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Abstract: Some years ago, it was conjectured by the first author that the Chern–Simons
perturbation theory of a 3-manifold at the trivial flat connection is a resurgent power
series. We describe completely the resurgent structure of the above series (including
the location of the singularities and their Stokes constants) in the case of a hyperbolic
knot complement in terms of an extended square matrix (x, q)-series whose rows are
indexed by the boundary parabolic SL2(C)-flat connections, including the trivial one.
We use our extended matrix to describe the Stokes constants of the above series, to
define explicitly their Borel transform and to identify it with state–integrals. Along the
way, we use our matrix to give an analytic extension of the Kashaev invariant and of
the colored Jones polynomial and to complete the matrix valued holomorphic quantum
modular forms as well as to give an exact version of the refined quantum modularity
conjecture of Zagier and the first author. Finally, our matrix provides an extension of the
3D-index in a sector of the trivial flat connection. We illustrate our definitions, theorems,
numerical calculations and conjectures with the two simplest hyperbolic knots.
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1. Introduction

1.1. Resurgence of Chern–Simons perturbation theory. Quantum Topology originated
by Jones’s discovery of the famous polynomial invariant of a knot [Jon87], followed
by Witten’s 3-dimensional interpretation of the Jones polynomial by means of a gauge
theory with a topological (i.e., metric independent) Chern–Simons action [Wit89]. The
connection between this topological quantum field theory and the Jones polynomial
appears both on the level of the exact partition function and its perturbative expansion
which both determine, and are determined by, the (colored) Jones polynomial. Indeed,
the exact partition function on the complement of a knot colored by the defining rep-
resentation of the gauge group SU(2) at level k coincides with the value of the Jones
polynomial at the complex root of unity e2π i/(k+2). On the other hand, the perturbative ex-
pansion along the trivial flat connection σ0 is a formal power series �(σ0)(h) ∈ Q[[h]]
whose coefficients are Vassiliev knot invariants which are determined by the colored
Jones polynomial of a knot expanded as a power series in h where q = eh [BN95].
More generally, the loop expansion of the colored Jones polynomial is a formal power
series �(σ0)(x, h) ∈ Q(x)[[h]] introduced by Rozansky [Roz98] and further studied by
Kricker [Kri,GK04], where x = qn plays the role of the monodromy of the meridian.
An important feature of the power series �(σ0)(x, h) is that it is determined by (but also
uniquely determines) the colored Jones polynomial. Likewise, the power series �(σ0)(h)

is determined by (and determines) the Kashaev invariant of a knot [Kas95], interpreted
as an element of the Habiro ring [Hab08].

In [Gar08a] the first author conjectured that the factorially divergent formal power se-
ries �(σ0)(h) is resurgent, whose Borel transform has singularities arranged in a peacock
pattern, and can be re-expanded in terms of the perturbative series �(σ)(h) correspond-
ing to the remaining non-trivial flat connections of the Chern-Simons action. Although
this is a well-defined statement, resurgence was a bit of the surprise and a mystery. We
should point out that the above series are well-defined (for σ �= σ0 via formal Gaussian
integration using as input an ideal triangulation of a 3-manifold [DG13], and for σ = σ0



Resurgence of Chern–Simons Theory Page 3 of 60    20 

using the Kashaev invariant itself) and their coefficients are (up to multiplication by
a power of 2π i) algebraic numbers. However a numerical computation of their coef-
ficients is difficult (about 280 coefficients can be obtained for the simplest hyperbolic
knot), hence it is difficult to numerically study them beyond the nearest to the origin
singularity of their Borel transform.

The resurgence question has attracted a lot of attention in mathematics and mathe-
matical physics and some aspects of it were discussed by Jones [Jon09], Witten [Wit11],
Gukov, Putrov and the third author [GMnP], Costin and the first author [CG11] and
Sauzin [Sau15]. Further aspects of resurgence in Chern–Simons theory were studied in
[Mn14,GMnP,GH18,GZ23,GZ24].

When σ �= σ0, the resurgence structure of the series �(σ)(h) was given explicitly in
[GGMn21], where it was found that the location of the singularities was arranged in a
peacock pattern, and the Stokes constants were integers. The latter were fully described
by an r × r matrix Jred(q). The passage from a vector (�(σ)(h))σ of power series to a
matrix Jred(q) is inevitable, and points out to the possibility that the non-perturbative
partition function of a theory yet-to-be defined and its corresponding perturbative expan-
sion is matrix-valued and not vector-valued, as was discussed in detail in [GZ24,GZ23].
Let us summarise some key properties of the matrix Jred(q).
Linear q-difference equation. The entries of Jred(q) are q-series with integer coef-
ficients defined for |q| �= 1. The matrix Jred(q) is a fundamental solution of a linear
q-difference equation of order r , and its rows are labeled by the set of nontrivial σ .
Asymptotics in sectors: q-Stokes phenomenon. The function Jred(e2π iτ ) as τ ap-
proaches zero in a fixed cone, has a full asymptotic expansion as a sum of power series
in τ , times power series in e−2π i/τ . However, passing from one cone to an adjacent
one changes the e−2π i/τ -series. The dependence of the asymptotics on the cone is the
q-Stokes phenomenon, analogous to the well-studied Stokes phenomenon in the theory
of linear differential equations with polynomial coefficients (see, e.g., [Sib90]). In our
case, the q-Stokes phenomenon is a consequence of the fact that Jred(q) is a fundamental
matrix solution to a linear q-difference equation.
Analyticity. The product W (τ ) of Jred(q̃) with a diagonal automorphy factor and with
Jred(q), when q = e2π iτ and q̃ = e−2π i/τ , although defined for τ ∈ C\R, equals
to a matrix of state-integrals and hence it analytically extends to τ in the cut plane
C′ = C\(−∞, 0]. A distinguished (σ1, σ1) entry of W (τ ), where σ1 is the geomet-
ric representation of a hyperbolic 3-manifold, is the Andersen–Kashaev state-integral
[AK14]. The latter is often identified with the unknown partition function of complex
Chern–Simons theory. Thus, analyticity of W is interpreted as a factorisation property of
state-integrals, or as a matrix-valued holomorphic quantum modular form [GZ24,Zagb].
Borel resummation. The matrix W (τ ) coincides (in a suitable ray) to the Borel re-
summation of the matrix of perturbative series. In particular, the Borel resummation of
the perturbative series is not a q-series as has been claimed repeatedly in some physics
literature, but rather a bilinear combination of q-series and q̃-series.1

Relation with the 3D-index. The 3D-index of Dimofte–Gaiotto–Gukov can be ex-
pressed bilinearly in terms of Jred(q) and Jred(q−1). A detailed conjecture is given in
see [GGMn23, Conj.4].
x-extension. There is an extension of the above invariants by a nonzero complex number
x , which measures the monodromy of the meridian in the case of a knot complement,
and extends the q-series to functions of (x, q), where x behaves like a Jacobi variable.

1 A similar phenomenon was observed by Hatsuda–Okuyama [HO15].



   20 Page 4 of 60 S. Garoufalidis

This results in a matrix Jred(x, q) whose properties extend those of the matrix Jred(q)

and were studied in detail in [GGMn23].

1.2. A summary of our results. Our goal is to describe the Stokes constants and the
resurgent structure of the missing asymptotic series �(σ0)(h) in terms of completing
the matrix Jred(x, q) to a square matrix with one extra row (namely (1, 0, . . . , 0)T )
and column, whose distinguished (σ0, σ1) entry is conjecturally the Gukov–Manolescu
series [GM21] (evaluated at x = 1), and the remaining series in the top row are the
descendants of the Gukov-Manolescu series.

Along the way of solving the resurgence problem for the �(σ0)(h) series, we solve
several related problems, which we now discuss.

• A q-series that sees �(σ0)(h). This is a problem raised by Gukov and his collab-
orators (see e.g. [GPPV20,GM21]). More precisely, our Resurgence Conjecture 5
implies that the asymptotics as q = e2π iτ and τ → 0 in a sector of each of the
q-series of the top row of the matrix J(q) is a linear combination of the �(σ)(h)

series which includes the �(σ0)(h) series.
• A matrix-valued holomorphic quantum modular form. In [GZ23] the first author

and Don Zagier studied a matrix Jred(q) of q-series with rows indexed by nontriv-
ial flat connections, and conjectured that the corresponding value of the cocycle
J(q̃)−1�(τ)J(q)2 at S = (

0 −1
1 0

) ∈ SL2(Z), which a priori is an analytic function on
C\R, actually extends to the cut plane C′. A problem posed was to find an extension
of the matrix Jred(q) which includes the trivial flat connection. We do so in Sects. 2.2,
3.2 and 4.1 for the 41 and 52 knots.

• An exact form of the Refined Quantum Modularity Conjecture. In [GZ24] a
Refined Quantum Modularity Conjecture was formulated. The conjecture was numer-
ically motivated by a smoothed optimal summation of the divergent series �σ)(τ ), and
the final result was a matrix-valued periodic function defined at the rational numbers.
We conjecture that if we replace the smoothed optimal truncation by the median Borel
resummation, all asymptotic statements in [GZ24] become exact equalities, valid for
finite (and not necessarily large) range of the parameters.

• An analytic extension of the Kashaev invariant and of the colored Jones poly-
nomial. A consequence of the above conjecture is an exact formula for the Kashaev
invariant at rational points as a linear combinations of three smooth functions, mul-
tiplied by the top row of J.

Conjecture 1. For every knot K and every natural number N we have:

〈K 〉N =
∑

σ

cK
σ N δσ smed(�

(K ,σ ))( 1
N ) (1)

where δσ = 3/2 for σ �= σ0 and δσ0 = 0 (as in [GZ24, Eq. (3.7)]) and (cK
σ ) is a vector

of elements of the Habiro ring (tensor Q) evaluated at q = 1, with cK
σ1

= cK
σ0

= 1.

The vector (cσ ) for the 41 knot appears in Sect. 4.2 of [GZ24] and also as the top
row of the matrix of Eq. (92), and for the 52 knot it appears in Section 4.3 as well as the
top row of the matrix of Eq. (104) of ibid.

For the 41 and the 52 knots, we find numerically that c41
σ2 = 0, c52

σ2 = 0 and c52
σ3 = −2

in complete agreement with the results of [GZ24]. A corollary of (1) is the Volume
Conjecture 〈K 〉N ∼ N 3/2�(K ,σ )( 1

N ) to all orders in 1/N as N → ∞.

2 for a suitable diagonal matrix �(τ) of weights.
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Conjecture 2. For every knot K , there is a neighborhood U K of 0 in the complex plane,
such that for every natural number N and for u ∈ U K , we have

J K
N (e

2π i
N + u

N ) =
∑

σ

δσ (u, N )cK
σ (x̃)smed(�

(K ,σ ))(eu; τ) (2)

where δσ (u, N ) = τ−1/2 x̃1/2−x̃−1/2

x1/2−x−1/2 for σ �= σ0 and δσ0(x, τ ) = 1, where x = eu ,

x̃ = eu/x , τ = u
2π iN + 1

N , and cK
σ (x̃) ∈ Q[x̃±1] with cK

σ1
(x̃) = cK

σ0
(x̃) = 1.

For the 41 and the 52 knots, we find numerically that c41
σ2(x̃) = − x̃−x̃−1

2 , c52
σ2(x̃) =

− x̃−x̃−1

2 and c52
σ3(x̃) = −1 − x̃ .

Since limu→0 δσ (N , u) = N δs , the above conjecture specialises to Conjecture 1
when u → 0. Note also that the above conjecture implies the Generalised Volume
Conjecture when u �∈ π iQ is fixed and N → ∞. Indeed, δ(N , u) is nonzero and
J K

N (e(2π i+u)/N ) ∼ δ(N , u)�(σ1)(eu; τ). Note finally that the above conjecture explains
the failure of exponential growth when u is a rational multiple of 2π i, known for all knots
from theorems 1.10 and 1.11 of [GL11], and theorem 5.3 of [Mur11] valid for the 41 knot.
Indeed, when u = 2π ir/s for integers r and s with r/s near zero, then J K

N (e(2π i+u)/N )

is a periodic function of N (see [Hab02a]), and so is δ(N , u) since eu/τ = e2π iNr/(r+s).
Moreover, δ(N , u) = 0 when N is a multiple of r + s which explains why in that case
the colored Jones polynomial does not grow exponentially.

• An extension of the 3D-index. Our completed matrix proposes a computable ex-
tension of the 3D-index in the sector of the trivial connection σ0, whose mathematical
or physical definition is yet-to-be given.

1.3. Challenges. Our solution to the above problems brings a new challenge: namely,
the new square matrix is actually a submatrix of a larger matrix J(x, q), one with block
triangular form which is a fundamental solution to the linear q-difference equation
satisfied by the descendants of the colored Jones polynomials [GK23]. Already for the
case of the 52 knot, one obtains a 6 × 6 matrix instead of the original 3 × 3 matrix
Jred(x, q), or of the completed 4 × 4 matrix.

A second challenge is to interpret the integers appearing in the new Stokes constants
associated to the trivial flat connection as BPS indices in the dual 3d super conformal field
theory. Incorporating the trivial connection in the 3d/3d correspondence of [DGG14] is
subtle, but we expect our explicit results to give hints on this problem.

We should point out that although a proof of resurgence of the asymptotic series
�(σ)(h) is still missing, the current paper (as well as the prior ones [GGMn21,GGMn23])
provide a complete description of their resurgent structure (namely the location of the
singularities and a calculation of the Stokes constants) with precise statements, com-
plemented by extensive numerical computations (including a numerical computation of
the Stokes constants). In addition, we provide proofs of the algebraic properties of the
matrices of q-series and (x, q)-series.

1.4. Illustration with the two simplest hyperbolic knots. We will illustrate our ideas
by giving a detailed description of these matrices and of their algebraic, analytic and
asymptotic properties for the case of the two simplest hyperbolic knots, the 41 and the
52 knots. Let us summarise our findings for the 41 knot.
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• We complete the 2 × 2 matrix Jred(x, q) of (x, q)-series to the 3 × 3 matrix J(x, q)

by adding the trivial flat connection. Our completed matrix is a fundamental solution
of a third order linear q-difference equation.

• A distinguished entry of J(x, q) is the Gukov–Manolescu series.
• The matrix J(x, q) determines explicitly (but conjecturally) the Stokes constants

and hence the resurgence structure of the three perturbative formal power series.
• The matrix J(x, q) conjecturally computes an extension of the 3D-index in a sector

of the trivial flat connection.
• We complete the 2 × 2 matrix of descendant Andersen–Kashaev state-integrals to

a 3 × 3 matrix by adding new state-integrals which are implicit in work of Kashaev
and show their bilinear factorisation property.

As a second example, we present our results for the 52 knot. In this case, we complete
the 3×3 matrix Jred(q) to a 4×4 one, and use it to describe explicitly the Stokes constants
of the 4 asymptotic series in half of the complex plane, thus completing the resurgence
question of those asymptotic series. However, the 52 knot reveals a new puzzle: the
4 × 4 matrix is a block of a 6 × 6 matrix whose rows are a fundamental solution to
a sixth order linear q-difference equation, namely the one satisfied by the descendant
colored Jones polynomial of the 52 knot [GK23, Eq. (14)]. Although the homogeneous
linear q-difference equation for the colored Jones polynomial is fourth order, the one
for the descendant colored Jones polynomial is sixth order, and both equations are knot
invariants. In the case of the 52 knot, the extra 2×2 block is a matrix of modular functions,
in fact of the famous Rogers–Ramanujan modular q-hypergeometric series. We do not
understand the labeling of the two excess rows and columns (e.g., in terms of SL2(C)-
flat connections). Since the formulas for the 6 × 6 matrix appear rather complicated, we
will not give the x-deformation here, and postpone to a future publication a systematic
definition of the matrix of (x, q)-series for all knots.

We should point out that the definition of the top row of the 3 × 3 matrices for the 41
knot, and the 6 × 6 matrix for the 52 knot, as well as an extension of the above results
to the case of closed hyperbolic 3-manifolds have been taken from the thesis of the last
author [Whe23].

2. The 41 knot

2.1. A 2 × 2 matrix of q-series. In this section we recall in detail what is known about
the resurgence of the two asymptotic series of the 41 knot, labeled by the geometric and
the complex-conjugate flat connections. As explained in the introduction, the answer
is determined by a 2 × 2 matrix of q-series which was discovered in a long story and
in several stages in a series of papers [GZ23,GK17,GGMn21,GGMn23]. A detailed
description of the numerical discoveries and coincidences is given in [GZ23] and will
not be repeated here. In that paper, the following pair of q-series G( j)(q) for j = 0, 1
was introduced and studied by the first author and Zagier [GZ23]

G(0)(q) =
∑

n≥0

(−1)n qn(n+1)/2

(q; q)2
n

G(1)(q) =
∑

n≥0

(
n +

1

2
− 2E (n)

1 (q)

)
(−1)n qn(n+1)/2

(q; q)2
n

(3)
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where

E (n)
k (q) =

∞∑

s=1

sk−1 qs(n+1)

1 − qs
. (4)

These series were found to be connected to the 41 knot in at least two ways, discussed in
detail in [GZ23]. On the one hand, they express bilinearly the Andersen-Kashaev state-
integral [GK17] and the total 3D-index of Dimofte-Gaiotto-Gukov [DGG13]. On the
other hand, their radial asymptotics as q = e2π iτ → 1 (where τ is in a ray in the upper
half-plane) is a linear combination of the two asymptotic series �(σ1)(τ ) and �(σ2)(τ )

of the Kashaev invariant, where σ1 is the geometric representation of the fundamental
group of the knot complement and σ2 is the complex conjugate. The resurgence of
the factorially divergent asymptotic series �(σ1)(τ ) and �(σ2)(τ ), including a complete
description of the Stokes automorphism and the Borel resummation was given by the first
three authors in [GGMn21]. Surprisingly, the Stokes matrices were expressed bilinearly
in terms of a 2 × 2 matrix of explicit descendant q-series whose definition we now give.
Consider the linear q-difference equation

fm(q) + (qm+1 − 2) fm+1(q) + fm+2(q) = 0 (m ∈ Z). (5)

In [GGMn21] it was shown that it has a basis of solutions G( j)
m (q) for j = 1, 2 given by

3

G(0)
m (q) =

∑

n≥0

(−1)n qn(n+1)/2

(q; q)2
n

qmn

G(1)
m (q) =

∑

n≥0

(
n + m +

1

2
− 2E (n)

1 (q)

)
(−1)n qn(n+1)/2

(q; q)2
n

qmn

(6)

where E (n)
k (q) are as in Equation (4). Note that G( j)

0 (q) = G( j)(q), and that G( j)
m (q) ∈

Z((q)) are Laurent series in q (with finitely many negative powers of q), meromorphic
on |q| < 1 with only possible pole at q = 0. We will extend them to analytic functions
on |q| �= 1 by

G( j)
m (q−1) = (−1)i G( j)

−m(q), j = 0, 1. (7)

The 2 × 2 matrix is given by Jred(q) = Jred−1(q)
( 0 −2

1 −1

)
where

Jred
m (q) =

(
G(1)

m (q) G(1)
m+1(q)

G(0)
m (q) G(0)

m+1(q)

)

(8)

coincides with the transpose of the matrix Wm(q) of [GGMn23, Eq. (48)] after inter-
changing of the two rows. A complete description of the resurgent structure of the series
�(σ j )(τ ) for j = 0, 1, of their Borel resummation and their expression in terms of a
2×2 matrix of state-integrals (with one distinguished entry being the Andersen–Kashaev
state-integral [AK14]) was given in [GGMn21,GGMn23].

