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1 Introduction

In the context of AdS/CFT correspondence [1], the Ryu-Takayanagi (RT) formula [2–4]
uncovers a relation between bulk geometry and boundary entanglement, by claiming that
the entanglement entropy (EE) SA for a region A in the boundary CFT is given by the area
of a minimal surface EA homologous to A in the AdS bulk,

SA = Area(EA)
4GN

. (1.1)

The RT formula was refined to its quantum corrected version, the quantum extremal surface
(QES) formula [5–7], which recently enlightens a new understanding on the black hole
information paradox [8, 9]and was further refined towards the so called island formula [10–14],
which has recently been widely studied [15–36].

To give a more concrete geometric description for holographic entanglement entropy,
Freedman and Headrick reinterpreted this geometric optimization problem as a flow opti-
mization problem [37, 38].1 Specifically, the area of the minimal surface EA can be given
by the maximum flux through the boundary region A by optimizing over all possible di-
vergenceless vector fields v whose norm is upper-bounded by |v| ≤ 1/4GN . This optimized
flow configuration is highly degenerate and is said to lock the boundary region A. On the
minimal surface EA, an optimized flow should be normal to EA with the norm saturating the

1Another reformulation of the RT formula is based on the identification of minimal surfaces in Riemannian
geometry through calibrations [39].
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bound 1/4GN . In other words, EA is the bottleneck of the flow configuration. The unoriented
integration curves of this optimized flow configuration is known as bit threads [37]. Later
in [40, 41], the flow is generalized to multiflow to simultaneously lock all the non-overlapping
multi-regions. Explicit bit thread configurations in pure AdS were first constructed by using
the bulk geodesics in [42]. Then, in [43], the perturbations of bit threads configurations
around pure AdS were considered by using bulk geodesics or Iyer-Wald formalism [44]. Bit
threads have been also generalized to its quantum corrected version [45, 46] and the covariant
version [47]. For other recent progresses on bit threads, please refer to [48–54].

Despite the equivalence between bit thread description and the RT formula in computing
holographic entanglement entropy, the bit thread configuration is considered to be non-
intrinsic for its non-uniqueness and dependence on the choice of the region. In other words, no
bit threads configuration can lock all the regions simultaneously. For this reason, the explicit
distribution of a bit thread configuration has no physical meaning. It is very important
to give particular physical meaning to the distribution of the bit threads, hence clarify
the rules that uniquely determine the bit threads configurations. A natural interpretation
for bit threads distribution could be the entanglement contour sA(x) [55], which captures
the contribution from the local degree of freedom at each site x to SA. For a given bit
thread configuration, a unique entanglement contour sA(x) function can be read from the
configuration by computing the bit thread flux emanating from x to the complement of A

(see [56] for an explicit example). Nevertheless, even the entanglement contour is uniquely
determined by the reduced density matrix ρA, the bit thread configuration consistent with
sA(x) is still not unique as the thread distribution on the complement Ā can not be clarified.
In addition, the dependence on the choice of A persists.

In this paper, we will show that the partial entanglement entropy (PEE) [56–61]2 can
give rise to a specific and unique bit threads configuration that locks any static intervals in
two dimensions and spherical regions in general dimensions in the context of AdS/CFT. Like
the mutual information, the PEE measures the correlation between two regions in a certain
way. The key feature of the PEE is satisfying the property of additivity. The PEE satisfies
a set of physical requirements [55, 57], and in Poincaré invariant theories the PEE can be
uniquely determined by these requirements. So far, there are already several proposals to
construct the PEE, including the geometric construction that works in holographic theories
with a local modular Hamiltonian [57, 60, 69], the additive linear combination (ALC) proposal
that works in general two dimensional theories, the solution of the set of requirements, or
the extensive mutual information (EMI) proposal that works for theories with conformal
symmetries, and the Gaussian formula for Gaussian states of many-body systems [55, 70].
In the regimes where different proposals applies, these proposals generate highly consistent
results [57, 60, 70]. The PEE encodes all the information of entanglement contour. For a
region A, the PEE not only characterizes the contributions from each site inside A, but also
clarifies the different roles played by the sites outside A.

Due to the property of additivity, any PEE I(A, B) between two non-overlapping regions
A and B can eventually decompose into a summation of two-point PEEs,

I(A, B) =
∑
x,y

I(x, y), x ∈ A, y ∈ B . (1.2)

2See [16, 62–68] for other recent progress on PEE.
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The two-point PEEs then fully describe the PEE structure of the state. Our scheme to
geometrize the PEE is to represent the two-point PEEs as the bulk geodesics connecting
these two points, which we call the PEE threads. The PEE threads emanating from a single
boundary point x can be further regarded as the integral curves of a divergenceless vector
field V µ

x in the bulk, which we call the PEE thread flow. Then by superposing these PEE
thread flows associated with all points inside the interval,we explicitly show how to get a
unique bit threads configuration from the PEE threads in AdS3. Interestingly, the resulting
bit thread configuration respects the symmetries of the theory, and coincides with the bit
threads configuration previously constructed in [42]. This prescription also works for static
spherical regions in higher dimensional CFTs (d ≥ 3). Nevertheless, this scheme fails when
applied to the non-spherical boundary region in higher dimensions. We also study the PEE
threads for disconnected intervals and show how PEE threads picture can interpret the phase
transition of the RT surfaces in AdS3/CFT2.

In section 2, we will give a brief introduction to the PEE and bit threads. The scheme
to geometrize the PEE is explicitly presented in section 3. Also, we will show how a bit
thread configuration emerges from the PEE threads configuration. Explicit calculations will
be carried out for intervals and spherical boundary regions in the pure AdS spacetime in
general dimensions. In section 4, we study the reformulation of the RT formula based on
the PEE thread configuration. In this case the entanglement entropy is reproduced by a
summation of weighted PEE threads. The discontinuous phase transition of the RT surfaces
for multi-intervals is reproduced by the switching the assignment of the weight of the PEE
threads that gives the minimal value of the summation. We give a discussion in section 5.

2 A brief introduction to PEE and bit threads

2.1 Partial entanglement entropy

The partial entanglement entropy I(A, B) [56–61] is a measure of the correlation between
two spacelike separated region A and B. It is defined to satisfy a set of physical require-
ments [55, 59] including all those satisfied by the mutual information I(A, B),3 and the
feature of being additive. For non-overlapping regions A, B and C, the physical requirements
for the PEE can be briefly summarized in the following:4

1. Additivity: I(A, B ∪ C) = I(A, B) + I(A, C);

2. Permutation symmetry: I(A, B) = I(B, A);

3. Normalization: I(A, Ā) = SA;

4. Positivity: I(A, B) > 0;

5. Upper bounded: I(A, B) ≤ min{SA, SB};
3Note that, we should not mix between the mutual information I(A, B) and the PEE I(A, B).
4Note that, the requirement 5 is a result of the requirements 1 and 4, hence not all of the requirements are

independent. For more details about the well (or uniquely) defined scope of the PEE and the ways to construct
the PEEs in different situations, the readers may consult [56–61, 71]. These details are also summarized in
the background introduction sections of [65, 66].

