element in a quasigroup is denoted by e.

2. Preliminaries

In this section, we recall some basic notions used later, such as group-algebras, group-
convolution algebras, Hopf group-algebras and braided T-categories.

2.1. Group-Algebras

We recall the definition of a 7r-algebra, following [4]. A 7r-algebra (over k) is a family
A = {Ay}aen of k-spaces endowed with a family m = {m, g : Ay ® Ag — Auplaper of
k-linear maps (the multiplication) and a k-linear map 7 : k — A; (the unit) such that m is
associative in the sense that, for any «, 8,y € 7,

maﬁ,’y(ma,ﬁ 02 Z.dAV) = ma,ﬁ’y(idAa X mﬁ,fy)} 1)
mac,l(idA,x ®T]) :idA,X :ml,tx(77®idA,x>- (2)

Note that (A1, m1,,7) is an algebra in the usual sense of the word.
Foralla, B € 7t,h € Ay, k € Ag, we write hk = ma,ﬁ(h ® k). The associativity axiom
gives that
(hk)l = h(kl),Va, B,y € T, h € Ay, k € Ag, 1 € A,.

Set 77(1k) = 1. The unit axiom gives that hl = h = 1h,Va € 11,h € A,.

For all « € 7, the k-space A, is called the a-th component of A.

A r-algebra morphism between two 7m-algebras A and A’ (with multiplications m
and m’, respectively) is a family f = {fy : Ax — A} }acr of k-linear maps such that
fapma,p = m 5(fu ® fp) and f1(1) = 1', forall a, p € 7. The 7r-algebra isomorphism f =
{fa : Ax — Al }uer is a r-algebra morphism in which each f, is a linear isomorphism.
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Set Ay = A,1and My g = mzﬁl,ﬁ—l = Mg-1,-1°0H ,H, - Then comes a rr-algebra

_ _ P
A = {Au}uer with the same unit element 1 as in A and the multiplication given by
m

= {ma,ﬁ }tx,ﬂen-

2.2. Group-Convolution Algebra

Let A = ({Ax}, m,17)acr be a -algebra and (C, A, €) be a (not necessarily coasso-
ciative) coalgebra with comultiplication A and counit €. For any f € Homy(C, A,) and
g € Homy (C, Ag), we define their convolution product by

frg=mup(f®g)A € Homy(C, Ayp). 3)
Using Equation (3), one verifies that the k-space

Conv(C, A) = PHomy (C, Ay)

KeET

endowed with the convolution product * and the unit element €1, is called 7r-convolution
algebra, which is not necessarily a coassociative 7r-graded algebra.

In particular, for C = k, the associative 7m-graded algebra
Conv(C,A) = @ Homg (k, Ay) = @ A, is denoted by A,.
KETT KET

2.3. Hopf Group-Algebras

Recall from [3] that a Hopf group-algebra over 7 is a m-algebra H = ({H,},m =
{mup + Ho ® Hg —> Hug}tapen 1)acn, endowed with a family S = {Sy : Hy —
H, 1 }aer of k-linear maps (the antipode) such that the following conditions hold:

each (Hy, Ay, €4) is a counital coassociative coalgebra

4
with comultiplication A, and counit element &,; @
foralla,p € mm,1:k — Hyand mypg: Hy ® Hg —> Hyp )
are coalgebra homomorphisms,

foralla € 7, mtrl,a(sﬂc ®idp, )Ag = leg = m,x,a—l(idHa ® Su)Aq. (6)

Let H = ({Hy, Ax, €a }aernr, m, 1, S) be a Hopf rr-algebra. Then
Saﬁ(ab) = Sﬁ(b)Sa(a),Vtx,ﬁ € 7,a € Hy, b € Hg; (7)
Si(1) =1; ®)
Aafl Sy = JH&*l'Hafl (S,X ® S,X)Aa,Voc SV (9)
€,-154 = €4,V € TT. (10)

2.4. Braided T-Categories
Let 7t be a group. A pre-T-category ‘T (over 77) is given by the following datum:

e Atensor category 7.

e A family of sub categories {7, }xcr such that 7 is a disjoint union of this family and
that U®R YV € ﬁﬁ,foranya,ﬁ emn,U€Ty,andV € 7'ﬁ
Furthermore, 7 = {7,} satisfies the following condition:

*  Denote by aut(7) the group of the invertible strict tensor functors from 7 to itself,
a group homomorphism ¢ : 7 — aut(T) : B — @, the conjugation such that
¢p(Ta) = Tgop1 forany o, p € 7. Then we call T a crossed T-category.

We will use the left index notation in Turaev: Given g € 7 and an object V € Ty,

the functor ¢4 will be denoted by V(-) or B(-). We use the notation " (-) for ! (+). Then
we have Vidy = idyu and V(go f) = YgoVf. We remark that since the conjugation
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@ : 1 — aut(T) is a group homomorphism, forany V, W € T, we have VW (.) = V(W (.))
and'(-) = V(Y (-)) = V(Y(-)) = idr and that since, for any V € T, the functor V' (-) is strict,
wehaveV(f®g¢) =V f® Yg, for any morphism f and g in 7, and V1 = 1. In addition, we
will use 7 (U, V) for a set of morphisms (or arrows) from U to V in 7.

Recall from [13] or [6] that a braided T-category (over 7r) is a crossed T-category T
endowed with a braiding, i.e., with a family of isomorphisms

c={cuy eTUV,HV)@ V) yver

satisfying the following conditions:

for any arrow f € T, (U, U/) withae € 1, g € 7'5(V, V/), we have
("g)@ flocuy =cy o (f©Q);
. forall U,V,W € T, we have
CUsv,W = Ausvy 1y © (Cy vy ®@idy) o al_l,lVW,V o (idy @ cyw) o auy,w, (11)
CUVOW = ﬂﬂ‘l,,uwru o (iduy ® cuw) o auy 1w o (cuy @ idw) o ayy wi (12)
forany U,V € T,a € 7, pu(cyy) = Con (L), pa(V)-

3. A New Characterization of Hopf Group-Algebras

Based on the idea from [24,25], in this section we mainly show that H is a Hopf 7-
algebra if and only if A is a 7r-algebra homomorphism and the right and left r-Galois maps
both have inverses.

Proposition 1. If H is a Hopf mt-algebra, then the families of linear maps Ty = {T; fH, @
Hp — Hy ® H,p} (called the left T-Galois map) and Ty = {Tg’ﬁ : Hy ® Hg — Hyap @ Hp}
(called the right -Galois map), defined, respectively, by

TP (0@ b) = Ay(a) (1@ b) and TyP(a @ b) = (a® 1)Ag(D)
are bijective.
Proof. Define two families of linear maps
Ry = {R{’ : Hy® Hy — Hy® H, 15}, and Ry = {Ry": Hy® Hg — H,g 1 ® Hg},
respectively, by

R (a @ b) = ((idy, © S:)b(2))(1®b) and  RyP(a®b) = (4 1)((Sp © idp,) Ag(b)).

By a straightforward application of the properties of S one can show that R‘f’aﬁ is the inverse
of T} # and that R;’B # is the inverse of T, o0

If the antipode S has an inverse, then also the other families of linear maps, defined by
TP (a®b) = Aa(a)(b® 1) and Ty (a @ b) = (1@ a)Ap(b)

are bijections. This follows, e.g., from the fact that S°7 = {5207[J = S;,ll Yaerx will be the

antipode if we set H, ¥ = H, as an algebra and replace A, by the opposite comultiplication
AZOP = UH,,H, Aa.
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We now discuss some results if H = {Hy }xc is a unital, but not necessarily associa-
tive, group algebra over k with a family A = {A, : Hy — Hy ® Hy }aern Of coassociative
comultiplications, a family of linear maps, such that the families of linear maps Ty and T
are bijections.

Define a family of maps E = {E, : Hy — Hj }acx by

Ea(@)b = my o 15(T"F) a0 b)
where m, 15 denotes multiplication, considered as a linear map from H, ® Hg to Hg and
where Tf’ailﬁ is defined as before by Tf’“ilﬁ(a ®@b) = Ay(a)(1®b) € Hy ® Hp.
Lemma 1. Foralla,b € Hy, we have (Hyp ® Eg)((a ® 1)Ag(b)) = ab® 1.
Proof. By the coassociativity of A,, one can easily obtain

(ma,ﬁ &® Hﬁ & H’g,y)(Hlx ® A/g ® H,ny)(Hzx & ng ® mﬁﬁ)(H,x & Aﬁ X Hry)
:(H,x/g ®Hp® mﬁ/,y)(H,xlg ®DMg® H,y)(m,x,lg ® Hpg ® Hry)(H,x QMg ® H,y).

Assumea € Hy,b € H B and, since Tj is surjective, let
n
a@b=) Au(a;)(1®b;).
i=1

If we apply Ay ® Hp and then multiply with c® 1 ®1 to the both sides of the above
equation, where ¢ € H,, on the left, by the direct conclusion of coassociativity given above,
we can obtain

(c®1)Ax(a) ®b = Tf’“ilﬁ(Z((p ® Hy)((c ® 1)Ax(a;)) @ b;).
By the definition of E, we get
Ex((¢ ® Ha)((c® 1)Ag(a)))b =Y (¢ ® Ha)((c ®1)Au(a;))b;.
So

(¢ @ Hp) ((Hya © Ea)((c @ 1)Aa(a)) (1@ 1)) = Eu((9 @ Ha)((c @ 1)Aa(a)))b
=) (9 ® Hy)((c ® 1)Au(a;))b;
= (p®@ Hp)((c®1) )} Au(ai)(1®b;))
=(p@ Hg)((c®@1)(a®Db)).

Because this holds for all ¢, we get
(Hya ® Ea)((c®1)Ax(a))(1®b) = (ca®1)(1®@Db).
This gives the required formula. [

Lemma 2. E,(H,) C k1.

-1
Proof. By the surjectivity of Ty, defined by T;ﬁ ’ﬁ(x ®y) = (x®1)Ap(y) € Hy ® Hg, we
see that a @ Eg(b) € Hy ® 1 for all ain Hy and b in Hg. This gives the result. [

Define a family of linear maps

e ={ex: Hy — k}uern
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by € (a)1 = Ex(a).
Remark 1. The formula in Lemma 1 can be rewritten as
(Hop @ ep)((a®1)Ag(b)) = ab.
It can be concluded that the associativity of m = {m, s : Hy ® Hg — Hyp}apen

holds if and only if (Hy gy ® €p,)((a @ 1)Ag,(bc)) = (Hyp @ ) ((a @ 1)Ag(D))c.
By the definition of ¢, we also get

(e ® Hp) (1@ b) = Ea(@)b = my 1 (T1* F) (a0 b)
and, by the surjectivity of Tj; hence,
(€2 @ Hap) (Au(x) (1@ Y)) = xy.
These formulas just mean
(Ho @ €0)Aa = Ho = (20 @ Hy ) As.

It shows that, for any a € 71, (Hy, Ay, €4) is a coalgebra.

Define a family of maps F = {F, : Hy — Hi }acn by aFg(b) = maﬂq,ﬁ(T;ﬁ_l’ﬁ)’l(a@

b) where m, 41 g denotes multiplication, considered as a linear map from H,g-1 ® Hp to

H, and where Tgﬁil’ﬁ is defined as before by Tgﬁil'ﬁ(a ®@b) = (a®1)Ag(b).
Similar to Lemmas 1 and 2, we have

Lemma 3. Foralla € Hyand b € Hg, we have (Fy @ Hyp)(Ax(a)(1® b)) =1 ® ab.
Lemma4. F,(H,) C k1.

Define a family of linear maps

€ ={ex: Hy — k}uern
by €x(a)1 = Fy(a).
Remark 2. The formula in Lemma 3 can be rewritten as
(€x ® Hyp)(An(a)(1® b)) = ab.
It can be concluded that the associativity of m = {m,g : Hy ® Hg — Hyg}apen

holds if and only if (€, @ Hypy ) (Aap(ab)(1®@c)) = a(ep @ Hpy ) (Ap(b)(1®c)).
By the definition of €, we also get

(Hy ®ep)(a®b) = aFg(b) = mypr (T3P F) M (awb)
and, by the surjectivity of T; hence,
(Hop @ €p)((x @ 1)Ap(y)) = xy.
These formulas just mean
(He ® €a)Ax = Hy = (€ ® Hy) A

It shows that, for any a € 71, (Hy, Ay, €4) is a coalgebra.
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Due to the loss of the associativity of m = {1, g }4 per, the counit family e = {es }aen
is not necessarily a 7m-algebra homomorphism even when A = {Ay}scr is a m-algebra
homomorphism. From now on, every group algebra will tacitly be assumed to carry the
associativity of its multiplication and we also suppose that A = {A }aer is a 7r-algebra
homomorphism.

We will show that ¢ = {e, }aer satisfies the usual properties of the counit family in
Hopf group-algebra theory.

Lemma 5. ¢ = {¢&y } e is a 7t-algebra homomorphism.

Proof. By Lemma 1, we have

(Ham ® 8‘57)(({1 ® 1)Am(bc)) = a(bc)
foralla € Hy,b € Hg,c € H,. Then
(Hupy @p,)((a®1)Ag(b)Ay(c)) = a(bc) = (ab)c = (Hyp @ ep)((a @1)Ag(b))c.
By the surjectivity of T, we get
(Hey @epy)((a®@b)Ay(c)) = (Ha @ eg)(a@b)c = aeg(b)c = eg(b)ac
= e5(b)(Hay ® 4)((a @ 1)Aq(c))
foralla € Hy, b € Hg, c € Hy. Again by the surjectivity of T, we get
(Hy @ epy)(a®@bc) = eg(b)(Hy @) (a®c).