3 G(1)
m (q) defined here is one half of G1

m (q) in [GGMn21].
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2.2. A 3 × 3 matrix of q-series. In this section we define the promised 3 × 3 matrix of
q-series Jred

m (q) and give several algebraic properties thereof. In his thesis [Whe23], the
fourth author introduced the series G(2)(q)

G(2)(q) =
∑

n≥0

(
1

2

(
n +

1

2
− 2E (n)

1 (q)

)2

− E (n)
2 (q) − 1

24
E2(q)

)

(−1)n qn(n+1)/2

(q; q)2
n

(9)

which is the coefficient of ε2 in the ε-deformed q-series

G(q, ε) = e−ε2 E2(q)

24

∞∑

n=0

(−1)n qn(n+1)/2e(n+1/2)ε

(qeε; q)2
n

=
∞∑

k=0

G(k)(q)εk (10)

which appears in [GZ23]. Here, E2(q) = 1−24E (0)
2 (q). Adding the descendant variable

m ∈ Z, leads to the q-series

G(2)
m (q) =

∑

n≥0

(
1

2

(
n + m +

1

2
− 2E(n)

1 (q)

)2
− E(n)

2 (q) − 1

24
E2(q)

)

(−1)n qn(n+1)/2

(q; q)2
n

qmn

(11)

As in the case of G( j)
m (q) for j = 0, 1, it is a meromorphic function on |q| < 1 with

only possible pole at q = 0, and extends to an analytic function on |q| > 1 satisfying (7)
with j = 2.

The sequence G(2)
m (q) is a solution of the inhomogenous equation obtained by re-

placing the right hand side of (5) by 1. This follows easily by using creative telescoping
of the theory of q-holonomic functions implemented by Koutschan [Kou10].

We can assemble the three sequences of q-series into a matrix

Jm(q) =
⎛

⎜
⎝

1 G(2)
m (q) G(2)

m+1(q)

0 G(1)
m (q) G(1)

m+1(q)

0 G(0)
m (q) G(0)

m+1(q)

⎞

⎟
⎠ (12)

whose bottom-right 2×2 matrix is Jred
m (q). The next theorem summarises the properties

of Jm(q).

Theorem 3. The matrix Jm(q) is a fundamental solution to the linear q-difference equa-
tion

Jm+1(q) = Jm(q)A(qm, q), A(qm, q) =
⎛

⎝
1 0 1
0 0 −1
0 1 2 − qm+1

⎞

⎠ , (13)

has det(Jm(q)) = −1 and satisfies the analytic extension

Jm(q−1) =
⎛

⎝
1 0 0
0 −1 0
0 0 1

⎞

⎠ J−m−1(q)

⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ . (14)
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Proof. Equation (13) follows from the fact the last two rows of Jm(q) are solutions of the
q-difference equation (5) and the first is a solution of the corresponding inhomogenous
equation. Moreover, the block form of Jm(q) implies that det(Jm(q)) = det(Jred

m (q)) =
−1 where the last equality follows from [GGMn21, Eq. (14)]. Equation (14) follows
from the fact that all three sequences of q-series satisfy (7). ��

We now give the inverse matrix of Jm(q) in terms of Appell-Lerch like sums. The
latter appear curiously in the mock modular forms and the meromorphic Jacobi forms
of Zwegers [Zwe01], and in [DMZ].

Theorem 4. We have

Jm(q)−1 =
⎛

⎜
⎝

1 L(0)
m (q) −L(1)

m (q)

0 −G(0)
m+1(q) G(1)

m+1(q)

0 G(0)
m (q) −G(1)

m (q)

⎞

⎟
⎠ (15)

for the q-series L( j)
m (q) ( j = 0, 1) defined by

L(0)
m (q) = G(0)

m+1(q)G(2)
m (q) − G(0)

m (q)G(2)
m+1(q)

L(1)
m (q) = G(1)

m+1(q)G(2)
m (q) − G(1)

m (q)G(2)
m+1(q).

(16)

The q-series L( j)
m (q) are expressed in terms of Appell-Lerch type sums:

L(0)
m (q) = 2E (0)

1 (q) − 1 − m +
∞∑

n=1

(−1)n qn(n+1)/2

(q; q)2
n

qmn+n

1 − qn

L(1)
m (q) = −3

8
− 2E (0)

1 (q)2 + 2E (0)
1 (q) − E (0)

2 (q) − 1

24
E2(q) + 2m E (0)

1 (q) − m

−m2

2
+

∞∑

n=1

(−1)n qn(n+1)/2

(q)2
n

qmn+n

1 − qn

(
n + m +

1

2
− 2E (n)

1 (q) +
1

1 − qn

)
.

(17)

Proof. Since Jred
m (q) is a 2 × 2 matrix with determinant −1, it follows that the inverse

matrix Jm(q)−1 is given by (15) for the q-series L( j)
m (q) ( j = 0, 1) given by (16).

Observe that A(qm, q) has first column (1, 0, 0)t , first row (1, 0, 1), and the remaining
part is a companion matrix. It follows that its inverse matrix has first column (1, 0, 0)t

and first row (1, 1, 0). This, together with (13) implies that

Jm+1(q)−1 = A(qm, q)−1Jm(q)−1 =
⎛

⎝
1 1 0
0 2 − qm+1 1
0 −1 0

⎞

⎠ Jm(q)−1. (18)

It follows that L( j)
m (q) satisfy the first order inhomogeneous linear q-difference equation

L( j)
m−1(q) − L( j)

m (q) = G( j)
m (q) ( j = 0, 1). (19)

Let L(0)
m (q) denote the right hand side of the top Equation (17). Then we have

L(0)
m−1(q) − L(0)

m (q) = 1 +
∞∑

n=1

(−1)n qn(n+1)/2

(q)2
n

qmn − qmn+n

1 − qn
= G(0)

m (q).
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ThereforeL(0)
m (q)−L(0)

m (q) is independent of m. Moreover, limm→∞ L(0)
m (q)−L(0)

m (q) =
0. The top part of Equation (17) follows.

Likewise, let L(1)
m (q) denote the right hand side of the bottom part of Equation (17).

Then we have

L(1)
m−1(q) − L(1)

m (q) =
∞∑

n=1

(−1)n qn(n+1)/2

(q)2
n

qmn − qmn+n

1 − qn

(
n + m +

1

2
− 2E (n)

1 (q) +
1

1 − qn

)

−
∞∑

n=1

(−1)n qn(n+1)/2

(q)2
n

qmn

1 − qn
+ m +

1

2
− 2E (0)

1 (q)

= G(1)
m (q) .

ThereforeL(1)
m (q)−L(1)

m (q) is independent of m. Moreover, limm→∞ L(1)
m (q)−L(1)

m (q) =
0. Equation (17) follows. ��

2.3. The �(σ0)(τ ) asymptotic series. The 41 knot has three asymptotic series �(σ j )(τ )

for j = 0, 1, 2 corresponding to the trivial flat connection σ0, the geometric flat connec-
tion σ1 and its complex conjugate σ2. The asymptotic series �(σ j )(τ ) for j = 1, 2 are
defined in terms of perturbation theory of a state-integral [DG13] and can be computed
via formal Gaussian integration in a way that was explained in detail in [GGMn21,GZ24]
and will not be repeated here. They have the form

�(σ j )(τ ) = e
V (σ j )

2π iτ ϕ(σ j )(τ ), j = 1, 2, (20)

where

V (σ1) = −V (σ2) = iVol(41) = i2ImLi2(e
iπ/3) = i2.029883 . . . , (21)

with Vol(41) being the hyperbolic volume of S3\41, and ϕ(σ1)( h
2π i ) with h = 2π iτ is a

power series with algebraic coefficients with first few terms

ϕ(σ1)( h
2π i ) = 3−1/4

(
1 +

11h

72
√−3

+
697h2

2(72
√−3)2

+ . . .

)
(22)

(a total of 280 terms have been computed), while ϕ(σ2)(τ ) = iϕ(σ1)(−τ).
We now discuss the new series ϕ(σ0)(τ ) ∈ Q[[τ ]] corresponding to the zero volume

V (σ0) = 0 trivial flat connection. This series can be defined and computed (for any
knot) using either the colored Jones polynomial or the Kashaev invariant. Let us recall
how this works.

Let Jn(q) ∈ Z[q±1] denotes the Jones polynomial colored by the n-dimensional
irreducible representation of sl2, and normalised to 1 at the unknot. Setting q = eh , one
obtains a power series in h, whose coefficient of hk is a polynomial in n of degree at
most k. In other words, we have

Jn(eh) =
∞∑

i=0

i∑

j=0

ai, j n
j hi ∈ Q[[n, h]] (23)
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where ai, j depends on the knot and, as the knot varies, defines a Vassiliev invariant of
type (i.e., degree) i [BN95]. Then, the perturbative series ϕ(σ0)(τ ) is given by

ϕ(σ0)( h
2π i ) =

∞∑

i=0

ai,0hi . (24)

With this definition, to compute the coefficient of τ k in ϕ(σ0)(τ ), one needs to compute the
first k colored Jones polynomials Jn(eh) for k = 1, . . . , n up to O(hk+1), polynomially
interpolate and extract the coefficient ak,0. An efficient computation of the colored Jones
polynomial is possible if one knows a recursion relation with respect to n (such a relation
always exists [GL05]) together with some initial conditions. This gives a polynomial
time algorithm to compute Jn(eh) + O(hk+1).

An alternative method is the so-called loop expansion of the colored Jones polynomial

Jn(eh) =
∞∑


=0

P
(x)

�(x)2
+1 h
 ∈ Z[x±1,�(x)−1][[h]] (25)

where x = qn = enh and �(x) ∈ Z[x±1] is the Alexander polynomial of the knot. This
expansion was introduced by Rozansky [Roz98] (see also Kricker [Kri,GK04]) and it
is related to the Vassiliev power series expansion (23) by

∞∑

k=0

a
+k,khk = P
(eh)

�(eh)2
+1 . (26)

Then the perturbative series ϕ(σ0)(τ ) is given in terms of the loop expansion by

ϕ(σ0)( h
2π i ) =

∞∑


=0

P
(1)h
 (27)

as follows from the above equations together with the fact that �(1) = 1.
A third method uses a theorem of Habiro [Hab02b,Hab08] which lifts the Kashaev

invariant of a knot to an element of the Habiro ring ̂Z[q] = lim←− Z[q]/((q; q)n). There

is a canonical ring homomorphism ̂Z[q] → Z[[h]] defined by q �→ eh , which sends
(q; q)n to (−1)nhn + O(hn+1) and the image of the lifted element of the Habiro ring
under this homomorphism equals to the series ϕ(σ0)(h). For the case of the 41 knot, the
corresponding element of the Habiro ring is given by

∞∑

n=0

(q; q)n(q−1; q−1)n (28)

and its expansion when q = eh gives the power series with first few terms

ϕ(σ0)( h
2π i ) = 1 − h2 +

47

12
h4 + . . . . (29)

We end this section with a comment. Going back to the case of a general knot, it
was shown in [GK23] that the colored Jones polynomial is equivalent (in the sense of
knot invariants) to a descendant sequence of colored Jones polynomials and of Kashaev
invariants (indexed by the integers) which is q-holonomic. These descendant Kashaev
invariants play a key role in extending matrices of periodic functions whose rows and
columns are indexed by nonrtivial flat connections to a matrix that includes the trivial
flat connection. This is explained in detail in [GZ24].
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Fig. 1. Singularities of the Borel transforms of ϕ
(σ j )(τ ) for j = 0, 1, 2 of the knot 41. Red lines are (some)

Stokes rays

2.4. Borel resummation and Stokes constants. In this section we discuss the asymptotic
expansion as q = e2π iτ → 1 of the vector G(q) of q-series and relate it to the vector
�(τ) of the asymptotic series, where

G(q) =
⎛

⎝
G(2)(q)

G(1)(q)

G(0)(q)

⎞

⎠ , �(τ) =
⎛

⎝
�(σ0)(τ )

�(σ1)(τ )

�(σ2)(τ )

⎞

⎠ (30)

with G(0)(q), G(1)(q) given in (3), and the additional series G(2)(q) given in (9).
The three power series �(σ j )(τ ), j = 0, 1, 2 can be resummed by Borel resummation.

On the other hand, according to the resurgence theory, the value of the Borel resumma-
tion of an asymptotic power series depends crucially on the argument of the expansion
variable. If the Borel transform of the power series has a singular point located at ι, the
values of the Borel resummation of the power series whose expansion variable has an
argument slightly greater and less than the angle θ = arg ι differ by an exponentially
small quantity, called the Stokes discontinuity. Usually the difference is identical with
the Borel resummation of another power series in the theory, a phenomenon called the
Stokes automorphism.

In the case of the power series �(σ j )(τ ), j = 0, 1, 2, the singularities of the Borel
transforms of �(σ j )(τ ), j = 1, 2 were already studied in [GGMn21,GGMn23], and they
are located at


(σ j ) = {ι j,i + 2π ik | i = 1, 2, i �= j, k ∈ Z} ∪ {2π ik | k ∈ Z�=0}, j = 1, 2, (31)

as shown in the middle and the right panels of Fig. 1, while the singularities of the Borel
transform of �(σ0)(τ ) are located at (see also [Gar08a, Conj. 4])


(σ0) = {ι0,i + 2π ik | i = 1, 2, k ∈ Z}, (32)

as shown in the left panel of Fig. 1, where

ι j,i = V (σ j ) − V (σi )

2π i
, i, j = 0, 1, 2. (33)
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All the rays ρθ (Stokes rays) passing through the singularities in the union


 = ∪ j=0,1,2

(σ j ), (34)

form a peacock pattern, cf. Fig. 2, and they divide the complex plane of Borel transform
into infinitely many cones. The Borel resummation of the vector �(τ) is only well-
defined within one of these cones.

Recall that the Borel transform ϕ̂(ζ ) of a Gevrey-1 power series ϕ(τ)

ϕ(τ) =
∞∑

n=0

anτ n, an = O(Cnn!), (35)

is defined by

ϕ̂(ζ ) =
∞∑

n=0

an

n! ζ
n . (36)

If it analytically continues to an L1-analytic function along the ray ρθ := eiθ
R+ where

θ = arg τ , we define the Borel resummation by the Laplace integral

sθ (ϕ)(τ ) =
∫ ∞

0
ϕ̂(τζ )e−ζ dζ = 1

τ

∫

ρθ

ϕ̂(ζ )e−ζ/τ dζ. (37)

The Borel resummation of the trans-series �(τ) = e
V

2π iτ ϕ(τ ) is defined to be

sθ (�)(τ) = e
V

2π iτ sθ (ϕ)(τ ). (38)

In the following we will also use the notation sR(�)(τ) when the argument of τ is in
the cone R and it is a continuous function of τ .

Coming back to the vector of q-series G(q), we find that the asymptotic expansion
of G(q) when q = e2π iτ and τ → 0 in a cone R can be expressed in terms of �(τ).
Moreover, this asymptotic expansion can be lifted to an exact identity between q-series
G( j)(q) and linear combinations of Borel resummation of �(σ j )(τ ) multiplied by power
series in q̃ = e−2π iτ−1

(thought of as exponentially small corrections) with integer
coefficients. This is the content of the following conjecture.

Conjecture 5. For every cone R ⊂ C \ 
 and every τ ∈ R, we have

�′(τ )G(q) = MR(q̃)�(τ)sR(�)(τ), (39)

where

�′(τ ) = diag(τ 3/2, τ 1/2, τ−1/2), �(τ) = diag(τ 3/2, 1, 1), (40)

and MR(q̃) is a 3 × 3 matrix of q̃ (resp., q̃−1)-series if Imτ > 0 (resp., Imτ < 0) with
integer coefficients that depend on R.

As in [GGMn21,GGMn23], we pick out in particular four of these cones, located
slightly above and below the positive or the negative real axis, labeled in clockwise
direction by I, I I, I I I, I V as indicated in Fig. 2. We work out the exact matrices MR(q̃)

in these four cones.
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Fig. 2. Stokes rays and cones in the τ -plane for the 3-vector �(τ) of asymptotic series of the knot 41. Red
lines are (some) Stokes rays

Conjecture 6. Equation (39) holds in the cones R = I, I I, I I I, I V where the matrices
MR(q̃) are given in terms of J−1(q̃) as follows

MI (q̃) = J−1(q̃)

⎛

⎝
1 0 0
0 0 −1
0 1 −1

⎞

⎠ , |q̃| < 1, (41a)

MI I (q̃) =
⎛

⎝
1 0 0
0 −1 0
0 0 1

⎞

⎠ J−1(q̃)

⎛

⎝
1 0 0
0 1 0
0 1 −1

⎞

⎠ , |q̃| < 1, (41b)

MI I I (q̃) =
⎛

⎝
1 0 0
0 −1 0
0 0 1

⎞

⎠ J−1(q̃)

⎛

⎝
1 1 0
0 −1 0
0 2 1

⎞

⎠ , |q̃| > 1, (41c)

MI V (q̃) = J−1(q̃)

⎛

⎝
1 0 1
0 0 −1
0 1 2

⎞

⎠ , |q̃| > 1. (41d)

We now discuss the Stokes automorphism. To any singularity in the Borel plane
located at ι

(k)
i, j := ιi, j + 2π ik, we can associate a local Stokes matrix

S
ι
(k)
i, j

(q̃) = I + S(k)
i, j q̃k Ei, j , S(k)

i, j ∈ Z, (42)
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where Ei, j is the elementary matrix with (i, j)-entry 1 (i, j = 0, 1, 2) and all other

entries zero, and S(k)
i, j is the Stokes constant. Let us assume the locality condition that no

two Borel singularities share the same argument, or if there are, their Stokes matrices
commute. This is indeed the case in our example. Then for any ray of angle θ , the Borel
resummations of �(τ) with τ whose argument is raised slight above (θ+) or lowered
sightly below (θ−) θ are related by the following formula of Stokes automorphism

�(τ)sθ+(�)(τ) = Sθ (q̃)�(τ)sθ−(�)(τ), Sθ (q̃) =
∏

arg ι=θ

Sι(q̃). (43)

Because of the locality condition, we don’t have to worry about the order of the product
of local Stokes matrices.

