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Quantum Gravity

Quantum Gravity in
asymptotically-AdS
spacetime

AdS/CFT
⇐⇒

Ordinary QFT
living at conformal
boundary

consistent and non-perturbative

difinition of Quantum Gravity



Semiclassical Regime for Gravity

? In AdS:

Gravity is weakly coupled(
AdS much larger

than Planck scale

)

and close to Einstein gravity(
scale of higher-derivative corr.’s

much higher than AdS scale

)
⇐

? In QFT:

large

“central charge”

(large N)

QFT is

strongly coupled

! Take advantage of modern non-perturbative methods !



Quantum Gravity from Field Theory

Non-perturbative

QFT methods

conformal bootstrap
integrability

(for certain CFT’s)

numerics
(lattice)

supersymmetric
localization

compute SUSY observables & partition functions exactly



Localization techniques −→ QFT Euclidean partition functions

What can we learn about semi-classical expansion of “gravitational path integral”?

Black holes & Entropy

Quantum corrections expected to play an important role

Euclidean observables – e.g., indices – capture Lorentzian physics

SBH =
c3

GN~
Area

4
[Bekenstein 72, 73, 74; Hawking 74, 75]

Black hole =
Ensemble of states
in quantum gravity

AdS/CFT
=

Ensemble of states
in boundary QFT

Smicro = logNmicro =
Area

4GN
+ perturbative & non-perturbative corrections



Black holes in AdS

? String theory reproduces the Bekenstein-Hawking entropy [Strominger, Vafa 96]

of BPS black holes in asymptotically-flat spacetimes

Since AdS/CFT grants us a fully non-perturbative definition of Quantum Gravity,

it is interesting to study the black hole entropy in AdS

? Strategy that proved to be effective: [FB, Hristov, Zaffaroni 15]

Extract BPS black hole entropy in AdS from

SUSY partition functions of boundary QFT at large N



Beyond Bekestein-Hawking

Saddle-point approximation is subtle: (e.g., 1-dim integrals)

Complex saddles play important role

Not all of them contribute → steepest descent & Lefschetz thimbles

Does something similar happen in gravity? x

? This talk: analyze charged rotating BPS black holes in AdS5

very detailed computations are feasible



? Strategy: count states in the boundary QFT

employing a grand canonical partition function

I(y) =
∑
states

yQ

Difficult problem at strong coupling −→ exploit SUSY

?
QFT

partition function
AdS/CFT

=

Euclidean “gravitational

path integral” with fixed

boundary conditions

B.C.
∑

[Witten 98][Dijkgraaf, Maldacena, Moore, E. Verlinde 00][Maloney, Witten 07]

? Define gravitational path integral through QFT,

computable with localization
; details analysis



Setup

Type IIB string theory

on AdS5 × S5
←→

4d SU(N)

N = 4 Super-Yang-Mills

BPS black hole solutions in AdS5 [Gutowski, Reall 04; . . . ]

(use 5d gauged supergravity or uplift to 10d)



Kerr–Newman BPS black holes

Rotating & electrically-charged 1
16

-BPS black holes in AdS5 [Gutowski, Reall 04]

[Chong, Cvetic, Lu, Pope 05][Kunduri, Lucietti, Reall 06]

Angular momentum Here: J1, J2

Electric charges Charges for U(1)3 ⊂ SO(6): R1, R2, R3

SUSY (1 cplx supercharge Q)

 BPS linear relation: 2M = 2J1 + 2J2 +R1 +R2 +R3

Extremal (T = 0)  non-linear relation among 5 charges → 4 parameters
[Cabo-Bizet, Cassani, Martelli, Murthy 18; Cassani, Papini 19]

Bekenstein-Hawking entropy (S3 horizon):

SBH =
Area

4GN
= π

√
R1R2 +R1R3 +R2R3 − 2N2(J1 + J2)

Angular momenta, charges and entropy scale ∼ N2



Superconformal index [Romelsberger 05; Kinney, Maldacena, Minwalla, Raju 05]

? Counts (with sign) BPS states on S3 = protected operators on flat space

Index of N = 4 SYM:

