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Abstract: Given the Yetter–Drinfeld category over any quasigroup and a braided Hopf coquasigroup

in this category, we first mainly study the Radford’s biproduct corresponding to this braided Hopf

coquasigroup. Then, we investigate Sweedler’s duality of this braided Hopf coquasigroup and show

that this duality is also a braided Hopf quasigroup in the Yetter–Drinfeld category, generalizing the

main result in a Hopf algebra case of Ng and Taft’s paper. Finally, as an application of our results, we

show that the space of binary linearly recursive sequences is closed under the quantum convolution

product of binary linearly recursive sequences.
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1. Introduction

The concept of a Hopf algebra contains a symmetry between its algebraic structure,
and its coalgebraic structure and has many important applications (see [1–4]). A theory of
linearly recursive sequence-related Hopf algebras was first studied in 1980 by Peterson and
Taft (see, [5]) and later investigated in the papers [6–9].

The theory of braided Hopf algebras can be used to obtain a structure of Radford’s
biproduct, which has an important application in the classification of finite-dimensional
pointed Hopf algebras (see [10]) and can provide a solution to the quantum Yang–Baxter
equation (see [1,2]).

Over the last few years, there have been substantial developments in non-associative
Hopf algebras (see [11,12]), non-coassociative Hopf algebras (see [11,13]), quantum quasi-
groups (see [14,15]), and so on. These have motivated some initial moves toward a unifica-
tion of these two topics, non-associative and non-coassociative Hopf algebras, since none
of the non-associative objects or the non-coassociative objects proposed up to now have
been able to maintain the self-duality of the Hopf algebra concept. More recently, there
have been developments in topics related to these Hopf algebras (see [16–21]).

The aim of the current paper is to study the Sweedlers’ duality of a braided Hopf
quasigroup in a symmetrical category and related Radford’s biproducts. We also give
an application of our theory to binary linearly recursive sequences. Our paper has three
different settings from [6]: 1. we consider the Yetter–Drinfeld category over a quasigroup G,
and not the left module category of G; 2. we consider binary linearly recursive sequences as
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an application, not linearly recursive sequences; and 3. we consider Hopf (co)quasigroups,
not Hopf algebras. This article is organized as follows.

Background on quasigroups and loops, symmetric monoidal categories, the Yetter–
Drinfel’d category and Hopf (co)quasigroups is provided in Section 2. In particular, we
show that the Hopf (co)quasigroups are unital H-bialgebras (see Proposition 1).

In Section 3, we study the notion of a braided Hopf coquasigroup H (see Definition 3)
and the related Radford’s biproduct H ⊡ G (see Theorems 2 and 3).

In Section 4, we mainly study Sweedler’s duality of the braided Hopf coquasigroup
to obtain a new braided Hopf quasigroup, as investigated in [11]. The main result can be
found in Theorem 5. Finally, we show in Section 5 that the space of binary linearly recursive
sequences is closed under the quantum convolution product of binary linearly recursive
sequences (see Theorems 6 and 7), generalizing the main result in [6] for the linear case.

Throughout this paper, let F be a fixed field. We will work over F. Let C be a
coalgebra with a coproduct ∆. Throughout, we will use the Heyneman–Sweedler’s notation
(see [4]), ∆(c) := ∑ c(1) ⊗ c(2) for all c ∈ C, for a coproduct, or, we will simply write
∆(c) := ∑ c1 ⊗ c2.

2. Preliminaries
2.1. Symmetric Monoidal Categories

Recall from [22] that a monoidal category C = (C,⊗, k, a, l, r) is a category C armed
with a functor ⊗ : C × C −→ C (the tensor product), an object k ∈ C (the unit object) and
natural isomorphisms a = aU,V,W : (U ⊗ V)⊗ W −→ U ⊗ (V ⊗ W) for all U, V, W ∈ C
(the associativity constraint), and invertible morphisms l = lU : k ⊗ U −→ U, r = rU :
U ⊗ K −→ U for any U ∈ C (the left unit constraint) and the right (unit constraint,
respectively) such that the following two identities are satisfied for all U, V, W, X ∈ C:

aU,V,W⊗XaU⊗V,W,X = (idU ⊗ aV,W,X)aU,V⊗W,X(aU,V,W ⊗ idX); (1)

(rU ⊗ idV) = (idU ⊗ lV)aU,I,V . (2)

A monoidal category C is strict when all the constraints are identities. It is well known
that each monoidal category is equivalent to a strict monoidal category. By (C,⊗, k), we
denote a strict monoidal category. For every object M in C, there are two endofunctors:
M ⊗− : C −→ C and −⊗ M : C −→ C. The category C is braided if for every object M in
C we have natural isomorphisms:

bM,− : M ⊗− −→ −⊗ M, b−,M : −⊗ M −→ M ⊗−

which verify the following:
b−,V(W) = b−,W(V),
bV⊗W,− = (bV,− ⊗ W) ◦ (V ⊗ bW,−),
b−,V⊗W = (V ⊗ b−,W) ◦ (b−,V ⊗ W).

As a consequence, it is easy to determine that bV,k = bk,V = idV . The category C is
called a symmetric braided monoidal category (simply, symmetric category) if

bV,W ◦ bW,V = id, ∀ V, W ∈ C.

Throughout, C denotes a symmetric category (C,⊗, k) with the braided b. We will
work on C.
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We denote LSF as the category of linear spaces and linear maps over F. Then,
(LSF,⊗F,F) is a symmetric category.

2.2. Hopf (Co)quasigroups

The notions of (co)algebras in this subsection refer to the paper [12].
A coalgebra (C, ∆) is a vector space C equipped with a linear map ∆ : C −→ C ⊗ C.

The coalgebra (C, ∆) is called coassociative if (id ⊗ ∆)∆ = (∆ ⊗ id)∆. A counital coalgebra
(C, ∆, ε) is a vector space C equipped with two linear maps ∆ : C −→ C ⊗C and ε : C −→ F
such that (id ⊗ ε)∆ = id = (ε ⊗ id)∆.

Recall from [11] that a Hopf quasigroup H is a counital coassociative coalgebra
(H, ∆, ε) and unital algebra (H,∇, µ) (not necessarily associative) armed with a linear
map S : H −→ H (called antipode) such that

∑ S(h(1))(h(2)g) = ε(h)g = ∑ h(1)(S(h(2))g), (3)

∑(hg(1))S(g(2)) = hε(g) = ∑(hS(g(1)))g(2) (4)

for any h, g ∈ H.
Dually, an algebra (A, m) is a vector space A equipped with a linear map m : A ⊗

A −→ A. The algebra (A, m) is called associative if m(id⊗m) = m(m⊗ id). It is customary
to write m(a ⊗ b) = ab, ∀a, b ∈ A. A unital algebra (A, m, µ) is a vector space A equipped
with two linear maps m : A ⊗ A −→ A and µ : F −→ A such that m(id ⊗ µ) = id =

m(µ ⊗ id). Generally, we write 1 ∈ A for µ(1F).
Recall from [11] that a Hopf coquasigroup H is a unital associative algebra (H, m, µ)

and a counital coalgebra (H, ∆, ε) (not necessarily coassociative) equipped with a linear
map S : H −→ H (called antipode), such that ∆ is an algebra homomorphism and the
following formulas hold:

∑ S(h(1))h(2)(1) ⊗ h(2)(2) = 1 ⊗ h = ∑ h(1)S(h(2)(1))⊗ h(2)(2), (5)

∑ h(1)(1) ⊗ S(h(1)(2))h(2) = h ⊗ 1 = ∑ h(1)(1) ⊗ h(1)(2)S(h(2)) (6)

for all h ∈ H.

Remark 1. A Hopf (co)quasigroup is a Hopf algebra if and only if its (co)product is (co)associative.
There are two important sources for this generalized Hopf algebra, as follows.

Definition 1 ([12], Definition 2). An H-bialgebra (H, m, ∆, ε,⧹,⧸) is a counital bialgebra
(H, m, ∆, ε) with two extra bilinear operations, the left and right divisions:

⧹ : H × H −→ H, (x, y) 7→ x⧹y, and ⧸ : H × H −→ H, (x, y) 7→ x⧸y

such that

∑ x(1)⧹(x(2)y) = ε(x)y = ∑ x(1)(x(2)⧹y), (7)

∑(yx(1))⧸x(2) = ε(x)y = ∑(y⧸x(1))x(2). (8)

A unital H-bialgebra (H, m, 1, ∆, ε⧹,⧸) is a unital counital bialgebra (H, m, 1, ∆, ε) such
that (H, m, ∆, ε,⧹,⧸) is an H-bialgebra.

Proposition 1. (1) Any Hopf quasigroup with antipode S is a unital coassociative H-bialgebra.
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(2) Any Hopf coquasigroup with antipode S is a unital associative H-bialgebra.
Moreover, in these two cases, x⧹y = S(x)y and x⧸y = xS(y).