This means
agg, (bc) = aeg(b)eq (c).
Setax = 1and a = 1, we have
epy(bc) = ep(b)ey(c).
Since (Hy ® £4)Ay = Hy = (g4 @ Hy)A,, we obtain
1=Hi(1) = (1 ®@ H1)A1(1) = (1 @ H)(1®1) = &1(1)1
whereby ¢1(1) = 1. O

Remark that, by a similar reasoning, we can also claim that € = {€, }aer is a 7T-algebra
homomorphism.

In fact, for all @ € 71, ¢, = €,. In order to check this result, we need the following
lemma.

o8-l
Lemma 6. Foralla € Hy, b € Hg, myp-1 g ((Té‘ﬁ 1,/3> (a® b)) = aeg(b).

Proof. Assumea € H,,b € Hg and, since Ty is surjective, let

™=

(a; @ 1)Ag(b;).

Il
A

B n
a®b= Té‘ﬁ l’ﬁ<2ai®bi> =
i=1 i
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_ -1 - n
Myp-1 ( <T§‘l3 1,/3> (a® b)) = Myp-14 ( (T;‘ﬁ 1,/3> aﬁ B (Z [ ® bi) )
i=1

(aibi1) @ bi(p))

|
R
®
S
S
1=
2
&
S
N————
Il
.M:
)
:@
Il
™=
8
=
=
S
=
Z@
Eﬁ
&
o
=
\M:

Il
_
Il
—_

= (Ha ®€ﬁ) i( Myp-1p & Hﬁ)(Ha‘Bfl & Aﬁ)(ai ® b;) = (Hy ®£ﬁ)(€l ®b) = (18‘3(17). O

Lemma?7. Foralla € 71, €4 = €.

Proof. Foralla € H,,b € Hyg, by the definition of F, we have

-1
aeg(b) = aFg(b) = M ﬁ<( T ﬁ) (a®b)>.

By Lemma 6, we also get

1.\ 1
maﬁ_1,ﬁ<<T§ﬁ ’/3) (a®b)> = aeg(b).

It follows that aeg(b) = aeg(b). O

We have constructed a counit family ¢ = {e, }sc satisfying the usual properties of
the counit family in Hopf group-algebra theory.
We will construct an antithomomorphism S = {S, }xcx that has the properties of the
antipode in the Hopf group-algebra theory.
Definition 1. Define a family of linear maps S = {Su : Hy — H,1}acn by
-1
Su(@)b = (0 ® Hy 1) (T P)Ha @)

foralla € Hy, b € Hp.

Lemma 8. (Hyy ® S,)((c®1)A(a))(1®b) = (c® 1)(T™ P)"1(a @ b).

Proof. As in the proof of Lemma 1, for ¢ € H% anda € H,, b € Hg,c € Hy, we get
a,a’lﬁ
(¢ @ Hy)((c®@1)Ag(a)) @b =T, () (¢ ® Ha)((c ®1)An(a;)) @ b;

ifa@b= 2 Ay (a;)(1 @ b;). Then, by the definition of S, we get

i=1

Su((¢p @ Hy)((c®1)An(a)))b = (ea ®Hﬂﬁ)(Z((p@nH,x)((c®1)A,x(ai)) @ b;)
=(p® Hurlﬁ) (Z(me ®er)((c®@1)An(a;)) @ bi)
= (p® Hy1p) (Ycai @ by)

_<¢®H“1ﬁ)(( @1)(T Py 1(a ®b)).

Hence,

(cp@Ha1,g><<HW@S@((e@l)%(u))(l@b))=<¢®Ha1,3>(< 2 1)(T ) (a @b)).
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This is true for all ¢ € H7, and hence proves the result. [
Lemma?9. Foralla € H,,b € Hﬁ and ¢ € H., we have
Maya-1p((Hya @ Sa) (¢ ®1)Au(a)) (1@ b)) = cea(a)b.

Proof. We get this formula if we apply m 1 on the equation in Lemma 8 because

you
Moygn-15((Hya @ Sa) (€ @ 1) Ag(a)) (1 @ b)) = 11 1-15((c ® (1) e b))
= ey r5(TF P) (@@ b)) = c(Ex(a)b) = cen(a)l. O
Lemma 10. S,s(ab) = Sg(b)Su(a) foralla € Hyand b € Hg .
Proof. We have

Moyup,p-1a-15((Hyap @ Sap) ((c ©1)Au(a)Ap (b)) (1 @ d))
= mwaﬁ,ﬂflaflé((H'ya/S @ Stxﬁ)((c ® 1)Atxﬁ(ab))(1 ® d))
= ceqp(ab)d = ceq(a)dep(b) = M., n-15((Hya @ Sa) ((c ® 1)An(a)) (1 @ d))ep(b)

foralla € Hy, b € Hg,c € Hyand d € H;. By the surjectivity of T, we get

Mg p-1a-16((Hyp @ Sap)((c®a)Ag(D))(1@d))
= mwﬂé((Hy ®Sy)(c®a)(1®d))eg(b) = cSa(a)deg(b) = cep(b)Su(a)d
=g g-14-15((Hyp @ Sp) ((c @ 1)Ag (b)) (1 ® Su(a)d))

foralla € Hy, b € Hpg,c € Hyand d € Hs. Again by the surjectivity of Ty, we get
Moy p-10-15((Hy @ Sap) (¢ @ ab)(1 @ d)) = m g-1,-15((Hy © Sp)(c © b) (1@ Se(a)d))
whence cSy5(ab)d = cSg(b)Sa(a)d. O
Define another one family of linear maps S = {S, : Hy — H,-1}acr by
aSp(b) = (Hygr @26)(T3" F) (a @b)

foralla € Hy,b € Hg.
Completely similar as in Lemma 8, we get here that

Lemma 11. (c©1)(5x © Hop)(Aa(a)(1®D)) = ((Tg""l'“)fl(c@a))u 2 b).
Lemma 12. m,,1,5((c ®1)(Sa ® Hap)(Aa(a)(1®D))) = cex(a)b.
Proof. By Lemma 11, we get

(e®1)(S @ Hyp)(Ba(a) (10 D) = (1" ) e®a)) (10D).

And if we apply 11,1 ,4 to the both sides of the above equation, we get the formula in the

! .
statement of the lemma with S instead of S because

Mo (T3 ) (e @a)) = ceula).
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We now show that S = S’. Indeed, we have, by definition,

= Zaisﬁ(bz)

ifa®@b=Y(a;®1)Ag(b;). If we apply Hy ® Sg and multiply with 1 ® c to the both sides
of the equation: a ® b = Y (a; ® 1)Ag(b;), we get

a® Sp(b)e =) (Ha ® Sp)((a: @ 1)Ap(b)) (1@ c).

And if we apply 1, g1, to the both sides of the above equation, we obtain, using Lemma 9,
that

aSg(b)c =Y ajeg(bi)c = aSg(b)c.

This shows that Sg(b) = Sg(b). This proves the lemma; the formula was already proven
forS. O

Apropos of Lemmas 9 and 12, by setting f = v = 1 and b = ¢ = 1, we have the usual
formulas

My o1 (Ha @ Sa)Ba(a) = ea(a)l,  my1,(Se ® Hy)Au(a) = eq(a)l.

We have constructed an antihomomorphism S = {S, }xcr that has the properties of
the antipode in the Hopf group-algebra theory.
From the above discussion, we get the following the main result.

Theorem 1. If H = {H, }uc is a unital associative group algebra over k with a family A = {A :
Hy — Hy ® Hy }aer of coassociative comultiplications, then H is a Hopf rt-algebra if and only
if A is a rt-algebra homomorphism and the right and left r-Galois maps both have inverses.

4. Hopf (Non)coassociative Group-Algebras

We begin by the main definition of this paper which is slightly dual to the notion of a
quasigroup Hopf group-coalgebra studied in [27].

Definition 2. A Hopf non-coassociative group-algebra over 7t is a rt-algebra H = ({Hy}, m =
{mep : He ® Hg — Hap}apen, M) acn, endowed with a family S = {Sy : Hy — Hy-1}aen
of k-linear maps (the antipode) such that the following conditions hold:

o Each (Hy, Ay, €2) with comultiplication A, and counit €,

. . o (13)
is a not necessarily coassociative coalgebra;
o foralla,p €, n:k — Hyandm,p: Hy ® Hp — Hyp (14)
are coalgebra homomorphisms;
° fOI”D(ET[( m,— 1p¢®idHa)(Szx®idHa®idHa)(ldH,,¢®A )A,X (15)
=7 ® ZdHa (mM 1® 1dHa)(ZdH,X RSy ® idHD()(ldHﬂé & A,X)A‘x,
o fora€m(idy, ®my-1,)(idy, ® Sy ®idy,)(Ay @idy,)As 16)
= ldHac ® 17 (ZdHa ® mﬂc a 1)(ldHa ® idHa ® S’X)( ® ldHa)Alx

We remark that the notion of a Hopf non-coassociative group-algebra is not self-dual
and that (Hy,my1,1,A1,€1,51) is a (classical) Hopf coquasigroup. Let m = {1}, H = H;
is a (classical) Hopf coquasigroup. One can easily verify that a Hopf non-coassociative
group-algebra is a Hopf rr-algebra if and only if its coproduct is coassociative.

In this paper, a Hopf non-coassociative group-algebra over 7 is called Hopf non-
coassociative rt-algebra.
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Remark 3.
(1) The axiom (14) amounts to that, for any o, p € 7,a € Hy and b € Hg,

M) =11,  &a(l)=1,
Ayp(ab) = Dy(a)Dg (D), eqp(ab) = eq(a)eg(b).

(2)  In terms of Sweedler’s notation, the axiom (15) gives that, for any « € 7, h € Hy,

Su(ha) 1) @ hay) = 1@ h = hgySa(h)1)) © b)) (17)
(3)  In terms of Sweedler’s notation, the axiom (16) gives that, for any « € 71,h € H,

hay) ® Salhy@)h@) = @1 = hayw) @ha)@)Sa(h)- (18)

Definition 3. Let H be a Hopf non-coassociative group-algebra. Then, for all « € 7w and a € Hy,
(1) His commutative if m, ,—1 = m,1,.

(2) H is cocommutative if each A, is cocommutative.
(3) His flexible if

A1)4(2)(2) @ A(2)(1) = A(1)(1)4(2) @ A(1)(2)-
(4) H is alternative if

21)42)(1) ®42)(2) = 41)(1)41)(2) D 4(2)-4(1) © 42)(1)4(2)(2) = A(1)(1) D A(1)(2)4(2)-

(6) H is called Moufang if

A1)42)2)(1) ®42)(1) @ 2)(2)(2) = 41)(1)(1)41)(2) ®A1)(1)(2) D 4(2)-
A Hopf non-coassociative group-algebra H is said to be of finite type if, for all « €

71, H, is finite dimensional (over k). Note that it does not mean that & H, is finite-
KETT

dimensional (unless H, # 0, for all but a finite number of a € 7).
The antipode S = {S, }acr of H is said to be bijective if each S, is bijective. We will
later show that it is bijective whenever H is quasitriangular (see Theorem 12).

Example 1. Let (H,m, A, ¢, S) be a Hopf coquasigroup and the group 7t act on H by Hopf coquasi-

group endomorphisms.

(1)  Set H™ = {Hqy }aex where the coalgebra Hy is a copy of H for each a € 7t. Fix an identifi-
cation isomorphism of coalgebras i, : H — H,. For a, B € 71, one defines a multiplication
Mg H, ® Hﬂ — Htxﬂ b]/

ma,ﬁ(itx (h) ® i/ﬂ(a)) = (ilX,B(ha))

forany h,a € H. The counit ¢1 : Hy — k is defined by €1 (i1 (h)) = e(h) for h € H. For
any « € 7, the antipode Sy : Hy — H, 1 is given by Sy (in(h)) = i,-1(S(h)). All the
axioms of a Hopf non-coassociative rt-algebra for H™ follow directly from definitions.

(2) Let H' be the same family of coalgebras { Hy = HY} with the same counit, the multiplication
Ty p 2 Hy @ Hg — H,p and the antipode Sy : Hy — H,—1 defined by

T, pia(B(h)) ©ig(a) = inp(h)
Sulia(h)) = iy1(a(S(h))) = i1 (S(a(h))

where h,a € H. The axioms of a Hopf non-coassociative t-algebra for H'* follow from defini-
tions. Both H™ and H'" are extensions of H since Hf = Hy = H; as Hopf coquasigroups.
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Example 2.
(1) Let A= ({Ax}, m,1)acr be a rt-algebra. Set

AY = A,-1 and msfﬂ = Mg-1,-10 O-Aa—erﬁ—l'
Then A% = ({ A}, m°P, 1) aer is a r-algebra, called opposite to A.

If H = {Hy }acr is a Hopf non-coassociative group-algebra whose antipode S = {Sy }acn
is bijective, then the opposite rt-algebra H°P, where H,' = H, 1 as a coalgebra, is a Hopf
non-coassociative rt-algebra with antipode S = {Sg¥ = S; 1} yer.