More generally, consider two rays ρθ+ and ρθ− whose arguments satsify 0 < θ+ −
θ− ≤ π , we define the global Stokes automorphism

�(τ)sθ+(�)(τ) = Sθ−→θ+(q̃)�(τ)sθ−(�)(τ), (44)

where both sides are analytically continued smoothly to the same value of τ . The global
Stokes matrix Sθ−→θ+(q̃) satisfies the factorisation property [GGMn21,GGMn23]

Sθ−→θ+(q̃) =
←∏

θ−<θ<θ+

Sθ (q̃), (45)

where the ordered product is taken over all the local Stokes matrices whose arguments
are sandwiched between θ−, θ+ and they are ordered with rising arguments from right
to left.

Given (39) with explicit values of MR(q̃) for R = I, I I, I I I, I V , in general we can
calculate the global Stokes matrix via

SR→R′(q̃) = MR′(q̃)−1 · MR(q̃). (46)

Here in the subscript of the global Stokes matrix on the left hand side, R stands for
any ray in the cone. For instance, we find that the global Stokes matrix from cone I
anti-clockwise to cone I I is

SI→I I (q̃) =
⎛

⎝
1 0 0
0 1 0
0 1 −1

⎞

⎠ J−1(q̃)−1

⎛

⎝
1 0 0
0 −1 0
0 0 1

⎞

⎠ J−1(q̃)

⎛

⎝
1 0 0
0 0 −1
0 1 −1

⎞

⎠ , |q̃| < 1.

(47)

This Stokes matrix has the block upper triangular form
⎛

⎝
1 ∗ ∗
0 ∗ ∗
0 ∗ ∗

⎞

⎠ . (48)

Let us note that this form implies that �(σ j )(τ ) ( j = 1, 2) form a closed subset under
Stokes automorphisms (this was called in [GMn] a “minimal resurgent structure”). They
are controled by the 2 × 2 submatrix of SI→I I (q̃) in the bottom right and one can
verity that it is indeed the Stokes matrix in [GGMn21]. In addition we can also extract
Stokes constants S(k)

0, j ( j = 1, 2, k = 1, 2, . . .) responsible for Stokes automorphisms
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into �(σ0)(τ ) from Borel singularities in the upper half plane, and collect them in the
generating series

S+
0, j (q̃) =

∞∑

k=1

S(k)
0, j q̃

k, j = 1, 2. (49)

We find

S+
0,1(q̃) = S+

0,2(q̃) = −G(2)
0 (q̃) − G(2)

1 (q̃) +
(

G(0)
0 (q̃) + G(0)

1 (q̃)
)

G(2)
0 (q̃)/G(0)

0 (q̃)

= −q̃ − 2q̃2 − 3q̃3 − 7q̃4 − 14q̃5 − 34q̃6 + . . . . (50)

Similarly, we find that the global Stokes matrix from cone I I I anti-clockwise to cone
I V is

SI I I→I V (q̃) =
⎛

⎝
1 0 0
0 −1 1
0 1 0

⎞

⎠ · J−1(q̃−1)−1 ·
⎛

⎝
1 0 0
0 −1 0
0 0 1

⎞

⎠ · J−1(q̃−1) ·
⎛

⎝
1 0 0
0 1 0
0 1 1

⎞

⎠ , |q̃| > 1.

(51)

It also has the form as (48), and the 2 × 2 submatrix of SI I I→I V (q̃) in the bottom
right is the Stokes matrix given in [GGMn21]. We also extract Stokes constants S(k)

0, j

( j = 1, 2, k = −1,−2, . . .) responsible for Stokes automorphisms into �(σ0)(τ ) from
Borel singularities in the lower half plane, and collect them in the generating series

S−
0, j (q̃) =

−∞∑

k=−1

S(k)
0, j q̃

k, j = 1, 2. (52)

We find

S−
0,2(q̃) = −S−

0,1(q̃) = S+
0,1(q̃

−1). (53)

We can also use (46) to compute the global Stokes matrix SI V →I (q̃) and we find

SI V →I =
⎛

⎝
1 0 1
0 1 3
0 0 1

⎞

⎠ . (54)

Note that this can be identified as S0 associated to the ray ρ0 and it can be factorised as

S0 = Sι0,2Sι1,2 , Sι0,2 =
⎛

⎝
1 0 1
0 1 0
0 0 1

⎞

⎠ , Sι1,2 =
⎛

⎝
1 0 0
0 1 3
0 0 1

⎞

⎠ . (55)

Since the local Stokes matrices Sι0,2 and Sι1,2 commute, the locality condition is satis-
fied. We read off the Stoke discontinuity formulas

disc0�
(0)(τ ) = τ−3/2s(�(s2))(τ ),

disc0�
(1)(τ ) = 3s(�(s2))(τ ),

(56)
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with

discθ�(τ) = sθ+(�)(τ) − sθ−(�)(τ), (57)

and the second identity has already appeared in [GH18,GGMn21].
Finally, in order to compute the global Stokes matrix SI I→I I I (q̃), we need to take

into account that the odd powers of τ 1/2 on both sides of (39) give rise to additional
−1 factors when one crosses the branch cut at the negative real axis, and (46) should be
modified by

SI I→I I I (q̃) = diag(1,−1,−1)MI I I (q̃)−1 · MI I (q̃), (58)

and we find

SI I→I I I =
⎛

⎝
1 1 0
0 1 0
0 −3 1

⎞

⎠ . (59)

Similarly this can be identified as Sπ associated to the ray ρπ and it can be factorised
as

Sπ = Sι0,1Sι2,1 , Sι0,1 =
⎛

⎝
1 1 0
0 1 0
0 0 1

⎞

⎠ , Sι2,1 =
⎛

⎝
1 0 0
0 1 0
0 −3 1

⎞

⎠ . (60)

Note that the local Stokes matrices Sι0,1 and Sι2,1 also commute. We read off the Stokes
discontinuity formulas

discπ�(0)(τ ) = τ−3/2s(�(s1))(τ ),

discπ�(2)(τ ) = −3s(�(s1))(τ ),
(61)

where the second identity has already appeared in [GGMn21].

2.5. The Andersen–Kashaev state-integral. In this section we briefly recall the prop-
erties of the state-integral of Andersen–Kashaev for the 41 knot [AK14, Sect. 11.4],
defined by

Z41(τ ) =
∫

R+i0
�b(v)2 e−π iv2

dv, (τ = √
b). (62)

Here,�b(z) is Faddeev’s quantum dilogarithm [Fad95], in the conventions of e.g. [AK14,
Appendix A]. With this choice of contour, the integrand is exponentially decaying at ±∞
hence the integral is absolutely convergent. State-integrals have several key features:

• They are analytic functions in C′.
• Their restriction toC\R factorises bilinearly as finite sum of a product of a q-series

and a q̃-series, where q = e(τ ) and q̃ = e(−1/τ); see [BDP14,Pas12,GK17].
• Their evaluation at positive rational numbers also factorises bilinearly as a finite

sum of a product of a periodic function of τ and a periodic function of −1/τ ; see
[GK15].

• State-integrals are equal to linear combinations of the median Borel summation of
asymptotic series.
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• State-integrals come with a descendant version which satisfies a linear q-difference
equation.

Let us explain these properties for the state-integral (62). The integrand is a quasi-
periodic meromorphic function with explicit poles and residues. Moving the contour of
integration above, summing up the residue contributions, and using the fact that there
are no contributions from infinity, one finds that [GK17, Cor.1.7]

Z(τ ) = −i

(
q

q̃

) 1
24 (

τ 1/2G(1)(q)G(0)(q̃) − τ−1/2G(0)(q)G(1)(q̃)
)

, (τ ∈ C \ R).

(63)

When τ is a positive rational number, the quasi-periodicity of the integrand, together
with a residue calculation leads to a formula for Z(τ ) given in [GK15]. More generally,
in [GGMn21] we considered the descendant integral

Zλ,μ(τ ) =
∫

D
�b(v)2e−π iv2+2π(λb−μb−1)vdv, (64)

where λ,μ ∈ Z and the contour D is asymptotic at infinity to the horizontal line
Im(v) = v0 where v0 > | Re(λb − μb−1)| but is deformed near the origin so that all
the poles of the quantum dilogarithm located at

cb + ibm + ib−1n, m, n ∈ Z≥0, (65)

are above the contour. These integrals factorise as follows:

Zλ,μ(τ ) = (−1)λ−μ+1iq
λ
2 q̃

μ
2

(
q

q̃

) 1
24 (

τ 1/2G(1)
λ (q)G(0)

μ (q̃) − τ−1/2G(0)
λ (q)G(1)

μ (q̃)
)

.

(66)

The above factorisation can be expressed neatly in matrix form. Indeed, let us define

W red
S,λ,μ(τ ) = Jred

λ (q̃)−1diag(τ 3/2, τ 1/2, τ−1/2) Jred
μ (q). (67)

Using the q-difference equation (13), it is easy to see that W red
S,λ+1,μ(τ ) = A−1(−1/τ)

W red
S,λ,μ(τ ) and W red

S,λ,μ+1(τ ) = W red
S,λ,μ(τ )A(τ ) hence the domain of W red

S,λ,μ is indepen-

dent of the integers λ and μ. Equation (66) implies that W red
S,λ,μ(τ ) are given by the

matrix (Zλ+i,μ+ j (τ )) (for i, j = 0, 1), up to left-multiplication by a matrix of automor-
phy factors.

Finally we discuss the relation between the Borel summation of the two asymptotic
series �(σ j )(h) for j = 1, 2 and the descendant state-integrals. Since the Borel transform
of those series may have singularities at the positive real axis, we denote by smed their
median resummation given by the average of the two Laplace transforms to the left and
to the right of the positive real axis. Then, we have

smed(�
(σ1))(τ ) = i(q̃/q)1/24

(
−1

2
Z0,0(τ ) − q̃1/2 Z0,−1(τ )

)
,

smed(�
(σ2))(τ ) = i(q̃/q)1/24 Z0,0(τ ).

(68)
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Fig. 3. The contour AN appears in the integral formula (69) for the Kashaev invariant of the 41 knot, and it
encircles the N poles (71). By doing the integral along the contour C and picking the poles in the lower half
plane, one obtains a new state-integral with information about the trivial connection

2.6. A new state-integral. In the previous section, we saw how the matrix W red(τ ) of
products of q-series and q̃-series (6) coincides with a matrix of state-integrals. Having
found the q-series (9) which complement the series (6), it is natural to search for a
new state-integral which factorises in terms of all three q-series G( j)

m (q) for j = 0, 1, 2
and their q̃-versions. Upon looking carefully, the series G( j)

m (q) for j = 0, 1 were
produced from the Andersen–Kashaev state-integral because its integrand had a double
pole, hence the contributions came from expanding (10) up to O(ε2). If we expanded
up to O(ε3), we would capture the new series G(2)(q). Hence the problem is to find a
state-integral of the 41 whose integrand has poles of order 3. After doing so, one needs
to understand how this story, which seems a bit ad hoc and coincidental to the 41 knot,
can generalise to all knots. It turns out that such a state-integral existed in the literature
for many years, and in fact was devised by Kashaev [Kas97] as a method to convert
the state-sums of the Kashaev invariants into state-integrals, using as a building block
the Faddeev quantum dilogarithm function at rational numbers, multiplied by 1/ sinh x .
Incidentally, similar integrals have appeared in [KMn16] and more recently in the work
of two of the authors on the topological string on local P2; see [GMn, Eq. 3.141]. The
integrand of such state-integrals are meromorphic functions with the usual pole structure
coming from the Faddeev quantum dilogarithm function, together with the extra poles
coming from 1/ sinh x . The residues of the former give rise to products of q-series times
q̃-series, but the presence of of 1/ sinh x has two effects. On the one hand, it produces,
in an asymmetric fashion, poles of the integrand of one order higher, contributing to
sums of q-series or q̃-series. On the other hand, the produced q and q̃-series look like
multidimensional Appell-Lerch sums. An original motivation for converting state-sum
formulas for the Kashaev invariants into state-integral formulas was to use such an
integral expression for a proof of the Volume Conjecture.

There are two examples that convert state-sums into state-integrals, one given by
Kashaev in [Kas97] for the 41 knot and further studied by Andersen–Hansen [AH06],
and one in Kashaev–Yokota [KY] for the 52 knot. In the case of the 41 knot, the integral
considered in [Kas97,AH06] is

〈41〉N = − i

2b3

∫

AN

tanh
(πy

b

) �b
(−y + i

2b

)

�b
(
y − i

2b

) dy. (69)
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For generic b2 ∈ C

′ so that Re b > 0, the integrand has the following poles and zeros,
all in the imaginary axis:

simple poles :
{

ib
(

1

2
+ m

) ∣∣ m = 0, 1, 2, . . .

}
,

double poles :
{
−ib

(
1

2
+ m

)
− ib−1(1 + n)

∣∣ m, n = 0, 1, 2, . . .

}
,

triple poles :
{
−ib

(
1

2
+ m

) ∣∣ m = 0, 1, 2, . . .

}
,

double zeros :
{

ib
(

1

2
+ m

)
+ ib−1(1 + n)

∣∣ m, n = 0, 1, 2, . . .

}
.

(70)

In the special case where b2 = N−1 where N ∈ Z>0, which is the case where (69) is
well-defined, the poles and zeros in the upper half plane conspire so that there are only
finite many simple poles located at

ym = ib
(

m +
1

2

)
, m = 0, · · · , N − 1, (71)

and we can define the contourAN encircling these points as in Fig. 3(left). An application
of the residue theorem gives that this integral calculates the Kashaev invariant of the 41
knot,

〈41〉N =
N−1∑

m=0

(−1)mξ−m(m+1)/2
m∏


=1

(1 − ξ
)2, ξ = e
2π i
N . (72)

Now, we can define a new analytic function by changing the contour of integration from
AN to the horizontal contour C slightly below the horizontal line Im(y) = Re(b−1)/2,

Z(τ ) = − i

2b3

∫

C
tanh

(πy

b

) �b
(−y + i

2b

)

�b
(
y − i

2b

) dy. (73)

This is now defined for τ = b2 ∈ C′. Although both (69) and (73) share the same
integrand, it has significant contributions from infinity in the upper half plane, so that
we cannot deform the contour AN smoothly to the contour C, and (69) and (73) are
really different. On the other hand, the integrand does have vanishing contributions from
infinity in the lower half plane. Consequently we can smoothly deform the new controurC
downwards, and collect the residues of the integrand on the lower half-plane, as shown in
Fig. 3(right). This integral, in contrast to the Andersen–Kashaev state-integral, contains
information about the trivial connection. In particular, we conjecture that, in the region
of the complex τ -plane slightly above the positive real axis, the all-orders asymptotic of
Z(τ ) at τ = 0 is given by

Z(τ ) ∼ �(σ0)(τ ). (74)

Moreover, this can be upgraded to an exact asymptotic formula by using Borel resum-
mation in the same region, and one has

Z(τ ) = s(�(σ0))(τ ) − i

2
τ−3/2s(�(σ2))(τ ). (75)
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It turns out that the change of contour in Fig. 3 implements the inversion of the Habiro
series recently studied in [Par]: the integral over the contour AN leads to the Habiro
series, while the integral over C gives the “inverted” Habiro series, see also Sect. 3.4.
This inversion between q-series and elements of the Habiro ring was observed 10 years
ago by the first author in his joint work with Zagier [GZ23], under the informal name
“upside-down cake”.

2.7. A 3 × 3 matrix of state-integrals. Having found a new state-integral whose asymp-
totics sees the asymptotic series �(σ0)(τ ), we now consider its descendants, and their
factorisations to complete the story. The new state-integrals Zλ,μ(τ ) are defined as fol-
lows:

Zλ,μ(τ ) = − i

2b3

∫

C
tanh

(πy

b

) �b
(−y + i

2b

)

�b
(
y − i

2b

) e−2π(λb−μb−1)ydy, (76)

where b is related to τ by τ = b2 and λ,μ ∈ Z. The integration contour C is chosen so
that, at infinity, it is asymptotic to the line Im(y) = y2, where y2 satisfies

y2 < 1
2 Re b−1 − | Re(λb − μb−1)|. (77)

This guarantees convergence of the integral. We chooseC so that all poles of the integrand
in the lower half plane are below C. Note that Z0,0(τ ) = Z(τ ) is the integral introduced
in (73), so that the state-integrals with general λ,μ are descendants of Z(τ ).

Theorem 7. The descendant state-integral (76) can be expressed in terms of the series
(6), (11) as follows:

Zλ,μ(τ ) = qλ/2(−1)μ
(

G(2)
λ (q) + τ−1G(1)

λ (q)L(0)
μ (q̃) − τ−2G(0)

λ (q)L(1)
μ (q̃)

)

+
1

2
qλ/2(−1)μ

(
τ−1G(1)

λ (q)G(0)
μ (q̃) − τ−2G(0)

λ (q)G(1)
μ (q̃)

) (78)

Proof. This follows by applying the residue theorem to the state-integral (76), along the
lines of the proof of Theorem 1.1 in [GK17]. One closes the contour to encircle the poles
in the lower half-plane, located at

ym,n = − ib
2

− imb − inb−1, m, n ≥ 0. (79)

The poles of the integrand come the poles and the zeros of the quantum dilogarithm
as well as from the tanh function. When n = 0 they are triple (a double pole comes
from the quantum dilogarithm and a simple pole from tanh), while those with n > 0 are
double, coming only from the quantum dilogarithm. The triple poles lead to the series
G(2)

λ (q). In order to obtain the final result, one also has to use the properties of E2(q)

under modular transformations, i.e.

E2(q̃) = τ 2
(

E2(q) +
12

2π iτ

)
. (80)

��
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Remark 8. The state-integral (76) can be evaluated for arbitrary rational values of τ by
using the techniques of [GK15]. One finds for example, for b2 = 1,

Z(1) = −2 sinh2
(

V

4π

)
, (81)

where V is the hyperbolic volume of 41.