– 3 –



J
H
E
P
0
2
(
2
0
2
4
)
1
9
1

6. I(A, B) should be Invariant under local unitary transformations inside A or B;

7. Symmetry: for any symmetry transformation T under which T A = A′ and T B = B′,
we have I(A, B) = I(A′, B′).

It has been shown in [59, 72] that, the above requirements for the vacuum state of
theories with Poincaré symmetry admit an unique solution. More interestingly, for CFTs the
formula of the PEE solution can be determined up to a coefficient by imposing the above
requirements except the normalization. Nevertheless, to determine the coefficient by the
normalization requirement is quite subtle. Firstly, in quantum field theories the entanglement
entropy of a region is divergent and depends on the explicit regularization scheme, which
makes the matching between the entanglement entropy calculated by I(A, Ā) [58, 73–76] and
those calculated via other approaches quite subtle. Secondly, it is enough to determine the
coefficient by imposing the normalization requirement to a connected region, for example a
static spherical region. Later we will see that, when we deal with disconnected regions, for
example the multi-interval cases, the solution may not exist. Our prescription is to generalize
this naive normalization requirement.

The Additivity and Permutation symmetry properties indicates that, the PEE structure
is fully described by the two-point PEEs I(x, y) [59]. In other words, any PEE I(A, B)
can be evaluated by the integration (or summation for discrete systems) of certain class
of two-point PEEs,

I (A, B) =
∫

A
dσx

∫
B

dσy I(x, y). (2.1)

where σx and σy are infinitesimal area elements located at x and y inside A and B respectively.
The entanglement contour [55] is a special type of PEE hence can also be generated from

the two-point PEEs. The entanglement contour function sA(x) is assumed to be the density
function of the entanglement entropy, which captures the contributions from the local degrees
of freedom to SA. Although it is hard to clarify what it means by the contribution from
each degrees of freedom, it is clear that the entanglement entropy SA is just the collection
of the contributions from all the degrees of freedom inside A,

SA =
∫

A
sA(x)dσx. (2.2)

The physical interpretation for the entanglement contour perfectly matches with the physical
requirements of the PEE, which makes the PEE a natural proposal for the entanglement
contour. According to the normalization property SA = I(Ā, A) =

∫
A I(Ā, x)dσx, it is

straightforward to propose that

sA(x) = I(Ā, x) . (2.3)

Similarly, the contribution from a subset Ai of A to SA can also be expressed as a PEE,

sA(Ai) =
∫

Ai

sA(x)dσx = I(Ā, Ai) . (2.4)

Here we only introduce one particular proposal to construct the PEE in generic two-
dimensional theories with all the degrees of freedom settled in a unique order (for example
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settled on a line or a circle), which we call the additive linear combination (ALC) pro-
posal [57, 59, 60].

The ALC proposal. Consider a boundary region A which is partitioned in the
following way, A = αL ∪ α ∪ αR, where α is some subregion inside A and αL (αR)
denotes the regions left (right) to it. The proposal claims that:

sA(α) = I(α, Ā) = 1
2 (SαL∪α + Sα∪αR − SαL − SαR) . (2.5)

Using ALC formula, the entanglement contour can be settled down. Then the two-point
PEE can be derived by differentiating the contour function. For a static spherical region
A = {x||x|2 ≤ R2}, the contour function for a (d − 2)-dimensional sphere with radius r

is by [56, 58]5

sA(r) = c

6

( 2R

R2 − r2

)d−1
. (2.6)

We first determine I(0, x) between the origin point r = 0 and the point x = (r, ϕi) with
r > R. Due to spherical symmetry, we have∫ ∞

R
I(0, r)rd−2Ωd−2dr = sA(0) = c

6
2d−1

Rd−1 , (2.7)

where

Ωd−2 = 2π
d−1

2

Γ
(

d−1
2

) , (2.8)

is the area of the (d − 2)-dimensional spherical surface with unit radius. Then we have

I(0, x) = c

6
2d−1(d − 1)

Ωd−2|x|2(d−1) . (2.9)

From eq. (2.9), we can conclude that I(x1, x2) between two points only depends on their
Euclidean distance, i.e.

I(x1, x2) = c

6
2d−1(d − 1)

Ωd−2|x2 − x1|2(d−1) . (2.10)

Taking d = 2, we get the two-point PEE for vacuum CFT2,6

I(x, y) = c

6
1

(x − y)2 , (2.11)

From (2.11), we see that I(x, y) is proportional to the two-point function of a primary
field with scaling dimension 1, i.e. I(x, y) ∝ ⟨O(x)O(y)⟩, and therefore we may further
relate this two-point PEE to the length L(x, y) of a bulk geodesic connecting x and y as
I(x, y) ∝ e−L(x,y)/ℓAdS3 , where ℓAdS3 is the AdS radius. This is an important observation
that motivates us to geometrize PEE in terms of geodesics in section 3.

5In [58], this expression is derived using the ALC proposal and the trick in [77]. In [56], this contour
function is read from a specific construction of the bit threads [42].

6See also the adjacency matrix defined in [71].
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2.2 Bit threads

The bit threads configuration [37] is a reformulation of the RT formula to characterize the
holographic entanglement entropy. Consider a boundary region A, a bit thread configuration
connecting A and its complement is represented by a vector flow vA that satisfies the following
three properties:

1. vA is divergenceless;

2. the norm of vA is bounded by |vA| ≤ 1
4G ;

3. |vA| = 1
4G on the RT surface EA of A;

Combining the first two requirements and the max-flow min-cut (MFMC) theorem [78–80],
the computation of entanglement entropy of A is then translated into constructing a particular
vA with maximum flux through any codimension 2 surface ΣA homologous to A, that is

S(A) = max
∫

A
dΣA

√
hvµ

Anµ, (2.12)

where h and nµ are the induced metric and the normal vector on ΣA, respectively. Intuitively,
any flow from A is clearly bounded by the minimal-area of bottleneck the flow has to pass
through, which is just the RT surface EA, and the main content is that an optimal flow
achieves this bound. As a result, a vector flow vA that optimizes the flux should satisfy the
third property. Such vector flows are said to lock the region A and its unoriented integral
curves are known as the bit threads.

Note that the optimal flow vA that satisfies the above requirements admits an enormous
degeneracy and in general depends on the entangling surface we chose, hence the distribution
of the bit threads has no physical meaning. Nevertheless, it will be interesting to construct
explicit configurations for the flow or bit threads and endow the configuration with a physical
interpretation. For example, in [42] the authors considered static spherical boundary regions
with radius R in Poincaré AdSd+1

ds2 = 1
z2

(
dr2 + r2dΩ2

d−2 + dz2
)

. (2.13)

In their construction, the optimal flow is assumed to flow along the bulk geodesics. Regarding
the divergenceless condition and the saturation of the bound |vA| = 1/4GN on EA, the
vector field can be determined as

vµ
A =

 2Rz√
(R2 + r2 + z2)2 − 4R2r2

d(
rz

R
,
R2 − r2 + z2

2R

)
, (2.14)

where all the angular coordinate components are suppressed due to spherical symmetry.
Such an optimal flow is perhaps the most natural one as it respect the symmetry of the
configurations under considerations.