(2) Let H= ({Ha, Ax, €a }acr, M, 1, S) be a Hopf non-coassociative rt-algebra. Suppose that the
antipode S = {Sy }uer of H is bijective. For any a € 71, let Hy'" be the coopposite coalgebra
to Hy. Then H®P = {H;Dp Yaen, endowed with the multiplication and unit of H and with the
antipode 5P = {S;'F = S;_ll Yaen, is a Hopf non-coassociative rt-algebra called coopposite
to H.

(3) Let H = ({Hy, Au, €a facr, m, 1, S) be a Hopf non-coassociative rt-algebra. Even if the
antipode of H is not bijective, one can always define a Hopf non-coassociative rt-algebra
opposite and coopposite to H by setting

HP = H 2 m g™ = mlg 19740 =1, and S = S

a-l:

Definition 4. Let H = {Hy}yecr and H = {H, }necr be Hopf non-coassociative rt-algebras.
A Hopf non-coassociative rt-algebra morphism between H and H' is a rt-algebra morphism f =
{fa : Hx — H} }aer between H and H' such that, for any a € 71, fy is a coalgebra morphism
and f, 1 0 Sy = S} o fu. The Hopf non-coassociative rt-algebra isomorphism f = {fy : Hy —>
H},}wer is a Hopf non-coassociative rt-algebra morphism in which each f, is a linear isomorphism.

Let us first remark that, when 77 is a finite group, there is a one-to-one correspondence
between (isomorphic classes of) rr-algebras and (isomorphic classes of) 7r-graded algebras.
Recall that an algebra (A, m, 17) is 7t-graded if A admits a decomposition as a direct sum of
k-spaces A = @ A, such that

aETT
AtXA/S C Akﬂ,sz,/B € TT.
1 e A;.

Let us denote by 7, : Ay — A the canonical injection. Then { A, }xcr is a 7r-algebra
with multiplication {m (7, ® 715)|Ax ® Ag} and unit 7. Conversely, if A = ({Aa}, 1,7)acn

is a 7r-algebra, then A = @ A, is a 7r-graded algebra with multiplication i and unit 7
neTT
given on the summands by

m|Ay @ Ag = mypand 1 = 1.

Let now H = ({Hy, A, 0}, m,1,S)aen be a Hopf non-coassociative group-algebra,
where 77 is a finite group. Then the algebra (H, 11, 77), defined as above, is a Hopf coquasi-
group with comultiplication A, counit element €, and antipode S given by

AlHy=8y T=)Y e S=Y S

KETT KETT

In what follows, we study structure properties for a Hopf non-coassociative rr-algebra.
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Theorem 2. Let H = ({Hy, Aw, €4 Yacr, m, 1, S) be a Hopf non-coassociative rt-algebra. Then

M1, (Sa ®@idy, ) Dy = leq = m, 41 (idy, ® Su)De, Vo € 7.
Sap(ab) = Sp(b)Sy(a),Va, B € m,a € Hy, b € Hg;
S51(1)=1;
Ay1Sa =0H | H _, (Sa @ Sa)Ay, Vo € 11;

€,-154 = €4,V € TT.

(19)
(20)
(21)
(22)
(23)

Proof. Equation (19) is directly obtained by applying idy, ® &, to Equation (17) in the
definition of a Hopf nonassociative 7r-coalgebra. We now show Equation (20) as follows:

Sa‘g(ab) = S,Xﬂm,x,ﬁ(a & b) = Saﬁma,ﬁUHﬁ,Ha (b ® ll) = lsaﬂma,ﬁaHﬁ,Ha (b ® ll)

=My 51,1 (1® SapMa, BUHy, H, (b®a))

=1y 51,1 (idp, ® SapMa, BUH, H)(1®b®a)

=ty g1,-1(idp; @ Suptma, porg,H, ) (Sp(b1))b2)1) ® bay2) ®a)

=1y g-14-1(Sp(b(1))b(2)(1) © Supta pohiy b, (b(2) (2) © 2))

=y g1,-1(Sp(b1))b2) (1) ® Suptma,p(a @ ba)(2)))

=y g-1,-1(Sp(b1))b2)(1) ® Saplab)(2)))

=(Sp(ba))b2)(1))Sap(ab(2)(2)) = (Sp(b))1b2)(1))Sup(@b2)(2))

=ty g-1,-1(mg-11 5(Sp(b1)) ® 1@ ba)(1)) @ Suptma,p(a @ by2)))

=ty g1,-1(Mg11 g ® Suptma,p)(Sp(b1)) ® TR biay1) ®a®b)2)))

=ty g1y (g1 5 @ Saptitap) (idp_; @ idpy © 0p @ idpy)
(Sp(b) ®1®a @ ba)1) Dbiz)e)))

=My 141 (mﬁ,l,u3 ® SapMiap) (idHﬁ,f] ® idpy ® OH, Hy ® idHﬁ)
(Sp(b)) ® Su(a(1))a2)1) ® 2(2)(2) @ b2)1) @ b2)(2)

=y p-10-1(Mg-11 5 © Suptita,p) (Sp(b(1)) @ Sala(1))a2)(1) @ b2)1) @ 4(2)(2) @ b(2)(2)))
=ty g1,-1(mg1 g(Sp(b(1)) ® Sala(1))ag)1) ® bay)) ® Supmap(@2)2) @ b2)2))))

=M g-1p-
=(Sp(bp)
b1))Sa(a)) 1512 2)b(2)2)))
bay)Sa(ag)y) ) 1)Sap((@2)b2))2))
Sp(ba))Sa(ac)) )) = Sp(b1))Salag))e(ac))e(ba))
=Sp(b1)e(b(2)))Sa(a1)e(a(z))) = Sp(b)Sa(a).

Thus, Su5(ab) = Sp(b)Su(a), Vo, B € 7w,a € Hy, b € Hg.

1(8p(b1)) (Salaq))a)1))be)a >®5a/5( @@ 2)@)))
)(Sala))am)a))b@)a))Sup(@2)2)b2)2)

=5p (@2)1) (1 bz

—5/3 ()b

e(a 2)52
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To show Equation (22), for all, « € 7r,h € H,, we have that
(Sa ® Sa)Bu(h) = Sa(h(1)) @ Sa(h(z))
(m“ 19 Qm,- 11)(ldH = ®0’H L H ®ZdH1)(ldH 1 ®ldH _, ®om,, Hl)
(Sa(h1)) @ Sa(hp) @1@1)
(mlx 19 QKm, 11)(idH . ®UH&’1’HI ®idH1)(idHlx,1 ®idHa*1 ®UH1,H1)

(Sa(h)) @ Salhz)) @ A(1))
(m“ 17 ®@Mmy-14 (ldH 1®(TH 1H1®ZdH1)(ldH 1®ldH 1®(7H1H1)

(Sah1)) @ Sa(hz)1y1)) © Alh))2)Sa(h2)(2)))
(ma 11 Qm, - 11)(ldH 1 ®0’H L Hy ®ldHl)(ldH . ®ldH L, Q0q, H1)

(Sa(h(1)) @ Sa(hz)1)1)) ® Alh)a)2)) A(Se(h2)2))))
(T}’l“ 1 Qm,— 11)(1dH 1(X)OH 1H1®1dH1) ldH 1®ldH 1®UH1H1)

(
(Sa(hy) @ Salh)1ya)) ® Blhaya)@)BSc(h2)2)))
(mzx—l 1 @My 1)(ldH -1 ®UH -1,H1 ®ZdH1)(l ®ZdH _, ®om, Hl)

(Su(h(1y) @ Salh2)1)(1) @ (hy1)@)1) @ P2)1)@)2) (Sae(h2)2)) 1) © Sa(h2)(2)) 2)))
=(my1, @my1,)(idy_, ® oy, @idpy,)(idy _, @idy_, @ oy 1)
(Su(h(r)) @ Salh2)1)(1) @ hy1)2)1)Se(he)2) 1) @ b)) )@ S«(he)2) @)
=5a h( 1)) e)@S(he)2) @) @ Sa(h2) 1)) (he)a
hoy 1))@ S«(h2)2) @) ® (Sa(he)1)a)
ho)1)Sa(h2)2)) 2)) @ Sa(b2)(2)) 1) = (S (h(l))h(z)u))sa(h(z)(z))(z)®5a(h(z)(z))(1)
:(Sa(h(l haya)y ® 1) (Sa(h2)y2) 2 ®Sa( @2)a))
=(Sa(h))h@yn) @ D)o 1 By1Sa(hz)2))

(1@ 103 a1 Ay 1Sa(h) = 0y g1 Ay 1Sa(h).

Thus, Ay-15a = 01y H_ (Su ® Sa)An, Vo € 7.
Using Equation (19), we obtain Equation (21):

m1,1(51 ® ldHl)Al(l) = 181(1) - 51(1)1 =1= 51(1) =1
We can obtain Equation (23) also by Equation (19): Va € 7r,h € Hy,

(S & idHa)Aa (h) = le, (h) — S, (h(l))h(Z) = 18,1(}1)

:>€1( (h(1)) ) = e1(lea(h)) = €,-1(Sa(h1)))ea(h(2)) = e1(1)ex(h)
=e,1(Sa(hpyea(hz)))) = lxea(h) = €4-1(Sa(h)) = eu(h),

ie,e,-15y =&, Va €. O
Corollary 1. The antipode of a Hopf non-coassociative rt-algebra is unique.

Proof. If S, 5 are two antipodes on a Hopf non-coassociative rr-algebra H, then they are
equal in that, for any &« € rand h € H,,

Sul) = Sulhyealhiz)) = Sall)eallia)1 = Suln) (haySalhe)e))
I(SAa(h(n)h(z)(l))Sa(h(z)(z)) =1S4(h) = Su(h). O
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Corollary 2. Let H = {Hy }acr be a Hopf non-coassociative rt-algebra with the antipode S =
{S«}aen. Then Sy is the unique convolution inverse of id gy, in the convolution algebra Conv(H,, H),
forall o € 1.

Proof. Equation (19) says that S, is a convolution inverse of idy, in the convolution algebra
Conv(H,, H), foralla € 7. Fixa € 7. Let Ty be a right convolution inverse of idy, in the
convolution algebra Conv(H,, H). For all h € H,, we compute

Sa(h) =Sa * (idp, * Ta)(h) = Sa(h())(idh, * Ta)(h(2)) = Sa(h(1)) (h2)1)Ta(h2)(2)))
by Equation (17)
= (Su(h(a)h) 1) Ta(hia)2)) === 1Tu(h) = Tu(h)

— Tg( :SDC'

Fix & € 7. Let T, now be a left convolution inverse of idy, in the convolution algebra
Conv(H,, H). Similarly, we have T, = S,. Therefore, S, is the unique convolution inverse
of idy, in the convolution algebra Conv(H,, H), foralla € 7. O

Similarly, one can get

Corollary 3. Let H = {H, }acr be a Hopf non-coassociative rt-algebra with the antipode S =
{S«}aen. Thenidy, is the unique convolution inverse of S in the convolution algebra Conv(Hy, H),
foralla € .

Corollary 4. Let H = ({Hy, Ax, €x fac, M, 1, S) be a Hopf non-coassociative rt-algebra. Then
{a € 71, |Hy # 0} is a subgroup of 7.

Proof. Set G = {a € 7m1,|H, # 0}. Since €1(1) = 1 # 0, we first have 0 # 1 € Hy, ie.,
Hy #0,andso 1 € G.

Now let « € G whereby H, # 0, then there exists 0 # a € H,. Using Equation (13),
one can see that a(jyeq(a(2)) = ex(a1))a) = a # 0. It follows that 3h € Hy, s.t. ex(h) # 0.
Then let € G. In a similar manner, one can also obtain that 3g € Hg, s.t. e4(g) # 0. Thus,
eap(hg) = en(h)eg(g) #0,ie., 0 # hg € Hygand so af € G.

Finally, let &« € G. By Equation (23), €,-154(h) = €q(h) # 0. Therefore 0 # S,(h) €
H,1andhencea™ € G. O

The following theorem sheds considerable light on the concept of a Hopf
non-coassociative 7r-algebra morphism.

Theorem 3. Let H = {Hy }aer and H' = {H} }ncr be Hopf non-coassociative rt-algebras. A
rt-algebra morphism f = {fy : Hy — H}, }acx between H and H' such that, for any o € 7, fy

is a coalgebra morphism satisfies f, 1 0 Sy = S, o fy, forall w € 7.

Proof. Consider the convolution inverse of f, in the convolution algebra Conv(H,, H'),

Sy 0 fux fulh) = Sio full) fulhy) = So (o) 1)) (ulh)) ) = bl fulh)1’ = ea()1’,

whence S}, o f, is a left convolution inverse of f, in the convolution algebra Conv(H,, H'),

fut i1 0 Sulh) = falhr))fus 0 Salh) = fi (o) Salli) ) = filea(h)1) = eali)1,

whence f, 1 0 S, is a right convolution inverse of f, in the convolution algebra Conv(H,, H’),
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fu108a(h) = (Sq 0 fa* fa) * fo-10Sa(h) = Sy © fa *fa(h(l))fafl ° Sa(h(2))
= (5& Of:x(h(n(l))frx(h(n(z)))fa—l 0 Su(h(z)) = Sy o fulhyy) (fuc(hu)(z))fafl ° Sa(h(z)))
= Sy o fu(hyay)f (h(1)(2)5a(h(2))) = Sy o fa(h)f1(1) = Sy 0 fa(h)1" = Sy 0 fu(h),

from which we obtain f, 1 0 Sy = S}, o f,. This completes the proof. [

By looking into the proof of Theorem 3, we note that f, 1 0 Sy = S} o f, and f, are
convolution inverses in the convolution algebra Conv(H,, H "). More precisely, we claim:

Corollary 5. If f = {fu : Ho — Hj}aer is a Hopf non-coassociative rt-algebra morphism

between H and H'. Then:

(1) f,108y = S} o fy is the unique convolution inverse of fy in the convolution algebra
Conv(H,, H');

(2)  fa is the unique convolution inverse of f, 10 Sy = Sj o fo in the convolution algebra
Conv(H,, H').