Remark 9. Equation (75) can be written as

Z(τ ) = smed(�
(σ0))(τ ), τ > 0. (82)

We now discuss an important analytic extension of the matrix Jμ(q) defined for
|q| �= 1. We define

WS,λ,μ(τ ) = Jλ(q̃)−1diag(τ 3/2, τ 1/2, τ−1/2) Jμ(q) (τ ∈ C \ R). (83)

As in Sect. 2.5, we find that the domain of WS,λ,μ is independent of the integers λ and
μ.

Theorem 10. WS,λ,μ(τ ) extends to a holomorphic function on C′ and equals to the ma-
trix (Zλ+i,μ+ j (τ )) (for i, j = 0, 1, 2), up to left-multiplication by a matrix of automorphy
factors.

Proof. For the bottom block of four entries, this result is already known from [GGMn21,
GGMn23], and it follows from (66) as was discussed in Sect. 2.5. The top two non-trivial
entries (σ0, σ j ) of WS,λ,μ(τ ) for j = 1, 2 are given by

τ 3/2
(

G(2)
μ−1+ j (q) + τ−1G(1)

μ−1+ j (q)L(0)
λ (q̃) − τ−2G(0)

μ−1+ j (q)L(1)
λ (q̃)

)
. (84)

In view of Theorem 7 and (66) they can be written as a sum of state-integrals Zλ,μ(τ )

and Zλ,μ+1(τ ), multiplied by holomorphic factors. This proves the theorem. ��

3. The x-Variable

In this section we discuss an extension of the results of Sect. 2 adding an x-variable. In
the context of the nth colored Jones polynomial, x = qn corresponds to an eigenvalue
of the meridian in the asymptotic expansion of the Chern–Simons path integral around
an abelian representation of a knot complement. In the context of the state-integral of
Andersen-Kashaev [AK14], the x-variable is the monodromy of a peripheral curve. The
corresponding state-integral factorises bilinearly into holomorphic blocks, which are
functions of (x, q) and (x̃, q̃) [BDP14]. In the context of quantum modular forms, x
plays the role of a Jacobi variable.

The corresponding perturbative series are now x-deformed (see [GGMn23, Sect.
5.1]), but there are some tricky aspects of this deformation that we now discuss. The
critical points of the action, after exponentiation, lie in a plane curve S in (C∗)2 (the
so-called spectral curve) defined over the rational numbers, where (C∗)2 is equipped
with coordinate functions x and y. The field Q(S) of rational functions of S (assuming
S is irreducible, or working with one component of S at a time) can be identified with
Q(x)[y]/(p(x, y)) where p(x, y) = 0 is the defining polynomial of S. The coefficients
of the perturbative series are elements of (Q(S)∗)−1/2Q(S) and the perturbative series
are labeled by the branches of the projection S → C∗ corresponding to (x, y) �→ y
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(with discriminant δ, a rational function on S). Each such branch σ defines locally an
algebraic function y = yσ = yσ (x) ∈ Q(x) satisfying the equation p(x, yσ (x)) = 0,
which gives rise to an embedding of the field of Q(S) to the field Q(x) of algebraic
functions obtained by replacing y by yσ (x). For each such branch σ , the perturbative
series has the form

�(σ)(x, τ ) = e
V σ (x)
2π iτ ϕ(σ)(x, τ ) (85)

where ϕ(σ)(x, τ ) ∈ 1√
iδσ (x)

Q(x)[[2π iτ ]]. The volume V σ (x) is also a function of x

given explicitly as a sum of dilogarithms and products of logarithms.
In the above discussion it is important to keep in mind that the asymptotic series (85)

are labeled by branches of the finite ramified covering S → C∗. Going around a loop
in x-space that avoids the finitely many ramified points will change the labeling of the
y = y(x) branches, and correspondingly of the asymptotic series. In the present paper
(as well as in [GGMn23]), we define the asymptotic series in a neighborhood of x ∼ 1
of the geometric representation, and we do not discuss the x-monodromy question.

In the case of the 41 knot, the asymptotic series associated to the geometric, and the
conjugate flat connections are given by

ϕ(σ1)(x; h
2π i ) = 1√

δ(x)

(
1 − i(x−3 − x−2 − 2x−1 + 15 − 2x − x2 + x3)

24δ(x)3 h + . . .

)

ϕ(σ2)(x; h
2π i ) = i√

δ(x)

(
1 +

i(x−3 − x−2 − 2x−1 + 15 − 2x − x2 + x3)

24δ(x)3 h + . . .

)

(86)

with h = 2π iτ and

δ(x) =
√

−x−2 + 2x−1 + 1 + 2x − x2. (87)

The corresponding perturbative series are defined by

�(σ1)(x; τ) = e
A(x)
2π iτ ϕ(σ1)(x; τ),

�(σ2)(x; τ) = e− A(x)
2π iτ ϕ(σ2)(x; τ),

(88)

where

A(x) = 1

2
log(t)2 + 2 log(t) log(x) + log(x)2 + Li2(−t x) + Li2(−t) +

π2

6
+ π i log(x),

(89)

with t (x) = −1−x−1+x−iδ(x)
2 being a solution to the equation (t +x−1)+(t +x−1)−1 = x +

x−1−1. Note that when x = 1, δ(1) = √
3, t (1) = − 1+i

√
3

2 and �(σ j )(1; τ) = �(σ j )(τ ),
the latter defined in Sect. 2.3.
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3.1. The �(σ0)(x, τ ) series. We begin by discussing the perturbative series ϕ(σ0)(x, τ )

which is a formal power series in 2π iτ whose coefficients are rational functions of x with
rational coefficients. The series is defined by the right hand side of Equation (25) after
setting h = 2π iτ . One way to compute the 
-th coefficient of that series is by computing
the colored Jones polynomial, expanding in n and h as in (23) and then resumming as
in (26), taking into account the fact that the latter sum is a rational function. An alternative
way is by using Habiro’s expansion of the colored Jones polynomials [Hab02b] (see also
[Hab08])

J K (x, q) =
∞∑

k=0

ck(x, q)H K
k (q), ck(x, q) = x−k(qx; q)k(q

−1x; q−1)k (90)

where H K
k (q) ∈ Z[q±] are the Habiro polynomials of the knot K and J K (qn, q) is the

nth colored Jones polynomial. The latter can be efficiently computed using a recursion
(which always exists [GL05]) together with initial conditions. This is analogous to
applying the WKB method to a corresponding linear q-difference equation [DGLZ09,
Gar08b]. We comment that the colored Jones polynomials of a knot K have a descendant
version defined by [GK23]

D J K ,(m)(x, q) =
∞∑

k=0

ck(x, q)H K
k (q) qkm, (m ∈ Z). (91)

Correspondingly, the Kashaev invariant has a descendant version D J K ,(m)(1, q) (an
element of the Habiro ring) and the asymptotic series �(σ0)(x, τ ) have a descendant
version �

(σ0)
m (x, τ ) defined for all integers m in [GK23], which we will not use in the

present paper.
Going back to the case of the 41 knot, we have

ϕ(σ0)(x; h
2π i ) = − 1

x−1 − 3 + x
− x−1 − 1 + x

(x−1 − 3 + x)4 h2

− x−4 + 14x−3 + 64x−2 − 156x−1 + 201 − 156x + 64x2 + 14x3 + x4

12(x−1 − 3 + x)7 h4 + . . . (92)

and the corresponding perturbative series is given by �(σ0)(x; τ) = ϕ(σ0)(x; τ).

3.2. A 3×3 matrix of (x, q)-series. We now extend the results of Sect. 2.2 by including
the Jacobi variable x which, on the representation side, determines the monodromy of
the meridian of an SL2(C) representation σ .

Our first task is to define the 3 × 3 matrix Jm(x, q). For |q| �= 1, we define

Cm(x, q) =
∞∑

k=0

(−1)k qk(k+1)/2+km

(x−1; q)k+1(x; q)k+1

Am(x, q) =
∞∑

k=0

(−1)k qk(k+1)/2+km xk+m

(q; q)k(x2q; q)k

Bm(x, q) = Am(x−1, q).

(93)
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Our series Cm(x, q) contain as a special case the series F41(x, q) in [GM21,Par20,Par]

F41(x, q) = (x1/2 − x−1/2)C0(x, q). (94)

We assemble these (x, q)-series into a matrix

Jm(x, q) =
⎛

⎝
1 Cm(x, q) Cm+1(x, q)

0 Am(x, q) Am+1(x, q)

0 Bm(x, q) Bm+1(x, q)

⎞

⎠ (95)

whose bottom-right 2×2 matrix is Jred
m (x, q). The properties of Jm(x, q) are summarised

in the next theorem.

Theorem 11. The matrix Jm(x, q) is a fundamental solution to the linear q-difference
equation

Jm+1(x, q) = Jm(x, q)A(x, qm , q), A(x, qm, q) =
⎛

⎝
1 0 1
0 0 −1
0 1 x−1 + x − qm+1

⎞

⎠

(96)

has det(Jm(x, q)) = x−1 − x and satisfies the analytic extension

Jm(x, q−1) =
⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ J−m−1(x, q)

⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ . (97)

Proof. The proof is analogous to the proof of Theorem 3. Equation (96) follows quickly
using the q-hypergeometric expressions and noting that Cm(x, q) has a boundary term
so satisfies an inhomogenous version. The block form again reduces the calculation of
the determinant of Jm(x, q) to a calculation of the determinant of Jred

m (x, q) given in
[GGMn23]. Equation (97) follows from the symmetry of the q-hypergeometric functions

Cm(x, q−1) = C−m(x, q)

Am(x, q−1) = B−m(x, q)

Bm(x, q−1) = A−m(x, q).

(98)

��
The Appell-Lerch like sums again appear in the inverse of Jm(x, q). The proof is

again completely analogous to the proof of Theorem 4.

Theorem 12. We have

Jm(x, q)−1 = 1

x−1 − x

⎛

⎝
x−1 − x −L Bm(x, q) L Am(x, q)

0 Bm+1(x, q) −Am+1(x, q)

0 −Bm(x, q) Am(x, q)

⎞

⎠ (99)

for the q-series L Am(x, q), L Bm(x, q) defined by

L Am(x, q) = Am+1(x, q)Cm(x, q) − Am(x, q)Cm+1(x, q)

L Bm(x, q) = Bm+1(x, q)Cm(x, q) − Bm(x, q)Cm+1(x, q)
(100)
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The q-series L Am(x, q), L Bm(x, q) are expressed in terms of Appell-Lerch type sums:

L Am(x, q) =
∞∑

k=0

(−1)k qk(k+1)/2+km+k xk+m+1

(q; q)k(x2q; q)k(1 − xqk)

L Bm(x, q) = L Am(x−1, q).

(101)

Proof. Given the block form of Jm(x, q) and the determinant calculated previously in
Theorem 11, Equation (100) follows from taking the matrix inverse. Observe that again
A(x; qm, q) has first column (1, 0, 0)t and first row (1, 0, 1). It follows that its inverse
matrix has first column (1, 0, 0)t and first row (1, 1, 0). This, together with (96), implies
that

Jm+1(x, q)−1 = A(x, qm, q)−1Jm(x, q)−1

=
⎛

⎝
1 1 0
0 x + x−1 − qm+1 1
0 −1 0

⎞

⎠ Jm(x, q)−1 (102)

which implies that L Am(x, q), L Bm(x, q) satisfy the first order inhomogeneous linear
q-difference equation

L Am−1(x, q) − L Am(x, q) = Am(x, q),

L Bm−1(x, q) − L Bm(x, q) = Bm(x, q).
(103)

Let LAm(x, q) denote the right-hand side of the first Equation (101). Then we have

LAm−1(x, q) − LAm(x, q) =
∞∑

k=0

(−1)k qk(k+1)/2+km xk+m(1 − xqk)

(q; q)k(x2q; q)k(1 − xqk)
= Am(x, q).

ThereforeLAm(x, q)−L Am(x, q) is independent of m. Moreover, limm→∞ LAm(x, q)−
L A(0)

m (x, q) = 0 for |q|, |x | < 1 or limm→−∞ LAm(x, q) − L A(0)
m (x, q) = 0 for

|q|, |x | > 1. Equations (101) follows from analytic continuation. ��
Now if we take the inverse of Jm(x, q)−1 we can get similar identities for Cm(x, q).

Corollary 13.

Cm(x, q) = 1

x−1 − x
(Am(x, q)L Bm(x, q) − Bm(x, q)L Am(x, q)) (104)

Cm+1(x, q) = 1

x−1 − x
(Am+1(x, q)L Bm(x, q) − Bm+1(x, q)L Am(x, q)) . (105)

3.3. Borel resummation and Stokes constants. In this section we extend the discussion in
Sect. 2.4 to include x-deformation. We analyse the asymptotic expansion as q = e2π iτ

and τ → 0 of the (x, q)-series presented in Sect. 3.2 and relate them to the (x, τ )-
asymptotic series given in Sect. 3.1. For this purpose, it is more convenient to introduce
the decorated (x, q)-series

Cm(x, q) = Cm(x, q),

Am(x, q) = (qx2; q)∞
θ(−q1/2x, q)

Am(x, q),

Bm(x, q) = x
(qx−2; q)∞

θ(−q1/2x−1, q)
Bm(x, q),

(106)
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where

θ(x, q) = (−q1/2x; q)∞(−q1/2x−1; q)∞. (107)

They satisfy the recursion relation in m

Fm+1(x, q) + (qm − x − x−1)Fm(x, q) + Fm−1(x, q) = δC, (108)

where F = A,B, C and δC means the inhomogeneous term is only present for F = C.
In addition, Am(x, q),Bm(x, q) as well as Cm(x, q) = (1 − x)Cm(x, q) also satisfy the
q-difference equations with respect to x

qm x2(1 − q−1x2)Fm(qx, q) + qm x2(1 − qx2)Fm(q−1x, q)

−(1 − x)(1 + x)(1 + x4 − qm(x + x3) − (q−1 + q)x2)Fm(x, q)

= δCx(1 + x)(1 − qx2)(1 − q−1x2), (109)

where F = A,B,C and δC means the inhomogeneous term is only present for F =
C. Note that when m = 0, (109) reduces to the inhomogeneous Â-polynomial in
[GGMn23]. The associated decorated matrix J (x, q) is given by

Jm(x, q) =
⎛

⎝
1 Cm(x, q) Cm+1(x, q)

0 Am(x, q) Am+1(x, q)

0 Bm(x, q) Bm+1(x, q)

⎞

⎠

=
⎛

⎜
⎝

1 0 0

0 (qx2;q)∞
θ(−q1/2x;q)2 0

0 0 x (qx−2;q)∞
θ(−q1/2x−1;q)2

⎞

⎟
⎠ Jm(x, q) (110)

and it has

det J (x, q) := det Jm(x, q) = θ(−q−1/2x2, q)θ(−q1/2x; q)−2θ(−q1/2x−1, q)−2.

(111)

We will focus on the vector B(x, q) of (x, q)-series

B(x, q) =
⎛

⎝
C0(x, q)

A0(x, q)

B0(x, q)

⎞

⎠ , (112)

which is defined for |q| �= 1 and satisfies by

B(x, q−1) =
⎛

⎝
1 0 0
0 0 x det J (x, q)−1

0 −x det J (x, q)−1 0

⎞

⎠B(x, q). (113)

We will write

q = e2π iτ , x = eu (114)
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Fig. 4. Singularities of the Borel transforms of ϕ
(σ j )(x, τ ) for j = 0, 1, 2 of the knot 41. Here we take small

and real x . Red lines are some Stokes rays

and we will show that the asymptotic expansion of B(x, q) in the limit τ → 0 is related
to the vector �(x, τ ) of (x, τ ) asymptotic series

�(x, τ ) =
⎛

⎝
�(σ0)(x, τ )

�(σ1)(x, τ )

�(σ2)(x, τ )

⎞

⎠ (115)

with corrections given by B(x̃, q̃) where

q̃ = e−2π i/τ , x̃ = eu/τ . (116)

The asymptotic series �(x, τ ) can be resummed by Borel resummation. As we have
explained in Sect. 2.4 the value of the Borel resummation depends on the singularities
of the Borel transform of �(x, τ ). The positions of these singular points, denoted col-
lectively as 
(x), are smooth functions of x , and in the limit x = 1 they are equal to

 defined in (34). When x is near 1, which is the regime we will be interested in, each
singular point ι

(k)
i, j in 
 splits to a finite set of points located at ι

(k,
)
i, j := ι

(k)
i, j + 
 log(x),

where 
 takes value in a finite subset of Z that depends on i, j, k. These singular points
are aligned on a line and are apart from each other by a distance log(x). We illustrate
this schematically in Fig. 4. The complex plane of τ is divided to infinitely many cones
by rays passing through these singular points, and the Borel resummation of �(x, τ ),
denoted by sR(�)(x, τ ), is only well-defined within a cone R.

We conjecture that the asymptotic expansion in the limit q → 1 of the vector of
(x, q)-series B(x, q) can be expressed in terms of sR(�)(x, τ ). Furthermore, in each
cone, the asymptotic expansion can be upgraded to exact identities between B(x, q)

and linear transformation of Borel resummation of �(x, τ ) up to exponentially small
corrections characterised by q̃ and x̃ = exp(

log x
τ

).

Conjecture 14. For every x ∼ 1, every cone R ⊂ C \ 
(x) and every τ ∈ R we have

�′(x, τ )B(x, q) = MR(x̃, q̃)�(x, τ )sR(�)(x, τ ), (117)
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Fig. 5. Stokes rays and cones in the τ -plane for the 3-vector �(x, τ ) of asymptotic series of the knot 41. Here
we take small and real x

where

�′(x, τ ) = diag(τ 1/2 x1/2−x−1/2

x̃1/2−x̃−1/2 , (x̃/x)1/2e
3π i
4 − π i

4 (τ+τ−1), (x̃/x)1/2e
3π i
4 − π i

4 (τ+τ−1)),

�(x, τ ) = diag(τ 1/2 x1/2−x−1/2

x̃1/2−x̃−1/2 , 1, 1),
(118)

and MR(x̃, q̃) is a 3 × 3 matrix of q̃ (resp., q̃−1)-series if Imτ > 0 (resp., Imτ < 0)
with coefficients in Z[x̃±1] that depend on R.

To illustrate examples of MR(x̃, q̃), we pick four of these cones, located slightly
above and below the positive or negative real axis, labeled in counterclockwise direction
by I, I I, I I I, I V , cf. Fig. 5.