I(p, q, y1, y2) = Tr (−1)F e−β{Q,Q
†} pJ1+ 1

2R3 qJ2+ 1
2R3 y

1
2 (R1−R3)
1 y

1
2 (R2−R3)
2

Write: p = e2πiτ q = e2πiσ ya = e2πi∆a F = R3 = 2J1 = 2J2 mod 2

SUSY ⇒ at most 4 independent fugacities
(

introduce ∆3:
∆1 + ∆2 + ∆3 − τ − σ ∈ Z

)

? Exact integral formula [Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk 03]

[Sundborg 99][Romelsberger 05][Kinney, Maldacena, Minwalla, Raju 05]



? The index encodes (weighted) degeneracies:

I = 1 + # y + # y2 + . . .+ d(Q) yQ + . . .

To extract the degeneracies:

d(Q) =
1

2πi

∮
dy

yQ+1
I(y) =

∮
d∆ elog I(∆)−2πiQ∆

Assuming large degeneracies, saddle-point approximation → Legendre transform

entropy = log d(Q) ' log I(∆)− 2πiQ∆
∣∣∣
∆ = extremum

Remarks:

• We are interested in Q ∼ N2 in the large N limit

• One can prove that, at least at leading order in N ,

the index captures the full entropy [Sen 09; FB, Hristov, Zaffaroni 16]



Many approaches to

large N matrix model:

direct saddle-point approx

Cardy limit τ → 0

saddle-point approx for non-analytic extension

Gross-Witten-Wadia-like expansion

giant graviton expansion

? Here: Bethe Ansatz formulation



Bethe Ansatz formula for the superconformal index

Alternative formula: (set τ = σ) [Closset, Kim, Willett 17]

[FB, Milan 18]

[FB, Rizi 21]

I =
∑

u∈MBAE

Z(u; ∆, τ, τ) H(u; ∆, τ)−1

1 MBAE are solutions to “Bethe Ansatz Equations” for rk(G) complexified

holonomies [ui] living on a complex torus T 2
τ of modular parameter τ :

MBAE :

SU(N) N = 4 SYM
Qi(u) =

3∏
a=1

N∏
j=1

θ(∆a − uij ; τ)

θ(∆a + uij ; τ)
= 1

uij =

ui − uj 6= 0

Equations are defined on T 2
τ and are invariant under SL(2,Z)

2 Z is the same integrand as in the integral formula

3 H is a Jacobian: H = det
ij
∂Qi/∂uj



? Discrete family of exact solutions [Hosseini, Nedelin, Zaffaroni 16; Hong, Liu 18]

Classified by subgroups of ZN × ZN of order N

Labelled by {m, r} with m · n = N and r ∈ Zn

Basic solution {1, 0}: uj ∼ τ
N j

SL(2,Z)-transformed sol’s e.g.

More general SL(2,Z) orbits: m > 1 gcd(m,n, r) > 1

? Continuous families of solutions

e.g.(conjectured to correspond to vacua of N = 1∗ theory)

[Ardehali, Hong, Liu 19; Lezcano, Hong, Liu, Pando Zayas 21; FB, Rizi 21]



Contribution of basic solution at large N

Does the index reproduce the Bekenstein-Hawking entropy?

• Contribution of basic solution {1, 0} at large N :

lim
N→∞

I(τ,∆1,∆2)
∣∣∣
basic
solution

' exp

(
−iπN2 [∆1]τ [∆2]τ [∆3]τ

τ2

)

Large N limit is a discontinuous analytic function: Stokes phenomenon

[∆]τ ≡ ∆ + n s.t. ∈ strip

0

τ

−1

τ − 1

∆

[∆]τ
γ



Black hole entropy

Extract Bekenstein-Hawking entropy from I
∣∣
basic solution

? Set X1 = [∆1]τ X2 = [∆2]τ . Obtain “entropy function”:

log I = −iπN2 X1X2X3

τ2
with

3∑
a=1

Xa = 2τ − 1

Its (constrained) Legendre transform exactly gives the BH black hole entropy:

