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Black hole entropy

From the first law we see BH has
entropy, the Bekenstein-Hawking

entropy(Bekenstein 1973)

@c

Usually entropy is the logarithm of phase space volume, but
BH entropy scales like area



Holography?

D dimensional theory of
gravity 1s equivalent to
(D-1) dimensional
quantum  field theory
without gravity. All d.o.f.
of BH are encoded into
the surface of the BH(93
‘t Hooft ) . One example i1s
AdS/CFT correspondence,
which states that d.o.f. of
5d AdS spacetime can be
described by the ones of a
CFT living on 1its 4d
boundary (97 Maldacena)

Entanglement?

The black hole interior is
entangled with its exterior
radiations. This naturally
give the area scaling of
the entropy (Sorkin;
Bombelli,Koul,Lee&Sorki
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Holography



(Ryu & Takayanagi 06)

Holographic Entanglement Entropy:

AdS boundary

gravitational
potential/redshift

a time slice 1s given by







Holography & tensor network

Recently the relation between Tensor Network of wave function in
quantum critical phase and discrete Anti de Sitter (AdS) space has
been suggested. (8.swingle '2009)

wave function

in quantum ctirical phase

\

Tensor Network ? | discrete AdS space
MERA = | (gravity)




. Why tensor network?

“The fundamental laws necessary for the
mathematical treatment of a large part of physics and
the whole of chemistry are thus completely known,
and the difficulty lies only in the fact that application
of these laws leads to equations that are too complex
to be solved.”

—Paul Dirac
__E exp{N)
d
ih—W¥ = HY
dt size
Schrodinger equation




Tensor network

Many-body Hilbert space
For many body system, only a tiny part of
the Hilbert space is relavant. Many d.o.f. are
irrelavant to the ground state in question. Area-law states

e

Decompose big tensor into a
set of small ones

We can reduce the
Hilbert space

For a ground state

) = Z C”,, iy 112 . ) —— z Tr[A(l)A(Z) A(A)]Illlz

i1iz.. f1iz..

MPS decomposition m ; ; ; ;

0(d") 0(Ndy?)
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M E RA G.Vidal PRL, 2007, 99: 220405,
PRL, 2008, 101: 110501.

Multi-scale entanglement renormalization ansatz

(MERA)

0)

4 A-F

. ) also a
disentangler isometry two-body unitary gate
two-body unitary gate
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MERA as AdS /C FT B. Swingle,PRD, 2012, 86(6): 065007.

B. Swingle, arXiv:1209.3304
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MERA as AdS /C FT B. Swingle,PRD, 2012, 86(6): 065007.

B. Swingle, arXiv:1209.3304
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Area(va)
4= —-are clogL
5(A) = log L N
€ cMERA == emergent geometry:
zero temperature AdS time slice Nozaki et al JHEP10(2012)193
, , W.C. Gan(H3CHE),FWS, M.H.Wu(R %), PLB
thermal BTZ time slice

760 (2016) 796 , 772 (2017) 464-470
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Bit threads

M. Freedman and M. Headrick, Commun.Math. Phys. 352, 407 (2017)

Subtlety: A strangely discontinuous transition of the bulk
minimal surface under continuous deformations of A.

A B

\/m(AB) — m(4) Um(B)

The bits encoding the microstate of A somehow “live on” the
minimal surface and strangely jump from one place to another!
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. Max-Flow/Min-Cut

M. Freedman and M. Headrick, Commun.Math. Phys. 352, 407 (2017)

LAY ) |
A /
A /(4)

l

max/ v = C min area(m) .
A

v mn~A

The area of minimal surface can be replaced by a maximal flux.
Information is encoded in the flow, not the surface.
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& Bits information is quantum, but network
Is classical

& Flow picture implies threads live in a
Lorentzian manifold



. Quantum bit threads

C-B Chen(FR=5#), FWS, M-H Wu(R & F1), arXiv:1804.00441

» A classical network is incomplete for quantum bits!

Classical Network —) Tensor Network

« AdS time slice is a spacelike hypersurface and don’t have causal structure

AdS time slice m—) Kinematic space
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.Quantum Max-flow/Min-cut

Inputs

Min-cut

Outputs

Z C iy

i s

,-°',j|T|

><|’i1,"'

For fixing basic of inputs S
and outputs T, each tensor
assignments determine a

state of this tensor network:

7’|S|aj17"' 7.]|T|

US| St )T
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S. X. Cui, M. H. Freedman et.al, J.Math. Phys. 57 062206 (2016)

Definition 1 (Quantum Min-cut). The quantum min-cut QM C(G, a) is the minimum value

of product of capacities over all edge cut sets, i.e.