Conjecture 15. Equation (117) holds in the cones R = I, I I, I I I, I V where the ma-
trices MR(x̃, q̃) are given in terms of J−1(x̃, q̃) as follows

MI (x̃, q̃) = J−1(x̃, q̃)

⎛

⎝
1 0 0
0 0 −1
0 1 −1

⎞

⎠ , |q̃| < 1, (119a)

MI I (x̃, q̃) =
⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠J−1(x̃, q̃)

⎛

⎝
1 0 0
0 1 0
0 1 −1

⎞

⎠ , |q̃| < 1, (119b)

MI I I (x̃, q̃) =
⎛

⎝
1 0 0
0 0 −1
0 −1 0

⎞

⎠J−1(x̃, q̃)

⎛

⎝
1 x̃−1 0
0 −1 0
0 x̃ + x̃−1 1

⎞

⎠ , |q̃| > 1, (119c)
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MI V (x̃, q̃) = J−1(x̃, q̃)

⎛

⎝
1 0 x̃−1

0 0 −1
0 1 x̃ + x̃−1

⎞

⎠ , |q̃| > 1. (119d)

Remark 16. It is sometimes stated in the literature that the Gukov–Manolescu series is
obtained by “resumming” the perturbative series �(σ0)(x, τ ) associated to the trivial
connection, although it is not always clear what “resumming” means in that context.
The above conjecture shows that, generically, C0(x, q) involves the Borel resummation
of all perturbative series �(σ j )(x, τ ), j = 0, 1, 2, as well as non-perturbative corrections
in q̃, x̃ .

We now discuss the Stokes automorphism of the Borel resummation sR(�)(x, τ ).
The discussion is similar to the one in Sect. 2.4. To any singular point of the Borel
transform of �(x, τ ) locatd at ι

(k,
)
i, j , we can associate a local Stokes matrix

S
ι
(k,
)
i, j

= I + S(k,
)
i, j q̃k x̃
Ei, j , S(k,
)

i, j ∈ Z, (120)

where Ei, j is the elementary matrix with (i, j)-entry 1 (i, j = 0, 1, 2) and all other entries

zero, and S(k,
)
i, j is the Stokes constant. Let us again assume the locality condition. Then

for any ray of angle θ , the Borel resummations of �(x, τ ) with τ whose argument is
raised slightly above θ (θ+) or sightly below (θ−) are related by the following formula
of Stokes automorphism

�(x, τ )sθ+(�)(x, τ ) = Sθ (x̃, q̃)�(x, τ )sθ−(�)(x, τ ), Sθ (x̃, q̃) =
∏

arg ι=θ

Sι(x̃, q̃).

(121)

Because of the locality condition, we don’t have to worry about the order of product of
local Stokes matrices.

In addition, given two rays ρθ+ and ρθ− whose arguments satisfy 0 < θ+ − θ− ≤ π ,
we define the global Stokes matrix Sθ−→θ+(x̃, q̃) by

�(x, τ )sθ+(�)(x, τ ) = Sθ−→θ+(x̃, q̃)�(x, τ )sθ−(�)(x, τ ), (122)

where both sides are analytically continued smoothly to the same value of τ . The global
Stokes matrix Sθ−→θ+(x̃, q̃) satisfies the factorisation property [GGMn21,GGMn23]

Sθ−→θ+(x̃, q̃) =
←∏

θ−<θ<θ+

Sθ (x̃, q̃), (123)

where the ordered product is taken over all the local Stokes matrices whose arguments
are sandwiched between θ−, θ+ and they are ordered with rising arguments from right
to left.

Given (117) with explicit values of MR(x̃, q̃) for R = I, I I, I I I, I V , in general we
can calculate the global Stokes matrix via

SR→R′(x̃, q̃) = MR′(x̃, q̃)−1 · MR(x̃, q̃). (124)
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For instance, we find the global Stokes matrix from cone I anti-clockwise to cone I I is

SI→I I (x̃, q̃) =
⎛

⎝
1 0 0
0 1 0
0 1 −1

⎞

⎠J−1(x̃, q̃)−1

⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠J−1(x̃, q̃)

⎛

⎝
1 0 0
0 0 −1
0 1 −1

⎞

⎠ , |q̃| < 1.

(125)

This Stokes matrix has the block upper triangular form
⎛

⎝
1 ∗ ∗
0 ∗ ∗
0 ∗ ∗

⎞

⎠ . (126)

One can verify that the 2 × 2 submatrix of SI→I I (x̃, q̃) in the bottom right is the
Stokes matrix in [GGMn21]. In addition we can also extract Stokes constants S(k,
)

0, j

( j = 1, 2, k = 1, 2, . . .) responsible for Stokes automorphisms into �(σ0)(x, τ ) from
Borel singularities in the upper half plane, and collect them in the generating series

S+
0, j (x̃, q̃) =

∞∑

k=1

∑




S(k,
)
0, j x̃
q̃k, j = 1, 2. (127)

We find

S+
0,1(x̃, q̃) = S+

0,2(x̃, q̃) = x̃−1
(

−C−1(x̃, q̃) + C0(x̃, q̃)
A−1(x̃, q̃) + B−1(x̃, q̃)

A0(x̃, q̃) + B0(x̃, q̃)

)

= −q̃ − (x̃ + x̃−1)q̃2 − (x̃2 + 1 + x̃−2)q̃3 + . . . . (128)

Similarly, we find the global Stokes matrix from cone I I I anti-clockwise to cone
I V is

SI I I→I V (x̃, q̃) =
⎛

⎝
1 0 0
0 −1 1
0 1 0

⎞

⎠ · J−1(x̃, q̃−1)−1 ·
⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ · J−1(x̃, q̃−1)

·
⎛

⎝
1 0 0
0 1 0
0 1 1

⎞

⎠ , |q̃| > 1. (129)

It also has the form as (126). This, together with the same phenomenon in the upper
half plane, implies that �(s j )(x, τ ) ( j = 1, 2) form a minimal resurgent structure. The
2 × 2 submatrix of SI I I→I V (x̃, q̃) in the bottom right is identical to the Stokes matrix
given in [GGMn21]. We also extract Stokes constants S(k,
)

0, j ( j = 1, 2, k = −1,−2, . . .)

responsible for Stokes automorphisms into �(σ0)(x, τ ) from Borel singularities in the
lower half plane, and collect them in the generating series

S−
0, j (x̃, q̃) =

−∞∑

k=−1

∑




S(k,
)
0, j x̃
q̃k, j = 1, 2. (130)

And we find

S−
0,2(x̃, q̃) = −S−

0,1(x̃, q̃) = S+
0,1(x̃, q̃−1). (131)
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We can also use (124) to compute the global Stokes matrix SI V →I (q̃) and we find

SI V →I =
⎛

⎝
1 0 1
0 1 x̃ + 1 + x̃−1

0 0 1

⎞

⎠ . (132)

Note that this can be identified as S0, associated to the ray ρ0, and it can be factorised
as

S0 = Sι0,2Sι1,2 , Sι0,2 =
⎛

⎝
1 0 1
0 1 0
0 0 1

⎞

⎠ , Sι1,2 =
⎛

⎝
1 0 0
0 1 x̃ + 1 + x̃−1

0 0 1

⎞

⎠ . (133)

Since the local Stokes matrices Sι0,2 and Sι1,2 commute, the locality condition is satis-
fied. We read off the Stoke discontinuity formulas

disc0�
(0)(x, τ ) = x̃1/2 − x̃−1/2

x1/2 − x−1/2 τ−1/2s(�(s2))(x, τ ),

disc0�
(1)(x, τ ) = (x̃ + 1 + x̃−1)s(�(s2))(x, τ ).

(134)

They reduce properly to (56) in the x → 1 limit, and the second identity has already
appeared in [GGMn21].

Finally, in order to compute the global Stokes matrix SI I→I I I (q̃), we need to take
into account that the odd powers of τ 1/2 on both sides of (117) give rise to additional
−1 factors when one crosses the branch cut at the negative real axis, and (124) should
be modified by

SI I→I I I (q̃) = diag(−1, 1, 1)MI I I (q̃)−1diag(−1, 1, 1)MI I (q̃), (135)

and we find

SI I→I I I =
⎛

⎝
1 1 0
0 1 0
0 −x̃ − 1 − x̃−1 1

⎞

⎠ . (136)

Similarly this can be identified as Sπ associated to the ray ρπ and it can be factorised
as

Sπ = Sι0,1Sι2,1 , Sι0,1 =
⎛

⎝
1 1 0
0 1 0
0 0 1

⎞

⎠ , Sι2,1 =
⎛

⎝
1 0 0
0 1 0
0 −x̃ − 1 − x̃−1 1

⎞

⎠ . (137)

Note that the local Stokes matrices Sι0,1 and Sι2,1 also commute. We read off the Stokes
discontinuity formulas

discπ�(0)(x, τ ) = x̃1/2 − x̃−1/2

x1/2 − x−1/2 τ−1/2s(�(s1))(x, τ ), (138)

discπ�(2)(x, τ ) = −(x̃ + 1 + x̃−1)s(�(s1))(x, τ ). (139)

They reduce properly to (61) in the x → 1 limit, and the second identity has already
appeared in [GGMn21].
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3.4. (u, τ ) state-integrals. In parallel to the discussion in Sects. 2.6 and 2.7, we now
introduce a new state-integral which depends on τ , but also on a variable u. Let us
consider the state-integral

ZB(u, τ ) = − i

2b
sinh(πb−1u)

sinh(πbu)

∫

B
tanh(πb−1v)

�b(−v + i
2b

−1 + u)

�b(v − i
2b

−1 + u)
e2π iu(v− i

2b
−1)dv,

(140)

where the contour of integral B is not specified yet. The integrand reduces to that of
(69) in the limit u → 0. For generic b2 ∈ C

′ so that Re b > 0, the integrand has the
following poles and zeros

Poles :
{
±ib

(
1

2
+ m

)
, ±u − ib

(
1

2
+ m

)
− ib−1n

∣∣ m, n = 0, 1, 2, . . .

}

Zeros :
{
±u + ib

(
1

2
+ m

)
+ ib−1(1 + n)

∣∣ m, n = 0, 1, 2, . . .

}
.

(141)

We can choose for the integral the contour AN in the upper half plane that wraps the
following poles, as in the left panel of Fig. 3,

vm = ib
(

1

2
+ m

)
, m = 0, 1, 2, . . . , N − 1. (142)

By summing over the residues of these poles, the integral evaluates as follows

ZAN (ub, τ ) =
N−1∑

n=0

(−1)nq−n(n+1)/2(qx; q)n(qx−1; q)n, x = eu, q = e2π iτ ,

(143)

where we defined ub = u/(2πb), as in [GGMn23, Eq. (2)]. When x = q N this is none
other than the colored Jones polynomial of the knot 41

ZAN (iNb,b2) = J 41
N (q) =

N−1∑

n=0

(−1)nq−n(n+1)/2(q1+N ; q)n(q1−N ; q)n . (144)

Alternatively, we can choose for the integral the contour C as in the right panel of Fig. 3,
which is asymptotic to a horizontal line slightly below Im(v) = Re(b−1), but deformed
near the origin in such a way that all the poles

v±
m,n = ±u − ib

(
1

2
+ m

)
− ib−1n, m, n = 0, 1, 2, . . . (145)

are below the contour C. Let Z(u, τ ) := ZC(u, τ ) denote the corresponding state-
integral. Similar to the discussion in Sect. 2.6, as the integrand has non-trivial contribu-
tions from infinity in the upper half plane, the two integrals ZAN (u, τ ) and Z(u, τ ) are
different. On the other hand, since the integrand does have vanishing contributions from
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infinity in the lower half plane, we can smoothly deform the contour C downwards so
that Z(u, τ ) can be evaluated by summing over residues at the poles v±

m,n , and we find

Z(u, τ ) = C0(x, q) +
e

3π i
4 − π i

4 (τ+τ−1)

τ1/2
x̃−1 − 1

1 − x
A0(x, q)

(
LA0(x̃, q̃−1) +

1

2
A0(x̃, q̃−1)

)

+
e

3π i
4 − π i

4 (τ+τ−1)

τ1/2
x̃−1 − 1

1 − x
B0(x, q)

(
LB0(x̃, q̃−1) +

1

2
B0(x̃, q̃−1)

)
, (146)

where LAμ(x, q), LBμ(x, q) are defined as in (100) with Roman letters A, B, C re-
placed by caligraphic letters A,B, C. As mentioned above, the change of integration
contour implements the Habiro inversion of [Par]: the integration over AN gives the
Habiro series (144), while the integration over C involves C0(x, q), which was inter-
preted in [Par] as an inverted Habiro series. This contribution comes from the poles −vm
in the lower half-plane.

The integral Z(u, τ ) can also be identified with the Borel resummation of the pertur-
bative series �(σ j )(x; τ) for j = 0, 1, 2. By inverting the matrix MR(x̃, q̃) in (117), we
can also express the Borel resummation sR(�)(x, τ ) in any cone R in terms of combi-
nations of (x, q)- and (x̃, q̃)-series, and they can be then compared with the right hand
side of (146). For instance, in the cones I and I V respectively, we find

Z(u, τ ) = sI (�
(σ0))(x; τ) − x̃1/2 − x̃−1/2

2(x1/2 − x−1/2)
τ−1/2sI (�

(σ2))(x; τ), (147a)

= sI V (�(σ0))(x; τ) +
x̃1/2 − x̃−1/2

2(x1/2 − x−1/2)
τ−1/2sI V (�(σ2))(x; τ). (147b)

This also implies that for positive real τ ,

Z(u, τ ) = smed(�
(σ0))(x; τ). (148)

Finally, we can introduce the descendants of the integral Z(u, τ ) as follows

Zλ,μ(u, τ ) = − i

2b
sinh(πb−1u)

sinh(πbu)
∫

C
tanh(πb−1v)

�b(−v + i
2b

−1 + u)

�b(v − i
2b

−1 + u)
e2π iu(v− i

2b
−1)−2π(λb−μb−1)vdv.

(149)

The integrand has the same poles and zeros as in (141). To ensure convergence, the
contour C needs slight modification: it is asymptotic to a horizontal line slightly below
Im(v) = 1

2 Re(b−1) − | Re(λb − μb−1)|, and it is deformed near the origin in such a
way that all the poles (145) are below the contour C. Similarly, by smoothly deforming
the contour downwards we can evaluate this integral by summing up residues of all the
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poles in the lower half plane, and we find

Zλ,μ(u, τ ) = (−1)μqλ/2

(

Cλ(x, q) +
e

3π i
4 − π i

4 (τ+τ−1)

τ 1/2

x̃−1 − 1

1 − x
Aλ(x, q)

(
LA−μ(x̃, q̃−1) +

1

2
A−μ(x̃, q̃−1)

)

+
e

3π i
4 − π i

4 (τ+τ−1)

τ 1/2

x̃−1 − 1

1 − x
Bλ(x, q)

(
LB−μ(x̃, q̃−1) +

1

2
B−μ(x̃, q̃−1)

))
. (150)

3.5. An analytic extension of the colored Jones polynomial. In this section we discuss a
Borel resummation formula for the colored Jones polynomial of the 41 knot. The latter
is defined by

J 41
N (q) =

N−1∑

k=0

(−1)kq−k(k+1)/2(q1+N ; q)k(q
1−N ; q)k . (151)

Let u ∼ 0 be in a small neighborhood of the origin in the complex plane. It is related to
x = q N and τ by

x = eu, τ = u

2π iN
+

1

N
. (152)

Then u is near 0, then x is close to 1, which is the regime that we studied in Sect. 3.3,
and τ is close to 1/N . Note that Nτ = 1 + u

2π i is the analogue of n/k in [Guk05], and
here we are considering a deformation from the case of n/k = 1.

Experimentally, we found that in cones I and I V respectively, we have

J 41
N (q) = sI (�

(σ0))(x; τ) +
x̃1/2 − x̃−1/2

x1/2 − x−1/2 τ−1/2sI (�
(σ1))(x; τ)

− (1 + x̃)
x̃1/2 − x̃−1/2

x1/2 − x−1/2 τ−1/2sI (�
(σ2))(x; τ) (153a)

= sI V (�(σ0))(x; τ) +
x̃1/2 − x̃−1/2

x1/2 − x−1/2 τ−1/2sI V (�(σ1))(x; τ)

+ (1 + x̃−1)
x̃1/2 − x̃−1/2

x1/2 − x−1/2 τ−1/2sI V (�(σ2))(x; τ) (153b)

where x̃ = eu/τ = e2π iNu/(u+2π i). This, together with Conjecture 6 implies

J 41
N (q) = smed(�

(σ0))(x; τ) +
x̃1/2 − x̃−1/2

x1/2 − x−1/2 τ−1/2smed(�
(σ1))(x; τ)

− x̃ − x̃−1

2

x̃1/2 − x̃−1/2

x1/2 − x−1/2 τ−1/2smed(�
(σ2))(x; τ), (154)

which is Conjecture 2 for the 41 knot.
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We now make several consistency checks of the above conjecture. The first is that
equation (154) is invariant under complex conjugation which moves τ from cone I to
cone I V . The second is that the conjecture implies the Generalised Volume Conjecture.
Indeed, in the limit

N → ∞, τ → 0, log(x) = 2π iNτ finite (155)

the right hand side of (153a),(153b) are dominated by the first term. If we keep only
the exponential, this is the generalised Volume Conjecture [Mur11,Guk05]. Recall from
[Mur11], the generalised Volume Conjecture reads, for u in a small neighborhood of
origin such that u �∈ π iQ,

lim
N→∞

log J K
N (exp((u + 2π i)/N ))

N
= H(y, x)

u + 2π i
, (156)

where x = exp(u + 2π i) and H(y, x) = Li2(1/(xy)) − Li2(y/x) + log(x) log(y), with
y a solution to y + y−1 = x + x−1 − 1. By the identification u + 2π i = 2π i(Nτ) ∼ 2π i,
and since A(x) is identical with H(y, x) (up to ±1), one can check that (153a),(153b)
imply (156).