Proof. (1) The natural candidate for the left division is x⧹y = S(x)y. Actually, through
Equation (3), we have Equation (7). Similarly, define a right division x⧸y = xS(y), then
Equation (4) implies Equation (8).

(2) Similar to (1), one lets x⧹y = S(x)y and x⧸y = xS(y). By applying (id ⊗ ε) to
both sides of Equation (5), we have that

∑ S(h(1))h(2) = ε(h) = ∑ h(1)S(h(2))

and by the associativity, we have that

∑ S(h(1))(h(2)a) = ε(h)a = ∑ h(1)(S(h(2)a),

and so, Equation (7) holds. The same applies to Equation (8).
Recall from [23] that a quasigroup is a non-empty set G with a product, identity e and

with the property that for each g ∈ G there is g−1 ∈ G such that

g−1(gh) = h, (hg)g−1 = h, for all h ∈ G.

A quasigroup is flexible if g(hg) = (gh)g for any g, h ∈ G and alternative if also
g(gh) = (gg)h, g(hh) = (gh)h for all g, h ∈ G. It is called Moufang if g(h(gl)) = ((gh)g)l
for all g, h, l ∈ G. It is easy to see that in any quasigroup G, one has unique inverses and

(g−1)−1 = g, (gh)−1 = h−1g−1, for all g, h ∈ G.

Example 1. (i) Given that G5 = {1, 2, 3, 4, 5}, then G5 is a quasigroup with product · given by
the following Cayley table Table 1).

Table 1. Cayley table of a quasigroup G5.

· 1 2 3 4 5

1 1 2 3 4 5

2 2 1 4 5 3

3 3 5 1 2 4

4 4 3 5 1 2

5 5 4 3 2 1

(ii) Let G be a quasigroup. Then, it follows from ([11], Proposition 4.7) that H = F[G]

is a Hopf quasigroup with a linear extension of the product and ∆(h) = h ⊗ h, ε(h) = 1 and
S(h) = h−1 on the basis of element h ∈ G. Moreover, H is Moufang if G is.

For example, consider G5 in the item (i), where we have a Hopf quasigroup F[G5] with
∆(i) = i ⊗ i, ε(i) = 1 and S(i) = i with i ∈ G5.

(iii) In (ii), if G is a finite quasigroup, then (F[G])∗ is a Hopf coquasigroup (see [11]).
Explicitly, a basis of (F[G])∗ is the set of projections {pg | g ∈ G}, that is, for any g ∈ G and
x = ∑h∈G αhh ∈ F[G], pg(x) = αg ∈ F. The set {pg} consists of orthogonal idempotents whose
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sum is 1. The coproduct of (F[G])∗ is given by ∆(pg) = ∑h∈G pgh−1 ⊗ ph, and the counit is given
by ε(pg) = δ1,g (where δ denotes the Kronecker delta) (see [19]).

(iv) For (L, [, ]), a Maltsev algebra over k is not of characteristic 2, 3, whereby the enveloping
algebra U(L) in [19] is a Moufang Hopf quasigroup with the structure maps ∆ : U(L) −→
U(L)⊗ U(L), ε : U(L) −→ k defined by ∆(x) = x ⊗ 1 + 1 ⊗ x and ε(x) = 0 for all x ∈ L
extended to U(L) as algebra homomorphisms, and S : U(L) −→ U(L) defined by S(x) = −x that
is extended as an antialgebra homomorphism (see [11], Propositions 4.8 and 4.9).

2.3. Yetter–Drinfeld Modules over Quasigroups

Let H be a Hopf quasigroup. Recall from [13] that we say that (M, ·) is a left H-
quasimodule if M is a vector space and · : H ⊗ M −→ M is a linear map (called the
quasi-action) satisfying

1 · m = m, and ∑ h1 · (S(h2) · m) = ∑ S(h1) · (h2 · m) = ε(h)m (9)

for all h ∈ H and m ∈ M.
Given two left H-quasimodules (M, ·) and (N, ·), a linear map f : M −→ N is a

morphism of left H-quasimodules if f (h · m) = h · f (m) for all h ∈ H and m ∈ M.
The notion of a left H-comodule is exactly the same as for ordinary Hopf algebras

since it only depends on the coalgebraic structure of H. That is, we say that (M, ρM) is a
left H-comodule if M is a vector space and ρM : M −→ H ⊗ M (m 7→ ∑ m(−1) ⊗ m0) is a
linear map (called the coaction) satisfying the comodule conditions (see [4]).

We shall denote by HMQ the category of left H-quasimodules and we will denote by
HM the category of left H-comodules.

Let H be a Hopf quasigroup. Recall from [13] that we say that M is a left-left Yetter–
Drinfeld quasimodule over H if M is an object in HMQ with the action · and an object in
HM with the coaction ρ, which satisfies the following equalities:

∑(a1 · m)(−1)a2 ⊗ (a1 · m)0 = ∑ a1m(−1) ⊗ a2 · m0, (10)

∑ m(−1)(ab)⊗ m0 = ∑(m(−1)a)b ⊗ m0, (11)

∑ a(m(−1)b)⊗ m0 = ∑(am(−1))b ⊗ m0 (12)

for all a, b ∈ H and m ∈ M. The first equation in the above three equations is equivalent to
the following equation:

∑(a · m)(−1) ⊗ (a · m)0 = ∑(a1m(−1))S(a3)⊗ a2 · m0

for all a, b ∈ H and m ∈ M. In fact, if Equation (10) holds, then we have

∑(a · m)(−1) ⊗ (a · m)0 = ∑(a1 · m)(−1)ε(a2)⊗ (a1 · m)0

(1.4)
= ∑[(a1 · m)(−1)a2]S(a3)⊗ (a1 · m)0

(1.10)
= ∑(a1m(−1))S(a3)⊗ a2 · m0

and so, we obtain the result. Conversely, it is also true.
Let M and N be two left-left Yetter–Drinfeld quasimodules over H. We say that

f : M −→ N is a morphism of left-left Yetter–Drinfeld quasimodules if f is a morphism of
H-quasimodules and H-comodules.
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We shall denote by H
HYDQ the category of left-left Yetter–Drinfeld quasimodules over

H. Moreover, if we assume that M is a left H-module, we say that M is a left-left Yetter–
Drinfeld module over H. Obviously, left-left Yetter–Drinfeld modules with the obvious
morphisms is a subcategory of H

HYDQ. This subcategory will be denoted by H
HYD.

Theorem 1 ([13], Proposition 1.8). If H is a Hopf quasigroup over F with a bijective antipode, then
H
HYDQ is a braided monoidal category with braiding given by a linear map bM,N : M ⊗ N −→
N ⊗ M, defined by

bM,N(m ⊗ n) = ∑ m(−1) · n ⊗ m0 (13)

for all m ∈ M and n ∈ N.

Let G be a quasigroup. By Example 1 (ii), F[G] is a Hopf quasigroup. Then, the
category F[G]

F[G]
YDQ of left-left Yetter–Drinfeld quasimodules over F[G] is the category of left

F[G]-quasimodules (denoted by GMQ), which are G-graded vector spaces V =
⊕

g∈G Vg

such that each Vg is stable under the quasi-action of G, i.e., h · v ∈ Vg for all h ∈ G, v ∈ Vg.
The G-grading gives rise to a left k[G]-comodule structure on V via ρ : V −→ F[G]⊗ V
given by ρ(v) = g ⊗ v for any v ∈ Vg. This forms a category of left F[G]-comodules

(denoted by GM). The morphisms of F[G]
F[G]

YDQ are the G-linear maps f : V −→ W with

f (Vg) ⊂ Wg for all g ∈ G. We denote the category F[G]
F[G]

YDQ simply by G
GYDQ.

As a corollary of Theorem 1, we have the following proposition.

Proposition 2. Let G be a quasigroup. Then, G
GYDQ is a symmetric category with the following

monoidal structures:

QMC: g · (g−1 · v) = g−1 · (g · v) = v, ∀v ∈ V;
YDC1: xg ⊗ g · v = gx ⊗ g · v, ∀v ∈ Vx;
YDC2: (ug)y ⊗ v = u(gy)⊗ v, ∀v ∈ Vu;
YDC2: g(uy)⊗ v = (gu)y ⊗ v, ∀v ∈ Vu;
MC1: g · (v ⊗ w) := (g · v)⊗ (g · w), ∀v ∈ V, w ∈ W;
MC2: (V ⊗ W)g :=

⊕
xy=g Vx ⊗ Wy;

BC: b : V ⊗ W −→ W ⊗ V, b(v ⊗ w) := (g · w)⊗ v, ∀v ∈ Vg, w ∈ W

for any V, W ∈ G
GYDQ and g, x, y, u ∈ G.

Remark 2 ([13], Example 2.13). Let G be a quasigroup. Define

A(G)l = {u ∈ G | u(gy) = (ug)y for all g, y ∈ G },

A(G)m = {u ∈ G | g(uy) = (gu)y for all g, y ∈ G },

A(G)r = {u ∈ G | (gy)u = g(yu) for all g, y ∈ G }.