Proof. We first establish part (1). Fix « € 7. Let Ty be a right convolution inverse of f, in
the convolution algebra Conv(H,, H).

fa10Sa(h) = fy10Su* (fax Ta)(h) = f1 0 Stx(h(l))fa * Ta(h(z))
= fu-10Sa(hr)) (fﬂt(h(Z)(l))Tﬂé(h(Z)(z))> = (fa*l ° Sa(hu))fa(h(z)u))) Tu(h(2)(2))
= fi(Salh)he)m) ) Talhz @) = A Talh) = VTa(h) = Tu(h).

Fix « € 7. Let T, now be a left convolution inverse of f, in the convolution algebra
Conv(Hy, H'). Similarly, we have f, 1 0 Sy(h) = T, (h).

fa1 0S8y =S} o fy is therefore the unique convolution inverse of f, in the convolution
algebra Conv(H,, H'), foralla € 7.

We now turn to part (2). Fix & € 7t. Let T, be a right convolution inverse of f, 10 S, =
Sk o fx in the convolution algebra Conv(H,, H').

fa(h) = fax (fy-10Su* Ta)(h) = fuc(h(l))fafl 0 Sq % sz(h(z))
= fu(hq)) (forl o Sa(h(z)(n)Ta(h(z)(z))) = (fﬂt(h(l))fufl ° Sa(h(z)(l)))Ta(h(z)(z))
=fi (h(l)sa(h(z)(l)))sz(h(z)(z)) = fi()) Tu(h) = 1Ty (h) = Ta(h).

Fix & € 7. Let T, now be a left convolution inverse of f, 1 0 Sy = S}, o f, in the convolution
algebra Conv(H,, H'). Similarly, we have f,(h) = T,(h). Therefore, f, is the unique
convolution inverse of f,-1 0 S, = Sl o fu in the convolution algebra Conv(H,, H'), for all
xcm O

The following two corollaries can be directly deduced from Theorems 2 and 3.

Corollary 6. If H is a Hopf non-coassociative rt-algebra, then the map S : H — HP“°P (where
both are opposite and S°P<°P = {SPP = S _1}yen) is a Hopf non-coassociative rt-algebra
isomorphism.

Corollary 7. If H is a Hopf non-coassociative rt-algebra with an invertible antipode S, then the
map S : H — H°PP (where both are opposite and S°P<°P = {S3P*P = S _1}yen) is a Hopf
non-coassociative rt-algebra isomorphism.

Theorem 4. Let H be a Hopf non-coassociative rt-algebra. Then for any « € 7, S,-1S, = idy, if
H is commutative or cocommutative.
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Proof. For any « € 7. Leth € H,. If H is commutative, we have

Su1Su(h) = Sy1Su(hrye(h(z))) = Sy1Sa(hr))e(h(z))
= Sy-1Sa(h(1)) (Sa(h2)1)h2)2) = (Su-1Sa(ha))Sa(hi2y1)))h2)(2)
= S1(h2)1)Sa(h1)))h2)2) = S1(Sa(ha))h2)1))h2)2) = S1(1)h = 1h = h.

It follows that S,-1S, = idp, .
Similar to the case of H being cocommutative. [

Theorem 5. Let H be a Hopf non-coassociative rt-algebra such that each Sy ! exists, for all a € 7.
Then the following identities are equivalent:

(1) a(2)(1)5a(a(1)) & 11(2)(2) = a(z)Sa(a(l)(z)) & 11(1)(1) =1® ﬂ,fOT allx € TT,a € H,X,
(2) a(z)(z) X Szx(a(z)(l))ﬂ(l) = a(l)(l) X S,X(a(z))a(l)(z) =aQ® 1,f01’ allw € 1,0 € Hy.
(3) S, 1Sa =idy,, foralla € 7.

Proof. Leta € mand a € H,. We have

Su-15a(a) = Sy1Su(agyen(ag))) = Sy1Sa(ay)eal(ag)) = Sy-15a(ag)) (ea(az))1)
=Su15a(a(1)) (Sala2)1))a2)2)) = S1(a2)(1)Sx(2(1)))a(2)(2)-

If (1) holds, we then find that S,15,(a) = S1(1)a = a, which implies that (3) holds.

If (3) is satisfied, then one has

1@a= aw)Su(ae)n) @ap)@) = a1)Sa(a@)1)) © Sp-15(a@)(2))
= a1)Sa(a(2))(2) ® Sp-1(Sula(2)) 1))
= Sy15«(a1))Sa(a(2)) 2) ® Sy-1(Salag)) 1))

= S,-1(Sa(a) (2))Sa(@) (1) (2) ® Sp1(Sa(@) (1)(1))-
Applying S, to the second tensor factor we obtain
1® Su(a) = S,-1(Sa(a)(2))Sa(a)(1)(2) ® SaSy-1(Sa(@)(1)(1))
= Su1(Sa(a)(2))Sa() (1) (2) ® Sa(a) (1)(1)-

So (2) holds since S is bijective.
We have shown (1) = (3) = (2).
Similarly one proves (2) = (3) = (1). O

Sa
Sa

Theorem 6. Let H be a Hopf non-coassociative t-algebra with a bijective antipode S and S~ the
composite inverse to S. Then

S L (h)hay = he)S, i (hy) = eal(h)1, s(—u}ﬁ),1 hg) = Sﬁil(g)S;}l(h), ;1) = 1
N1 (S L () =S L (hp) @S L (b)), e,1(S L ()

foralla,B € 1, h € Hyand g € Hg.

I
=
—~

=
~—

Proof. The proof is straightforward. O
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Theorem 7. Let H be a Hopf non-coassociative t-algebra such that each Sy ' exists, for all o €
7t,a € Hy. Then the following identities are equivalent:

(1) (1)“(2)(2)( ) @a2)(1) ®A2)(2)(2) = A(1)(1)(1)41)(2) @ U1)(1)(2) @ 4(2)-
(2) a@ym)m) @am1)@4e) @4 e) = 1) @42)1)42)2)2) D 2)2)(1)-
3 am)1)a2)2) @a1)2) @ 42)1) = 1)1)4@2) @ 41))0) ©81)@)2)-
Proof. (1) = (2) Let T = (idy, ® oy, H, @ idp, ). Then
A1)42)(2)(1) @ 2)(1) @ 2)(2)(2) = F(1)(1)()A(1)(2) @ F(1)(1)(2) D 4(2)
My @ id2 )T (zd ® Ay ) (idp, ® Ay)Da(a)
ma I ® ldHA ® ldHa) (AIX ® ld%]a) (AIX ® ZdH“)AIX a)

= (

=( (

(10,0 ® idpy, @ idy, ) T(idY, @ Ba) (idp, © Ba)Bu(S,-1(b))
=(

(

4o

My @ idfy ) T(Dy @ idyy ) (Ag @ idp, ) Au(S,1(D))
M ® id3y ) T(id3, ® Ag)(idp, ® 8a)(Sy1(b2) @ 8,1 (b))

= (
=(My @ idpy, ®ldHa) (Ax @idy, ) (Dg @ idp, ) (S, 1(b2)) ® Su1(b(1y))
= (Moo @ idyy ) T(idgy, © 8a)(Se-1(b2)) ® Sp1(b1y(2) @ Sy1(brya)))
=(Mae @ idfy ) T(A @ id3y, ) (S,-1 (b2 2)) ®5,x—1(b( 2)(1)) ®@ Se-1(byy))
= (Mo @ idy ) T(Su-1(b2) @ Syt (b)) ® Sy-1(byay2)) @ Syt (baynyay))
=(maa @idgy, ) T(S,-1(b2)2)(2)) © Sa1(b2)(2)(1)) @ Se1 (b2 (1)) ® Sp1 (b))
= (Mae @idyy ) (Sp1(b(2)) ® S (b)) (2) @ Su-1(b(1y2)) @ So1 (bay1)1)))
= (man @ idgy,) (Su-1(b2)2)(2)) @ Se1 (b)) © Sa-1(b2)2)(1)) @ Se1(b(1)))
=S4-1(b2))Se1 ()1 )(z))®5a 1(by@)) @ Sa-1 by 1))
=S,-1(b(2)(2)(2))Sa1(b2)(1)) ® Sp-1(bga )( )(1)) ® Sa-1(b(1y)
=Su1a-1(b1) 1)) b(2)) ® Se1(b1y(2)) ® Sp1(by1y(1))

) 1))

=Sa-1a-1(b))b@)2)(2)) @ Su-1 (b2 ><z><1>> ® Sy1(b())
=buy1)@b@e) @ bu)e) @bnynmn) = lenbeee ®Pe)en) @b
=bwyn)m) @bom@be) @Paye) = o) @bembeee ® e
=a1)1)1) @ A1) 1) 2)02) @21 @) = 40) @ 12)1)be)@)@) @ 42)@)0)-

Similarly, (1) implies (2).
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3) = (1)
1) 142)2) D41 ) @IR)1) T A1) 1)) D 41))1) D41 E)E)
=0(1)(1)(1) (1) () (2) S (4 <2>)<) a(1)(1)(2) @ A(1)(2)(1)Se(2(2) ) (1)
=a(1)(1)(1)3(1)(2) 5 (22)) 2) @A) 1)) @ 1)) @)@ 5 (02)) 1)

== a(1)(1)(1) () 2>5a( @)@ ®“<1 M@ © (@)@ Se(a2))) )
=a1)1))41)2)5(32)) 2) @ 1) W)2)1) D@ 40)1)@)@) S (@) )
=a(1) ® () ® 1 = 2011125 (22)) @) @ 10 @)0) © 1m0 S0e)0)
=) ®a2) ® 1= a)0)1)8a ><z> (“<z>< ) @ a0 @)@ % (@@)@)
=) @ a2)(1) @ Sa(a2)(2))1 = a1y 1)) 2)Se(02)(1)) @ 1) (1) (2) @ 1Se(2(2)2))

=a(1) @ a(2)(1) @ Sa(a2)(2)) —“m YW1 @)5(32)1) @ a)n)2) @ Sela(2)(2))

a1y ® 1) ® Sy (Sala)2))) = 2@y )() 1)@)Sa ( a2)(1 >) <><1>< 2) ® 5: 1 (Sala)()))
a(1) ® a(2)(1) @ a)(2) = A(1)(1)(1)4(1)(2) Se (4(2) (1)) © a(2)(2)

1)) (2)(1) D 4(2)(1) @ A2)(2)(2) = A1) (1)(1) (1) (2) S ( @0 >) @@0) @111 D))
&) (

& (

(1)( (
2(1)4(2)(2)(1) @ A(2)(1) @ A(2)(2)(2) = 41)(1)(1)T1)(2)1 D@ A(1)(1)(2) @ (2)
(1)(

L]

A(1)42)(2)(1) ®42)(1) @ 2)(2)(2) = A1)(1)(1)A(1)(2) © A1)(1)(2) D A(2)-
Similarly, (1) implies (3). O

We have observed that if H is a Hopf non-coassociative 7r-algebra with antipode S then
HOP* is a Hopf non-coassociative rt-algebra with antipode S°P<°P = {SP*P =S _1}per.
Furthermore, the following theorem says, if H°? or H*? is a Hopf non- coassoc1ative us
algebra, then S is bijective, and vice versa.

Proposition 2. Suppose that H is a Hopf non-coassociative rt-algebra with antipode S over the
field k. Then the following are equivalent:

(@) HP = {H," = H,1}aer is a Hopf non-coassociative r-algebra.
(b) HP ={H," = Ha}aen is a Hopf non-coassociative rt-algebra.
(c) S is bijective.
If S is bijective, then HP and H P have antipodes S°? = {Sg/ = S;'}aer and SP =
{8F = ill},xen, respectively.

Proof. Since H®P = (HP )PP and H = (HP )PP the parts (a) and (b) are equivalent.
If the part (c) holds, then it is easy to check that Part (a) holds. Conversely, suppose that
H°P is a Hopf non-coassociative 7-algebra with antipode T = { Ty }acr- Then Ty (h(1))h(p) =

e (h)1 = hyTu(h(p)), or equivalently, hp) Tu(h(1)) = €,-1(h)1 = Tu(h(y))hq), for h €
H,’ = H, 1. Applying S; to the left-hand side of the above equation, we have

(S,X o T,X)(h(l))Safl(h(z)) = €,-1 (h)l.

Replacing h with S, (h) in this equation, one has

-1 (Szx(h))l - Ta(sa (h>(2))stx<h)(1),

or equivalently,
Ea(h)l =Tyo Sa(h(l))Sa(h(z)).