The relation between the entanglement contour and the bit thread configuration was
first pointed out in a talk by Erik Tonni [81]. And in [56], the entanglement contour for
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static spherical regions in states dual to Poincaré AdSd+1 was read from the explicit bit
threads configuration (2.14),

sA(r) = c

6

( 2R

R2 − r2

)d−1
, (2.15)

where the center of the sphere is located at r = 0. As we can see, the contour function respect
the symmetry of the configuration and only depends on the radius coordinate r. This contour
function also coincide with the one derived in [58] based on the constant contour function
measured by a Rindler observer. It is reasonable to require the bit thread configuration to
reproduce the entanglement contour sA(x) by computing the bit thread flux that emanating
from the site x and anchor at the complement Ā. Nevertheless, this additional requirement
is still not enough to determine the flow configuration.

There is no way to construct a bit thread configuration that lock all the regions we
choose. It may be more realistic to take the bit thread configuration as some emergent
concepts from certain intrinsic structure of the state. In the following section we will show
that, the bit thread configurations that lock any static interval in holographic CFT2 can
be generated from the two-point PEE structure of the state, which is an intrinsic structure
independent from the regions we consider.

3 Geometrizing the PEE: from PEE threads to bit threads

In this section, we give a scheme to geometrize the two-point PEEs with the bulk geodesics
anchored on the two points. We refer these geodesics bundles as the PEE threads. The
PEE threads emanating from any site x can be described by a divergenceless vector fields
along the geodesics emanating from x. The PEE threads emanating from different sites will
intersect with each other. We will show that, the superposition of these vector fields will
generate a flow in the bulk, which is just the natural optimal bit thread configuration (2.14)
for static intervals or spherical regions in higher dimensions.

3.1 The scheme

Let us first consider the vacuum state of the holographic CFT2 that duals to the Poincaré
AdS3. The motivation that we associate two-point PEEs with the bulk geodesics is based
on an interesting observation that, the two-point PEE I(x, y) can be related to the length
of bulk geodesic that connects two boundary points x and y. Specifically, by inserting
the geodesic length

L(x, y) = ℓAdS3 log (x − y)2

δ2 , (3.1)

into (2.11), we have

I(x, y) = ℓAdS3

4GN δ2 e−L(x,y)/ℓAdS3 , (3.2)

where δ is the UV cutoff. Also, the geodesic is the most natural geometric object connecting
two boundary points. Hence, it is a good starting point to geometrize the two-point PEEs in
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Figure 1. PEE threads on a static time slice of global AdS3/CFT2.

terms of their corresponding bulk geodesics. We name these geodesics bundles as the PEE
threads. In figure 1, we illustrate the PEE threads on a static time slice of global AdS3.

For any boundary point x, the PEE threads emanating from it can be understood as
the integral curves of a divergenceless vector field V µ

x , and the norm of the vector field
characterizes the density of the PEE threads (see figure 2 for an illustration). We refer to
V µ

x as the PEE thread flow vector field, which can be written as

V µ
x = |Vx|τµ

x , (3.3)

where τµ
x represents the tangent unit vectors of the PEE threads emanating from x. Our

main task is to determine the norm |Vx| of this vector field. Since the entanglement entropy
is a collection of the two-point PEEs, it is reasonable to require that the contribution for
site x to SA, or the value of sA(x), should be captured by the number of the PEE threads
that connecting x and Ā, i.e., the flux of the PEE thread flow V µ

x on any co-dimension two
bulk hypersurface Σ homologous to a boundary region A.

Requirement:
∫

Ā
dσy I(x, y) = sA(x) =

∫
Σ

dΣ
√

hV µ
x nµ, (3.4)

where nµ is the unit vector normal to Σ. Since the PEE thread flow is divergenceless, the
flux is independent from the choice of the co-dimension two homologous surface.

Note that, our scheme to geometrize the two-point PEEs as bulk geodesics gives us a
geometric picture for the fine structure of entanglement, hence contains much more information
than the above requirement. For any point x inside A, the PEE threads emanating from x give
a one-to-one mapping between the points on Σ and the points on Ā. Indeed, the differential
version of the requirement (3.4) can fully characterize the feature of our scheme, which is just

dσy I(x, y) = dΣ
√

hV µ
x nµ, (3.5)

where the area element dΣ on Σ is mapped to the area element dσy on Ā via the one-to-one
mapping determined by the PEE threads (See figure 3). We will see that, when choosing
an proper Σ, the norm |Vx| of the vector field can be easily settled down by the above
requirement (3.5).

– 8 –
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RΣ

Σ
x

Figure 2. The flow V µ
x is tangent to the PEE threads (the red dashed curves). Σ (the blue curve)

denotes any co-dimension two surface, which is homologous to a boundary region RΣ. The norm of
V µ

x is determined by requiring the flux of V µ
x on Σ be equal to the entanglement contour fRΣ(x).

x dσy

dΣ

Figure 3. For a fixed point x in A, the PEE threads give a one-to-one mapping from dΣ on Σ to
dσy on boundary.

The PEE threads emanating from different boundary points could intersect with each
other. Since the evaluation of the entanglement entropy SA is equivalent to counting all the
PEE threads coming out from A, it is natural to consider the superposition of all the PEE
thread flows Vx with x inside A. This results in a divergenceless vector field VA which we
call the bit thread flow vector field. Soon, we will see that such a bit thread flow satisfies all
the requirements for the vector field representing the bit threads, and thus the name.

Given a connected boundary region A, the PEE threads can always be classified into
two classes:

• the inner threads of A that emanate and terminate inside A,

• the outer threads of A that emanate inside A and terminate outside A.

Only the outer threads of A (see figure 4) contribute to the entanglement entropy. One
may intend to construct a vector field, which is the superposition of all the outer threads.
Nevertheless, this is not necessary since that, for any inner thread representing I(x, y), the
PEE thread will be counted twice (multiplied by corresponding integral measures) with
inverse directions (see the green dashed curves in the right of figure 4 for an illustration).

– 9 –



J
H
E
P
0
2
(
2
0
2
4
)
1
9
1

A

EA

Q

A

EA

Q

Figure 4. Superposition of the PEE thread flow in Poincaré AdS with a spherical boundary region
A. For the field point Q on the RT surface EA (see the left figure), only outer threads pass through
Q. For Q inside the entanglement wedge of A (see the right figure), the inner threads (green dashed
curves) also pass through Q. Physically, the bit thread flow V µ

A should only count the contributions
from outer threads. However, since the inner threads have the zero net contributions to V µ

A , it is safe
to integrate over both outer and inner threads to obtain V µ

A .

According to the permutation property I(x, y) = I(y, x) of the PEE and the divergenceless
property of the PEE thread flow, the inner threads cancel with each other under superposition.
Therefore, there is no need to distinguish between the inner and outer threads and the bit
thread flow V µ

A can be achieved by integrating all the PEE thread flow Vx with x ∈ A, i.e.

V µ
A =

∫
outer threads of A

dd−1xV µ
x =

∫
all threads of A

dd−1xV µ
x . (3.6)

According to the requirement (3.4), since the flux of the PEE thread flow Vx gives the
entanglement contour sA(x), the flux of the bit thread flow V µ

A should recover the entanglement
entropy SA. Soon we will check that, for static intervals or spherical regions the inequality
|VA| ≤ 1/4GN is satisfied by V µ

A inside the entanglement wedge, and is saturated only on
the RT surface. Together with the divergenceless property of VA, the requirements for the
vector field to describe bit threads are all satisfied by VA.