SBH = log I − 2πi
(∑

Xa
Ra
2 + 2τJ

) ∣∣∣
constrained
extremum



Similar procedures work in other setups and dimensions, from AdS4 to AdS7

Bekenstein-Hawking entropy from various types of indices:

BPS rotating black holes

(possibly with electric and

magnetic flavor charges)

↓
superconformal indices

BPS black holes with

R-symmetry magnetic charge

(possibly rotating and with

electric/magnetic flavor charges)

↓
topologically twisted indices

[Azzurli, Bobev, Choi, Crichigno, Fluder, Gang, Hosseini, Hristov, Hwang, Jain, Kantor, Kim, Min, Nedelin,

Nian, Pando Zayas, Papageorgakis, Passias, Richmond, Suh, Uhlemann, Willett, Yaakov, Zaffaroni, . . . ]



Beyond the leading order . . .

Expansion of the index at large N : I =
∑

solutions∈MBAE

eO(N2) + ...

It looks like a semiclassical expansion

? Large N contribution of {m, r} solutions (with fixed m, r):

log I{m,r} = − iπN
2

m

[m∆1]τ̌ [m∆2]τ̌ [m∆3]τ̌
(mτ + r)2

+ logN +O(1)

+
∑

e
2πiN
m

[m∆a]τ̌
τ̌ +... + . . .

where
∑
a[m∆a]τ̌ = 2τ̌ − 1 and τ̌ = mτ + r

Is there anything to learn from this QFT data?



Gravitational path-integral

Superconformal index is computed by Euclidean partition function in QFT

ISCFT = ZS3×S1 (with suitable regularization)

Holographically: ZS3×S1 =
string theory
path-integral

' classical
saddles

+ corrections

Fill-in bulk geometry

for given boundary conditions

[Witten 98; Dijkgraaf, Maldacena, Moore, Verlinde 00]

[Maloney, Witten 07]

S3

×
S1

A

?

Only SUSY configurations contribute to SUSY observables (localization)

Euclidean rotation of Lorentzian BPS black hole

has β =∞ (extremal, T = 0)

⇒ Look for complex Euclidean SUSY solutions



Complex Euclidean solutions [Cabo-Bizet, Cassani, Martelli, Murthy 18]

? Consider full family of [Chong, Cvetic, Lu, Pope 05]

[Cvetic, Gibbons, Lu, Pope 05]

[Wu 11]
of non-SUSY black hole solutions (here 6-dim)

Generic complex values of parameters

⇒ complex metric and gauge fields

Impose SUSY but not extremality

Impose the boundary conditions

• As for the saddle-point approximation to one-dimensional integrals,

we are let to include

complex saddles in Euclidean semi-classical expansion of gravity.



• Boundary metric: ds2
bdy = dt2E︸︷︷︸

S1

+ dθ̂2 + sin2 θ̂ dφ2 + cos2 θ̂ ψ2︸ ︷︷ ︸
S3

with (tE, φ, ψ) ∼= (tE + β, φ+ 2πτg − iβ, ψ + 2πσg − iβ) (from regularity
at the horizon)

φ, ψ defined mod 2π ⇒ all τg, σg + Z give same boundary metric

• Boundary gauge field: exp

{
−i
∮
S1(bdy)

Aa

}
= exp

{
2πi∆g

a + β
}

Holonomy is gauge inv. ⇒ all ∆g
a + Z give same boundary gauge bundle

? B.C.’s only fix (constrained) complex potentials up to Z shifts!

τg, σg, ∆g
a parametrize gravity solutions [Cabo-Bizet, Cassani, Martelli, Murthy 18]

SUSY:
∑
a ∆g

a = τg + σg ∓ 1



Match with Bethe Ansatz formula?

? On-shell action of complex Euclidean SUSY solutions: (for τ = σ)

Igrav = −iπN2 (∆1 − n1) (∆2 − n2) (∆3 − n3)

(τ + n4) (τ + n5)

with
∑
a ∆a = 2τ − 1 and

∑5
α=1 nα = 0  

∑
n1,n2,n3,n4

? Large N index contribution of m = 1 subfamily {1, r}:

log I{m,r} = −iπN2 [∆1]τ̌ [∆2]τ̌ [∆3]τ̌
(τ + r)2

+ . . .

where
∑
a[∆a]τ̌ = 2τ̌ − 1 and τ̌ = τ + r  

∑
r

• Matching contributions but . . . gravity has too many solutions!