The sets A(G)l , A(G)m and A(G)r are called the left-, middle- and right-associators (nuclei)
of G, respectively (see [14]). The intersection of these three sets is called the associator (nucleus) of
G and will be denoted by A(G).

3. Braided Hopf Coquasigroups

In this section, G denotes a quasigroup. We will study the notion of a Hopf coquasi-
group in G

GYDQ.
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We have the following important example: We denote by Ĝ the character quasigroup
of all quasigroup homomorphisms from G to the multiplicative group F∗ = F\{0}.

Definition 2. Let V ∈ G
GYDQ. If there is a basis xi, i ∈ I, of V and gi ∈ G, χi ∈ Ĝ for all i ∈ I

such that
g · xi = χi(g)xi and xi ∈ Vgi ,

then we say V is of quasi-diagonal type.

Example 2. (i) Note that if F is algebraically closed of characteristic 0 and G is finite, then any finite-
dimensional V ∈ G

GYDQ is of diagonal type. For the braiding, we have b(xi ⊗ xj) = χj(gi)xj ⊗ xi

for 1 ≤ i, j ≤ θ. Hence, the braiding is determined by the so-called braiding matrix of V

(bij)1≤i,j≤θ := (χj(gi))1≤i,j≤θ .

(ii) We use Fχ
g to denote the vector space F with coaction x 7→ g ⊗ x and action h · x = χ(h)x

for x ∈ F, h ∈ G and χ ∈ Ĝ. Then, Fχ
g ∈ G

GYDQ if and only if

χ(h)gh = hgχ(h)

for h, g ∈ G. Conversely, any one-dimensional Yetter–Drinfeld module over G arises in this way. If
V ∈ G

GYDQ, then Vχ
g denotes the isotypic component of V of type Fχ

g .

Similar to ([13], Definition 1.1), we recall the monoidal version of the notion of a Hopf
coquasigroup introduced in ([11], Definition 4.1).

Note that a counital coalgebra (H, ∆, ε) in G
GYDQ means that ∆ = {∆g : Hg −→

Hg ⊗ Hg}g∈G and ε : H1 −→ F such that ε is counital and ∆ is not necessarily coassociative.

Definition 3. Let G be a quasigroup, H ∈ G
GYDQ, and let H be of quasi-diagonal type. We say

that H is a braided Hopf coquasigroup if it is a unital associative algebra (H, m, 1) and a counital
coalgebra (H, ∆, ε) such that the following axioms hold:

(1) H is G-graded vector spaces H =
⊕

g∈G Hg such that Hg is an algebra and Hx Hg = 0
with x ̸= g.

(2) The morphisms ∆H and εH are algebraic morphisms, i.e.,

ε(1) = 1, ∆(1) = 1 ⊗ 1, ε(ab) = ε(a)ε(b), (14)

∆(xy) = ∑ x1χi(g)y1 ⊗ x2y2 (15)

for any a, b ∈ H1 and x ∈ Hg, y ∈ Hgi with g, gi ∈ G.
(3) There exists a morphism S : H −→ H in G

GYDQ (called the antipode of H) such that

S = {Sg : Hg −→ Hg}, (16)

∑ S(h1)h21 ⊗ h22 = 1 ⊗ h = ∑ h1S(h21)⊗ h22, (17)

∑ h11 ⊗ S(h12)h2 = h ⊗ 1 = ∑ h11 ⊗ h12S(h2) (18)

for all h ∈ Hg with g ∈ G.

A morphism between braided Hopf coquasigroups H and B is a morphism f : H −→ B
which is both an algebraic and coalgebraic morphism. Note that a braided Hopf coquasi-
group is coassociative if and only if it is a braided Hopf algebra (see [2]).
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Remark 3. (i) Let H be a Hopf quasigroup in G
GYDQ. Then the antipode S is unique, antimulti-

plicative, anticomultiplicative and leaves the unit and the counit invariable.
(ii) If H = (H, m, 1, ∆, ε, S) is a Hopf coquasigroup in G

GYDQ, then so are H = (H, mop, 1,
∆, ε, Sop) and H = (H, m, 1, ∆cop, ε, Scop).

(iii) Given two Hopf coquasigroups H and B in G
GYDQ, one has the algebra H⊗B with the

following multiplication:
(x⊗y)(a⊗b) = x(g · a)⊗yb

for x, a ∈ H and y, b ∈ Bg.

Proposition 3. Let G be a quasigroup and H an algebra. If G quasi-acts on H, i.e., g · (ab) =
(g · a)(g · b) and g · 1H = 1H with a, b ∈ H and g ∈ G, then there is a unital non-associative
algebra (called skew quasigroup algebra) H ∗ G = H ⊗ F[G] as a vector space with a product
given by

(a ∗ x)(b ∗ y) = a(x · b) ∗ xy (19)

for any a ∈ H, b ∈ Hg and x, y ∈ G.

Proof. Since G is a quasigroup, the product given by Equation (19) is also non-associative.
For any b ∈ H and y ∈ G, we compute

(1H ∗ 1G)(b ∗ y) = (1G · b) ∗ y = b ∗ y = b(y · 1H) ∗ y = (b ∗ y)(1H ∗ 1G).

This ends the proof.

For example, when we consider the polynomial algebra A = F[x] in one variable x
and the quasigroup G5 = {1, 2, 3, 4, 5} given in Example 1, we define a quasi-action of G5

on A as follows: i · xm = xim with i ∈ G5 and m ∈ N. Thus, we have the skew quasigroup
algebra F[x] ∗ G5 = F[x]⊗ F[G5] with a product given by

(xm ∗ i)(xn ∗ j) = xm+in ∗ ij

for any i, j ∈ G5 and and m, n ∈ N.

Proposition 4. Let G be a quasigroup and let H =
⊕

g∈G Hg be a G-graded counital non-
coassociative coalgebra with a coproduct ∆ = {∆g : Hg −→ Hg ⊗ Hg}g∈G and counit ε : H1 −→
F. Then, there is a counital non-coassociative coassociative coalgebra H ⋄ G = H ⊗ F[G] =⊕

g∈G(Hg ⊗ F[< g >]) as a vector space with a counit ε = εH ⊗ εG : H1 ⋄ G −→ k, a ⊗ g 7→
εH(a) and with a coproduct given by

∆(a ⋄ x) = ∑(a1 ⋄ gx)⊗ (a2 ⋄ x) (20)

for any x, g ∈ G and a ∈ Hg.

Proof. It is obvious that ε is a counital for ∆ given by Equation (20). In fact, for any x ∈ G
and a ∈ H1, we have

(ε ⊗ id)∆(a ⋄ x) = ∑(εH ⊗ εG)(a1 ⋄ x)⊗ (a2 ⋄ x)

= εH(a1)εG(x)(a2 ⋄ x)

= εG(x)(a ⋄ x) = a ⋄ x.
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and

(id ⊗ ε)∆(a ⋄ x) = ∑(a1 ⋄ x)⊗ (εH ⊗ εG)(a2 ⋄ x)

= ∑(a1 ⋄ x)εH(a2)εG(x) = a ⋄ x.

This finishes the proof.

Recall from [12] that a bialgebra (A, ∆) is an algebra (A, m) and a coalgebra (A, ∆)
such that ∆(ab) = ∆(a)∆(b) for all a, b ∈ A. A unital bialgebra (A, m, µ, ∆) is a coalgebra
(A, ∆) and a unital (A, m, µ) such that ∆(ab) = ∆(a)∆(b) and ∆(1) = 1 for all x, y ∈ A. A
counital bialgebra (A,∇, ∆, ε) is a counital coalgebra (A, ∆, ε) and an algebra (A, m) such
that ∆(ab) = ∆(a)∆(b) and ε(ab) = ε(a)ε(b) for all a, b ∈ A. A unital counital bialgebra
(A, ∆, ε, m, µ) is both a unital bialgebra (A, ∆, m, µ) and a counital bialgebra (A, ∆, ε, m)

such that ε(1) = 1.
A Hopf algebra always means a unital counital associative coassociative bialgebra

with an antipode ([4]). A Hopf quasigroup as introduced in Section 2.2 always means a
unital counital non-associative coassociative bialgebra with an antipode; and similarly, a
Hopf coquasigroup always means a unital counital associative non-coassociative bialgebra
with an antipode ([11]).

With the conditions given in Propositions 3 and 4, define H ⊙G = H ⊗F[G] as a vector
space with the product given by Equation (19) and the coproduct given by Equation (20).