In the next sub-sections, we will explicitly construct vector fields VA for static intervals
and spherical regions from the PEE structure and show that |VA| = 1

4G is satisfied on the
RT surface EA.

3.2 PEE threads and bit threads in AdS3

Now we explicitly construct the PEE thread flow V µ
r and the bit thread flow V µ

A in AdS3.
The Poincaré metric on a static time slice is given by

ds2 = 1
z2 (dr2 + dz2). (3.7)

We first determine V µ
O which describes the PEE threads emanating from the origin point

O settled at r = 0, then generalize V µ
O to arbitrary boundary point V µ

r under a translation
in the r direction.

For an arbitrary bulk point Q = (r̄, z̄) = ℓ(cos θ, sin θ) with

ℓ =
√

r̄2 + z̄2, tan θ = z̄

r̄
, (3.8)

– 10 –
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O−ℓ −ℓ−R R y

Q

θ

Figure 5. Determine the PEE thread flow V µ
O at the point Q = (r̄, z̄) by letting the flux of the PEE

threads (the red curves) through the reference RT surface Σ (the green semicircle) with the radius
ℓ =

√
r̄2 + z̄2 being equal to the entanglement contour of r = 0 to the region [−ℓ, ℓ].

let us first determine the direction of V µ
O , which is the tangent unit vector of the PEE thread

(or geodesic) connecting O and Q. Such a thread will anchor at the boundary on another
point (r, z) = (y, 0) (see figure 5), where y can be determined,

(ℓ cos θ − y/2)2 + ℓ2 sin2 θ = y2/4, ⇒ y = ℓ

cos θ
. (3.9)

Then the tangent unit vector of the PEE thread is given by

τµ
O(Q) = ℓ sin θ

y/2 (ℓ sin θ, −ℓ cos θ + y/2) = 2z̄r̄

r̄2 + z̄2

(
z̄,

z̄2 − r̄2

2r̄

)
, (3.10)

and the PEE thread flow can be written as

V µ
O (Q) = |VO(Q)|τµ

O(Q) = 2z̄r̄|VO(Q)|
r̄2 + z̄2

(
z̄,

z̄2 − r̄2

2r̄

)
. (3.11)

To further determine its norm, we should make use of the requirement for the flow (3.4).
Let us choose a reference surface Σ (which is the RT surface for [−ℓ, ℓ] and is green in
figure 5) that passes the point Q as

Σ : r2 + z2 = ℓ2, (3.12)

with its normal unit vector at the point Q given by

nµ
Σ(Q) = ℓ sin θ(cos θ, sin θ). (3.13)

The flux of the vector field V µ
O through the RT surface Σ is given by

Flux(V µ
O , Σ) =

∫
Σ

dθ
√

hθθV µ
O (θ)nΣ,µ

=
∫

Σ
dθ
√

hθθ|VO(θ)| sin θ,
(3.14)
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where hθθ = 1/ sin2 θ is the θθ-component of the induced metric on Σ, and V µ
O (θ) is the value

of the vector field VO on Σ parameterized by θ.
According to the requirement (3.4), the flux equation equals to collecting all the PEE

threads that emanate from O and terminate on the complement (−∞, −ℓ) ∪ (ℓ, ∞) region, i.e.∫ π

0
dθ
√

hθθ|VO(θ)| sin θ =
∫

(−∞,−ℓ)∪(ℓ,∞)
dy I(0, y). (3.15)

We can also parameterize Σ using coordinate r = y of the point where the outer PEE threads
terminate, which is related to the parameter θ via the relation (3.9), i.e. y = R/ cos θ. This
is just the one-to-one mapping between the points on Σ and points on Ā we mentioned
near (3.5). Then we arrive at the following equation for any ℓ,∫

(−∞,−ℓ)∪(ℓ,∞)
dy

ℓ|VO(θ)|
y2 sin θ

=
∫

(−∞,−ℓ)∪(ℓ,∞)
dy I(0, y). (3.16)

where the two-point PEE is given by I(0, y) = 1/(4GN y2) following (2.11). Then the
requirement (3.5) indicates that,

|VO(Q)| = I(0, y)y2 sin θ

ℓ
= 1

4GN

z̄

r̄2 + z̄2 , (3.17)

where we have written θ and ℓ in terms of z̄ and r̄. With the norm of the PEE thread
flow determined, it is now straightforward to write down the explicit formula for the PEE
thread flow,

V µ
O (Q) = 1

4GN

2z̄2r̄

(r̄2 + z̄2)2

(
z̄,

z̄2 − r̄2

2r̄

)
. (3.18)

Due to shift symmetry along r-direction, the PEE thread flow with r = r0 can be
obtained by replacing r̄ with r̄ − r0 in (3.18) and

V µ
r0(Q) = 1

4GN

2z̄2(r̄ − r0)
((r̄ − r0)2 + z̄2)2

(
z,

z̄2 − (r̄ − r0)2

2(r̄ − r0)

)
. (3.19)

The above expression for the PEE threads from x is of the central importance of this paper.
One can check that the vector field (3.19) is divergenceless.

Then we turn to the bit thread flow VA, which is the summation (or superposition) of
all the PEE thread flow V µ

r0 emanating from the points inside an interval A = [−R, R]. The
computation is just a simple integration of Vr0 over the interval [−R, R],

V µ
A (Q) =

∫ R

−R
dr0V µ

r0 = z̄2

4GN

2R

((R − r̄)2 + z̄2)((R + r̄)2 + z̄2)
(
2z̄r̄, R2 − r̄2 + z̄2

)
. (3.20)

With the explicit formula for the bit thread flow VA given, it is straightforward to check
that VA satisfies all the three requirements for it to describe bit threads. Firstly, since the
PEE thread flow Vr0 is divergenceless, VA should also be divergenceless. Secondly, if we set
(r̄, z̄) = (R cos θ, R sin θ) hence Q is on the RT surface, we find that

V µ
A (Q) = R sin θ

4GN
(cos θ, sin θ) , (3.21)
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O−R R

Figure 6. Bit threads configuration (the red curve) in pure AdS3 constructed from PEE threads.
This bit threads configuration is the integral curves of the bit thread flow V µ

A . They are the geodesics
normal to the RT surface of A.

where we can read |VA(Q)| = 1/(4GN ) and VA(Q) is normal to the RT surface. At last, we
can calculate |VA| anywhere in the bulk which is given by

|VA| = 2Rz̄√
(R2 + r̄2 + z̄2)2 − 4R2r̄2

. (3.22)

For any bulk point (r̄, z̄) = l(cos θ, sin θ) away from the RT surface, i.e. l ̸= R, we have(
R2 + r̄2 + z̄2)2 − 4R2r̄2 > 4R2l2 sin2 θ, which indicates that |VA| < 1/(4GN ) at the points

away from the RT surface.
In fact, according to the PEE threads picture, that |VA| < 1/4GN away from RT surface

is manifest, and we have the following statement:

• Provided that, for any region A the bit thread flow V µ
A is normal to the RT surface

and satisfies |VA| = 1/4G on the RT surface, then we have |VA| < 1/4G away from RT
surface.