4. The 52-knot

4.1. A 3 × 3 matrix of q-series. The trace field of the 52 knot is the cubic field of
discriminant −23, with a distinguished complex embedding σ1 (corresponding to the
geometric representation of 52), its complex conjugate σ2 and a real embedding σ3.
The 52 knot has three boundary parabolic representations whose associated asymptotic
series ϕ(σ j )(h) for j = 1, 2, 3 correspond to the three embeddings of the trace field.
In [GGMn21] these asymptotic series were discussed, and a 3 × 3 matrix Jred

m (q) of q-
series was constructed to describe the resurgence properties of the asymptotic series. The
matrix Jred

m (q) is a fundamental solution to the linear q-difference equation [GGMn21,
Eq. (23)]

fm(q) − 3 fm+1(q) + (3 − q2+m) fm+2(q) − fm+3(q) = 0 (157)

and it is defined by4

Jred
m (q) =

⎛

⎜
⎝

H (2)
m (q) H (2)

m+1(q) H (2)
m+2(q)

H (1)
m (q) H (0)

m+1(q) H (1)
m+2(q)

H (0)
m (q) H (0)

m+1(q) H (0)
m+2(q)

⎞

⎟
⎠ , (|q| �= 1) (159)

4 The matrices Jred
m (q) are related to the Wronskians Wm (q) in [GGMn21,GGMn23] by

Jred
m (q) =

⎛

⎝
0 0 1
0 1 0
1 0 0

⎞

⎠ Wm (q)T . (158)
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where for |q| < 1

H (0)
m (q) =

∞∑

n=0

qn(n+1)+nm

(q; q)3
n

,

H (1)
m (q) =

∞∑

n=0

qn(n+1)+nm

(q; q)3
n

(
1 + 2n + m − 3E (n)

1 (q)
)

,

H (2)
m (q) =

∞∑

n=0

qn(n+1)+nm

(q; q)3
n

(
(1 + 2n + m − 3E (n)

1 (q))2 − 3E (n)
2 (q) − 1

6
E2(q)

)
,

(160)

and

H (0)
−m(q−1) =

∞∑

n=0

(−1)n q
1
2 n(n+1)+nm

(q; q)3
n

,

H (1)
−m(q−1) = −

∞∑

n=0

(−1)n q
1
2 n(n+1)+nm

(q; q)3
n

(
1

2
+ n + m − 3E(n)

1 (q)

)
,

H (2)
−m(q−1) =

∞∑

n=0

(−1)n q
1
2 n(n+1)+nm

(q; q)3
n

(
(1

2
+ n + m − 3E(n)

1 (q)
)2 − 3E(n)

2 (q) − 1

12
E2(q)

)
.

(161)

4.2. The Habiro polynomials and the descendant Kashaev invariants. The addition of
the asymptotic series ϕ(σ0)(h) corresponding to the trivial flat connection requires a 4×4
extension of the matrix Jred(q). This is consistent with the fact that the colored Jones
polynomial of 52 satisfies a third order inhomogenous linear q-difference equation, and
hence a 4th order homogeneous linear q-difference equation. However, the descendant
colored Jones polynomials of 52 satisfy a 5th order inhomogeneous recursion [GK23,
Eq. (14)], hence a 6th order homogeneous recursion. In view of this, we will give a 6×6
matrix J(q) of q-series and we will use its 4×4 block to describe the resurgent structure
of the asymptotic series ϕ(σ0)(h).

Let us recall the Habiro polynomials, the descendant colored Jones polynomials, the
descendant Kashaev invariants and their recursions. The Habiro polynomials H52

n (q) ∈
Z[q±1] are given by terminating q-hypergeometric sums

H52
n (q) = (−1)nq

1
2 n(n+3)

n∑

k=0

qk(k+1)

(
n

k

)

q
(162)

(see Habiro [Hab02a] and also Masbaum [Mas03]) where
(a

b

)
q = (q; q)a/((q; q)b

(q; q)b−a) is the q-binomial function. In [GS06], it was shown that Hn = H52
n (q)

satisfies the linear q-difference equation

H52
n+2(q) + q3+n(1 + q − q2+n + q4+2n)H52

n+1(q) − q6+2n(−1 + q1+n)H52
n (q) = 0, (n ≥ 0)

(163)

with initial conditions H52
n (q) = 0 for n < 0 and H52

0 (q) = 1. Actually, the above
recursion is valid for all integers if we replace the right hand side of it by δn+2,0. The
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recursion for the Habiro polynomials of 52, together with Equation (91) and [Kou10],
gives that DJ(m) = DJ52,(m)(x, q), which is the descendant colored Jones polynomial
defined by (91), satisfies the linear q-difference equation

(−1 + q1+m )(−1 + q2+m )x2DJ(m) − q2+m (−1 + q2+m )x(1 + q + x + (1 + q)x2)DJ(1+m)

+q3+m (q3+m + (−1 + q2+m + q3+m )x + (−2 − q + q2+m + 2q3+m + q4+m )x2 + (−1 + q2+m + q3+m )x3 + q3+m x4)DJ(2+m)

−q4+m (q3+m + (−1 + q3+m + q4+m )x + (−1 + q2+m + 2q3+m + q4+m )x2 + (−1 + q3+m + q4+m )x3 + q3+m x4)DJ(3+m)

+q5+m x(q3+m + q4+m + (−1 + q4+m )x + (q3+m + q4+m )x2)DJ(4+m) − q10+2m x2DJ(5+m)

= x(q2+m + q4+m + (1 − q1+m − 2q3+m − q5+m )x + (q2+m + q4+m )x2)H0(q) + qm x(1 − xq−1)(1 − qx)H1(q). (164)

Using the values H52
0 (q) = 1, H52

1 (q) = −q2 − q4, it follows that the right hand side
of the above recursion is x2 for all m. Setting x = 1, and renaming DJ(m) by fm(q), we
arrive at the inhomogenous 5-th order q-difference equation satisfied by the descendant
Kashaev invariant [GK23, Eq. (14)]

−q2m+10 fm+5(q) + (3q2m+9 + 2q2m+8 − qm+5) fm+4(q) + (−3q2m+8 − 6q2m+7 − q2m+6 + 3qm+4) fm+3(q)

+(q2m+7 + 6q2m+6 + 3q2m+5 − qm+4 − 4qm+3) fm+2(q) + (2qm+3 + 3qm+2)(1 − qm+2) fm+1(q)

+(1 − qm+1)(1 − qm+2) fm (q) = 1 (165)

valid for all integers m. Our aim is to define an explicit fundamental matrix solution to the
corresponding sixth order homogenous linear q-difference equation (165). To do so, we
define a 2-parameter family of deformations of the Habiro polynomials which satisfy a
one-parameter deformation of the recursion of the Habiro polynomials. Motivated by the
q-hypergeometric expression (162) for the Habiro polynomials, we define deformations
of the Habiro polynomials, for |q| �= 1, with appropriate normalisations

Hn (ε, δ; q) = (qeε−δ ; q)∞(qeδ ; q)∞
(qeε; q)∞(q; q)∞

(−1)nqn(n+3)/2e(n+1)ε

e
1

12 ε2− 1
12 (εδ−δ2)E2(q)

∑

k∈Z
qk(k+1)e(2k+1)δ(qeε; q)n

(qeδ ; q)k (qeε−δ ; q)n−k

Hn (ε, δ; q−1) = (qeε+δ ; q)∞
(qeδ ; q)2∞

q−n(n+3)/2e(n+3/2)ε

(−1)n (e−δ ; q)∞(q; q)∞
∑

k∈Z
(−1)k qk(k+1)/2eδk (qeδ ; q)k−1

(qeε+δ ; q)k−n−1

(166)

where n ∈ Z and |q| < 1. These deformations satisfy the recursion

Hn+2(ε, δ; q) + eεqn+3(1 + q − eεqn+2 + e2εq2n+4)Hn+1(ε, δ; q) + e2εq2n+6(1 − eεqn+1)Hn(ε, δ; q) = 0

(167)

obtained from (163) by replacing qn to eεqn . Note that when ε = 0, we cannot solve
for H−1 in terms of Hn for n ≥ 0 as discussed in [Par].5 It follows that the function

Qm(ε, δ; q) = −e−ε(1 − eε)2
−1∑

n=−∞
qmnemε Hn(ε, δ; q)(qeε; q)n(q−1e−ε; q−1)n

=
∞∑

n=0

q−mn−memε H−1−n(ε, δ; q)

(q−1eε; q−1)n(qe−ε; q)n

(168)

5 Our H−1(q) agrees with the one defined in [Par] when |q| < 1, however differs when |q| > 1.
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is an inhomogenous solution of Equation (165). In particular, for |q| < 1 we have

Qm (ε, δ; q) = (qeε−δ ; q)∞(qeδ ; q)∞(1 − eε−δ)

(qeε; q)∞(q; q)∞e
1

12 ε2− 1
12 (εδ−δ2)E2(q)

(1 − eε)

×
∞∑

n=0

∑

k∈Z
(−1)nq(n+1)(n−2)/2−mn−m+k(k+1)e(m−n)ε+(2k+1)δ(q−1eε−δ ; q−1)n+k

(q−1eε; q−1)2
n (qeε; q)n (qeδ ; q)k

Qm (ε, δ; q−1) = (qeε+δ ; q)∞
(qeδ ; q)2∞(e−δ ; q)∞(q; q)∞

×
∞∑

n=0

∑

k∈Z
(−1)n+k q−(n+1)(n−2)/2+mn+m+k(k+1)/2e(m−n+1/2)ε+δk (qeδ ; q)k−1

(qeε+δ ; q)k+n(qeε; q)n (q−1e−ε; q−1)n
.

(169)

We see that Qm(ε, δ; q) is convergent for |q| < 1 and all m ∈ Z and for |q| > 1 and all
m ∈ Z≥0. Moreover, εQm(ε, δ; q) ∈ Z((q))[[ε, δ]] for m ∈ Z and δ2 Qm(ε, δ; q−1) ∈
Z((q))[[ε, δ]] for m ∈ Z≥0. Substituting Q for f in the LHS of Equation (165) gives a
RHS of

e(m−1)ε(1 − eε)2 H0(ε, δ; q)

− qm+4e(m+1)ε(1 − q−1e−ε)(1 − eε)3(1 − q−1eε)H−1(ε, δ; q).
(170)

In particular, for |q| < 1 Equation (170) is

(qeε−δ; q)∞(qeδ; q)∞
(qeε; q)∞(q; q)∞e

1
12 ε2− 1

12 (εδ−δ2)E2(q)

(
emε(1 − eε)2

∑

k∈Z

qk(k+1)e(2k+1)δ

(qeδ; q)k(qeε−δ; q)−k

+qm+3e(m+1)ε(1 − q−1e−ε)(1 − eε)2(1 − q−1eε)
∑

k∈Z

qk(k+1)e(2k+1)δ

(qeδ; q)k(qeε−δ; q)−1−k

)

= ε2(1 + O(δ)) + O(ε3) (171)

and for |q| > 1 Equation (170) is

(q−1eε+δ; q−1)∞
(q−1eδ; q−1)2∞(e−δ; q−1)∞(q−1; q−1)∞
(

e(m+1/2)ε(1 − eε)2
∑

k∈Z
(−1)kq−k(k+1)/2eδk (q−1eδ; q−1)k−1

(q−1eε+δ; q−1)k−1

+ qm+3e(m+3/2)ε(1 − q−1e−ε)(1 − eε)3(1 − q−1eε)

∑

k∈Z
(−1)kq−k(k+1)/2eδk (q−1eδ; q−1)k−1

(q−1eε+δ; q−1)k

)

= ε2 + O(ε3).

(172)

4.3. A 6 × 6 matrix of q-series. We now have all the ingredients to define the promised
6 × 6 matrix Jm(q) of q-series for |q| �= 1. Let us denote by Q(a,b)

m (q) the coefficient
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of εaδb in the expansion of Qm(q). We now define

Jm (q) =

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

1 Q(2,0)
m (q) Q(2,0)

m+1 (q) Q(2,0)
m+2 (q) Q(2,0)

m+3 (q) Q(2,0)
m+4 (q)

0 Q(0,0)
m (q) Q(0,0)

m+1 (q) Q(0,0)
m+2 (q) Q(0,0)

m+3 (q) Q(0,0)
m+4 (q)

0 Q(−1,2)
m (q) Q(−1,2)

m+1 (q) Q(−1,2)
m+2 (q) Q(−1,2)

m+3 (q) Q(−1,2)
m+4 (q)

0 Q(0,2)
m (q) Q(0,2)

m+1 (q) Q(0,2)
m+2 (q) Q(0,2)

m+3 (q) Q(0,2)
m+4 (q)

0 Q(1,0)
m (q) Q(1,0)

m+1 (q) Q(1,0)
m+2 (q) Q(1,0)

m+3 (q) Q(1,0)
m+4 (q)

0 Q(1,2)
m (q) Q(1,2)

m+1 (q) Q(1,2)
m+2 (q) Q(1,2)

m+3 (q) Q(1,2)
m+4 (q)

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

(|q| < 1),

Jm (q) =

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

1 Q(2,0)
m (q) Q(2,0)

m+1 (q) Q(2,0)
m+2 (q) Q(2,0)

m+3 (q) Q(2,0)
m+4 (q)

0 Q(1,−2)
m (q) Q(1,−2)

m+1 (q) Q(1,−2)
m+2 (q) Q(1,−2)

m+3 (q) Q(1,−2)
m+4 (q)

0 Q(2,−2)
m (q) Q(2,−2)

m+1 (q) Q(2,−2)
m+2 (q) Q(2,−2)

m+3 (q) Q(2,−2)
m+4 (q)

0 Q(1,0)
m (q) Q(1,0)

m+1 (q) Q(1,0)
m+2 (q) Q(1,0)

m+3 (q) Q(1,0)
m+4 (q)

0 Q(0,−2)
m (q) Q(0,−2)

m+1 (q) Q(0,−2)
m+2 (q) Q(0,−2)

m+3 (q) Q(0,−2)
m+4 (q)

0 Q(0,0)
m (q) Q(0,0)

m+1 (q) Q(0,0)
m+2 (q) Q(0,0)

m+3 (q) Q(0,0)
m+4 (q)

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

(|q| > 1).

(173)

The next theorem relates the above matrix to the linear q-difference equation (165).

Theorem 17. The matrix Jm(q) is a fundamental solution to the linear q-difference
equation

Jm+1(q) = Jm(q)A(qm, q),

A(qm, q) =

⎛

⎜⎜⎜⎜
⎜⎜
⎝

1 0 0 0 0 −q−2m−10

0 0 0 0 0 (1 − qm+1)(1 − qm+2)q−2m−10

0 1 0 0 0 (3 + 2q)(1 − qm+1)q−m−8

0 0 1 0 0 (qm+4 + 6qm+3 + 3qm+2 − q − 4)q−m−7

0 0 0 1 0 (−3qm+4 − 6qm+3 − qm+2 + 3)q−m−6

0 0 0 0 1 (3qm+4 + 2qm+3 − 1)q−m−5

⎞

⎟⎟⎟⎟
⎟⎟
⎠

. (174)

and has

det(Jm(q)) = q−20−7m(q; q)9∞(q−m−1; q)∞(q−m; q)∞ (|q| < 1),

det(Jm(q)) = q−20−7m(q−1; q−1)−9∞ (q−m−1; q−1)−1∞ (q−m−2; q−1)−1∞ (|q| > 1).
(175)

Proof. Equation (174) follows from Equations (171), (172). The determinant is calcu-
lated using the determinant of A(qm, q) and by considering the limiting behavior in m.
��

The construction of this matrix has used special q-hypergeometric formulae for the
Habiro polynomials. However, this construction can be carried out more generally and
will be developed in a later publication.

There is a similar, however more complicated, relation between J−m(q−1) with the
first row replaced by Appell-Lerch type sums and Jm(q)−1 as in Theorem 4. This indi-
cates these matrices could come from the factorisation of a state-integral. We will not
give this relation, since we do not need it for the purpose of resurgence. We will however,
discuss an important block property of the matrix J−2(q), after a gauge transformation.
Namely, we define:

Jnorm(q) = J−2(q)

⎛

⎜⎜
⎜⎜⎜
⎝

1 0 0 0 0 0
0 0 0 0 0 q−1 − 1
0 0 0 0 1 −3
0 −q q 3q2 0 2q
0 0 q2 q2 − 3q3 0 −q2

0 0 0 q4 0 0

⎞

⎟⎟
⎟⎟⎟
⎠

. (176)
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The first few terms of the matrix Jnorm(q) + Q(q3) are given by

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

1 − 1
12 + 25

12 q + 4q2 − 5
6 − 19

6 q − 95
12 q2 1

12 − 2q − 83
12 q2 − 5

12 + 11
12 q − 3q2 5

12 − 1
2 q + 2q2

0 1 − q −2 + 2q − q2 −1 − q2 −1 + q 1
0 −1 + 4q + q2 1 − 7q + 2q2 −q + q2 1 − 3q − q2 q2

0 5
12 − 35

12 q + 13
2 q2 2

3 + 4
3 q − 263

12 q2 1
12 − 5

2 q − 137
12 q2 − 17

12 + 53
12 q − 13

2 q2 − 1
12 + 4q + 11

2 q2

0 0 0 0 1 − 2q −1 + q + 2q2

0 0 0 0 11
12 − 11

6 q + 10q2 1
12 − 61

12 q − 1
6 q2

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

. (177)

We next discuss a block structure for the gauged-transform matrix (176).

Conjecture 18. When |q| < 1, the matrix Jnorm(q) has a block form

⎛

⎝
1 × 1 1 × 3 1 × 2

0 3 × 3 3 × 2
0 0 2 × 2

⎞

⎠ . (178)

Our next task is to identify the 3×3 and the 2 ×2 blocks of the matrix Jnorm(q). The
first observation is that the 3×3 block is related to the 3×3 matrix given in [GGMn21].
The second is that the 2 × 2 block is related to modular forms. This is the content of the
next conjecture.

Conjecture 19. The 3 × 3 block for |q| < 1 of Jnorm(q) of (176) has the form

(q; q)∞Jred−1(q)

⎛

⎝
0 0 1

−1 3 0
0 −1 0

⎞

⎠ (179)

(where Jred
m (q) is the 3 × 3 matrix of [GGMn21] reviewed in Sect. 4.1) and the 2 × 2

block has the form

(q; q)2∞
(

H(q) G(q)

∗ ∗
)

(180)

where

H(q) =
∞∑

k=0

qk2+k

(q; q)k
and G(q) =

∞∑

k=0

qk2

(q; q)k
(181)

are the famous Rogers-Ramanujan functions.

The remaining two entries of the 2×2 block are higher weight vector-valued modular
forms associated to the same SL2(Z)-representation as the Rogers-Ramanujan functions,
discussed for example in [Whe23]. Part of this conjecture is proved in Appendix A.