Theorem 2. Let G be a quasigroup. Suppose H =
⊕

g∈G Hg is a unital associative algebra in

GMQ such that Hg is an algebra and Hx Hg = 0 with x ̸= g, and a counital non-coassociative
coalgebra in GM. Then, the following are equivalent:

(a) H ⊙ G is a unital counital non-associative non-coassociative bialgebra.
(b) H is a unital associative algebra in GM and a counital non-coassociative coalgebra in

GMQ, εH is an algebra map, ∆H(1) = 1 ⊗ 1, and the identity

∆(ab) = ∑ a1(g · b1)⊗ a2b2, (21)

(g · (x · b)) ⋄ (xy) = (gx · b) ⋄ (gx)(gy), (22)

for any g, x, y ∈ G and a ∈ Hg, b ∈ H.
(c) The counit εH and the left F[G]-comodule structure map ρ on H are algebra maps;

the module structure map ·H : F[G] ⊗ H −→ H is a coalgebra map, ∆H(1) = 1 ⊗ 1; and
Equations (21) and (22) hold.

Proof. (i) We claim that ε = εH ⊗ εG is an algebra map if and only if εG is multiplicative
and εH is an algebra map and εH(g · a) = εH(a) holds for g ∈ G and a ∈ H. In fact,
if ε[(a ∗ x)(b ∗ y)] = ε(a ∗ x)ε(b ∗ y) for any a, b ∈ H1 and x, y ∈ G, we have εH [a(x ·
b)]εG(xy) = εH(a)εH(b)εG(x)εG(y) which proves the claim.

(ii) We have that ∆(1 ⋄ 1) = (1 ⋄ 1) ⊗ (1 ⋄ 1) if and only if ρ(1) = 1 ⊗ 1 and
∆H(1) = 1 ⊗ 1.

(iii) Assuming that ρ(1) = 1 ⊗ 1. It is straightforward to check that ∆ is multiplicative
if and only if

∑(a1(g · (x · b1)) ⋄ (xy))⊗ (a2(x · b2) ⋄ xy)

= ∑[a1(gx · b1) ⋄ (gx)(gy)]⊗ [a2(x · b2) ⋄ xy]
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from which it follows Equations (21) and (22).
(b) ⇐⇒ (c) is clear. (a) =⇒ (b) follows from the preceding calculations, so it remains

to show that (b) =⇒ (a). Assume that (b) holds. Then, the equations of (i), (ii) and (iii) are
valid. By (i), ε is an algebra map, and by (iii), to show that ∆ is an algebra map, we only
need to show that ∆ is multiplicative. But for this, it suffices to show by (iii) that

∆[(a ⋄ x)(b ⋄ y)] = ∑(((a(x · b))1 ⋄ (xy))⊗ (((a(x · b))2 ⋄ xy)

= ∑(a1(g · (x · b)1) ⋄ (xy))⊗ (a2(x · b)2 ⋄ xy)

= ∑(a1(g · (x · b1)) ⋄ (xy))⊗ (a2(x · b2) ⋄ xy)

= ∑[a1(gx · b1) ⋄ (gx)(gy)]⊗ [a2(x · b2) ⋄ xy]

= ∑[(a1 ⋄ gx)(b1 ⋄ gy)]⊗ [(a2 ⋄ x)(b2 ⋄ y)]

= [∑(a1 ⋄ gx)⊗ (a2 ⋄ x)][∑(b1 ⋄ gy)⊗ (b2 ⋄ y)]

= ∆(a ⋄ x)∆(b ⋄ y),

for any a, b ∈ Hg and x, y, g ∈ G. This completes the proof of the theorem.

In the above theorem, we have derived necessary and sufficient conditions for H ⊗G to
be a unital counital non-associative non-coassociative bialgebra with the algebra structure
of H ∗ G and the coalgebra structure of H ⋄ G. In case H ⊙ G is a unital counital non-
associative non-coassociative bialgebra, we say that the pair (G, H) is quasi-admissible and
denote this a unital counital non-associative non-coassociative bialgebra by H ⋄ G.

Remark 4. If (G, H) is a quasi-admissible pair, then ∆H is not necessarily multiplicative.
In what follows, for a quasi-admissible pair (G, H), we show that the mapping system H ⇆ΠH

jH
H ⋄ G ⇄πG

iG
G characterizes H ⊙ G, where G means k[G].

Definition 4. Let (G, H) be a quasi-admissible pair and suppose that A is a unital counital non-
associative non-coassociative bialgebra. Then, H ⇆Π

j A ⇄π
i G is a quasi-admissible mapping

system if the following conditions are satisfied:
(QAP1) Π ◦ j = idH and π ◦ i = idG.
(QAP2) i and π are bialgebra maps, j is an algebra map, and Π is a coalgebra map.
(QAP3) Π is a G-bimodule map (A is given the G-bimodule structure via pullback along i,

and H is given the trivial right G-module structure).
(QAP4) j(H) is a sub-G-bicomodule of A and Π|j(H) is a bicomodule map (A is given the

G-bicomodule structure via pushout along π, and H is given the trivial right G-comodule structure).
(QAP5) (j ◦ Π) ∗ (i ◦ π) = id.

Our next result gives two mapping descriptions of H ⋄ G.

Theorem 3. Let (G, H) be a quasi-admissible pair.
(a) H ⇆ΠH

jH
H ⋄ G ⇄πG

iG
G is a quasi-admissible mapping system.

Let A be a unital counital non-associative non-coassociative bialgebra and let H ⇆Π
j A ⇄π

i G
be a quasi-admissible mapping system.

(b) There exists a unique unital non-associative algebra map Θ : H ⋄ G −→ A such that
(i) Θ ◦ jH = j and Θ ◦ iG = i;
(ii) Π ◦ Θ = ΠH and π ◦ Θ = πG, and Θ is a unital counital non-associative non-

coassociative bialgebra isomorphism.
(c) There exists a unique unital non-coassociative coalgebra map Υ : A −→ H ⋄ G such that
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(iii) ΠH ◦ Υ = Π and πG ◦ Υ = π;
(iv) Υ ◦ j = jH and Υ ◦ i = iG, and Υ is a unital counital non-associative non-coassociative

bialgebra isomorphism.

Proof. (a) is straightforward. In fact, in H ⇆ΠH
jH

H ⋄ G ⇄πG
iG

G, we have ΠH(a ⋄ g) = a;
jH(a) = a ⋄ 1; πG(b ⋄ g) = εH(b)g; iG(g) = 1H ⋄ g for all a ∈ H, b ∈ H1 and g ∈ G. We will
check all conditions (QAP1)–(QAP5) in Definition 4 as follows:

For (QAP1), we compute (ΠH ◦ jH)(a) = ΠH(a ⋄ 1) = a = idH(a) and (πG ◦ iG)(g) =
πG(1H ⋄ g) = εH(1H)g = idG(g).

For (QAP2) iG(gx) = 1H ⋄ gx = (1HεG(g)1H ⋄ gx) = (1H(g · 1H) ⋄ gx) = (1H ⋄ g)(1H ⋄
x) = iG(g)iG(x) with g, x ∈ G, and (∆ ◦ iG)(g) = ∆(1H ⋄ g) = (1H ⋄ (1 · g))⊗ (1H ⋄ g)
(since 1H ∈ H1) = (iG ⊗ iG)∆G(g), and so, iG is a bialgebra map.

Similarly, πG((a ⋄ g)(b ⋄ x)) = πG(a(g · b) ⋄ gx) = εH(a(g · b))gx = εH(a)εH(g ·
b)gx = εH(a)εH(b)gx = πG(a ⋄ g)πG(b ⋄ x) with g, x ∈ G and a, b ∈ Hg, and (∆G ◦πG)(a ⋄
g) = εH(a)∆G(g) = εH(a)g ⊗ g = ∑ πG(a1)εH(a2)g ⊗ g = ∑ πG(a1 ⋄ g)πG(a2 ⋄ g)) =

∑(πG ⊗ πG)((a1 ⋄ g))⊗ (a2 ⋄ g)) = (πG ⊗ πG)∆(a ⋄ g) for any g ∈ G and a ∈ H1, and πG

is a bialgebra map.
Furthermore, jH(ab) = ab ⋄ 1 = (a(1 · b) ⋄ 1) = (a ⋄ 1)(b ⋄ 1) = jH(a)jH(b) with

a, b ∈ H, and so, jH is an algebra map. We also have (∆H ◦ ΠH)(a ⋄ g) = ∑ a1 ⊗ a2 =

∑(ΠH ⊗ ΠH)[(a1 ⋄ xg)⊗ (a2 ⋄ g)] = (ΠH ⊗ ΠH)∆(a ⋄ g) with x, g ∈ G and a ∈ Hx, and
so, ΠH is a coalgebra map.

AS for (QAP3), we check that ΠH is a G-bimodule map. We note that H ⋄ G is given
the G-bimodule structure via pullback along iG, i.e., g · (a ⋄ x) = (1H ⋄ g)(a ⋄ x) = g · a ⋄ gx
and (a ⋄ x) · g = (a ⋄ x)(1H ⋄ g) = a ⋄ xg. In fact, we have ΠH [g · (a ⋄ x)] = ΠH(g · a ⋄ gx =

g · a = g · ΠH(a ⋄ x) and ΠH [(a ⋄ x) · g] = ΠH(a ⋄ xg) = a = a · g = ΠH(a ⋄ x) · g since H
is given the trivial right G-module structure.