— i npus
QMC(G,a) : min gae. nputs

There is a linear map B(G,a;T) € V&Q Vr = Hom(Vs, Vr) from inputs to outputs:

Vs +— Vp acting on the inputs state:

BG,a;T)iv,-viis)s: = > Ciyeoipgguem iy X s+ 5 dr))r-
JisudiT)
Briefly 8(G,a; T) is the map of big tensor consist of tensors fromSto T.

Definition 2 (Quantum Max-flow). For over all tensor assignments, there exists a maximal

value of the rank of map B(G,a;T) and we define this mazimal value as the quantum mazx-

flow:

maximum for all
QMF(G,a) = max rank(B(G,a;T)). tensor assignments

Min-cut

Outputs



Kinematic space
B. Czech e al JHEP 1607, 100(2016)

Kinematic space is defined as a collection of geodesics in AdS time slice

geodesic
parameters

. A point (6, @) in

< Kinematic space
\_/ o p

The length of a curve can be measured by the
number of the geodesics which intersect it

1
length of y = Zf w(8,a)n, (6, a),

K

@ (0, @); the measure of the Kinematic space, determining the structure of the
space

v-) 0.0 = 5D 4ra  dund
w(f,a) = ———duAndv = — u A dv
(v=0+a| LI 2sin? ()

Kinematic space is a de Sitter space! A Lorentzian manifold with causal structure.
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Kinematic space VS MERA

B. Czech et al THEP 1607, 100(2016)

For causal structure consideration, kinematic space
should be viewed as the corresponding geometry of the

MERA

The conditional mutual information can be obtained by
counting the number of edges which is the net reduction of =
edges through a causal diamond from bottom up

I(A,C|B) = S(AB) + S(BC) — S(B) — S(ABC)

0%S(u, v)

udv dudv

B The volume of a Kinematic space is
determined by # of isometries D(isometry) = I(A,C|B)

B Metric of MERA is given by the one of , | MERA
. . dsgipra = [(Au, Av|B) —— (# of isometry) AulAv
Kinematic:

22



B oo

Now question is if QMF=QMC?

C-B Chen(FRZE3#t), FWS, M-H Wu(R & 1), arXiv:1804.00441

In generaly, QMF/QMC theorem cannot be satisfied, instead

QMF(G,a) < QMC(G,a)

which is different from the classical case. This implies some quantum effects.
When QMF=QMC?

(1) If the type of the tensors is not constraint, then we have
For a given graph G(V,E), if the capacity a of each edge is a power of d,
where d is an positive integer, then QMF=QMC.

(i1) If the type of the tensors 1s fixed, then: A_
QMF=QMC is “asymptotically” true in the large c( log y = Z ) limit

QMF (G, x,0) = QMC(G, x) - (1 - 0(1)) M. B. Hastings,arXiv:1603.03717
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Entanglement entropy flow in MERA tensor network
C-B Chen(P&EE3#), FWS, M-H Wu(R & F1), arXiv:1804.00441

There are log x (bits) entanglement
entropy flow in each edge of tensor
network.

A= From bottom up, 21log x (bits) entropy
flow become logy (bits)entropy flow

By introducing a density of the isometry for flow (bits) conservation:

10| < par. (Finite)
V;Lf A= —p (conservation)

p: density of isometries, the sources

of sinks of the flow
24



. HEE from quantum bit threads

» Subadditivity

» Strong subadditivity

» Araki-Lieb inequality

S(A)+ S(B) = f{.”.i':-+j flAR)
l"'ﬂ

|“1

_f f(AB) = S(AB).
Can

f[.—l:('lf_:']_f flA B.C)+ flA. B.C)
Cam

Cae

- ft.-i.f_;.{':l—f flA, B.C)

S Cla e

= S(AB) + 5(BC) - S(B) - 5(ABC)

]

S(AB)+8(A) = [ f(BALA) 4 [ .
AR Jp.n

1 f (B A" A)+ f il
A’ o

:f ﬂH..i’..{H[ o
A'Anlr Iy

SATAR

::f ;Hfmi.;t'..-u=.'-.?|m.
D [
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. Entanglement of purification

* S ,does not measure entanglement when p ,gis a mixed state

* Long distance quantum teleportation or global quantum key
distribution need to distribute a certain supply of pairs of particles in a
maximally entangled state to two distant users