This block decomposition fits nicely with the “dream” in [Zaga]. Here we do see
the interesting property that the 1 × 2 and 3 × 2 blocks contain some non-trivial gluing
information. This implies that the diagrammatic “short exact sequence” will not always
“split”. The block decomposition also implies that the resurgent structure of the asymp-
totic series associated to the q-series in the 4 × 4 block in the top left does not depend
on the other blocks. This block and in-particular the second column of Jnorm will be the
focus of Sect. 4.4.
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We now consider the analytic properties of the function

W (τ ) = Jnorm(e(τ ))−1

⎛

⎜⎜⎜
⎜⎜
⎝

τ 2 0 0 0 0 0
0 1 0 0 0 0
0 0 τ 0 0 0
0 0 0 τ 2 0 0
0 0 0 0 τ 0
0 0 0 0 0 τ 3

⎞

⎟⎟⎟
⎟⎟
⎠

Jnorm(e(−1/τ)), (τ ∈ C \ R).

(182)

If the work [GZ23] extended to the 6 × 6 matrix, it would imply that the function W
extends to an analytic function on C′. This would follow from an identification of W
with a matrix of state-integrals, as was done in Sect. 2.7 for the 41 knot. Although we
do not know of such a matrix of state-integrals, we can numerically evaluate W when τ

is near the positive real axis and test the extension hypothesis. Doing so for τ = 1 + i
100

we have

Jnorm(e(−1/τ))

=

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

1 1.9E9 + 3.8E8i −5.1E9 − 9.9E8i −4.5E9 − 8.8E8i −1.2E9 − 2.5E8i 2.9E9 + 5.7E8i
0 2.4E6 + 4.1E5i −6.1E6 − 1.0E6i −5.4E6 − 9.5E5i −1.5E6 − 2.7E5i 3.5E6 + 6.1E5i
0 −1.3E−20 + 1.0E−20i 1.7E−20 − 2.6E−20i −6.2E−22 − 5.1E−21i 9.1E−21 − 2.5E−21i −4.0E−21 + 3.8E−21i
0 1.9E9 + 3.8E8i −5.1E9 − 9.9E8i −4.5E9 − 8.8E8i −1.2E9 − 2.5E8i 2.9E9 + 5.7E8i
0 0 0 0 3.1E−17 − 1.3E−17i −5.0E−17 + 2.1E−17i
0 0 0 0 2.6E−14 − 1.0E−14i −4.2E−14 + 1.7E−14i

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

(183)

where e(x) = e2π ix whereas

W (τ ) =

⎛

⎜
⎜⎜
⎜
⎝

0.99 − 0.019i −0.10 − 0.028i 0.24 − 0.25i 0.060 − 0.43i −0.064 + 0.059i −0.18 − 0.094i
0 0.59 − 1.0i 1.0 + 1.3i 0.19 − 0.13i −0.60 − 0.20i −0.48 − 0.22i
0 −0.17 − 0.17i 1.2 − 0.30i 0.024 − 0.31i −0.14 − 0.0076i −0.17 + 0.030i
0 0.028 − 0.31i 0.097 + 1.1i 1.0 + 0.46i −0.17 + 0.030i −0.12 − 0.53i
0 0 0 0 0.17 − 0.83i −0.44 − 0.25i
0 0 0 0 −0.46 − 0.26i 0.63 − 0.56i

⎞

⎟
⎟⎟
⎟
⎠

. (184)

4.4. Borel resummation and Stokes constants. The 52 knot has four asymptotic series
�(σ j )(τ ) for j = 0, 1, 2, 3 corresponding to the trivial, the geometric, the conjugate,
and the real flat connections respectively, denoted respectively by σ j for j = 0, 1, 2, 3.
Similar to the 41 knot, the asymptotic series �(σ j )(τ ) for j = 1, 2, 3 can be defined
in terms of a perturbation theory of a state-integral [KLV16,AK14] using the standard
formal Gaussian integration as explained in [DGLZ09,GGMn21], and they have been
computed in [GGMn21] with more than 200 terms. Let ξ j ( j = 1, 2, 3) be the roots to
the algebraic equation

(1 − ξ)3 = ξ2 (185)

with numerical values

ξ1 = 0.78492 . . . + 1.30714 . . . i, ξ2 = 0.78492 . . . − 1.30714 . . . i, ξ3 = 0.43016 . . . .

(186)



Resurgence of Chern–Simons Theory Page 43 of 60    20 

The asymptotic series �(σ j )(τ ) for j = 1, 2, 3 have the universal form6

�(σ j )(τ ) = e
3π i
4

√
δ j

e
V j

2π iτ ϕ(σ j )(τ ), j = 1, 2, 3, (188)

where δ j = 5 − 3ξ j + 3ξ2
j and

V1 = 3Li2(ξ1) + 3/2 log(ξ1) log(1 − ξ1) − π i log(ξ1) − π2

3

V2 = 3Li2(ξ2) + 3/2 log(ξ2) log(1 − ξ2) + π i log(ξ2) − π2

3
,

V3 = 3Li2(ξ3) + 3/2 log(ξ3) log(1 − ξ3) − π2

3
.

(189)

Their numerical values are given by

V1 = 3.0241 . . . + 2.8281 . . . i, V2 = 3.0241 . . . − 2.8281 . . . i, V3 = −1.1134 . . . .

(190)

where the common absolute value of the imaginary parts of V1, V2 is the Vol(S3\52).
Finally the power series ϕ(σ j )(h/(2π i)) with h = 2π iτ have coefficients in the number
field Q(ξ j ) and their first few coefficients are given by

ϕ(σ j )

(
h

2π i

)
= 1 +

1452ξ2
j − 1254ξ j + 15949

23 · 3 · 232 h

+
2124948ξ2

j − 2258148ξ j + 11651375

27 · 32 · 233 h2 + . . . (191)

The additional new series�(σ0)(τ ) ∈ Q[[τ ]] corresponds to the zero volume (V (σ0) =
0) trivial flat connection. As exlained in Sect. 2.3, it can be computed using the colored
Jones polynomial or the Kashaev invariant. The first few terms are

�(σ0)( h
2π i ) = ϕ(σ0)( h

2π i ) = 1 + 2h2 + 6h3 +
157

6
h4 + . . . (192)

We are interested in the Stokes automorphism of the Borel resummation of the 4-
vector �(τ) of asymptotic series

�(τ) =

⎛

⎜⎜
⎝

�(σ0)(τ )

�(σ1)(τ )

�(σ2)(τ )

�(σ3)(τ )

⎞

⎟⎟
⎠ . (193)

6 The series �
(σ j )(τ ) ( j = 1, 2, 3) are related to the series in [GGMn21,GGMn23], which we will denote

by �
(σ j )

GGM(τ ), by a common prefactor

�
(σ j )(τ ) = ie− π i

12 (τ+τ−1)−2π iτ
�

(σ j )

GGM(τ ), j = 1, 2, 3. (187)

The Stokes constants associated to the Borel resummation of �
(σ j )

GGM(τ ) are not changed. The additional

prefactor is introduced so that the Stokes automorphism between �(σ0)(τ ) and �
(σ j )(τ ) ( j = 1, 2, 3) can be

presented in an elegant form, and is also dictated by positions of singularities of Borel transform of �(σ0)(τ ).



   20 Page 44 of 60 S. Garoufalidis

Fig. 6. Singularities of Borel transforms of ϕ
(σ j )(τ ) for j = 0, 1, 2, 3 of the knot 52. Red lines are (some)

Stokes rays

First of all, the Borel transform of each asymptotic series �(σ j )(τ ) ( j = 0, 1, 2, 3) has
rich patterns of singularities. Similar to the case of 41 knot discussed in Sect. 2.4, the
Borel transforms of �(σ j )(τ ), j = 1, 2, 3 have singularities located at


(σ j ) = {ι j,i + 2π ik | i = 1, 2, 3, i �= j, k ∈ Z} ∪ {2π ik | k ∈ Z�=0}, j = 1, 2, 3

(194)

as shown in the right three panels of Fig. 6, while the Borel transform of �(σ0)(τ ) have
singularities located at (some of these singular points are actually missing as we will
comment in the end of the section.)


(σ0) = {ι0,i + 2π ik | i = 1, 2, 3, k ∈ Z}, (195)

as shown in the left most panel of Fig. 6, where

ι j,i = Vj − Vi

2π i
, i, j = 0, 1, 2, 3. (196)

To any singularity located at ι
(k)
i, j := ιi, j + 2π ik in the union


 = ∪ j=0,1,2,3

(σ j ), (197)

we can associate a local Stokes matrix

S
ι
(k)
i, j

(q̃) = I + S(k)
i, j q̃k Ei, j , S(k)

i, j ∈ Z, (198)

where Ei, j is the 4 × 4 elementary matrix with (i, j)-entry 1 (i, j = 0, 1, 2, 3) and

all other entries zero, and S
(k)
i, j is the Stokes constant. Then the Borel resummation

along the rays ρθ± raised slight above and below the angle θ are related by the Stokes
automorphism

�(τ)sθ+(�)(τ) = Sθ (q̃)�(τ)sθ−(τ ), (199)
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Fig. 7. Stokes rays and cones in the τ -plane for the 4-vector �(τ) of asymptotic series of the knot 52. Red
lines are (some) Stokes rays

where

Sθ (q̃) =
∏

arg ι=θ

Sι(q̃), �(τ) = diag(τ 3/2, 1, 1, 1), (200)

and the locality condition is assumed.
More generally, for two rays ρθ+ and ρθ− whose arguments satisfy 0 < θ+ −θ− ≤ π ,

we can define the global Stokes matrix Sθ−→θ+ as in (44), and it also satisfies the
factorisation property (45). Since the factorisation is unique [GGMn21,GGMn23], we
only need to compute finitely many global Stokes matrices in order to extract all the
local Stokes matrices associated to the infinitely many singularities in 
 and thus the
corresponding Stokes constants. In particular, we can choose four cones I, I I, I I I, I V
slightly above the positive and the negative real axes as shown in Fig. 7, and compute
the four global Stokes matrices

SI→I I , SI I→I I I , SI I I→I V , SI V →I , (201)

where a cone R in the subscript means any ray inside the cone.
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On the other hand, each of the global Stokes matrices in (201) has the block upper
triangular form

⎛

⎜
⎝

1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

⎞

⎟
⎠ . (202)

The 3×3 sub-matrices Sred
R→R′ in the right bottom have been worked out in [GGMn21].

For later convenience, we write down two of the four reduced global Stokes matrices,

Sred
I→I I (q̃) = 1

2

⎛

⎝
0 1 0
0 1 1

−1 0 0

⎞

⎠ Jred−1(q̃
−1)T

⎛

⎝
0 0 1
0 −2 0
1 0 0

⎞

⎠ Jred−1(q̃)

⎛

⎝
0 0 −1
1 −3 0
0 1 0

⎞

⎠ , |q̃| < 1,

(203a)

Sred
I I I→I V (q̃) = 1

2

⎛

⎝
1 −3 0
0 1 0
0 0 −1

⎞

⎠ Jred−1(q̃
−1)T

⎛

⎝
0 0 1
0 −2 0
1 0 0

⎞

⎠ Jred−1(q̃)

⎛

⎝
1 0 0
1 1 0
0 0 −1

⎞

⎠ , |q̃| > 1.

(203b)

In addition, as seen from Fig. 6, there are no singularities along the positive and
negative real axes in 
(σ0) relevant for �(σ0)(τ ); all the singular points in 
(σ0) are
either in the upper half plane beyond the cones I, I I or in the lower half plane beneath
the cones I I I, I V . Consequently we only need to compute the first row of two Stokes
matrices SI→I I and SI I I→I V . For this purpose, we find the following.

Conjecture 20. For every cone R ⊂ C \ 
 and every τ ∈ R, we have

Q(2,0)
0 (q) = sR(�(σ0))(τ ) + τ−3/2

3∑

j=1

MR, j (q̃)sR(�(σ j ))(τ ), (204)

where MR, j (q̃) ( j = 1, 2, 3) are q̃ (resp., q̃−1)-series if Imτ > 0 (resp., Imτ < 0) with
integer coefficients that depend on R.

A more elegant way to present MR, j (q̃) is by the row vector MR(q̃) := (MR,1,

MR,2, MR,3)(q̃), and it can be expressed in terms of a 3 × 3 matrix M (σ0)
R (q̃)

MR(q̃) =
(

q̃ Q(2,0)
0 (q̃), q̃2 Q(2,0)

1 (q̃), q̃3 Q(2,0)
2 (q̃)

)
M (σ0)

R (q̃). (205)
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Conjecture 21. Equation (204) holds in the cones R = I, I I, I I I, I V where the q̃ ,q̃−1-
series MR, j (q̃) are given in terms of M (0)

R (q̃) through (236) which are as follows

M (σ0)
I (q̃) =

⎛

⎝
1 −1 −3q̃
0 −1 −1 + 3q̃
0 0 −q̃

⎞

⎠ , (206a)

M (σ0)
I I (q̃) =

⎛

⎝
−1 1 −3q̃
−1 0 −1 + 3q̃
0 0 −q̃

⎞

⎠ , (206b)

M (σ0)
I I I (q̃) =

⎛

⎝
3 1 −3q̃

−1 0 −1 + 3q̃
0 0 −q̃

⎞

⎠ , (206c)

M (σ0)
I V (q̃) =

⎛

⎝
1 3 −3q̃
0 −1 −1 + 3q̃
0 0 −q̃

⎞

⎠ . (206d)

Equations (204), together with the reduced Stokes matrices Sred
R→R′(q̃) for �(σ j )(τ )

( j = 1, 2, 3), allow us to calculate entries in the first row of SI→I I (q̃) and SI I I→I V (q̃)

by

SR→R′(q̃)0, j = MR, j (q̃) −
3∑

k=1

MR′,k(q̃)Sred
R→R′(q̃)k, j , j = 1, 2, 3. (207)

In the following we list the first few terms of these q̃ and q̃−1-series. In the upper half
plane

SI→I I (q̃)0,1 = −1 + 13q̃ − 12q̃2 − 82q̃3 − 29q̃4 + 85q̃5 + O(q̃6), (208a)

SI→I I (q̃)0,2 = 1 − 16q̃ + 42q̃2 + 135q̃3 − 54q̃4 − 346q̃5 + O(q̃6), (208b)

SI→I I (q̃)0,3 = −q̃ + 10q̃2 + 18q̃3 − 31q̃4 − 92q̃5 + O(q̃6). (208c)

In the lower half plane

SI I I→I V (q̃)0,1 = 4q̃−1 − 4q̃−2 − 51q̃−3 − 62q̃−4 − 27q̃−5 + O(q̃−6), (209a)

SI I I→I V (q̃)0,2 = 3q̃−1 + 2q̃−2 − 26q̃−3 − 47q̃−4 − 64q̃−5 + O(q̃−6), (209b)

SI I I→I V (q̃)0,3 = −1 + q̃−2 + 18q̃−3 + 39q̃−4 + 73q̃−5 + O(q̃−6). (209c)

Finally, we can factorise the global Stokes matrices SI→I I (q̃),SI I I→I V (q̃) to ob-
tain local Stokes matrices associated to individual singular points in 
 and extract the
associated Stokes constants. The Stokes constants for �(σ j )(τ ) ( j = 1, 2, 3) are al-
ready given in [GGMn21,GGMn23]. We collect the Stokes contants for �(σ0)(τ ) in the
generating series

S+
0, j (q̃) =

∑

k≥0

S(k)
0, j q̃

k, S−
0, j (q̃) =

∑

k≤0

S(k)
0, j q̃

k, j = 1, 2, 3. (210)
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And we find that in the upper half plane

S+
0,1(q̃) = −1 + q̃ + 3q̃2 + 25q̃3 + 278q̃4 + 3067q̃5 + O(q̃6), (211a)

S+
0,2(q̃) = 1 − q̃ − 3q̃2 − 25q̃3 − 278q̃4 − 3067q̃5 + O(q̃6), (211b)

S+
0,3(q̃) = 0, (211c)

while in the lower half plane

S−
0,1(q̃) = 3q̃−1 − 34q̃−2 + 391q̃−3 − 4622q̃−4 + 54388q̃−5 + O(q̃−6), (212a)

S−
0,2(q̃) = 3q̃−1 − 34q̃−2 + 391q̃−3 − 4622q̃−4 + 54388q̃−5 + O(q̃−6), (212b)

S−
0,3(q̃) = −1 + 9q̃−1 − 56q̃−2 + 705q̃−3 − 8378q̃−4 + 98379q̃−5 + O(q̃−6).

(212c)

We comment that the results of S+
0,3(q̃) and S−

0,3(q̃) indicate that there are actually no

singular points of the type ι
(k)
0,3 in the upper half plane, but they exist in the lower half plane.

Also note that the constant terms in S+
0,1(q̃),S+

0,2(q̃) and S−
0,3(q̃) are Stokes constants

associated to the singular points ι0, j ( j = 1, 2, 3). The Stokes constants associated to
ιi, j (i, j = 1, 2, 3, i �= j) have already been computed in [GGMn21,GGMn23]. We
can assemble all these Stokes constants in a matrix

⎛

⎜
⎝

0 −1 1 −1
0 0 4 3
0 −4 0 −3
0 −3 3 0

⎞

⎟
⎠ (213)

which matches (after some changes of signs) the one appearing in [GZ24, Eq. (40)].