We leave the proof of this statement in appendix A. With these requirements satisfied, it is
sufficient to say that, the bit thread flow gives an optimal bit thread configuration.

In figure 6, we plot this bit threads configuration using the integral curves of the bit
thread flow V µ

A , and find that they are just the bulk geodesics normal to the RT surface EA.
This is not surprising as we can check that, the bit thread flow V µ

A (3.20) we constructed
coincides exactly with the one found in [42] in d = 2. As we have mentioned, this is perhaps
the most natural bit thread configuration that respect the symmetries of the configuration. In
the following subsection, we will show that the coincidence also happens in higher dimensions.

3.3 PEE threads and bit threads in AdSd+1

For the vacuum CFTd on a static time slice, the two-point PEE is given by

I(x1, x2) = c

6
2d−1(d − 1)

Ωd−2|x2 − x1|2(d−1) . (3.23)

The metric of the dual Poincaré AdSd+1 at a time slice is given by

ds2 = 1
z2

(
dx2 + dz2

)
= 1

z2

(
dr2 + r2dΩ2

d−2 + dz2
)

, (3.24)
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where x = (x1, x2, · · · , xd−1) and

dΩ2
d−2 = dϕ2

1 + sin2 ϕ1dϕ2
2 + · · · + sin2 ϕ1 · · · sin2 ϕd−3dϕ2

d−2. (3.25)

Again, we first consider the PEE thread flow VO for the origin O at r = 0. Due to the
rotational symmetry of VO, we will restrict to the 2-dimensional slice with ϕi = 0 and employ
the similar strategy as in case of AdS3. This simplifies the analysis since the bulk geodesics have
the same function as those in AdS3 at this slice. For a bulk point Q = (r̄, z̄) = (ℓ cos θ, ℓ sin θ)
on the ϕi = 0 slice, the PEE thread flow is tangent to the PEE threads, hence

V µ
O (Q) = 2z̄r̄|VO(Q)|

r̄2 + z̄2

(
z̄,

z̄2 − r̄2

2r̄

)
. (3.26)

The flux equation (3.4) becomes∫
Σ

dθ
r̄d−2

z̄d−2 |VO| =
∫

dy yd−2I(0, y), (3.27)

where Σ is a reference surface r2 + z2 = ℓ2 that passes through Q. Since the PEE threads
have the same function as those in AdS3, the one-to-one mapping between the points on Σ
and the boundary points outside the region associated to Σ on the ϕi = 0 slice is again given
by the relation (3.9), i.e. y = ℓ/ cos θ. Then the norm of the PEE thread flow is given by

|VO(Q)| = 1
4GN

2d−1(d − 1)
Ωd−2

z̄d−1

(r̄2 + z̄2)d−1 . (3.28)

And then the PEE thread flow is given by

V µ
O (Q) = 2dz̄d

4GN

(d − 1)
Ωd−2

r̄

(r̄2 + z̄2)d

(
z̄,

z̄2 − r̄2

2r̄

)
. (3.29)

Note that, on the ϕi = 0 slice the V ϕi
O components are zero.

When d ≥ 3, the explicit formula of the vector field VP for an arbitrary boundary point
P is much more complicated. Nevertheless, due to the symmetry of the configuration, we
will see that solving V µ

O is enough to determine the bit thread flow V µ
A for any static spherical

region A. For any point P : (x, 0) on the boundary and Q : (y, z̄) in the bulk, one can consider
the projection point Qb : (y, 0) of Q on the boundary. Due to the translational and rotational
symmetries of VP , it will be useful to note that, VP (Q) takes the same formula as (3.29),
with r̄ replaced by |x − y| and the r coordinate parameterizing the direction from P to Q.

Now we turn to the bit thread flow VA. For example, given a spherical region A =
{x||x| < R}, let us again confine the analysis on the ϕi = 0 slice and first consider the cases
with r̄ > R. In other words, the projection point Qb = (r̄, 0) of the bulk point Q = (r̄, z̄) on
the boundary is outside A. Our strategy is that, we first decompose the region A into layers
of partial spherical shells r0 centered at the projection point Qb, with radius r0 > r̄ − R (see
figure 7). The angular coordinate that parameterize the shell is ϕ1. Then we use (3.29) to
calculate the contribution to VA(Q) from each shell. And finally, we integrate the contribution
from all these shells to get VA(Q).
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ϕ̄1
r0

r̄ Qb

R

Qz̄

A

Figure 7. The grey area represents a spherical region A with radius R, centered at the origin. The
region A is layered with partial spherical shells. These shells are centered at the boundary-projected
point (r̄, z = 0, ϕi = 0) with a radius r0 > r̄ − R.

The area of a partial spherical shells r0 is given by,∫ ϕ̄1

0
dϕ1Ωd−3rd−2

0 sind−3 ϕ1, (3.30)

where the upper limit of the integration ϕ̄1 is given by,

cos
(
ϕ̄1
)

= r2
0 + r̄2 − R2

2r0r̄
. (3.31)

Since VA is ϕi-rotational symmetrical, the direction of VA(Q) lies exactly at the ϕi = 0 slice,
which means we only need to compute V r

A(Q) and V z
A(Q). The reason we classify the points

using the such spherical shells is that, points in the same shell has the same distance from
the projection point Qb, hence their contribution to VA(Q) takes the same formula as (3.29),
with r̄ replaced by their distance to Qb and r representing the direction pointing to Qb. Then
it is straightforward to write down the contribution to V z

A(Q) from r0 , which is just the
summation from all the points on r0 ,

V z

partial r0
(Q)=

∫ ϕ̄1

0
dϕ1V z

x=0(r0)Ωd−3rd−2
0 sind−3 ϕ1

=V z
x=0(r0)Ωd−3rd−2

0

(
−2F1

(1
2 ,

4−d

2 ,
3
2 , cos2 ϕ̄1

)
cos ϕ̄1+

π3/2 cos−1 ( (d−3)π
2

)
(d−3)Γ

(4−d
2
)
Γ
(

d−3
2
)) ,

(3.32)

while the contribution to V r
A(Q) should have an additional multiplier cos ϕ1 to get the

projection on the r direction,

V r

partial r0
(Q) =

∫ ϕ̄1

0
dϕ1V r

x=0(r0)Ωd−3rd−2
0 sind−3 ϕ1 cos ϕ1

=V r
x=0(r0)Ωd−3rd−2

0
sind−2 ϕ̄1

d − 2 .

(3.33)
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Qb

Qz̄

A

Figure 8. The bulk point is projected inside the region A. The shaded area has no contribution to
V r

A.