Euclidean D3-branes

Non-perturbative corrections from Euclidean SUSY D3-branes

wrapped on 10d geometry at the horizon

S3

×
S1

S5

S1

S3

Two possible S1 ⊂ S3

Three possible S3 ⊂ S5

On-shell action:

SD3 = 2πN
∆g
a

τg
or SD3 = 2πN

∆g
a

σg

Non-perturbative corrections: generic positive integer linear combinations of those



? Effect of D3-brane corrections:

I = ZS3×S1 ' eIgrav +
∑
k

eIgrav eikSD3 ' exp

{
Igrav︸︷︷︸
O(N2)

+
∑
k

eikSD3︸ ︷︷ ︸
O(e−N )

}

Criterium to retain a complex saddle:

ImSD3 > 0 for all (SUSY) D3-brane embeddings

Violation implies “D3-brane condensation” towards some other saddle point.

Expected to signal that complex saddle point does not contribute to integral.

? Apply criterium

(for τ = σ in QFT)

⇒
{
τg = σg = τ + r for any r

∆g
a = [∆a]τ+r  

∑
r

Precise match between cplx gravitational saddles and {1, r} subfamily



Exponents of non-perturbative corrections match:

eiSD3 = e2πiN
∆g
a

τg or e2πiN
∆g
a

σg

log I{1,r} = . . . +
∑

# e2πiN
[∆a]τ̌
τ̌ . . .

Exponentially small O(e−N ) corrections when criterium is satisfied

• Interesting to compute prefactor # and compare with D3-brane quantization



Orbifold geometries: m > 1

The {m, r} solutions with m > 1 correspond to

SUSY orbifolds of 10d lift of the previous solutions

• Take a SUSY complex solution with β̃ = mβ , τ̃g , σ̃g , ∆̃g
a

Orbifold:

(tE, φ̂, ψ̂, φa) ∼=
(
tE + β̃

m , φ̂− 2πr1
m , ψ̂ − 2πr2

m , φa − 2πsa
m

)

“Stability” of Euclidean D3-branes ⇒

{
τ̃g = σ̃g = mτ + r ≡ τ̌

∆̃g
a = [m∆a]τ̌

On-shell action reduced by 1
m ; Match with log I{m,r}

log I{m,r} = − iπN
2

m

[m∆1]τ̌ [m∆2]τ̌ [m∆3]τ̌
τ̌2

+ . . . +
∑

# e
2πiN
m

[m∆a]τ̌
τ̌ + . . .



We expect our criterium

on the sign of the imaginary part of the exponent

in non-perturbative corrections

to play the role of a proxy for

steepest descent and Lefschetz-thimble analysis in gravity

x



Hints of new physics? [in progress]

? In expansion of the superconformal index,

there are other contributions we have not yet evaluated:

• {m, r} discrete solutions with different scaling with N

• continuous families of solutions

They might capture interesting gravity solutions

? There are other Euclidean SUSY D3-branes.

They destabilize even the solutions that match with the index,

in certain regions of parameter space.

What does this destabilization represent? Where does it lead to?



Conclusions

Summary:

Careful analysis of superconformal index of N = 4 SYM,

using an alternative Bethe Ansatz formulation.

Large N : each Bethe Ansatz solution represents a complex saddle point.

One solution exactly reproduces the Bekenstein-Hawking entropy

of BPS black holes in AdS5 × S5.

Other solutions give corrections from complex gravitational saddles.

Criterium: discard complex saddles with diverging D3-instanton corrections.

Some open questions:

Consequences for Lorentzian physics? Which phases / phase transitions?

Can we compute corrections more precisely?

Other Bethe Ansatz solutions? Continuous families?

Multi-center black holes? [We have found probe branes]