Therefore Ty 0 Sy and S,-1 o T, -1 are both left inverses of S, in the convolution algebra
Conv(Hy, H). It follows from Corollary 3 that S, -1 o T,,-1 = idy, = Tx o Sq which estab-
lishes that the part (a) implies that the part (c). O
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Theorem 8. Let H be a commutative flexible Hopf non-coassociative rt-algebra. Then
105 (02)2) ®82)1) = 30)(1)Sa(92)) ® A1) (2, Ve € 71,0 € Ho

Proof. Vo € 71,a € H,. Since H is flexible, we have that

A1)(1)4@2) ®A1)2) = 41)P2)2) D 42)(1)

= (a(1)(1)4(2))Sa (1) (2)(2)) ® = (a1)a02)(2))Sa(a12)(1)(2)) ®
=a(1)(1)(@(2)Sa(2(1)(2)(2))) ®f1 1M@)) =4 )( @) S«(a2)1)2) ))
=a)(1)(Se(2(1)2)2))92)) @ 3121 >—“< Y1) Sala@)@))ae )®a<1 1))
= a(1)(1)5(3(1)(2)2))72) @ 41)2)1) = 40 Se (B2 (1)@)@)2) @ 42)0)0)

)

=a(1)(1)(1)Sa (4(1) (1) (2) (2))4(1) (2)Sa (8(2)) @ Ay (1) ) (1) = A1) (1)Sa(B(2)) @A) u O

In the end of this section, we study how to construct an coassociator for any Hopf
non-coassociative rr-algebra.

Definition 5. In any Hopf non-coassociative rt-algebra, we define the coassociator
@ = {®y: Hy — Hy ® Hy @ Hy}acn by

(Ax @idp, ) Da(a) = (idp, @ Ba)Balag)a)) Pala)2)idn,_, @ By-1)A1(Sa(ag)))
foralla € mand a € Hy.

Remark 4. For the next theorem, we will use some convenient notation. Let H be a Hopf non-
coassociative rt-algebra. Vo € 1,a € H,, we write @y (a) = @gl) ® @gz) ® ©§3).

Theorem 9. Let H be a Hopf non-coassociative rt-algebra. Then

(1)  The associator @ = { Py }yer exists and is uniquely determined as
®a(a) = Su(a1)) ()32 ) ()W @)1) @ 5 (30)) 21221 ()@ @)@)0)
251w) @@ Q0@ )@ @)@, 7 € 7 € He

(2) (ea®ea®idy, )Pu(a) = (ea ®idy, @ €a)Pu(a)
= (idp, ®eq ®€a)Pp(a) =a,Va € 7,0 € Hy.

3) oVs (@)ool = s, ()0l @ &P, Va € 7,0 € H,.

@) oV @500l = oV @ 05, (oY), Va € m,a € H,.

5) (@) 1) 8a(@) @ (V) ) Sal(@)) = sa<<q>§”><1>> o @ Su((0f) ) 2
= 25.((257)2)) ® 75u((957) 1)) = Su( @) (257 o) @ Su( @) (257 )

( ) 3

= Su(@) (@) ) @ Sal(@) )@Y = sa<q>£”>< “><>®sa< N,
Va € 1,0 € Hy.

Proof. The proof of this theorem consists of a long tedious computation. We just show
readers as follows for the part (1). The other are similar.
(1) Va € 7,2 € Hy, we have that
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Sa(a1)) )22 )M )@)1) @ Se(31)) 2142 1))@ )@ 1) D S30) 242 1) )4 R)R)e)

=(Sa(a 1)) ®5a( a1))2)1) ® Se(a(1)) 2)(2))

@e)mm 24mne 24me) @e)e)0) @ie)ee)0 2 ie)ee)e)

(Sa( am)) () ®5a( 1)) 2)(1) @ Saa(1)) 2)(2)) (32)(1)(1)(1)(1) © 32)(1)(1)(1)2)(1) © F2)(1)(1)(1)(2)(2))
Pu(a2)1)(1)(2))

(Sa(a2)1)(2) (1) © Sal@2)1)2) 2)(1) @ Sal@2)(1)(2) 2)2) (42)2)(1) @ 42)2)2)(1) D 82)(2)(2)(2))

=(Su(a (>)(> @M@ @ Sa1))2mimnnem @ S(41)@)@8)000)e)@)

DPu(a(2)(1)(1)(2))

(Sa(a2)(1)(2 >)<1>“< 22)1) ©Se(32)1)2) W4 @1 @ S (42)1)2) 22222 @)@2)

(( a(a 1)) @)@ @ Salaq))ae)ymymm) @ © (Sa@@)ae)mmm)e)e)

(
1
(“<2 @)42)2) 0 @ (Sl 1)2)4@ @) @0 © (S(12)0)@)12)2)2)@)
=((Salag) )ﬂ(z 1)) @ (Salamy)ap)y) 2)a) @ (Se(a@y)awa)) 2)2)
Pula ><z>>( 0 @12 @1le)e)

a Sala))a@)w) @) © (Selaw))ag)m)@)@) Pa(az)2)

=((Salag)ag ) ® (
=11y ® 1) (2))Pu(a)
=P, (a)
and
@1y @4 ) @) >®“<1> 1@2) Pa(a1)2)) (Se(a(2)) (1) @ Su(a(2)) 2)1) @ Se(a(2)) 2)2))
)(Sa(ay2)1) WA @@L OO @

@0
=(@mmu @) @ )2)
® Se(am)2)0 >)<z)(1>“(1><2>< 20MEMEEE@O @ S (11)2)1) @10 2)2)
(Sa(ag)) ) ® Salap)) @2)( 1)®5a( )@)©2)
=a)1)1)S« (1) 2)1) AW OO MA@ S (@) 1)
(
(

N

1)4(1)(
®ag)1)2)1)S (@) @)) )<z DI E)E)MHMHRA1))@)@)@) 1S (42) @))
®am)n)@)e >5a<“ 2)1))2@%1))@)0)

(1)
)

2

_

1
:(ﬂ(1)(1)5 ( )(1) ) (2)( (11 1)

(1)4(1)(2) ()(
® (a0)(1) ,x( MM @)1 (z<><1><1><z>(“< 12)@)@5%@2) @)
® (a¢1)1)Se(2(1)2)1))) 2)2)2(1)2)2) (1) 2) (A1) 2)(2)2) S« (42))) 2)(2)
Salag >)><1> Loymammm e @a)@)Scae))@)a)

<> M) (@)@
212y 1)@ @a)@)S(32)) )@
=a1)1) 1)) (41)@2)Se(a2))) 1) ®“(1)(1)(1)(2)(”(1)<2>5a<“<2>>><2><1> ® a1y (@1)2)5(22))) 2)(2)
=amy1)la) @ ”(1><2)1<z>g> ®ap)le)e) = am)a) @aa)e) @ae):-

5. Crossed Hopf Non-Coassociative 7r-Algebras

In this section we mainly study the notion of a crossed Hopf non-coassociative 7-
algebra and give some properties of the crossing map.
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Definition 6. A Hopf non-coassociative rt-algebra H = ({ Hy, An, €4 facr, M, 1, S) is said to be
crossed provided it is endowed with a family ¢ = {¢p : Hy — H ap1 }a,pen of k-linear maps
(the cocrossing) such that

*each g : Hy — Hpg,g-1 is a coalgebra isomorphism, (24)
Keach @g preserves the multiplication, i.e., forall o, B,y € 7,

K @piay = Mpup1 g1 (9p © @p), (25)
Yeach g preserves the unit, i.e., g(1) =1, (26)
% ¢ is multiplicative in the sense that ¢ggr = @p@p for all B, g e (27)

The following result is straightforward.

Lemma 13. Let H be a crossed Hopf non-coassociative rt-algebra with cocrossing ¢. Then

(@) ¢yp, = idp, foralla € 7;

(b) (pﬁ_l = @g1 forall p € 7;

(c) ¢ preserves the antipode, i.e., 9pSu = Sgop-19p forall w, p € 71;

(d) if A = (Aa)aen is a left (resp. right) m-integral in H and p € 71, then (¢p(Ag-1,p))aer is
also a left (resp. right) rt-integral on H;

(e) if § = (a)aen is a m-grouplike element of H and B € r, then (gﬁaﬁfl ®p)acr is also a
rt-grouplike element of H.

Let H be a crossed Hopf non-coassociative rr-algebra with cocrossing ¢. If the antipode
of H is bijective, then the opposite (resp. coopposite) coquasigroup Hopf rr-algebra to H
(see Example 2) is crossed with cocrossing given by

o |H' = gplH,1 (resp. 957 |[H" = gg| Ha)

foralla, B € m.
Let H = ({Ha, My, 10}, D€, S, @) be a crossed Hopf non-coassociative rr-algebra. Simi-
lar to ([4], Section 11.6), its mirror H is defined by the following procedure: set H, = H,

a1

as a coalgebra, 1fiyg = Mg-1,-15 5-1(Pp1 ® idH;rl ), 1=1,54 = ¢aS,-1, Pp|Hu = @p|H,-1.
It is also a crossed Hopf non-coassociative rr-algebra.

6. Almost Cocommutative Hopf Non-Coassociative rr-Algebras

The aim of this section is to discuss the definition and properties of an almost cocom-
mutative Hopf non-coassociative r-algebra and to obtain its equivalent condition.

Definition 7. A crossed Hopf non-coassociative rt-algebra (H, ¢) with a bijective antipode S is
called almost cocommutative if there exists a family R = {Ry 5 € Hy @ Hg}o per of invertible
elements (the R-matrix) such that, for any o, B,y € mwand x € H,,

AYP(x) (@41 @ 9,1) (Rap) = Rag - Ay (x), (28)
and the family R is invariant under the crossing, i.e., for any a, B,y € 7,
(GD’Y ® (P’Y) (Ra,ﬁ) = R'yuc'y—l,'yﬁ'y—l‘ (29)

Note that (Hj, Ry 1) is an almost cocommutative Hopf coquasigroup. It is customary
(1) (2)

ap @ Rop for R g

Equation (28) in Definition 7 can be written equivalently as:

Ay () - Rup = (@7 @ 1) (Rap) - Doy (x),

to write R
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foranya, B,y € mand x € H,.
It is obvious that, for any &, B,y € 7,

(9r @ 97)(Rep)) " = (97 91) (RL}):

The family R~ is therefore invariant under the crossing, i.e., forany «, B,y € 7,

(9y ® ¢9) (R;é) - R;D}W*Wﬁv’l'

Our first proposition generalizes the basic fact about almost cocommutative Hopf
non-coassociative rr-algebras.

Note that (Hy, Ry 1) is an almost cocommutative Hopf coquasigroup. It is customary
to write Rilg ® Rizg for Ry g

Our first proposition generalizes the basic fact about almost cocommutative Hopf

non-coassociative r-algebras.

Proposition 3. Let H be a crossed Hopf non-coassociative rt-algebra, and V, W left rt-modules over
H, then V@ W = {Vy @ Wy }aer is also a left rt-module over H. If H is almost cocommutative,
then V@ W = W ® V as left -modules over H.

Proof. Similar as in the Hopf coquasigroup case, we define
h- (U@ZU) :h(l) U®h(2) %

forallh € Hyand v € Vg, w € Wg. Itis easy to see that V@ Wisa left T-module over H.
If H is almost cocommutative with R € H ® H. Then forall v € V,,, w € W,, define

Cye Ve ®Wg = Wo @ Ve, oy (0®w) = RJwe R{Yo

By Equation (28), cléi/lwa is an isomorphism with inverse given by

—1 -1
(i) W@ Ve VadWo, (@) (w®0) = Uoeufe

where Rl_l1 =U; = Ul(’ll) & Ul(,zl). O

Recall from Theorem 4 that if H be cocommutative, then S2 = idy. This fact can also
be generalized.

Proposition 4. Let H be an almost cocommutative Hopf non-coassociative rt-algebra. Then

S? = {S,-1 0 Sy }aer is an inner automorphism of H. More precisely, let ug-1 = 5Sg (Rgzl%) R%,

where Ryp= Rglg (24 Rgzﬂ) Then, we have

(1) ug isinvertible, S,—1 0 Sy (h) = ughuy! = (Su (1)) hSy (1), Sa 0 S, (h) = ughuyt =
(Stx(ua))ilhsa(uzx) and Sy 0 Sy (h> = utxhuojl = (Stx(uoc))ilhsa(utx);

(2)  1aSa(uy) is relatively central for Hy U Hy U H, 1,

3)  @p(ua) = gyg1.

Proof. We first show that uyh = Sy 0 S1(h)uy, for all h € Hy. Since H be almost cocommu-
tative, we have

(1) ) o (1) 2)
hoy @Ry i)y @ Ry ahaye) = he) @ hay)Ry 1 @ haya) Ry -1

1a-1
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ie.,
hpy © R h RY gy ) = hay @ haym R @k
(2) a1 1)) © Ry i) 2 ®ray)Ry 1 ®hay)R
Thus
(2) R o (2) (1)
51051 (’%z))s (R1 1) )) 1a-1)) = 51051 (’l(z))sw (h(m(l)Rl,a—l)hm(z)Rm—r
Since S is antimultiplicative, hence
2 1
51081 (h)S1 (A ) Sat (RE ) RE -y
2 1
=51051 (h<z>) Sa1 (R§,2—1 51 (hu)(l))h(l)(z)Ri,aw
ie.,
51 (h(l)(Z)Sl (l’l(z)) ) u,xh(l)(l) = 51 o 51 (h)u,x
Following the axiom (16) of Hopf non-coassociative rr-algebra, we have
ugh = S10S1(h)uy,, forallh € Hy. (30)
The following two equalities can be verified in a similar way.
uah = SIX_I ] Slx(h)ua, fOI' all h € HIX‘ (31)
ugh =S4 08, -1(h)uy, forallh € H, 1. (32)

We next show that u,, is invertible. Write Ry ;,1 =U, = Ul(la) ® U{Z“) Applying my 1 0 g, 1, ©

(idy, ® S1) to both sides of R; )71 Ul(loz & Riz’;l Ul(za) =1®1yields S, (U( )> u, U 1(1) =1 from

which S,X( f a) ) 510851 ( 1(103 ) u, = 1 follows by Equation (30). Observe that we have not
used the fact that S is bijective at this point. Since S is bijective we can use Equation (32) to
calculate 1 = S, (U@))ua (1) =S540S,10 S 1 ( (2))uauﬁx) = u,XS;}] (Ul(zﬂ?)lll(lﬂg We
have shown that u, has a left inverse and a rlght inverse. u, is therefore invertible. By
Equations (30)—(32), the three equations below can be therefore deduced:

S1081(h) = ughuy !, forallh € Hy. (33)
S,-1084(h) = ughuy?, forall h € Hy. (34)
Sy 0S,-1(h) = ughuy!, forallh € H, 1. (35)

Applying S; to Equation (33) and replacing it by S;* (1) yields the formula Sy 0 S1 (h) =
(Sa(tta)) " hSu(ua).