As for (QAP4), we check that jH(H) is a sub-G-bicomodule of H ⋄ G and ΠH |jH(H) is
a bicomodule map. One notes that H ⋄ G is given the G-bicomodule structure via pushout
along πG, i.e., ρr(a ⋄ g) = (a ⋄ g)⊗ 1 and ρl(a ⋄ g) = xg ⊗ (a ⋄ g) with a ∈ Hx and g, x ∈ G.
Actually, (ρr ◦ jH)(a) = ρr(a ⋄ 1) = (a ⋄ 1)⊗ 1 = (jH ⊗ id)(a ⊗ 1) = (jH ⊗ id)ρr(a) since H
is given the trivial right G-comodule structure, and (ρl ◦ jH)(a) = ρl(a ⋄ 1) = x ⊗ (a ⋄ 1) =
(id ⊗ jH)(x ⊗ a) = (id ⊗ jH)ρ

l(a).
Finally, for (QAP5), we need to check (jH ◦ ΠH) ∗ (iG ◦ πG) = id. We compute

[(jH ◦ ΠH) ∗ (iG ◦ πG)](a ⋄ g)

= ∑(jH ◦ ΠH)(a1 ⋄ xg)(iG ◦ πG)(a2 ⋄ g)

= ∑ jH(a1)iG(εH(a2)g)

= (a ⋄ 1)(1 ⋄ g) = (a ⋄ g)

for any a ∈ Hx and g, x ∈ G.
(b) If Θ : H ⋄ G −→ A is an algebra map, then (i) holds if and only if

Θ(a ⋄ g) = Θ(a ⋄ 1)Θ(1 ⋄ g) = Θ(a ⋄ 1)Θ(1 ⋄ g)
(i)
= (Θ(jH(a)))(Θ(iG(g))) = j(b)i(g)

holds for any a ∈ H and g ∈ G.
If Υ : A −→ H ⋄ G is a coalgebra map, then (iii) holds if and only if Υ(p) = ∑(jH ◦

ΠH)(Υ(p1))(iG ◦ πG)(Υ(p2)) (by (QAP5) of (a))= ∑(ΠH(Υ(p1)) ⋄ 1)(1 ⋄ πG(Υ(p2)))
(iii)
=

∑ Π(p1) ⋄ π(p2) holds for p ∈ A. Therefore, we have the uniqueness of Θ and Υ.
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Let Θ and Υ be defined as above. Then, through calculations, we can show that Θ and
Υ are inverses. Thus, the proof will be complete once we show that Θ is an algebra map
and Υ is a coalgebra map. These checks are similar to those of proofing (a).

The proof of the remaining is straightforward and is left to the reader.
This completes the proof.

The remainder of this section is devoted to studying basic properties of H ⊙ G; in
particular, we derive necessary and sufficient conditions for H ⊙ G to be a unital counital
non-associative coassociative Hopf coquasigroup.

Proposition 5. Suppose that (G, H) is a quasi-admissible pair.
(a) H ⋄ G is commutative if and only if H and G are commutative and the module structure

map is trivial.
(b) H ⋄ G is co-commutative if and only if H and G are co-commutative and the comodule

structure map is trivial.

Proof. The proof of this proposition is straightforward.

Proposition 6. Suppose that (G, H) is a quasi-admissible pair.
(a) If H ⋄ G is a unital counital non-associative coassociative Hopf coquasigroup with antipode

S, then S satisfies Equations (17) and (18). Furthermore, the identity idH has an inverse in the
convolution algebra End(H).

(b) If SH satisfies Equations (5) and (6), then H ⋄ G is a unital counital non-associative
coassociative Hopf coquasigroup with antipode λ described by

λ(a ⋄ g) =

{
(1 ⋄ g−1)(SH(a) ⋄ 1), when a ∈ H1;
0, when a ̸= H1.

Proof. (a) is left to the reader since it is a straightforward calculation.
(b) We need to check that Equations (17) and (18) hold. For Equation (17), in fact,

we have

∑ λ((a ⋄ g)(1))(a ⋄ g)(2)(1) ⊗ (a ⋄ g)(2)(2)
= ∑ λ(a(1) ⋄ g)(a(2) ⋄ g)(1) ⊗ (a(2) ⋄ g)(2)
= ∑ λ(a(1) ⋄ g)(a(2)(1) ⋄ g)⊗ (a(2)(2) ⋄ g)

= ∑[(1 ⋄ g−1)(SH(a(1)) ⋄ 1)](a(2)(1) ⋄ g)⊗ (a(2)(2) ⋄ g)

= ∑(g−1 · SH(a(1)) ⋄ g−1)(a(2)(1) ⋄ g)⊗ (a(2)(2) ⋄ g)

= ∑[(g−1 · SH(a(1)))(g−1 · (a(2)(1)))] ⋄ g−1g)⊗ (a(2)(2) ⋄ g)

= ∑[(g−1 · (SH(a(1))a(2)(1))) ⋄ 1)]⊗ (a(2)(2) ⋄ g)

= ∑[(g−1 · 1) ⋄ 1)]⊗ (a ⋄ g)

= (1 ⋄ 1)⊗ (a ⋄ g)
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for any a ∈ H1 and g ∈ G, and

∑(a ⋄ g)(1)λ(a ⋄ g)(2)(1) ⊗ (a ⋄ g)(2)(2)
= ∑(a(1) ⋄ g)λ(a(2) ⋄ g)(1) ⊗ (a(2) ⋄ g)(2)
= ∑(a(1) ⋄ g)λ(a(2)(1) ⋄ g)⊗ (a(2)(2) ⋄ g)

= ∑(a(1) ⋄ g)((1 ⋄ g−1)(SH(a(2)(1)) ⋄ 1)⊗ (a(2)(2) ⋄ g)

= ∑(a(1) ⋄ g)((g−1 · SH(a(2)(1))) ⋄ g−1)⊗ (a(2)(2) ⋄ g)

= ∑(a(1)[g · (g−1 · SH(a(2)(1)))] ⋄ gg−1)⊗ (a(2)(2) ⋄ g)

= ∑(a(1)SH(a(2)(1)) ⋄ 1)⊗ (a(2)(2) ⋄ g)

= (1 ⋄ 1)⊗ (a ⋄ g).

Equation (18) can be proven in a similar way.
This completes the proof.

Corollary 1. Let G be a quasigroup. Let B ∈ G
GYDQ and let B be Hopf algebra of quasi-diagonal

type with an antipode SB. Then, we have a unital counital non-associative coassociative Hopf algebra
B ⊙ G with the Hopf algebraic structures as follows:

(a ⊙ x)(b ⊙ y) = aχg(g)b ⊙ xy, for a, b ∈ Bg, x, y, g ∈ G;
∆(a ⊙ x) = ∑(a1 ⊙ gx)⊗ (a2 ⊙ x), for a ∈ Bg, x, y, g ∈ G;
ε = εB ⊗ εG, ;

λ(a ⋄ g) =

{
(1 ⋄ g−1)(SH(a) ⋄ 1), when a ∈ B1;
0, when a ̸= B1.

4. Duality of Braided Hopf Coquasigroups of Quasi-Diagonal Type

Recall form [4] the notion of the Sweedler’s duality of an associative algebra. Let
(A, mA, µA) be a unital associative algebra. Then, we have the counital coalgebra A0 given
by Sweedler, as follows:

A0 = { f ∈ A∗ | Ker f contains a cofinite ideal }

where A∗ is the linear dual space of A, and a cofinite ideal is an ideal J in A, wherein A/J
is finite-dimensional.

For f ∈ A∗ and a, b ∈ A, one sets (a ⇀ f )(b) = f (ba); similarly, ( f ↼ a)(b) = f (ab).
Then, one obtains that A∗ is an A-A-bimodule. The following lemma follows from Sw.

Lemma 1. With the above notations, the following states are equivalent for any f ∈ A∗:
(1) f ∈ A0 = (m∗

A)
−1(A∗ ⊗ A∗);

(2) dim(A ⇀ f ) < ∞;
(3) dim( f ↼ A) < ∞;
(4) dim(A ⇀ f ↼ A) < ∞.

Since the duality of an algebra is not generally a coalgebra, the duality of a Hopf
algebra is not usually a Hopf algebra. But, if A is a Hopf algebra, A0 has a natural Hopf
algebraic structure, which was described in [4] (Section 6.2). We can describe the Sweedler’s
duality in the setting of Hopf coquasigroups as follows:
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Theorem 4. Let A be a Hopf quasigroup. Then, A0 forms a braided Hopf coquasigroup in LSk.
Conversely, if A is a Hopf coquasigroup, then A0 is a braided Hopf quasigroup in LSk.