At last, we integrate over all the partial spherical shells to get the bit thread flow,

V r
A(Q) =

∫ r̄+R

r̄−R
dr0 V r

partial r0
= 1

4GN

r̄z̄

R

(
2Rz̄√

(R2 + r̄2 + z̄2)2 − 4R2r̄2

)d

, (3.34)

V z
A(Q) =

∫ r̄+R

r̄−R
dr0 V z

partial r0
= 1

4GN

R2 − r̄2 + z̄2

2R

(
2Rz̄√

(R2 + r̄2 + z̄2)2 − 4R2r̄2

)d

. (3.35)

Then we consider the case with r̄ < R, where the projection point Qb of Q lies inside A.
Following the same strategy as the case with r̄ > R, the region A is also foliated by layers
of partial spherical shells centered at r̄ and one may obtain V µ

A by integrating over all the
shells. The only difference is that, in the spherical region centered at Qb with radius R − r̄,
the whole spherical shell contribute to VA (see figure 8). For symmetry reason, this spherical
region has no contribution to V r

A, and its contribution to V z
A is computed by,∫ R−r̄

0
dr0V z

whole r0
=
∫ R−r̄

0
dr0

∫ π

0
dϕ1V z

x=0(r0)Ωd−3rd−2
0 sind−3 ϕ1. (3.36)

The contribution from the other points on the partial spherical shell can be carried out
following our discussion for the case with r̄ > R. Then we get the bit thread flow VA(Q)

V r
A(Q) =

∫ r̄+R

R−r̄
dr0 V r

partial r0
= 1

4GN

r̄z̄

R

(
2Rz̄√

(R2 + r̄2 + z̄2)2 − 4R2r̄2

)d

, (3.37)

and
V z

A(Q) =
∫ R−r̄

0
dr0V z

whole r0
+
∫ r̄+R

R−r̄
dr0 V z

partial r0

= 1
4GN

R2 − r̄2 + z̄2

2R

(
2Rz̄√

(R2 + r̄2 + z̄2)2 − 4R2r̄2

)d

.

(3.38)

The above results share the same expressions as (3.34) and (3.35), which means we do not
need to distinguish between the case with r̄ > R and the case with r̄ > R.

Remarkably, in general dimensions the resulting V µ
A also coincides with the bit threads

configuration (2.14) constructed in [42].
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4 PEE threads for multi-intervals

Previously, we mainly focus on the PEE thread configurations for intervals or spherical
boundary regions, which are connected regions. We have shown that the entanglement
entropy is given by the flux associated with all the outer threads of the connected region. In
this section, we turn to the cases of disconnected intervals and show how the holographic
entanglement entropy can be reproduced by counting certain classes of PEE threads in the
bulk. This is a non-trivial problem as the entanglement entropy for disconnected regions
undergoes a phase transition where the RT surfaces in the bulk changes discontinuously [82].
Upon such phase transitions, the bit thread configurations should also change while the
PEE thread configurations should not change. A naive generalization of the scheme in the
previous section cannot reproduce the holographic entanglement entropy for disconnected
regions [59]. In the following, we propose that due to the phase transition of the entanglement
wedge, new rules to define the inner and outer PEE threads should be taken into account
to reproduce the holographic entanglement entropy.

In this section we focus on the case of Poincaré AdS3. Consider a disconnected interval
A = A1 ∪ A2 and its complement B = B1 ∪ B2 on the boundary, and A ∪ B makes up the
vacuum state of the boundary holographic CFT2. Let us mark A1 = [a1, a2] and A2 = [a3, a4],
and mark the entanglement wedge WA of A in blue (see figure 9). According to the RT
formula [2, 3, 82] when the cross ratio

α = (a2 − a1)(a4 − a3)
(a3 − a1)(a4 − a2) >

1
2 , (4.1)

WA is connected and we have WA ⊃ WA1 ∪ WA2 . In this connected phase the entanglement
entropy is calculated by

Connected phase : SA = SB1 + SA1B1A2 , (4.2)

where B1 is the sandwiched interval between A1 and A2. As A1 and A2 get far apart
0 < α < 1

2 , the WA becomes disconnected and WA = WA1 ∪ WA2 . In this disconnected
phase, the entanglement entropy becomes

Disconnected phase : SA = SA1 + SA2 . (4.3)

Previously we define the PEE threads that connecting one point inside A and another
point outside A as the outer threads, which are the threads that contribute non-trivially to
the entanglement entropy. A simple example to illustrate this problem is the two interval
in disconnected phase. If we stick to this definition for the inner and outer threads, then
the PEE threads connecting points in A1 and points in A2 should be inner threads hence
do not contribute to SA, and we get

SA = I(A, B) = I(A1, B) + I(A2, B) . (4.4)

This is not consistent with the RT formula (4.3). Also, it was claimed in [59] that, the
normalization property SA = I(A, B)|B→Ā of the PEE does not hold for the disjoint intervals.
On the right hand side of (4.3), SA1 contains all the outer threads of A1, which can be
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B1 A2A1B2 B2

ω = 2

ω = 0
ω = 1

α > 1/2

B1 A2A1B2 B2

ω = 2

ω = 0
ω = 1

0 < α < 1/2

Figure 9. Connected phase (the upper figure) and disconnected phase (the lower figure) for
A = A1 ∪ A2. The threads connecting A1 and A2 in disconnected phase are outer threads as they pass
through the boundary of WA (blue shaded regions), while those in connected phase are inner threads
as they are confined in WA.

decomposed into I(A1, B) ∪ I(A1, A2), and a similar decomposition applies to SA2 hence
we should have

SA = I(A1, B) + I(A2, B) + 2I(A1, A2) . (4.5)

The above equation indicates that, the PEE threads connecting A1 and A2 not only contribute
non-trivially to SA, but also to SB as SA = SB. More interestingly, the contribution from
such PEE threads is doubly counted.

For the purpose to reproduce the holographic entanglement entropy from the PEE
threads, we should reconsider the classification of inner and outer threads. Also, note that the
PEE threads connecting A1 and A2 in the disconnected phase pass through the entanglement
wedge WB twice in the bulk. This is a new phenomenon compared with the configurations
where A is a single interval and the inner threads are all confined in WA. The holographic
entanglement entropy between A and B is indeed the generalized gravitational entanglement
entropy between WA and WB [5]. If the PEE threads are some physical objects in the bulk
that representing the entanglement flow in the dual gravity, then it is natural to count the
threads that pass through the boundaries between WA and WB.
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Inspired by the above discussions, we give a new definition for the inner and outer
PEE threads based on the entanglement wedge configuration, which solves all the problems
one has in AdS3. Given two (connected or disconnected) regions A and B, which together
make up the whole boundary, and their entanglement wedges in the bulk, the inner and
outer threads are defined in the following:

• outer threads: PEE threads that pass through the boundary between WA and WB.

• inner threads: PEE threads that are confined inside WA or WB.

In addition we also define a new parameter for the outer threads,

• weight of an outer thread ω: the number of the times that the outer thread passes
through the boundary between WA and WB. The inner threads are just threads with
ω = 0.

For any connected regions A and B, we also refer to ωAB = ωBA as the weight of the threads
connecting A and B. The threads with ω = 0 are just inner threads. Obviously, the above
definition reduces to the definition in section 3.1 for the cases of A being single intervals.