) Entanglement of purification
B. M. Terhal et al, J. Math. Phys. 43 (2002) 4286

Let‘l//> e H,, ®H,,bea purification of p ,,so that

: : PAB A B
TrA.B,‘ w><w‘ = p 5, the entanglement of purification (EoP)
1S . 2 o
. _ 3 AA
E,(4:B)=mm§,,
v,A'B
A\ 4 A/ B/
where S, 4+ is Von Neumann entropy. VY an BB

A B

27



Holographic entanglement of purification

Md+2 Mds2
O: X
@ Surface/state correspondence
Pure State | ®(2)) Trivial State | Q)
________ Mad+2 Md+2]
- @z
Mixed State p(2) Mixed State p(2)

€ In AdS/CFT, the HEoP is conjectured to be given by

area(o g

E,.(4:B)= =E, (4:B)

N

where o, is the minimal cross section on the
entanglement wedge r,p .

K. Umemoto and T. Takayanagi, Nature Phys. 14, no. 6, 573 (2018)

M. Miyaiji et al, PTEP 2015(2015)7,
073B03, PRL 115, no.17, 171602 (2015)
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Bit thread formulation of HEoP

D-H Du(#t Z& #%), C-B Chen (FRE25#), FWS,
@ Define a flow from A to its complement, a vector 1904.06871, JHEP 08(2019)140

field on the entanglement wedge r 3, satisifying

V-v,;=0,

UAB‘ < E,

U =—U,5,00,,=0 onmyy

€ We asume that the EoP can be written as the flux of a max flow
from A to B

E,(4:B)= Tax L U,p M. Ghodrati, X.-M. Kuang, B.
Avgl. . =0 Wang, C.-Y. Chen, Y.-T. Zhou,
4B arXiv:1902.02475

@ Using the generalized Riemannian MFMC theorem

. areal\oAp
max VAB = min (945) = FEw(A: B)
R VAB: 4 O'ABNA 4G]\Ir
n-v | =0 v
ABIm AR rel map on Orpap

M. Headrick and V. E. Hubeny, Class. Quant. Grav. 35, no. 10, 10 (2018) 29



Bit thread formulation of the quantum advantage of dense
code (QA0oDC)

€ Choose a flow on ryp that simultaneously maximizes the flux from A
to (BC') and the flux from A to B, satisfying

- | -
UA(B,C')‘ < 4G »U4,cy = ~Yip.c1y4

V ° UA(B,C') - 0’

A B N
For this flow configuration, we have
C/
VA(B,CY) S(A) = _[A Uyi,cy = J'B Uipcyat o Up,cya = Ep (A:B)+ o Uip.cya

@ Recalling that for pure tripartite state, we have  S(A)=E,(A4:B)+A(C'> A)'

The QAoDC can be written as A(B > A) = S(A) —infy,S[(I4 @ Ag)pap] = supp,I'(B)A)

A(C'> 4) = IC, DJ(B,C‘)A

y

1. M. Horodecki and M. Piani, J. Phys. A: Math. Theor. 45 (2012) 105306
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. Flow-based proofs of the properties of EoP

(i) The E; is bounded above by the entanglement entropy
E.(4:B) <min(S(A),S(B))
(ii) The Ep is monotonic
E.(A:BC)=E,(4:B)
(iii) The E; is bounded below by half the mutual information
I(A:B)
2

E,(4:B)=>

(iv) The Ep is polygamous for a tripartite pure state
E,(4:B)+E,(4:C)>E,(4: BC)
(v) For a tripartite system,

B (A:BC)ZI(A:B)+I(A:C)

2
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. And more

(i) Flow based proof of the monogamy relation of QAoDC
with the EoP for the tripartite state:

S(A)= E,(A: B)+A(C > A)

(ii) A new lower bound for S(AB) in terms of QAoDC, which is
tighter than the one given by the Araki-Lieb inequality:  |S(4)—S(B) < S(4B)

A(C > A)+A(C > B) < S(AB)

(iii) A new inequality for EoP: EP (A : BO) < EP (B: AC) +EP (C: AB)

32



. Summary

» Tensor network provide a possible perspective on the relation
between holographic space and entanglement

» HEE admits a bit-thread interpretation

» Classical bit-thread picture is incomplete, quantum version should
be introduced.

> Bit-thread interpretation can be applied to some fields, such as
holographic entanglement of purification.
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Thank you