Proof. Let A be a Hopf quasigroup. By the dual theory in [4] (Chapter 6), we only check
Equations (5) and (6) from Equations (3) and (4). For instance, for Equation (5), we have

< ∑ S0(h0
(1))h

0
(2)(1) ⊗ h0

(2)(2), a ⊗ b >

= ∑ < S0(h0
(1))h

0
(2)(1), a >< h0

(2)(2), b >

= ∑ < S0(h0
(1)), a1 >< h0

(2)(1), a2 >< h0
(2)(2), b >

= ∑ < h0
(1), S(a1) >< h0

(2), a2b >

= ∑ < h0, S(a1)(a2b) >

= < h0, b > ε(a) =< ε ⊗ h0, a ⊗ b >,

for any h0 ∈ A0 and a, b ∈ A, and so, the first equation in Equation (5) holds. The same
applies to other equations in Equations (5) and (6).

Conversely, the proof is similar.

Let A be a Hopf coquasigroup in G
GYDQ.

Lemma 2. With the above notation,
(1) The ⇀ is a left G-linear;
(2) The ↼ is a right G-linear.

Proof. Straightforward.

Lemma 3. A0 is a G-submodule of A∗.

Proof. For any g ∈ G and f ∈ A0, a ∈ A, we notice that

(g · f )(a) = f (g−1 · a).

From this formula, we can finish the proof.

Proposition 7. A0 is a subalgebra of A∗.

Proof. Let f , g ∈ A∗. For a ∈ Ax, b ∈ A with x ∈ G, we compute

(( f g) ↼ a)(b) = ( f g)(ab) = ( f ⊗ g)∆(ab)

= f (a1(x · b1)g(a2b2) = f (x · [(S−1(x · a1)b1])g(a2b2)

= (x · f )[(x · a1)b1]g(a2b2)

= [(x · f ) ↼ (x · a1)](b1)(g ↼ a2)(b2)

= ∆∗[x · ( f ↼ a1)⊗ g ↼ a2)](b)

where we apply that A is a G-module algebra to the third equation above and use Lemma 2
to get the final equation.
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Therefore, we have

( f g) ↼ A ⊆ ∆∗[G · ( f ↼ A)⊗ g ↼ A]

⊆ ∆∗[(G · f ) ↼ A)⊗ g ↼ A].

By f ∈ A0 and Lemma 3, one obtains G · f ∈ A0. Applying f , g ∈ A0, and the
left-hand side of the above containment is finite-dimensional, so, f g ∈ A0. Finally, it is
straightforward to show that ε∗A(1) ∈ A0.

This concludes the proof.

Lemma 4. i ◦ τ : (A∗)op⊗(A∗)op −→ (A⊗A)∗op is a homomorphism as an algebra in G
GYDQ.

Proof. It follows the definition of the coaction of G on A∗.

Theorem 5. Assume that (A, mA, µA, ∆A, εA, Sa) is a Hopf coquasigroup in G
GYDQ. Then, (A0,

(mA0)op, ε∗A, (∆A0)op, µ∗
A, S∗

A) is a braided Hopf quasigroup in G
GYDQ.

Proof. Following [6], Theorem 3.4, we have to finish checking the following steps:
(Step 1) A0 is a G-subcomodule of A∗.
(Step 2) Observe that (mA0)op = ∆∗

A ◦ i ◦ τ : A0 ⊗ A0 −→ A∗. It is a morphism in
G
GYDQ. Obviously, ε∗A : F −→ A0 is. Thus, (A0, (mA0)op, ε∗A) is a unital non-associative
algebra in the category GMQ.

(Step 3) Note that (∆A0)op is the composite map A0 m∗
A−→ i(A0 ⊗ A0)

(i◦τ)−1

−→ A0 ⊗ A0.
This is a morphism in G

GYDQ. µ∗
A : A0 −→ F. So, (A0, (∆A0)op, µ∗

A) is a counital coassocia-
tive coalgebra in the category GMQ.

(Step 4) (∆A0)op : (A0)op −→ (A0)op⊗(A0)op as an algebra map.
(Step 5) S∗

A(A0) ⊆ A0.
(Step 6) (mA0)op(S∗

A ⊗ idA0)(∆A0)op = ε∗Aµ∗
A and (mA0)op(idA0 ⊗ S∗

A)(∆A0)op = ε∗Aµ∗
A.

These checks are straightforward. We omit them here and leave the readers.

As a straightforward result of Theorem 5, we have the following.

Corollary 2 ([6], Theorem 3.4). Let G be a group. Given a quasitriangular Hopf algebra
(F[G], R) with a bijective antipode S, when (A, mA, µA, ∆A, εA, SA) is a braided Hopf algebra

GM, (A0, (mA0)op, ε∗A, (∆A0)op, µ∗
A, S∗

A) is also a braided Hopf algebra in GM.

Corollary 3. Let G be a group. Given a coquasitriangular Hopf algebra (F[G], |) with a bijective an-
tipode S, when (A, mA, µA, ∆A, εA, SA) is a braided Hopf algebra GM, (A0, (mA0)op, ε∗A, (∆A0)op,
µ∗

A, S∗
A) is also a braided Hopf algebra in GM.

Finally, as an application, let A = F[x, y] be the bialgebra with an x group-like element
and with y (x, 1)-primitive. Consider a cyclic group G =< g > of order n. One has
a Hopf algebra H = F[G] with a g group-like element for any g ∈ G. Moreover, H is
quasitriangular with R = (1/n)∑n−1

i,j=0 p−ij(gi ⊗ gj), where p is a primitive nth root of unity

in F (see [6] or [2]). Thus, HM is a braided monoidal subcategory of H
HYD. We can study

Sweedler’s duality A0 = F[x, y]0.
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5. Binary Linearly Recursive Sequences

Consider the polynomial algebra A = F[x] in one variable x. It has a bialgebraic
structure given by ∆(x) = x ⊗ 1 + 1 ⊗ x and ε(x) = 0. On the one hand, we can identify
an element f in the dual space A∗ with the sequences ( fn)n≥0 = ( f0, f1, f2, · · · ), where
fn = f (xn) for n ≥ 0. On the other hand, A has a dual coalgebra A0 = { f ∈ A∗ | f (J) = 0
for some cofinite ideal J of A, i.e., A/J is finite-dimensional. Since a cofinite ideal J of
A = F[x] is just a nonzero ideal generated by a monic polynomial h(x) = xr − h1xr−1 −
· · · − hr, the condition f (J) = 0 means that fn = h1 fn−1 + · · ·+ hr fn−r for all n > r. This
means that f is linearly recursive, satisfying the recursive relation h(x). Thus, the space of
linearly recursive sequences has a Hopf algebraic structure.

Let q ̸= 0 in F. In 1997, Ng and Taft [6] showed that the space of linearly recursive
sequences is closed under the quantum convolution product ( fn) ∗q (gn) = (hn); here,

hn = ∑n
i=0

(
n
i

)
q

fign−i when q is a root of unity.

We now consider the bialgebra A = F[x, y] with x group-like element and with y
(x, 1)-primitive. A = F[x]⊗ F[y] as an algebra, and thus A0 = F[x]0 ⊗ F[y]0 as a coalgebra.
We identify each f in A∗ as a binary-sequence ( fi,j) for i, j > 0, where fi,j = f (xiyj). A row
of such a binary-sequence is a sequence { fi,p | p ≥ 0} for a fixed i ≥ 0, which we say is
parallel to the y-axis, or a sequence { fp,j | p ≥ 0} for a fixed j ≥ 0, which we say is parallel
to the x-axis.

Let f be in A0, f (J) = 0 for a cofinite ideal J of A. For each i, j, the powers of x (y)
span a finite-dimensional space in A/J, so there is a minimal monic hi(x) (hj(x)) in F[x]
such that each row of f parallel to the y (x)-axis satisfies hi(x) (hj(x)). Thus, J contains the
cofinite elementary ideal Γ generated by hi(x)hj(y).

Given a q ̸= 0 in k and an integer n > 0, one knows

(n)q = qn − 1/q − 1 = 1 + q + · · ·+ qn−1.

The q-factorial of n is given by (0)!q = 1 and

(n)!q = (1)q(2)q · · · (n)q =
(q − 1)(q2 − 1) · · · (qn − 1)

(q − 1)n

if n > 0. It is a polynomial in q with coefficients in Z. Moreover, it has value at q = 1 equal
to n!.

The Gaussian polynomials is given by for 0 ≤ i ≤ n(
n
i

)
q
=

(n)q!
(i)q!(n − i)q!

.

Let x and y be variables subject to the quantum plane relation yx = qxy. Then, for any
n > 0, we have

(x + y)n = ∑
0≤i≤n

(
n
i

)
q
xiyn−i. (23)

Let q = 1. Then, we have that
(

n
k

)
is the ordinary binomial coefficient.
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Proposition 8 ([6], Lemma 5.2). Let q be a primitive nth root of 1. For integers a ≥ b ≥ 0, write
a = a′n + r, b = b′n + s for 0 ≤ r, s < n. Then,(

a
b

)
q
=

(
a′

b′

)(
r
s

)
q
,

where
(

r
s

)
q
= 0 if r < s.