Let us use the above definitions to explain the entanglement entropy SA in the connected
phase (see the upper figure in figure 9). In this case, given i, j = 1, 2 we have ωAiAj = 0,
ωAiBj = 1 and ωBiBj = 2, thus, by counting the PEE threads with different weights, the
entanglement entropy is given by

SA = I(A1, B1 ∪ B2) + I(A2, B1 ∪ B2) + 2I(B1, B2)
= I(A1 ∪ A2 ∪ B2, B1) + I(A1 ∪ A2 ∪ B1, B2)
= SB1 + SB2 , (4.6)

which coincides with the RT formula.
We can further explore more complicated scenarios, such as a multi-interval configuration

A = A1 ∪ A2 ∪ A3 depicted in figure 10. In this setup, A1 is situated sufficiently far from A2
and A3 so that the entanglement wedge WA1∪A2∪A3 becomes disconnected. Moreover, A2 and
A3 maintain close proximity, resulting in a connected WA2∪A3 . The complementary region
to A is identified as B = B1 ∪ B2 ∪ B3. Here, B2 is settled between A2 and A3, while B1 is
flanked by A1 and A2. According to the RT formula, the entanglement entropy is given by:

SA =SA1 + SB2 + SA2∪B2∪A3 . (4.7)

To recover the RT result, we read out the weights of outer threads from the entanglement
wedge configuration figure 10. The weights of the outer threads are presented in table 1. By
counting the outer threads, we obtain the entanglement entropy:

SA = I(A1, B1B3) + 2I(A1, A2A3) + 3I(A1, B2) + I(A2A3, B1B2B3) + 2I(B1B3, B2)
= I(A1, A2A3B1B2B3) + I(B2, A1A2A3B1B3) + I(A2B2A3, A1B1B3)
= SA1 + SB2 + SA2∪B2∪A3 , (4.8)

This result aligns with the RT formula.
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B2 A3A2B1 B3B3 A1

ω = 1
ω = 2

ω = 0

ω = 3

Figure 10. The entanglement wedge and PEE threads with different weights for A = A1 ∪ A2 ∪ A3
with disconnected WA1∪A2∪A3 and connected WA2∪A3 . Here the direction of the PEE flow is from
the inside to the outside of the entanglement wedge.

ω A1 A2 A3 B1 B2 B3
A1 0 2 2 1 3 1
A2 2 0 0 1 1 1
A3 2 0 0 1 1 1
B1 1 1 1 0 2 0
B2 3 1 1 2 0 2
B3 1 1 1 0 2 0

Table 1. The weight of PEE threads for A = A1 ∪ A2 ∪ A3 with disconnected WA1∪A2∪A3 and
connected WA2∪A3 .

Note that the above definition for the inner and outer threads and the weight of the
threads depends on an explicit configuration for the entanglement wedge. One may conclude
that, the PEE threads may not be a complete reformulation of the RT formula in AdS3.
Nevertheless, we can get rid of this dependence by considering all the possible assignments for
the weights and choose the one that gives the minimal value for the entanglement entropy SA.

More explicitly, for a region A with multi sub-intervals A = ∪Ai and its complement
B = ∪Bj , let us consider an arbitrary surface ΣA in the bulk that is homologous to A, thus
we can get a corresponding assignment for the weights ωAiAj , ωAiBj and ωBiBj by counting
the number of times the thread intersect with the surface. Then the entanglement entropy
is given by minimizing the following summation,

SA = SB = minΣA

∑
i,j

ωAiAj I(Ai, Aj) +
∑
i,j

ωBiBj I(Bi, Bj) +
∑
i,j

ωAiBj I(Ai, Bj)

 (4.9)

The above proposal modifies the naive normalization requirement SA = I(A, Ā). For any
ΣA, the above summation actually calculate the flux of the PEE threads passing through
ΣA. The homologous surface that minimizes the above summation will coincide with the
RT surface. In the following, we will give simple examples to test this proposal. See [90] for
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a general proof for this statement. Since A and B are separated by a homologous surface,
we should in general have that:

• ωAiBj should be odd numbers, i.e. ωAiBj = 1, 3, 5 · · · ,

• ωAiAj and ωBiBj can be zero or non-zero even numbers, i.e. ωAiAj , ωBiBj = 0, 2, 4 · · · .

Now we revisit the two interval case shown in figure 9. In this case the minimal weight
of ωAiBj is 1. While the minimal weight for ωA1A2 and ωB1B2 is zero. Nevertheless, they
can not be zero simultaneously, since there is no homologous surface that is consistent with
the assignment ωA1A2 = ωB1B2 = 0. So we conclude that, the possible assignments for the
weights that may give the minimal SA are listed in the following:

1. ωωAiBj
= 1, ωA1A2 = 0, ωB1B2 = 2,

2. ωωAiBj
= 1, ωA1A2 = 2, ωB1B2 = 0.

Then the corresponding entanglement entropy SA is calculated by (4.9), which is the minimal
weighted summation between the following two results:

1. I(A, B) + 2I(B1, B2) = SA1B2A2 + SB2 .

2. I(A, B) + 2I(A1, A2) = SA1 + SA2 .

When A1 and A2 is far enough such that 0 < α < 1/2, the first result will give the minimal
value for SA. While the second result minimizes SA when A1 and A2 get closer such that
α > 1/2. This gives a complete reformulation for the phase transition of the RT surface
in terms of the PEE threads.

5 Discussions

In this paper, we propose a natural scheme to geometrize the PEE using bulk geodesics, which
we refer to as PEE threads. The configuration of these PEE threads is solely determined
by the state and represents an intrinsic structure that is independent of the specific region
under consideration. In the context of Poincaré AdS spacetime, we demonstrate that for any
static interval or spherical region, a unique configuration of bit threads can emerge from the
PEE thread configuration by superimposing all the PEE thread flows emanating from that
region. These bit thread configurations are regarded as the most natural ones as they respect
the symmetries of the system and possess a clear physical interpretation inherited from PEE.

In AdS3/CFT2, we further study the reformulation of the RT formula for multi-interval
regions based on the PEE thread configuration. We find that, the PEE threads should be
weighted by the number of times that they intersect with the RT surface. Remarkably, we can
get rid of the predetermined RT surface by considering all the possible assignments that are
consistent with any homologous surface of the region, and choosing the assignment that gives
the minimal summation (4.9). The assignment that minimizes the summation will correspond
to certain type of homologous surface, which is exactly the RT surface if we require it to be
extremal. This reformulation also works for single intervals. In summary, based on the PEE
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thread configuration we gave a reformulation of the RT formula for general static regions in
the vacuum state of AdS3/CFT2, and for static spherical regions in higher dimensions.

For the cases of multi intervals, since the PEE threads can intersect with the RT surface
multiple times, the claim that there is a definite direction for any PEE threads does not
make sense. This means our strategy to generate bit thread configurations from PEE
threads breakdown. Nevertheless, we think the formulation of weighted PEE threads makes
more sense. The reason is that, the holographic entanglement entropy is the generalized
gravitational (entanglement) entropy [5] between entanglement wedges WA and WB, which
includes different bulk regions at the critical point. It is reasonable that, the parts of the
PEE threads in different entanglement wedges play different roles. One can also define an
in-definite flow direction which is always locally from one side of the homologous surface to
the other side (see the arrows in figure 10). Then the norm of the PEE flow on homologous
surface can recover 1/(4G) only if this homologous surface coincide with the RT surface.