Applying S, to Equation (34) and replacing h by S, (h) gives rise to the formula
Su oS, 1(h) = (Sa(uta)) "hSa(uts).

Applying S, -1 to Equation (35) and replacing h by S;}l (h) gives birth to the formula
S,-1 08 (h) = (Sa(tta)) "hSu(utg).

To check that 1, S, (1, ) is relatively central for H,, we will prove that for all g € H,,
QUaSa(Ua) = UaSa(Un)g.

Let h = Sy (11a)gS, 1 (uz '), then
Sy-10Su(h) = ughuy' = usSq(us)gS, _1( _1)u;1

and

S0 Salh) = (Sa(tta)) " Sa(1ta) = (Sa(tta)) " Sa(1ta)gS 1 (™) Sa(ua) = g.
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So
g = UaSa(112)8S,1 (uojl)u;l

i.e., guaSy(Uy) = aSa(uty)g forall ¢ € Hy.
To check that u,S, (1, ) is relatively central for Hy, we will prove that for all ¢ € Hj,

guaS“(ua) - uaslx(u“)g.
Let h = So(1a)gS,-1(uz '), then

S1081(h) = ughuy' = 1y S (11)gS,1 (u;l)u,;l
and
S10S1(h) = (Sa(us)) " hSa(1a) = (Su(1ta)) ™" Su(tta)gSy 1 (a ) Sulita) = g-

So
g = UaSa(113)8S,1 (u;l)uvfl
i.e., guaSy(uy) = taSa(uy)g forall ¢ € Hy.
To check that 1, S, (1, ) is relatively central for H,-1, we will prove that forallg € H, 1,

guaS“(ua) - uaslx(ulx)g.
Let h = Sy (1a)gS,-1(uz '), then

Su0S,-1(h) = ughtg' = 1y Sy (114)gS, 1 (u;l>u;1
and
S0 Syt (1) = (Su(ta) hSaltta) = (Su(tta)) ™" Su(ta)gS,1 (") Salta) = -

So
g = UsSa(11a)8S,1 (u;l)uvfl

ie., guaSu(Un) = ugSa(uy)g forall g € Hy 1.

oplue) = op(Su1 (R JRYL) = 0 (S0 (RE) Jn (R
= Spa1pt (98 (R0 ) )95 (RU) = St (Rigarspos )R pu1gn = tpapt
This completes the proof. [

Corollary 8.

(1) S,108u(Ua) = Ua;

(2) SyoS,1(uzl) =ugl;

(3)  Su(uy) = uaSy(uy)uyt. In particular, uy and Sy (uy) commute;

(4) S, (ugt) = uaS,—1 (ugyugt. In particular, uy and S,—1 (ug ') commute;
(5) (Pﬁ(u;1) = ”;,,‘1/571-

Proof. Part (1) is straightforward from Proposition 4. Apropos of part (2), we calculate as
follows:

Sy-10Sa(a)Su 0,1 (g ') = Sy 081 (uaugt) =S1081(1) =1,
and also

Su0S,1(ugt)S,-10Su(us) = Sy 08y (g tuy) = S1081(1) = 1.

Thus S,-1 0 Sa(tts) and Sy 0 S,—1(uz ') are inverses, from which Sy 0 S, 1 (uz') = uz?t.
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To show part (3), we use part (1) and Proposition 4 to calculate
Sa(Ua) =Sy 0S,108,(uy) = g Sa (g )uyt,
whereby u, and S, (u,) commute.

To establish part (4), we use part (3) to make the following calculation:

S (1) = (Sa1a)) ™" = (1taSa (1)t 1)_1 = tta(Su(tta)) "t = uaSyr (1 ity

whereby u, and S, 1 (uz ') commute.
It remains to check part (5). Observe that

pp(uy ) p(ua) = @p(uy'un) = @p(1) =1
and also that

op(ua) pp(uy ) = @pluauy ') = @p(1) = 1.
Thus ¢g(1,) and @g(u, ') are inverses.

It follows from Proposition 4 that
_ -1 _
(Pﬁ(ual) = ((Pﬁ(ulx)) = u/gal/g—l' 0

Corollary 9. Sg-10Sp(h) = M“hq)ﬁ—l(u;l) = ¢p((Sa(tta)) 1) hSa(1ta).

Proof. We first show that ush = Sg-1 0 Sg(h)@g-1(ua), forallh € Hg. Since H is almost
cocommutative, we have

By ® R sy ay © Ry ) = hiay @ iy 91 (RE) @ iy o1 (RE),

1a-1 1,a-1 1a-1
ie.,

2)
Bla1p

1)

(
D)) Ry g1,

) (1) _ (
hoy @ Ry ihaye) @ Ry i) = By @ haya) Ry

Thus

@) (1)
55158 () ) w15 (Ria-+ iy ) Ria by
B ) (1)
= Sﬁfl o 5‘3 (h(2)> SIX—I‘B (h(l)(l)Rl,ﬁ’llfl,B)h(l)(z)Rl,ﬂflt’é*lﬂ'

Using that S is antimultiplicative we have

Sg-105p (hm) S (hu)(z)) Sa1 (Rgz)l) Ry
=5p-105p (h(2)>sﬁ*1a’1ﬂ (Ri,zg—la—lﬁ)sﬁ (h(l)(1)>h(l)(z)RS;—la—lﬁ
ie.,
51 (h(l)(Z)Sﬁ (’l(z)))”ahm(l) = Sp10Sp()ug1,p-

Following the axiom (16) of coquasigroup Hopf rr-algebra, we have
ugh =Sg10 Sﬁ(h)uﬁflaﬁ, forallh € Hpg.

It follows that

-1
Sg10 Sp(h) = umhu‘g_lllxl3 = uah((pﬁfl(u“)) = uahgoﬁq(u,;l), forall h € Hp.
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Applying Sg to this expression and replacing by Slgl (h) yields the following calcula-
tion:

—1 -1
SpoSp1(h) = (Sp-tap(ttpiap))  1Su(ta) = (Sgo1ap(@p-1(1a)))  hSa(ta)
— (91 (Suue))) WSu(ut) = @+ ((Suluta)) ™) Sa (0),
or equivalently, Sg-1 0 Sg(h) = 9p((Sa(1a)) 1) hSa(uy). O

Corollary 10. Forany a € 7, §9g-1(ta)Sa(Ua) = Uua@p(Sa(ua))g forall g € Hg. In particular,
11S1(uq) is a central element of H.

Proof. Leth = ¢g(Sa(t4a))gS,1(uz "), then

Sg-105p(h) = uahpg (”;1) = UgPp(Sa(ta))8S,-1 (”;1) P51 (u;1>

and
Sg-10Sp(h) :golg((Sa(ua))_l)hS,x(ua)
=95 ((Su(1a)) ") (S (110))8S 1 (1) Sa(1a)
= ((Sal1)) ™" Sa(1a) ) 881 (uariy ) = @p(1)g51(1) = g.
So

g = uagp(Sa(ua))gS,1 (" ) oo ()
Le., gpg1(1a)Sa(tta) = Uap(Sa(iia))g forallg € Hg. [

It is well-known that the two equivalent conditions for a Hopf coquasigroup to be
almost cocommutative have been obtained in [17]. Next in a similar way we will prove one
equivalent condition for a Hopf non-coassociative 7r-algebra to be almost cocommutative.

Set Hy = H, -1, My p = ngl,ﬁfl = Mg-1,-1 OO-H,,ﬁerﬁfl’ Ay = A;{pl, g, = £,-1 and

Sy = S,-1. Recall from the statement (3) in Example 2 that

H= ({Ha}aEmm = {ma,/i}a,ﬁeru LK = {th}zxerngoug = {gzx}txerf)

is again a Hopf non-coassociative 7r-algebra where we write 717, g(a ® b) = a - b = ba.
We can now define 7t-module actions of H = {Hy }aerr = {H, 1 }acr on H* by

(h—=p)(g)=p(g-h) and (7—h)(g)=4q(h-g)
forallg € H,1 = Ho,h € Hgr = Hgand p € Hjj,, q € Hyg.
Fix 7 € 7, and define r-module actions of H on {Homy (H;, Hyy ) }aer by
(5 £)(p) = f () = ) gy and (F <= 1)(q) = @41 () - @y 0 £ (0 ia)) )

forallh € Hg, p € Hg,, q € Hygand f € Homy (Hy, Hyy ).
It is easy to check that
h=(p—g)=(—p)—g
whereby
i 7y v r
h=(feg)=(h=f)eg
forall p € Hy and f € Homy (H,, Hyy)-
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Therefore, we can define
i *
L f=hay 5 f & sp(hey) € Homy (Hi o, Hygpor,)
forallh € Hg and f € Homy (Hy, Hyy). It is obvious that
gL L fy=(gh) L fand1 L = f.

Next we will prove that there is a close relationship between the 7r-module actions 2 and
& of Hon {Homy (H;, Hay) Yacn-

Lemma 14. We have ht 2 f = (hy) 2 £) < hiy), forall h € Hy and f € Homy (H;, Ha).
Proof. Leth € Hg and f € Homy (Hy, Hyy), then
Y Y Y Y Y
(hu)ﬁf)*h(z):(h( —>f<—5/3(h< 1)(2 )))H%
Y Y Y

The third equality follows from the axioms of a coquasigroup Hopf r-algebra. O

Now, we give an equivalent condition for a Hopf non-coassociative rr-algebra to be
almost cocommutative, provided the family R is invariant under the crossing.

Proposition 5. Let H be a Hopf non-coassociative rt-algebra and R = {R, g = R(lg ® R(Z%

d * 2 *
Hy ® Hg}open- Define f € Homy(Hy, Hay) by f(p) = (RSM),X) g07,1( ﬁr,x),x) Vp € Hj.
Give {Homy (H}, Hﬂ) Yaer the t-module structures over H described above. Then the following
are equivalent:

(1) foralla, B,y € mand h € H,, we have

h2) 9y (R%) ® 1)@y ( (2%) Ry @ REh);
(2)  forallh € Hg and f € Homy (Hy, Hyy ), we have
(f €)= 10 (h = f),
where ? is formally similar to the rt-module action 2 and fis an associated function defined
by F(p) = p (051 (RT2) )91 (RYia ) forany p € Hy, o

Proof. (1) = (2) Forallh € Hg, p € Higand f € Homy (Hy, Hyy),

(f W) (p) = gy1 (hry - 9y 0 (P = )
= o1 (92 ((p = i) (R 911 (R
= o (hu) ' "’“r< (h<2> R(W)q’v ( Ry )

(R )

ia)))
)
=p(h<) R(ﬁ?a)%-l (’%) 4’7(“"7‘1 Ris ))
= P(h(z) ' Rgr%x)/“) Pt (h(l) ' RE’“)'”‘)

= p(RBuh)) 9,1 (R ).
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Since 2951 Ry ) @ 1) @51 (Ria ) = Ridahir) @ R o), thus

p(Riah) ) @51 (Rodalir))
=p ()01 (R5n) ) 01 (a0 (R ) )
It follows that
(f < h)(p) =P<h( 1P ( (ya)a»% 1(h(2)€05 ( '(yla)a>>

= p(952 (RT2n) 1)) 210 (951 (Ria) iz

= 0 (051 (R ha) ) 9 (Ro) o)
=0 (o) = p) (952 (R ) 252 (Rl ) 1))
(00 1) )

—qvvlo(h? (),

i)
forallh € Hp, p € Hyg and f € Homk< g1 a/s’Hﬁ Wﬂ)
(2) = (1) For all h €Hg, peHggandf e Homy (H;, Hy, ), we have

(f & W)(p) = 10 (h = P(p).

Thus

p (Rﬁr%(),txh(zo P (R'%c),uch(l)) =p (h(l) Pp-1 (R'(y%x)a) ) P (h(z) Pp-1 (R(vla)zx> ) ,

ie.,

(P ®@y1) ( Yaall(2) ® R(vla),ahu)) =(P@¢,) (h(l)(l)ﬁ—l (R(ﬁ«),a) ® h()pp1 (R(vla),a) )
Then we have

Rf(yzac),ach(Z) & R%),ah(l) = h(l)(Pﬁfl (R(ﬁ?a) ® h(z)(Pﬂfl (R%)a)

This completes the proof. [J

The following corollary is a direct conclusion.