We will let A = Fq[x, y] with yx = qxy; here, 0 ̸= q ∈ F. Then, f ∈ A∗ is regarded as
the binary sequences ( fm,n)m,n≥0 = ( f0,0, f0,1, · · · , f0,n, f1,0, · · · , f1,n, · · · , fm,0, · · · , fm,n, · · · )
where

fm,n = f (xmyn) = q−mn f (ynxm) = q−mn fn,m,

for all m, n ≥ 0. We call them the q-binary sequences. A has a bialgebra structure with
a group-like element x and with an (x, 1)-primitive y, i.e., we have a comultiplication ∆
given by the following:

∆(x) = x ⊗ x, ∆(y) = x ⊗ y + y ⊗ 1

ε(x) = 1, ε(y) = 0,

requiring ∆ to be an algebra homomorphism from A to A ⊗ A. Thus, one has

∆(xmyn) = ∑
0≤k≤n

(
n
k

)
q
xm+kyn−k ⊗ xmyk, (24)

for any m, n ≥ 0. Therefore, the quantum convolution product on A∗ is given by fm,n ∗q

gm,n = hm,n, where hm,n = ∑0≤k≤n

(
n
k

)
q

fm+k,n−k ⊗ gm,k for m, n ≥ 0.

By a cofinite ideal J of A = Fq[x, y] we mean a nonzero ideal generated by a monic
binary polynomial:

h(x, y) = xrys − h1,0xr−1ys − · · · − hr,0ys

−h0,1xrys−1 − h1,1xr−1ys−1 − · · · − hr,1ys−1

−h0,2xrys−2 − h1,2xr−1ys−2 − · · · − hr,2ys−2

· · · · · · · · · · · ·
−h0,sxr − h1,sxr−1 − · · · − hr,s.

By the condition f (J) = 0, we have the following cases:
Case 1: If f (xm−rh(x, y)yn−s) = 0, then we have a binary linearly recursive sequence

f = ( fm,n)m≥r,n≥s satisfying the recursive relation h(x, y), where

fm,n = h1,0 fm−1,n + h2,0 fm−2,n + · · ·+ hr,0 fm−r,n

+h0,1 fm,n−1 + h1,1 fm−1,n−1 + · · ·+ hr,1 fm−r,n−1

+h0,2 fm,n−2 + h1,2 fm−1,n−2 + · · ·+ hr,2 fm−r,n−2

· · · · · · · · · · · · · · · · · ·
+h0,s fm,n−s + h1,s fm−1,n−s + · · ·+ hr,s fm−r,n−s.
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Case 2: If f (xm−ryn−sh(x, y)) = 0, then we have a parameterized binary linearly
recursive sequence f = ( fm,n)m≥r,n≥s satisfying the recursive relation h(x, y), where

fm,n = q−(n−s)h1,0 fm−1,n + q−2(n−s)h2,0 fm−2,n + · · ·+ q−r(n−s)hr,0 fm−r,n

+ h0,1 fm,n−1 + q−(n−s)h1,1 fm−1,n−1 + q−2(n−s)h2,1 fm−2,n−1

+ · · ·+ q−r(n−s)hr,1 fm−r,n−1

+ h0,2 fm,n−2 + q−(n−s)h1,2 fm−1,n−2 + q−2(n−s)h2,2 fm−2,n−2

+ · · ·+ q−r(n−s)hr,2 fm−r,n−2

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
+ h0,s fm,n−s + q−(n−s)h1,s fm−1,n−s + q−2(n−s)h2,s fm−2,n−2

+ · · ·+ q−r(n−s)hr,s fm−r,n−s.

Case 3: If f (h(x, y)xm−ryn−s) = 0, then we have a parameterized binary linearly
recursive sequence f = ( fm,n)m≥r,n≥s satisfying the recursive relation h(x, y), where

fm,n = h1,0 fm−1,n + h2,0 fm−2,n + · · ·+ hr,0 fm−r,n

+ q−(m−r)h0,1 fm,n−1 + q−(m−r)h1,1 fm−1,n−1 + q−(m−r)h2,1 fm−2,n−1

+ · · ·+ q−(m−r)hr,1 fm−r,n−1

+ q−2(m−r)h0,2 fm,n−2 + q−2(m−r)h1,2 fm−1,n−2 + q−2(m−r)h2,2 fm−2,n−2

+ · · ·+ q−2(m−r)hr,2 fm−r,n−2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
+ q−s(m−r)h0,s fm,n−s + q−s(m−r)h1,s fm−1,n−s + · · ·+ q−s(m−r)hr,s fm−r,n−s.

Remark 5. (1) Set h′i,j = q−i(n−s)hi,j in Case 1. We then have a new monic binary polynomial
h′(x, y) as follows:

h′(x, y) = xrys − qn−sh′1,0xr−1ys − · · · − qr(n−s)h′r,0ys

−h′0,1xrys−1 − qn−sh′1,1xr−1ys−1 − · · · − qr(n−s)h′r,1ys−1

−h′0,2xrys−2 − qn−sh′1,2xr−1ys−2 − · · · − qr(n−s)h′r,2ys−2

· · · · · · · · · · · ·
−h′0,sxr − qn−sh′1,sxr−1 − · · · − qr(n−s)h′r,s.

In this situation, we obtain a new binary linearly recursive sequence f ′ = ( f ′m,n)m≥r,n≥s satisfying
the recursive relation h′(x, y), where

f ′m,n = h′1,0 fm−1,n + h′2,0 fm−2,n + · · ·+ h′r,0 fm−r,n

+h′0,1 fm,n−1 + h′1,1 fm−1,n−1 + · · ·+ h′r,1 fm−r,n−1

+h′0,2 fm,n−2 + h′1,2 fm−1,n−2 + · · ·+ h′r,2 fm−r,n−2

· · · · · · · · · · · · · · · · · ·
+h′0,s fm,n−s + h′1,s fm−1,n−s + · · ·+ h′r,s fm−r,n−s,

which satisfies the relation h′(x, y).
(2) Similarly, set h′′i,j = q−j(m−r)hi,j in Case 2. We then have a new monic binary polynomial

h′′(x, y); hence, we can obtain a new binary linearly recursive sequence f ′′ = ( f ′′m,n)m≥r,n≥s

satisfying the recursive relation h′′(x, y).
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Example 3. Let h(x, y) = (x − a)(y − b) for any a, b ∈ k. Then, we have a binary linearly
recursive sequence

fm,n = b fm,n−1 + a fm−1,n − ab fm−1,n−1,

satisfying h(x, y), for all m ≥ 1 and n ≥ 1. If we take f0,0 = 1, f0,i = 0 and fi,0 = 0 for all
i ∈ N, then one obtains a binary linearly recursive sequence: (1, 0, 0, · · · , 0,−ab,−ab2,−ab3, · · · ,
0,−a2b,−a2b2,−a2b3, · · · ).

Remark 6. In the case of q = 1, Case 1, Case 2 and Case 3 are the same.

Let q = 1. Then, we have fm,n = fn,m for any m, n ≥ 0 and
(

n
k

)
is the ordinary

binomial coefficient. In this section, we will study the binary linearly recursive sequence in
Case 1 satisfying the recursive relation h(x, y).

In what follows, by a method similar to that in [6], we can consider A = F[x, y] in

HM via
gi · (xkyl) = pi(k+l)xkyl , for all xk, yl ∈ A, gi ∈ H. (25)

It is not difficult to verify that A is an algebra in HM. By (2) and (5), we have

τA,A(xkyl ⊗ xsyt)

=
1
n

n−1

∑
i,j=0

p−ij(gj · (xsyt)⊗ gi · (xkyl))

= (
1
n

n−1

∑
i,j=0

p−ij pj(s+t)pi(k+l)(xsyt ⊗ xkyl)

=
1
n

n−1

∑
i,j=0

p−ij pjr piu(xsyt ⊗ xkyl)

=
1
n

n−1

∑
i,j=0

piu(
n−1

∑
j=0

pj(r−i))(xsyt ⊗ xkyl),

where we write s + t = an + r, k + l = bn + u for some 0 ≤ r, u < n.
If i ̸= r, then ∑n−1

j=0 pj(r−i) = 0. Therefore, τA,A(xkyl ⊗ xsyt) = p(s+t)(k+l)(xsyt ⊗ xkyl).
Thus, we have a braided algebra A#A with

(xk1 yl1#xs1 yt1)(xk2 yl2#xs2 yt2) = p(s1+t1)(k2+l2)(xk1+k2 yl1+l2#xs1+s2 yt1+t2), (26)

for all xk1 yl1#xs1 yt1 , xk2 yl2#xs2 yt2 ∈ A#A.
Note that q = 1, so xy = yx. It follows from (6) that (x#y)(y#1) = p(xy#y) =

p(y#1)(x#y). If we regard A as a bialgebra in the category HM, then by Majid’s bosoniza-
tion, this requires ∆ to be an algebraic morphism in HM. Note that (x#y)l = p

1
2 l(l+1)(xl#yl),

and so, by (1) and (6), we have

∆(xmyl) = ∑
0≤k≤l

(
l
k

)
p

p
1
2 [(l−k)(l−k+1)+m(m+2l+1)]xm+l−kyk#xmyl−k, (27)

for m, l ≥ 0.
Notice that xm is not a group-like element since ∆(xm) = p

1
2 m(m+1)(xm#ym), and yn

is (xn, 1)-primitive, i.e., ∆(yn) = xn#yn + yn#1 since
(

n
k

)
p
= 0 for 1 ≤ k ≤ n − 1. The
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counit ε of A is given as usual by ε(xm) = 1, ε(yk) = δ0,k. It is easy to check that ∆ and ε are
morphisms in HM. But, A is not a Hopf algebra in HM unless x2 = 1 with S(x) = x and
S(y) = −xy.