The success of our reformulation indicates that the PEE threads may be a certain physical
quantity that lies in the bulk gravity theory. It seems that, the part of the PEE thread that
lies in WA should be considered as degrees of freedom in WA while the other part belongs to
WB . The entanglement entropy between the two parts at leading order is just proportional to
the number of partition points, i.e. the weight ω. It will be very interesting to explore a deeper
physical interpretation of the PEE threads in the bulk (quantum) gravity or its toy models. For
example, the PEE threads is very reminiscent of the so-called pentagon-edge geodesics defined
in the toy model of AdS3/CFT2 based on fracton models with subsystem symmetry [83, 84].
More interestingly, the network of the PEE threads could be considered as a well-defined
continue limit of a bulk tensor network that describes the multi-scale entanglement structure
of the holographic CFT. See [85–87] for some earlier toy models along this line.

One may wonder if we can generate a bit thread configuration for non-spherical but
connected regions in higher dimensions. We give a simple exploration for the bit thread flow
VA for a strip in appendix B. Unfortunately, as we can see |VA| < 1/4GN on the RT surface of
strip and thus does not satisfy the requirements for bit threads. Moreover, a naive integration
of the PEE flow does not reproduce the entanglement entropy calculated by the RT formula.
One important reason for this failure could be the fact that, unlike the spherical regions,
the modular Hamiltonian is non-local for strip. Another possible reason is that, unlike the
spherical regions, the PEE threads with both its endpoints inside or outside the region can
also intersect with the RT surface twice. This indicates that we should classify the PEE
threads and weight them differently as in the multi-interval cases, hence the entanglement
entropy may coincide with the RT formula. Indeed this is a non-trivial task even for strips.
We leave this for further investigations.

There are absolutely many other interesting future directions relevant to the PEE threads.
For example, we can explore the problems of how to generalize the PEE threads to its
covariant version, how to extend our discussion from Poincaré AdS to AdS black holes and
how to define a quantum version of PEE threads to include the quantum correction [6] in
the bulk gravity as was done in [45, 46] for a quantum version of bit threads. The PEE has
been explored in holographic theories beyond AdS/CFT [60, 65, 69, 88, 89]. Generalizing
the PEE threads to more generic holographic theories is also very interesting.
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Note added. Two months after this paper was submitted to arxiv, a new submission [90]
by the same authors appears on arxiv. In the follow-up paper we proved that, in the vacuum
state of AdS/CFT, for any static boundary region A, including those non-spherical regions
and disconnected regions, the homologous surface ΣA that has the minimal flux of the PEE
threads passing through it is exactly the Ryu-Takayanagi (RT) surface of A, and the minimal
flux coincides with the holographic entanglement entropy of A. Furthermore, we can extract
much more information from the configuration of the PEE threads than the RT formula.
We showed that the strength of the PEE flux at any bulk point along any direction is
1/4G, which means the AdS space is full of PEE threads. Based on this observation, we
proved that any co-dimension two surfaces in the bulk can be reconstructed by the PEE
threads passing through it.
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A Proof of a statement

Let us prove the statement for static intervals in the following:

• Provided that, for any region A the bit thread flow V µ
A is normal to the RT surface

and satisfy |VA| = 1/4G on the RT surface, then we have |VA| < 1/4G away from RT
surface.

The RT surfaces are static semicircles in pure AdS3 spacetime. As is shown in figure 11, for a
bulk point Q inside the entanglement wedge WA, only the PEE threads emanating from the
red region [r1, r2] flows outside the WA and contribute non-trivially to V µ

A (Q). The vector
V µ

A (Q) determines a RT surface ERQ
of a region RQ, which passes through Q and normal

to V µ
A (Q). Generally, there are following two possibilities:

1. The whole red region lies inside RQ, i.e. [r1, r2] ⊂ RQ.

2. Only a part of the red region lies inside RQ.

The PEE threads from the red region [r1, r2] and inside RQ will contribute positively to
V µ

A (Q) while those from the red region but outside RQ contribute negatively to V µ
A (Q).

On the other hand, let us consider the region RQ where the bit thread flow VRQ
(Q)

has the same direction as VA(Q) and |VRQ
(Q)| = 1

4G . All the PEE thread flow Vx for RQ

contribute positively along the direction of VA(Q). This means the contribution from the
red region [r1, r2] that lies inside RQ to VA(Q) is less than 1

4G . As we have shown that
the red region that lies outside RQ contribute negatively to VA(Q), we can conclude that
|VA(Q)| < 1

4G . A similar argument also applies to the case where the field point lies outside
EA, hence the statement is proved.
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V µ
A

r1 r2

QERQ

EA
V µ

A

r1 r2

Q
ERQ

EA

Figure 11. The total vector field V µ
A at Q receives the net contributions from the PEE threads of the

red boundary region. For Q inside the WA, this red region [r1, r2] is determined by two intersecting
geodesics (red dashed curves). The green dashed semicircle denotes the RT surface ERQ

passing
through the field point Q and normal to V µ

A . RQ is the associated boundary region of ERQ
.

B PEE threads for a strip region

Now let us construct the bit thread flow V µ
A for (d − 1)-dimensional strip region with

x1 ∈ [−R, R], xi ∈ (−∞, ∞), for i = 2, . . . , d − 1. (B.1)

And the corresponding RT surface is given by [91]

±r(z) = z∗
√

π

2(d − 1)
Γ
(1

2 + 1
2(d−1)

)
Γ
(
1 + 1

2(d−1)
) − z

d

(
z

z∗

)d−1
2F1

(
1
2 ,

1
2 + 1

2(d − 1) ,
3
2 + 1

2(d − 1) ,
z2(d−1)

z
2(d−1)
∗

)
,

(B.2)
where z∗ is the deepest point of minimal surface in the bulk, which reads

z∗ = 2R(d − 1)√
π

Γ
(
1 + 1

2(d−1)

)
Γ
(

1
2 + 1

2(d−1)

) . (B.3)

Due to the translational symmetry along xi-direction, these xi-components of V µ
A vanishes

and V µ
A also enjoy this translational symmetry along xi-direction. Thus it is enough to

evaluate the field point at (x̄1, z̄) with x̄i≥2 = 0. To get the bit thread flow V µ
A , let us follow

the similar trick as the sphere case. We first foliate the strip into layers of thin plates Πx0

along x1-direction (see figure 12 for an illustration), where x0 is the distance between the
field point and the plate. Then we use (3.29) to determine the contribution from each thin
plate to V µ

A and integrate over all the plates to get the total V µ
A . The results are

V x1
A (x̄1, z̄) = z̄d+1

4GN

(
1

((R − x̄1)2 + z̄2)d/2 − 1
((R + x̄1)2 + z̄2)d/2

)
, (B.4)

V z
A(x̄1, z̄) = z̄d

4GN

(
x̄1 + R

((R + x̄1)2 + z̄2)d/2 − x̄1 − R

((x̄1 − R)2 + z̄2)d/2

)
. (B.5)

One could check that this extrapolates to d = 2 to recover (3.20).
Unlike the spherical regions, however, the bit thread flow for strip |VA| < 1/4GN on the

RT surface (B.2) and thus is not a bit thread configuration.
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x0Πx0

x1

x2

x̄1

Figure 12. The blue-shaded region is a strip with the width 2R centered at the origin. The strip is
foliated by layers of thin plates Πx0 along the x1-direction and x0 is distance between the plate and
the field point.
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