Corollary 11. Let H be an almost cocommutative Hopf non-coassociative rt-algebra with an
invertible antipode S. Then h 4 f=ei(h)f, forallh € Hy.

7. Quasitriangular Hopf Non-Coassociative rr-Algebras

In the current section, we will introduce and discuss the definition of a quasitriangular
Hopf non-coassociative rt-algebra and study its main properties. We construct a new Tu-
raev’s braided monoidal category Rep,(H) over a quasitriangular Hopf non-coassociative
mt-algebra H.
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Definition 8. A quasitriangular Hopf non-coassociative rt-algebra is a crossed Hopf non-coassociative
rt-algebra (H, ¢) with a family R = {Ryp € Ha ® Hp}o per of elements (the R-matrix) satisfying
Equations (28) and (29) such that, for any «, B,y € 7,

(idby ® 89) (Rapy) = (Rag)1z - (Rpq )iz, (36)
(D ®idpy, ) (Rupy) = (Rap)is - (Rasy)2ss (37)
(ea ®idp, )Rag =1, (38)
(idy, ®ex)R1e =1 (39)

where, for k-spaces P, Q and r = Ljp;®q; € PR Q, wesetrp = r®1 € P®Q® Hy,
r23:1®r€H1®P®Qandr1322jpj®l®qj€P®H1®Q.

Note that Rq; is a (classical) R-matrix for the Hopf coquasigroup Hj.

We find that a quasitriangular Hopf non-coassociative rr-algebra also constructs a
solution to the generalized quantum Yang-Baxter equation and a much stronger property
of its antipode holds which are similar as a quasitriangular Hopf coquasigroup in [23].

Example 3. Let H be a quasitriangular Hopf non-coassociative rt-algebra with R-matrix R =

{Ra,/ﬂ}zx,/ﬁen-

(1)  We can consider the coopposite crossed Hopf non-coassociative rt-algebra H°P to H . It is
quasitriangular by setting Rip = (S5 ® idHﬁ* )Ry p-1)-

(2)  Consider again the coopposite crossed Hopf non-coassociative m-algebra H°P to H . It is
quasitriangular by setting R wp = Tpla- 1(73571,“71).

Lemma 15. If (H, R) is quasitriangular, then the following additional properties hold:
1) (19 (ea @idpy ) Rap) - Rasy = Ruprs
(2) Rup (19 (0 @id, ) Ray ) = Rapy;
(3)  ((idH, ®ey)Ruy ®1) - Rpqy = Raupy
(4) Ray- ((d, @ey)Rpy ©1) = Ragyy.

Proof. We only need to show part (1) since the proof of other parts is similar. Applying &, ®
idy, ®idp,, to both sides of Equation (37), we obtain Ry g, = (ea ®idp, ® ide) (Ay ®
idn, ) (Rapy) = (€x @ idp, ®@idpg, ) ((Rep)13 - (Rasy)23) whence (1 ® (62 ® idHﬁ)Rw) .
R[x,'y - Rlx,ﬁ’)/' D

Lemma 16. Let (H,R) be a quasitriangular Hopf non-coassociative rt-algebra, and write R g =

RS; ® ng Then, for any a € 11, R, 1 is invertible. More precisely, we have R;} = (Sy ®

idH1 )Ra,l-
Proof. Using Equation (38) and applying (m,-1 , ®idp, ) o (Sa ® idg, ®idp, ) and (m, ,-1 ®
idy, ) o (idy, ® Sy ® idy, ) to both sides of Equation (37), we obtain

101=1e(RY) o RY = 5o (RY )R @ RARY

a1l a1 Va1

and

101 =1e (R ) @ RY = RS« (RY]) @ RARY

w,1 w,1

where 7%,,(,1 = Ryi1- Thus Ry 1 and (Sx ® idy, )Ry, are inverses. [
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Theorem 10. Let (H, R) be a quasitriangular Hopf non-coassociative rt-algebra, and write R, p =

R,% 2R !)3 Then R is invertible and R~ !13 1 = (Sa ®@idp, ) Rep-

Proof. Applying (1,1, ®idp,) o (S« ®idp, ® idp,) to both sides of Equation (37) yields:

19 en(RURY)

RN RD o 2@ R @
) =5 (RO) R @ REORE,

B

or equivalently,
1® (S,X ® idHﬂ)Ra,,B = (S,x ® idHﬁ) (Ra/ﬁ) . RIX,l

Multiplying both sides on the left by R, 5-1, by using Lemma 15, we obtain

Hence, R, -1 (S« ® idp) (Rap) = 1 follows by the invertiblity of Ry,1.
Applying (m, ,1 ®@idp,) o (idg, ® Sa @ idp,) to both sides of Equation (37) yields:

1@ e (RUNRE) =R s (RY)) 2 RARE,

or equivalently,
1® (ea ® idHﬁ)Ra,ﬁ =Ra1 (S ® idHﬁ) (Rlx,ﬁ)~

Multiplying both sides on the right by R, 5-1, by using Lemma 15, we obtain
R,,d = 'R,,(,l . (Sa X idHﬁ) ('R,a,ﬁ) . Ra,‘B—l.

Hence, (Sx ®idpy,)(Rep) - Ry p1 = 1 follows by the invertiblity of Ry

Therefore R, -1 is invertible and R ; 1 = (Se ®idpy) (Rep). O

Theorem 11. If (H, R) is quasitriangular, then the following additional properties hold:
(1) (Sp®@Sy)Rpy = Rpg-1,-1;

(2) Ria = (idy, ® S,-1) Ry,

(3) Ryip=(idn , @851 )R Y

(4) 'R satisfies the generalized quantum Yang—Baxter equation:

(Ro)12(Rap)13(Rayy)2s = (Rap)23 (R )13 ((@p-1 @ @4-1)Rs0) 15

Proof. We first establish part (1). Using Lemma 15 and Theorem 10, we apply (S,p ®
idg, ) o (idHaﬂ ® m,y_w) o (idHHﬁ ® Sy ®idp, ) to both sides of Equation (36) to obtain

(Sup @ 81) (Rus - R5Y ) = (saﬁ®sl)(72“ﬁ)ysv(7z§é;7) 1)
=Sep (Rﬁﬂ)w“ (joﬁ)w)) ©1=5 ( ap, 7) © 57( %)7(1))7353)7( 2)
=55(Rg)5e (R) @5, (RE))RE) = (852 5) R, - (Sa @idh, ) Ry
=(Sp®57)Rpy Ry s

ie, (Sp®Sy)Rpy = (Sap ® S1) (R,m : R;lﬁ) *R,,-1- Thus part (1) follows by setting

a=pB""L
Parts (2) and (3) follow directly from part (1) and Theorem 10.
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To show part (4), we use Equation (37) to calculate

(Rs)12(Rap)13(Rayy )23 = (Rsa)12(Ba @ idny, ) (Ra,py)

1 2 1 2
~Ripba(RUL) @R, = AP (RUL) (001 @ 9y 1)Rs0 O R,

=(Ra,p)23(Ray)13((@g-1 @ @1)Rs 1) 15

Thus R satisfies the generalized quantum Yang-Baxter equation. [J

Proposition 6. Let (H,R) be a quasitriangular Hopf non—coassociative rt-algebra. For any
€ 7,56t Uy = S,1 (R(z) )R(l) Then u, is invertible, u, R(z) 5105 (Rili_l}

1a-1 1a-1" 1,a—1
-1
Sg-108Sp(h) = ”ﬂch”ﬁ lep = uah(q)ﬁ,l(u,x)) = u,xh((p/3 1(uy )) pp(a) = ugyg and
(pﬁ(u,,jl) = uﬂkﬁ,l,for all h € Hg.

Proof. The calculations in the proof of Corollary 9 and Proposition 4 showed that u,h =
Sg10 Sp(h)iug-144 holds and S, (UL )S1 081 (UL )ua = 1 where Ry, = Ufy) @ uf?)
as well as q)lg(u,x) = Ugyg1- Let v, .1 = S (ul(,,,f)sl 0S; (Ul(oz) Then v,1Uy = 1 and
o1 = Sa(Uf)s1os1(UY) = su(RY)S1081081(RY)) = RE (51081 (R{,)
by Theorems 10 and 11. Let iy = i (Uj}))U{Y. Then v,-1 = Sa(ha). Now v,1 =
Sx©S,-1(v,-1) by Theorem 11. Therefore, v, 1 = Sq© S, 1 0 Sy (hy). Since
Sa 08,1080 (ha)taSu(tta) = uaSa(ha)Sa(ta) = 1aS,2 (Uaha)
- uaSDLZ(Sle‘l o Spc(ha)ulx) = uuSa(ulx)SlX [¢) Sle‘l o Sa(ha),

it follows that v, 1 and 1,5(1,) commute. Consequently

Ua (Sec(a)Vy-1S4-1(04-1)) = ((4aSa(Ua))Vy-1)Ss-1(v,1)
= (041 (uaSa(Ua)))Sy1 (04~ )—( Uy-1Ua) (Sa(a)Sy1(vy1))
= (04 11a)S1(011a) = 151(1) =

We have shown that u, has a left inverse v,-1 and also has a right inverse. Therefore
Uy is invertible. As ugh = Sg-1 0 Sg(h)ug-1,5 and @p(ua) = ug,g-1 hold, our proof is
complete. [

Definition 9. Let (H,R) be a quasitriangular Hopf non-coassociative rt-algebra over k. The
Drinfel’d element of (H, R) is the element u = {1y } acr 0f Proposition 6. The quantum Casimir
element of H is the family {uySy(ua) }acr of products.

Theorem 12. Let (H, R) be a quasitriangular Hopf non-coassociative rt-algebra with the antipode
S. Then S is bijective; thus H is almost cocommutative.

Proof. We set Ty (h) = uy'S,-1(h)u,. Using Proposition 6 we have

Tu(h1)) - hya) @ b)) = haym Telh) @ haye) = haya)ta ' Sut (ha))ia ® b))
:Mojlslx ©) Safl (h(z)(l))slx—l (h(l))ug‘ ® h(z)(z)
= 11181 (h) S 1 (hy 1) @ gy ) = 1 S1 (Dt @1 = g g @1 =12 1

and smularly for h (1) (h(Z)(l ) & h(2)(2) =1®Hh, h(l)(l) ® Ty (h(l)(Z)) . h(z) =h®1,and
faya) ® ) - w(h( >) hel
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This means that T = {Tj }xcr is an antipode on H? and hence the inverse of the
antipode S on H according to Proposition 2. [

The following reconciles the original definition of quasitriangular Hopf non-coassociative
rt-algebra with the one given here.

Proposition 7. Let H be a crossed Hopf non-coassociative rt-algebra over k and R = {Ryp } o pen-
Then the following are equivalent:

(a) (H,R) is quasitriangular.
(b)  H is almost cocommutative, where R is invertible and satisfies Equations (36) and (37).

Proof. Part (a) implies part (b) by definition and Theorem 12. Suppose that the hypothesis
of part (b) holds. We only need to show that Equations (38) and (39) hold. Applying
£q ®idp, ®idpy, to both sides of Equation (37), we obtain Ry 1 = (¢4 ® idy, ® idp, ) (Ax ®
idH1)(Ra,1) = (8,;( ® ide & idH1)((Roc,l)13 . (Ra,l)ZB) whence (E,X & idHl)Ra,l = 1 since
R, is invertible. Similarly for (idy, ® e4)R1o =1. O

What the entire preceding discussion illustrates is the following equivalent characteri-
zation for a quasitriangular Hopf non-coassociative rr-algebra:

Definition 10. A gquasitriangular Hopf non-coassociative m-algebra is a crossed Hopf
non-coassociative m-algebra (H, ¢) with a family R = {Ryp € Hy @ Hp}apen of invertible
elements (the R-matrix) satisfying Equations (28), (29), (36) and (37).