In what follows, Theorem 6 shows that the space A0 of binary linearly recursive
sequences is a bialgebra in HM. The quantum convolution product in A∗ is given as
( fm,l) ∗p (gm,l) = (hm,l), where

hm,l = ∑
0≤k≤l

(
l
k

)
p

p
1
2 [(l−k)(l−k+1)+m(m+2l+1)] fm+l−k,kgm,l−k. (28)

Thus, we have the following.

Theorem 6. Let p be a root of unity in k. Then, the binary linearly recursive sequences are closed
under the quantum convolution product ( fm,l) ∗p (gm,l) = (hm,l), where hm,l is given by (8).

Remark 7. (1) If x = 1 in A = k[x, y], then by (7), we have

∆(yl) = ∑
0≤k≤l

(
l
k

)
p
yk#yl−k,

for all l ≥ 0. Hence, we can obtain the result in [6], Theorem 4.1.
(2) If y = 1 in A = k[x, y], then by (7), one has

∆(xm) = p
1
2 m(m+1)(xm#ym).

In this case, we have
hm = p

1
2 m(m+1) fm+l−kgm. (29)

It should be noted the algebraic structure of linearly recursive sequences under the
Hadamard product was described in [24]. We call the product given by (9) a quantum
Hadamard product. Then, we have the following corollary.

Corollary 4. The linearly recursive sequences are closed under the quantum Hadamard product
( fm) ∗p (gm) = (hm), where hm is given by (9).

Next, we give a direct proof of Theorem 6. First, we have the following lemma.

Lemma 5. Let f = ( fm,l) be the binary linearly recursive sequence over k satisfying the relation
h(x, y). Let α1, · · · , αk; β1, · · · , βu be the roots of h(x, y) in k̄, the algebraic closure of k. Then, for
any i, j ≥ 0, s, t ≥ 0, the subsequence f (i,j)(s,t) given by

f (i,j)(s,t) = ( fi,s, fi,s+t, fi,s+2t, · · ·
fi+j,s, fi+j,s+t, fi+j,s+2t, · · ·
fi+2j,s, fi+2j,s+t, fi+2j,s+2t, · · ·
· · · · · · · · · · · · · · · · · · · · · )

is a binary linearly recursive sequence over k, satisfying the relation hj,t(x, y) = (x − α
j
1) · · · (x −

α
j
k)(y − βt

1) · · · (y − βt
u).



Mathematics 2024, 12, 3384 21 of 23

Proof. It suffices to show hj,t(x, y) ⇀ f (i,j)(s,t) = 0 in order to verify that f (i,j)(s,t) satisfies
hj,t(x, y); here, ⇀ is defined by (a ⇀ f )(b) = f (ba) for a, b ∈ A, f ∈ A∗, because A is a
commutative algebra.

Note that f (i,j)(s,t)(xvyw) = fi+vj,s+wt = f (xi+vjys+wt) for v, w ≥ 0. So, for all
g(x, y) ∈ k[x, y], f (i,j)(s,t)(g(x, y)) = f (xiysg(xjyt)). Thus, we have

hj,t(x, y) ⇀ f (i,j)(s,t)(xvyw)

= f (i,j)(s,t)(xvywhj,t(x, y))

= f (xiysxvjywthj,t(xj, yt))

= f (xi+vjys+wthj,t(xj, yt)).

For hj,t(xj, yt) = I(x, y)h(x, y) for some I(x, y) ∈ k[x, y], and h(x, y) ⇀ f = 0, one has
f (xi+vjys+wthj,t(xj, yt)) = (h(x, y) ⇀ f )(xi+vjys+wt I(x, y)) = 0, concluding the proof.

Example 4. In Example 2, we have the subsequence

f (1,2)(3,4) = ( f1,3, f1,7, f1,11, ·
f3,3, f3,7, f3,11, · · ·
f5,3, f5,7, f5,11, · · · · · · ),

satisfying h2,4(x, y) = (x − a2)(y − b4). Explicitly, one has a binary linearly recursive sequence
gm,n = b4gm,n−1 + a2gm−1,n − a2b4gm−1,n−1 satisfying h2,4(x, y), and (gm,n)m≥1,n≥1 is the same
as f (1,2)(3,4). For example, g0,0 = f1,3 = −ab3, g0,1 = f1,7 = −ab7, g1,0 = f3,3 = −a3b3, and it
follows from the formula gm,n that

g1,1 = b4g1,0 + a2g0,1 − a2b4g0,0

= b4(−a3b3) + a2(−ab7)− a2b4(−ab3)

= −a3b7 − a3b7 + a3b7 = −a3b7,

which equals to f3,7.

Theorem 7. Let p be a primitive nth root of unity. Let f = ( fm,l) and g = (gm,l) be binary linearly
recursive sequences, satisfying h(x, y) = ∏i,j(x − αi)

mi (y − β j)
nj and J(x, y) = ∏k,r(x −

γk)
sk (y − λr)tr , respectively. Then, the quantum product ( fm,l) ∗p (gm,l) = (hm,l) where hm,l

is given by (8) is a binary linearly recursive sequence, satisfying W(xn, yn); here, W(x, y) =

∏i,k;j,r[x − (αn
i + γn

k )
mi+sk−1][y − (βn

j + λn
r )

nj+tr−1].
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Proof. For 0 ≤ a, b ≤ n and c, d ≥ 0, we have

h(a,n)(b,n)(xcyd) = ha+cn,b+dn

=
b+dn

∑
u=0

(
b + dn

u

)
p

p
1
2 [(b+dn−u)(b+dn−u+1)+(a+cn)(a+2b+(c+2d)n+1)]

fa+b+(c+d)n−u,uga+cn,b+dn−u (by (8))

=
b

∑
s=0

d

∑
j=0

(
b + dn
s + jn

)
p

p
1
2 {[(b−s)+(d−j)n][(b−s)+(d−j)n+1]+(a+cn)[a+2b+(c+2d)n+1]}

fa+b−s+(c+d−j)n,s+jnga+cn,b−s+(d−j)n

=
b

∑
s=0

d

∑
j=0

(
d
j

)(
b
s

)
p

p
1
2 {[(b−s)+(d−j)n][(b−s)+(d−j)n+1]+(a+cn)[a+2b+(c+2d)n+1]}

fa+b−s+(c+d−j)n,s+jnga+cn,b−s+(d−j)n

=
b

∑
s=0

(
b
s

)
p

p
1
2 [(b−s)(b−s+1)+a(a+2b+1)]

(
d

∑
j=0

(
d
j

)
( f (a+b−s,n)(s,n))(c+d−j,j)(g(a,n)(b−s,n))(c,d−j))

=
b

∑
s=0

(
b
s

)
p

p
1
2 [(b−s)(b−s+1)+a(a+2b+1)]

(
d

∑
i=0

(
d
i

)
( f (a+b−s,n)(s,n))(c+i,d−i)(g(a,n)(b−s,n))(c,i)).

Therefore,

h(a,n)(b,n) =
b

∑
s=0

(
b
s

)
p

p
1
2 [(b−s)(b−s+1)+a(a+2b+1) f (a+b−s,n)(s,n) ∗ g(a,n)(b−s,n),

where ∗ is the usual convolution product (refer to Formula (4) for q = 1). It follows
from Lemma 2 that f (a+b−s,n)(s,n) and g(a,n)(b−s,n) are binary linearly recursive sequences,
satisfying hn,n(x, y) = ∏i,j(x − αn

i )
mi (y − βn

j )
nj and Jn,n(x, y) = ∏k,r(x − γn

k )
sk (y − λn

r )
tr ,

respectively. Hence, Theorem holds. In fact, h is the interlacing of the sequences h(0,n)(0,n),
h(0,n)(1,n), ·, h(0,n)(n−1,n), · · · , h(1,n)(0,n), · · · , h(1,n)(n−1,n), · · · , h(n−1,n)(0,n), · · · , h(n−1,n)(n−1,n).

This finishes the proof.

Remark 8. This paper studied the quantum convolution product of binary linearly recursive
sequences. But what about the case of multi-linearly recursive sequences? We are sure that this
topic is related to the polynomial algebra A = F[x1, x2, · · · , xn] in n-variable x1, x2, · · · , xn.
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