Corollary 12. Let (H, R) be a quasitriangular Hopf non-coassociative rt-algebra with a bijective

antipode S, then

D =50 (REL R

(2)  (S,-1084)%(h) = gahgy! forall h € H,, where uy = S, (Rgzi,l)Rgli,l and g, =
uﬂ((sﬂ((ulx))_l;

(3) (Sa0S,1)3(h) = guhgy forall h € Hyoa, where uy = S, (R )RY)
”a(sa(ua))il;

(4)  St(h) = guhgy  forallh € Hy, whereuy = S, (R(z),l)Rm,l and go = 1t (Se(ua)) ™

1,0 1,0
(5)  e42(8u) =1 and ¢p(ga) = gpap1-

and gy =

Proof. Apropos of part (1). Write R‘;,l = uY @ u'®. Consider the calculation:

1 la
s (U ) = 05,5, ()t
= 5uo i (571 (U2 )5 (R )R
5 (U2 (R )R )
s (R U)K U

We use Theorem 11 to obtain R 1

(idH1 & S,X)R;;,l = Uﬁx) ® Sy (Ul(Z)), or equivalently (idH1 ® SEI)Rl,wl = lll(la) & Ul(zﬂz

from which we obtain u;! = S;L (Ul(zvf ) Ul(la) .

o

by the bijectivity of S, thus leading to the formula:

' =545, (R(z)

1a-1

)R

1a-1"
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To establish part (2), observe from Proposition 4 that u, € H, is invertible and
Sy-10Se(h) = ughu,! = (Sa(1tg)) 1S () for all b € H,, then

S, 108408, 108x(h) =S, 105, (u,xhu,;l)
=S, 1 0S4 (11a)S, 10 Sx(h)Ss 0 S, 1 (u;l)
=11y (S (112)) " hSa (1)1,
or equivalently S, 1 0 Sy 0 S,-1 0 S (h) = guhgy ! for all h € Hy. Similarly for parts (3) and
(4). Part (5) follows from the calculations below:
02(80) = £q2 (a(Su(14a)) 1) = 2 (aSer (1) )

= ea()ea (S (1)) = ea(ua)eq () = e2(uarig ) = 2(1) = Iy
and

(Pﬁ<8a) = (Pﬂ(”tx(szx(”a))il) = (Pﬁ(”a)(Pﬂ((sa(ua))il)
= () @p (So1 (12 1)) = p(ua)Spa151 (96112

= tpup1Spo1p1 (Mpp ) = pup 1 (Spap (”ﬁ@”))il = 8pup1- U

-1
Corollary 13. Sg-10S5g0Sg-105g(h) = uagoﬁ((sa(ua))—l)h((pﬁfl (Ma)(sa(ua))il) for
all p € wand h € Hp, where uy = S, (R?ZA)R?DBA'

Proof. Observe from Propositon 4 and Corollary 9 that u, € H, is invertible and S p-10
Sp(h) = uahgg-1(uz") = @p((Sa(ua)) ") hSu(uta) for all h € Hg, then

Sp-105p0S510Sp(h) = Sg-1 0 S5 (Uahggi (17 "))
=S5, 1054 (1ta)Sp1 0 Sp(h)Sg 15 © Sp14 15 ((pﬁ,l (u,;l))
=510 Su(a)Sp1 0 S (1) 10 0 S5 (151 )
~tagp ((Sa(14a)) 1 HSa ()5

=Ua (g ((S“(u“))_l)h(uﬁq“‘B(Sa(”tx))_l)71
-1

=g ((Sa (1)) ™ ) (951 (ua) (Suua)) 1),
or equivalently Sg-1 05505510 Sp(h) = uaqo/g((Sa(ua))’l)h((pﬁ,l (u,x)(S,x(ua))*l> o for

Proposition 8. Let (H, R) be a quasitriangular Hopf non-coassociative rt-algebra with antipode S
over k and let u = {1 }xcr be the Drinfel’d element of (H, R). If the second tensor factor of R 1
is coassociative, then the following hold:

@ Aaltt) = (Ch i (Ri) Ry 1) (e @1u1) = (it @ 1) (01t 11, (R1,1) Ry 1) and
ea(Uy) = 1i.

() Ay1Sa(ua) = (0r;, 1, (R1a)R11) " (S1(u1) @ Su(uta).

(©  AaSy1(ugt) = oy, (Ria)Ru1(S1(uyh) @ Syn (ugh)).

d g1=1mn (Sl(ul)rl is a group-like element of Hy.
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1a—1"
Applying A1 ® idHVl ® idH,rl and idy, ® idy, ® A,-1 to both sides of Equation (36),
respectively, we obtain

Proof. To show part (a), we write R, g = Ri /)3 ® Ri 23 Therefore uy, = S, (Rﬁg,l) RW

(1) <1> @ @
Rig1i) @Ry 12 @Ry ) @R )
_ 50 50) ) 5(2) )
Rl /x—l(l)R a-1(1) ® Rl a-1(2 )Rl,lX_l(z) ® Rl,uc—l ® Rl,uc—l
2 2 2
=RV RY e rRY 0 RP  RE e RP R

Using Proposition 6 and part (1) of Theoerm 11, we calculate

Bu(ta) = Au(Syor (REL )R = 88, (REL ) )M(RY))

2) 2) (1)

1,z>fl> 1) ® 5S¢ (Rl,zxfl) (2))(7?'1,&*1 1

2) 2) (1)

a1\ Rip12)) @ Sa (Rm—l <1>) )Ry )
)

2 (1) ) (1)
Sa-1 (Rm—l <z>)731,a—1 (1) ® Syt (RW (1))7%,“4 )
(RERE

(St (R
(R

= (s

and thus (o o~
Balua) = 51 (REVRY Jua @ 51 (R )R
Since H is quasitriangular, S is bijective by Theorem 12. Write R, 5 = R\ /)3 ® ’R(% By
Equations (28) and (29), we have
hioy) @ AP (1)) (9,1 ®@ @1) (Rup) = ho) @ RepBo(hiyy)
= S L (1) @ AT (1) )Ry 18y = S 01 (B2)) ® R py (1))

0 (1) @) o1 1) )
=S 1 (h)hay)R haymR ()R ghy1) @ Reghye)

7~ lay, 7_1,5’7 ylayy iy 7
(1) () _ -1 (1) ()
= R7,1a7’771ﬁ7 ® hR7*1a7 1By = S’Y*l (h( ))Rrx ‘Bh(l)(l) ®R ﬁh(l)(Z)
— @ R(Z) ® R sy

Yy a1 By Ty ey Ty

( ) (1)
Rupt @Ry 100167

Y layy 1By Ty vy Iy

_ ¢—1 My
=5 (@) Ry ghy R
from which we derive the commutation relation:

(1) ) ) (1)
RTlM/TlﬁWRTlé‘W*év ® hRW*er%v*lﬁvRv*éw*lCW (40)

R
‘16%7‘167
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Applying idy,, ® Ay ®idp, to both sides of the equation of Equation (36) we obtain
1)
Rupiy

@) 2) 2) (1) @) 2)
B Ry 1)) @ Rigr1)2) @ Rigp(2) = (szﬁ y @By Ryg 1) @ Ry, 7(2))
= (RORY) @8, RY) @ REY)) = RRY) @

RY o @ RY

v (

) ( )
By ® /57(1)
)
Y By

o
LR @ RE @ RY) o RE) = RORDRY

0 oL )R onl),

- RUR )

enee R, @5y (RG,) . @S (RG,) 1 ©5:(RE,)
“py ) T TN @) T T 2)2)

=Rl 5 (Rym) @51 (), @5 (REa)
=® )

Riﬁ)v@%( B R

2
(41)

)
2)) ® v( of, 7<1><2>) ® Sy (Rzgcﬁ),v(l)(l))

= RORIURE) @5, (RE)) @5, (RE) @5, (R,

Applying idy, ® S1 to both sides of rWg % (R( ; ) ® Ri 2372;; 1 = 1®1, which follows

from Theorem 10, and using part (1) of Theorem 11, we obtain

(
(

RS (R L) @51 (RORE L) =1@81(1)

p 0p!
— RS (RIS ) @854 (R )8(RE) =101 (42)
— RRY, 5® R, 55 (R< >) —1@1.

Using Equations (40)—-(42) as well as part (1) of Theorem 11 again, we continue our calcula-
tion of

~—
§
®
?\3
_—
D
R)
-
»—\ = Ay
(n /‘\
)
—_
)
D

o

(
(
= 51(571 (51 (RA ) ) RIURES (RE 1)) )
( 21)(1)( )))Rgl)Rﬁ)S (R( )( (2 )))Lia@R(z)R(l)
)

2(2) ~(2) ~ (1) al
=5 (R 11 Rg 0273?1) 51 (Rl 1 )) (2)73(1)51 (Rgzl)) Rg 1)731,1 Ria
=) ) e (3 A () Sz
= S] o S] (Rl,l > Sl (Rl,l ) Sl (Rl,a) S] Rl,l Uy @ R R M]Rl 1R1 1

=510, (R )31 (R)s1(R1)s (R“>

2) (1) 0 A0
® Rl,ﬂcRLl S] ] S(l) Rl,l Sl o Sl Rl,l u
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5@ 0N ¢ (YA @,mz0s (3"
= R1151(R7) 81 (R Ripte © RER R 151 Ray |

7\,\\(2) ;\/\\(1)
=5 (Rg)Rn Uy ® ngsl <R1,1>”1 =R, 1972 12y, Ry 81)51 (R (1))u1
= Rl_,ulc,lfle,Hl (Rl_ll) (e @ u1) = (0,1, (R, DR e )~ 1(ua 2uy),
from which we also have

Ag(ua) = (U @ u1) (UHl,Hl (Rl,l)Rl,a*1)7

Moreover,

aita) = ea(S, 1 (R ) REL) = ea(Sy 1 (RE, ))er (RY).)

We have established part (a).
To see parts (b) and (c), we deduce from part (a) that

Ay1Sa(ua) = 0H 4,1 (S ® Sa)Aa(tia)
= SRS (REY)) @ Suuasi (RY) ) REY)
= 5151 (R{Y ) Sa(RE)S1 (1) @ 51 (R)S181 (R Sa ()
:sl(Rff)Rg ) 51(u) @ RYYSy (Rfﬁ ) (it
_ R;ll(l)RM( )51( )®R11( )Rli(l)s (1)
= (R VR @ R PR W) (81(10) @ Suwa)
= Ry10H, 1, (Rip)(S1(11) @ Sa(ua))
= (01, H, (R1a)R1,1) " (S1(141) ® Sa(ta))

and the two factors commute; thus

AaSy1 (") = opy H (R )R (S1(uyh) @ Syn (ug )

and the two factors commute.
It remains to establish part (d). Consider the following calculation:

Av(gr) = da(un(S1(m1)) 1) = Aa () A1 ((S11)) 1) = A1) (S1 (w7 )
= (11 @ u1) (OH,,H, (Rl,l)Rl,l)_l(THl,Hl (R1,1)R11(S1(uy ) @ S1(upt))

= (w1 @up)(S1(u; ) @Sy (uy ")) =urS1(uy ) @y S1(uy')) = g1 ® g1

O

In [28], the twisting theory for quasitriangular Hopf algebras was studied by a 2-
cocycle. By using the dual of cocycle (called a 2-cocycle), multiplication alteration for
bialgebras was investigated in [29,30]. In what follows, we will introduce the definition of

2-cocycle for Hopf non-coassociative 7r-algebra.

Definition 11. Let (H, ¢) be a crossed Hopf non-coassociative rt-algebra. If there exists a family
R = {Ryp € Hy ® Hp}aper of invertible elements (the R-matrix) such that, the family R is

invariant under the crossing, i.e., for any o, B,y € 7,

(@7 ® 9)(Rep) = Royuy=1,4p7-1s
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and, forany o, B,y,0 € 7,
(90 ® @) Rs7)12(Ba @ idpy ) (Rapy) = (Rup)23 (idH,; @ Ay) (Rug ), (43)
ie.,
(1) 1) (2) (1) ) (1) (1) p2) (2)p(2)
Rtx&zxfl,a'ytxflR By(1) ® szévﬁl Ly 1R0< Bv(2) ® R By RMS Y ® Rl’é ISRMS 7(1) ® Ra,ﬁRﬂt&’Y@)

Then R is called a 2-cocycle.

From Theorem 11, it is easy to see that a quasitriangular Hopf non-coassociative
rt-algebra is a crossed Hopf non-coassociative rt-algebra with a 2-cocycle.

Definition 12. Let H be a Hopf non-coassociative rt-algebra. We say that a family of M =
{My }ner is a t-representation over H if M has a right rt-module structure, it means that there
is a family

Y= {l/JlX,ﬁ : My ® Hp — Maﬁ}zx,ﬁeﬁ

of k-linear maps (the rt-action), such that  is associative in the sense that, for any o, B,y € 7,

lpzxﬁ,'y(ma,ﬁ & idAv) = lpa,ﬁ'y<idAa & lljﬁ,fy); (44)
lpzx,l (ldHa X 1) = idHa- (45)

We shall associate with every Hopf non-coassociative rt-algebra H = ({Hy, m, 14}, As,
¢, S) a category of rt-representations Rep (H) which has a natural structure of a 7r-category.

Explicitly, for any a € 7, by an object M, in the category Rep,(H) we mean a vector
space M, is a right H-module with a structure:

Yo = {lplx,ﬁ : My ® Hp — Mocﬁ}uc,ﬁerf'

The category Rep(H) is the disjoint union of the categories { Rep, }ac where Rep,(H) is
the category of H-modules and H-linear homomorphisms. By Proposition 3, the tensor
product and the unit object in Rep,(H) are defined in the usual way using the comultipli-
cation Ay and the unit 1. That is,

hy - (m@n) Zh -m® hy @) "

forany m € Mg and n € N,.

The associativity morphisms are the standard identification isomorphisms.

Furthermore, let H = ({Hy, m, 14}, 00,6 S, 9, R) be a quasitriangular Hopf
n-quasialgebra. The automorphism ¢, of H defines an automorphism, ®, of Rep,(H).

If Mg is in Rep(H)g, then @, (M) has the same underlying vector space as M and each
x € H,pg,1 acts as multiplication by ¢, !(x) € Hg. Every Hg-homomorphism M — N is
mapped to itself considered as a H,4,-1-homomorphism. It is easy to check that Rep(H)
is a crossed rt-category (see [4]).

A universal R-matrix R = {R, g € Hy ® Hg}pcr in H induces a braiding in Rep(H)
as follows. For M € Rep(H),) and N € Rep(H)g), the braiding

cMN i M@ N — MN oM
is the composition of multiplication by R, g, permutation M ® N — N ® M. The condi-

tions defining a universal R-matrix ensure that {cj; 5} am N is a braiding.
We now obtain
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Theorem 13. Let H be any quasitriangular Hopf non-coassociative rt-algebra. Then the category
Repr(H) of mt-representations is a braided T-category.
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