4.5. (x, q)-series. In this section we extend the results of Sect. 4.1 by including the
Jacobi variable x . Recall that the matrix Jred

m (x, q)7is a fundamental solution to the
linear q-difference equation

fm(x, q) − (1 + x + x−1) fm+1(x, q) + (1 + x + x−1 − q2+m) fm+2(x, q) − fm+3(x, q) = 0

(215)

and it is defined by

Jred
m (x, q) =

⎛

⎝
Am(x, q) Am+1(x, q) Am+2(x, q)

Bm(x, q) Bm+1(x, q) Bm+2(x, q)

Cm(x, q) Cm+1(x, q) Cm+2(x, q)

⎞

⎠ , |q| �= 1, (216)

7 The matrices Jred
m (x, q) are related to the Wronskians Wm (x, q) in [GGMn21,GGMn23] by

Jred
m (x, q) = Wm (x, q)T . (214)
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where the holomorphic blocks are given by

Am(x, q) = H(x, x−1, qm; q), (217a)

Bm(x, q) = θ(−q1/2x; q)−2xm H(x, x2, qm x2; q), (217b)

Cm(x, q) = θ(−q−1/2x; q)−2x−m H(x−1, x−2, qm x−2; q), (217c)

where H(x, y, z; qε) := H ε(x, y, z; q) for |q| < 1 and ε = ± and

H+(x, y, z; q) = (qx; q)∞(qy; q)∞
∞∑

n=0

qn(n+1)zn

(q; q)n(qx; q)n(qy; q)n
, (218a)

H−(x, y, z; q) = 1

(x; q)∞(y; q)∞

∞∑

n=0

(−1)n q
1
2 n(n+1)x−n y−nzn

(q; q)n(qx−1; q)n(qy−1; q)n
, (218b)

θ(x; q) = (−q
1
2 x; q)∞(−q

1
2 x−1; q)∞. (218c)

To these series we wish to add an additional series which satisfies the inhomogenous
q-difference equations of the descendant coloured Jones polynomial (164). This can be
easily constructed using the deformations of the Habiro polynomials (166). We find a
solution

Dm(x, q) = −
−1∑

n=−∞
qmn Hn(q)x−n(qx; q)n(q−1x; q−1)n . (219)

(compare with Equation (91)) where |q| < 1 and m ∈ Z or |q| > 1 and m ∈ Z≥0, and
Hn(q) is the coefficient of ε0δ0 in the expansion of Hn(ε, δ; q). In particular, for |q| < 1
we have

Dm(x, q) = −
∞∑

n,k=0

(−1)kqn(n+1)+k(k+1)/2−nk−(m+1)(n+1) (q; q)n+k

(q; q)k(q; q)n(x−1; q)n+1(x; q)n+1

(220)

and we see the (x, q)-series D0(x, q) coincides with f52(x, q) in [Par20,Par].
This series can be included as the first row of a 6 × 6 matrix of (x, q)-series. The

latter might be related to the factorisation of the state integral proposed in Sect. 4.8.
However, we find that the matrices above and below the reals have different quantum

modular co-cycles related by inversion. This implies that to do a full discussion on
resurgence one needs to understand the monodromy of this q-holonomic system. Both
these issue will be explored in later publications. For now, we give a description of the
Stokes matrices restricted to τ in the upper half plane.

4.6. x-version of Borel resummation and Stokes constants. In this section we discuss
the x-deformation version of Sect. 4.4. The asymptotic series �(σ j )(τ ) for j = 0, 1, 2, 3
are extended to series �(σ j )(x; τ) with coefficients in Z(x±1). The series �(σ j )(x; τ)

for j = 1, 2, 3 are defined in terms of perturbation theory of a deformed state-integral
[AK14] and they have been computed with about 200 terms for many values of x in
[GGMn23]. Let ξ j ( j = 1, 2, 3) be three roots to the equation

(1 − ξ)(1 − xξ)(1 − x−1ξ) = ξ2, (221)
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ordered such that they reduce to (186) in the limit x → 1. The series �(σ j )(τ ) ( j =
1, 2, 3) can be uniformly written as8

�(σ j )(x; τ) = e
3π i
4

√
δ j (x)

e
V j (x)

2π iτ ϕ(σ j )(x; τ) (223)

where δ j (x) = ξ j − sξ−1
j + 2ξ−2

j and

V1(x) = −Li2(ξ−1
1 ) − Li2(xξ−1

1 ) − Li2(x−1ξ−1
1 ) +

1

2
log2 x − 1

2
log2 ξ1 + π i log ξ1 +

2π2

3
,

V2(x) = −Li2(ξ−1
2 ) − Li2(xξ−1

2 ) − Li2(x−1ξ−1
2 ) +

1

2
log2 x − 1

2
log2 ξ2 − π i log ξ2 +

2π2

3
,

V3(x) = −Li2(ξ−1
3 ) − Li2(xξ−1

3 ) − Li2(x−1ξ−1
3 ) +

1

2
log2 x − 1

2
log2 ξ3 + 3π i log ξ3 +

2π2

3
.

(224)

The power series ϕ(σ j )(x; τ) are

ϕ(σ j )(x; h
2π i ) = 1 +

h

12δ j (x)

(
(−397 − 94s − 114s2 + 390s3 − 278s4 + 81s5 − 10s6)

+ (−381 + 623s − 124s2 − 328s3 + 268s4 − 81s5 + 10s6)ξ j

+ (−270 + 137s + 182s2 − 207s3 + 71s4 − 10s5)ξ2
j

)
+ . . . (225)

with h = 2π iτ and

s = s(x) = x−1 + 1 + x . (226)

The additional series �(σ0)(x; τ), as in Sect. 3.1, can be computed either from the col-
ored Jones polynomial or by using Habiro’s expansion of the colored Jones polynomials.
We find

�(σ0)(x; τ) = ϕ(σ0)(x; τ), (227)

where the power series ϕ(σ0)(x; τ) reads

φ(σ0)(x; h
2π i ) = 1

2x + 2x−1 − 3
− (x1/2 − x−1/2)2(5x + 5x−1 − 4)

(2x + 2x−1 − 3)3 h + . . . , (228)

We are interested in the Stokes automorphisms in the upper half plane of the Borel
resummation of the 4-vector �(x; τ) of asymptotic series

�(x; τ) =

⎛

⎜⎜
⎝

�(σ0)(x; τ)

�(σ1)(x; τ)

�(σ2)(x; τ)

�(σ3)(x; τ)

⎞

⎟⎟
⎠ , (229)

8 The series �
(σ j )(x; τ) ( j = 1, 2, 3) are related to the series in [GGMn21,GGMn23], which we will

denote by �
(σ j )

GGM(x; τ), by a common prefactor

�
(σ j )(x; τ) = ie− π i

12 (τ+τ−1)−2π iτ
�

(σ j )

GGM(x; τ), j = 1, 2, 3. (222)

The Stokes constants associated to the Borel resummation of �
(σ j )

GGM(τ ) are not changed.
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Fig. 8. Singularities of Borel transforms of ϕ
(σ j )(x, τ ) for j = 0, 1, 2, 3 of the knot 52. Here we take small

and real x . Red lines are (some) Stokes rays

when x is close to 1. The singular points of the Borel transform of �(x; τ), collectively
denoted as 
(x), are smooth functions of x and they are equal to 
 in (197) in the limit
x → 1. When x is slightly away from 1, each singular point ι

(k)
i, j in 
 splits to a finite

set of points located at ι
(k,
)
i, j := ι

(k)
i, j + 
 log(x), 
 ∈ Z. We illustrate this schematically in

Fig. 8. The complex plane of τ is divided by rays passing through these singular points
into infinitely many cones. We will then pick the cones I and I I located slightly above
the positive and negative real axes, and compute the global Stokes matrix from cone I
to cone I I defined by

�(x, τ )sI I (x, τ ) = SI→I I (x̃, q̃)�(x, τ )sI (x, τ ), (230)

where

�(x, τ ) = diag

(
τ 1/2 x1/2 − x−1/2

x̃1/2 − x̃−1/2 , 1, 1, 1

)
. (231)

The global Stokes matrix SI→I I (x̃, q̃) factorises uniquely into a product of local Stokes
automorphisms associated to each of the singular points in the upper half plane, from
which the individual Stokes constants can be read off.

The global Stokes matrix SI→I I (x̃, q̃) in (230) also has the block upper triangular
form

⎛

⎜
⎝

1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

⎞

⎟
⎠ . (232)

The 3 × 3 sub-matrices Sred
I→I I in the right bottom have been worked out in [GGMn23],

and they are given by

Sred
I→I I (x̃, q̃) = 1

2

⎛

⎝
0 1 0
0 1 1

−1 0 0

⎞

⎠ Jred−1(x̃; q̃−1)T

⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ Jred−1(x̃; q̃)

⎛

⎝
0 0 −1
1 −s̃ 0
0 1 0

⎞

⎠ , |q̃| < 1,

(233a)
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where

s̃ = s(x̃), (234)

and Jred(x, q) is given by (216). To calculate the first row of SI→I I (x̃, q̃), we use the
additional holomorphic block Dm(x, q).

Conjecture 22. For every cone R ⊂ 
(x) and every τ ∈ R, we have

D0(x, q) = sR(�(σ0))(x; τ) + τ−1/2 x̃1/2 − x̃−1/2

x1/2 − x−1/2

3∑

j=1

MR, j (x̃, q̃)sR(�(σ j ))(x; τ),

(235)

where MR, j (x̃, q̃) ( j = 1, 2, 3) are q̃-series with coefficients in Z(x̃±1) depending on
the cone R.

We present MR, j (x̃, q̃) in terms of the row vector MR(x̃, q̃) := (MR,1, MR,2, MR,3)

(x̃, q̃), and it can be expressed in terms of a 3 × 3 matrix M (σ0)
R (x̃, q̃)

MR(x̃, q̃) =
(

q̃ D0(x̃, q̃), q̃2 D1(x̃, q̃), q̃3 D2(x̃, q̃)
)

M (σ0)
R (x̃, q̃). (236)

Conjecture 23. Equation (204) holds in the cones R = I, I I where the q̃- series
MR, j (q̃) are given in terms of M (0)

R (x̃, q̃) through (236) which are as follows

M (σ0)
I (x̃, q̃) =

⎛

⎝
1 −1 −s̃ q̃
0 −1 −1 + s̃ q̃
0 0 −q̃

⎞

⎠ , (237a)

M (σ0)
I I (x̃, q̃) =

⎛

⎝
−1 1 −s̃ q̃
−1 0 −1 + s̃ q̃
0 0 −q̃

⎞

⎠ . (237b)

Equations (235), together with the reduced Stokes matricesSred
I→I I (x̃, q̃) for�(σ j )(x; τ)

( j = 1, 2, 3), allow us to calculate entries in the first row of SI→I I (x̃, q̃) by

SI→I I (x̃, q̃)0, j = MI, j (x̃, q̃) −
3∑

k=1

MI I,k(x̃, q̃)Sred
I→I I (x̃, q̃)k, j , j = 1, 2, 3.

(238)

In the following we list the first few terms of these q̃ -series.

SI→I I (x̃, q̃)0,1 = −1 + (1 + s̃ + s̃2)q̃ − (−2s̃ − s̃2 + s̃3)q̃2 − (1 + s̃4)q̃3 + O(q̃4),

SI→I I (x̃, q̃)0,2 = 1 − (1 + 2s̃ + s̃2)q̃ + (−s̃ − s̃2 + 2s̃3)q̃2 + (3s̃2 + s̃3 + s̃4)s̃3 + O(q̃4),

SI→I I (x̃, q̃)0,3 = −q̃ + (1 + s̃2)q̃2 + (3s̃ + s̃2)q̃3 + O(q̃4).

(239)

Finally, we can factorise the global Stokes matrices SI→I I (x̃, q̃) to obtain local
Stokes matrices associated to individual singular points in 
 and extract the associated
Stokes constants. The Stokes constants for �(σ j )(x; τ) ( j = 1, 2, 3) are already given in
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[GGMn21,GGMn23]. We collect the Stokes contants for �(σ0)(x; τ) in the generating
series

S+
0, j (x̃, q̃) =

∑

k≥0

∑




S(k,
)
0, j x̃
q̃k, j = 1, 2, 3. (240)

And we find that

S+
0,1(x̃, q̃) = −1 + q̃ + s̃q̃2 + (−2 + 3s̃2)q̃3 + (2 − s̃ − 2s̃2 + 5s̃3 + 2s̃4)q̃4 + O(q̃5),

S+
0,2(x̃, q̃) = 1 − q̃ − s̃q̃2 − (−2 + 3s̃2)q̃3 + (2 − s̃ − 2s̃2 + 5s̃3 + 2s̃4)q̃4 + O(q̃5),

S+
0,3(x̃, q̃) = 0.

(241)

4.7. An analytic extension of the Kashaev invariant and the colored Jones polynomial.
In this section we discuss an analytic extension of the Kashaev invariant and of the
colored Jones polynomial of the 52 knot, illustrating Conjectures 1 and 2.

Recall that the colored Jones polynomial of the 52 is given by

J 52
N (q) =

N−1∑

k=0

(−1)kq−k(k+1)/2(q1+N ; q)k(q
1−N ; q)k Hk(q), q = e2π iτ , (242)

where

Hk(q) = (−1)kqk(k+3)/2

∑

k=0

q
(
+1) (q; q)k

(q; q)
(q; q)k−


. (243)

Let u be in a small neighborhood of the origin. It is related to x = q N and τ by

x = eu+2π i = eu, τ = u + 2π i

2π iN
. (244)

Then x is close to 1 and τ is close to 1/N . Note that

Nτ = 1 +
u

2π i
(245)

is the analogue of n/k in [Guk05], and here we are considering a deformation from the
case of n/k = 1. We also have

x̃ = elog(x)/τ = exp

(
2π iNu

u + 2π i

)
. (246)

When x is positive real, �(σ1)(x; τ) are not Borel summable along the positive real axis.
Depending on whether τ is in the first or the fourth quadrant, we have

J 52
N (q) = sI (�

(σ0))(x; τ) + τ−1/2 x̃1/2 − x̃−1/2

x1/2 − x−1/2

(
sI (�

(σ1))(x; τ) − (1 + x̃)sI (�
(σ2))(x; τ)

− (1 + x̃)sI (�
(σ3))(x; τ)

)
(247a)

= sI V (�(σ0))(x; τ) + τ−1/2 x̃1/2 − x̃−1/2

x1/2 − x−1/2

(
sI V (�(σ1))(x; τ)

+ (1 + x̃−1)sI V (�(σ2))(x; τ) − (1 + x̃)sI V (�(σ3))(x; τ)
)
. (247b)
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The two equations (247a), (247b) are related by the Stokes discontinuity formula

disc0�
(σ1)(x; τ) = sI (�

(σ1))(x; τ) − sI V (�(σ1))(x; τ) = (2 + x̃ + x̃−1)s(�(σ2))(x; τ).

(248)

Combined, they imply

J
52
N (q) = smed(�(σ0))(x; τ) + τ−1/2 x̃1/2 − x̃−1/2

x1/2 − x−1/2

(
smed(�(σ1))(x; τ) − (1 + x̃)smed(�(σ3))(x; τ)

− x̃ − x̃−1

2
smed(�(σ2))(x; τ)

)
(249)

which is the assertion of Conjecture 2.

4.8. A new state-integral for the 52 knot?. In the case of the figure eight knot, the new
state-integral was obtained by first writing down an integral formula for its colored
Jones polynomial, in Habiro form, and then changing the integration contour to pick
the contribution from the poles in the lower half plane. This led in particular to the
“inverted” Habiro series C0(x, q) in (146). Although we do not have a similar complete
theory for the 52 knot, we can however write down an integral formula for its colored
Jones polynomial which lead, after a change of contour, to the corresponding inverted
Habiro series. In fact, it is possible to write such an integral for all twist knots K p (the
52 knot corresponds to p = 2).

Let us then consider the colored Jones polynomial of the twist knot K p in Habiro’s
form [Mas03]:

J
K p
N (q; x) =

N−1∑

n=0

C
K p
n (q)(qx; q)n(qx−1; q)n, (250)

where

C
K p
n (q) = −qn

n∑

k=0

(−1)kq(p+1/2)k(k+1)+k(q2k+1 − 1)
(q; q)n

(q; q)n+k+1(q; q)n−k
. (251)

It is easy to see that (250) can be written as a double contour integral
∫

Az

∫

Aw

IK p (z, w)dzdw, (252)

where

IK p (z, w) = −�−1
b

(
z − i

2b
+ u

)
�−1

b

(
z − i

2b
− u

)

�−1
b

(
z − i

2b

)
�b

(
z − w +

ib
2

− i

2b

)

× �b

(
z + w +

ib
2

− i

2b

)
e−2π i(p+1/2)(w+ i

2b )2
(

e2πb(z+w) − e2πb(z−w)
)

tanh
(π z

b

)
tanh

(πw

b

)
,

(253)
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and the contours Az,w encircle the poles of the form (71) in the upper complex planes
of the z and the w variables, respectively. We can now deform the contour to pick the
poles in the lower half planes of z, w. The contribution from the simple poles of the
tanh functions in those half planes can be easily computed, and one finds in this way the
inverted Habiro series,

CK p (q, x) = 1

(x
1
2 − x− 1

2 )2

∑

n≥0

qn(n+1)/2

(qx; q)n(qx−1; q)n

×
∑

k≥n

qn(n+1)/2+(p+1/2)k(k+1)−(n+k)(n+k+1)/2−n(qk − q−k−1)
(q; q)n+k

(q; q)n(q; q)k−n
.

(254)

This gives a general formula for all twist knots which agrees with the results of [Par] for
p = 2 (the 52 knot) and p = 3 (the 72 knot).

It might be possible to find appropriate integration contours so that the integral of
IK p (z, w) converges and provides the sought-for new state-integral which sees the series
�(σ0)(x, τ ), as it happened in the case of the 41 knot. In the case of the 52 knot, these
contours do exist and lead to a well-defined integral. We expect that an evaluation of
such an integral by summing over the appropriate set of residues will give the inverted
Habiro series (254), together with additional contributions, as in (146). However, the
fact that the integrals are two-dimensional makes them more difficult to analyze. We
expect to come back to this problem in the near future.
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Appendix A. q-Series Identities

In this appendix we will sketch the proofs of some q-series identities that appear in
Conjecture 19. Since this not one of the main themes of the paper, our presentation

http://creativecommons.org/licenses/by/4.0/


   20 Page 56 of 60 S. Garoufalidis

will be rather brief. Our proofs of the q-hypergeometric identities will use the algo-
rithmic approach of the Wilf-Zeilberger theory (see [WZ92,PWZ96]) and the computer
implementation by Koutschan [Kou10]).

We outline part of the proof of Conjecture 19 for |q| < 1, namely

q Q(0,0)
0 (q) = (q; q)∞

∞∑

n=0

qn(n+1)

(q; q)3
n

q Q(0,0)
1 (q) = (q; q)∞

∞∑

n=0

(2 − qn)
qn(n+1)

(q; q)3
n

q Q(0,0)
2 (q) = (q; q)∞

∞∑

n=0

(
(3 + q−1) − (2 + 2q−1)qn + q2n−1

) qn(n+1)

(q; q)3
n

(255)

Proof. The definition of Q(0,0)
m (q) gives that

q Q(0,0)
m (q) = f−m−1,0(q) (256)

where

fm,p(q) =
∞∑

n,k=0

(−1)kqn(n+1)+k(k+1)/2−nk+mn+pk (q; q)n+k

(q; q)3
n(q; q)k

=
∞∑

k=0

fm,p,k(q)

(257)

with

fm,p,k(q) =
∞∑

n=0

(−1)kqn(n+1)+k(k+1)/2−nk+mn+pk (q; q)n+k

(q; q)3
n(q; q)k

. (258)

Likewise, we define

hm,p(q) = (q; q)∞
∞∑

n=0

qn(n+1)+pn+mn+mp

(q; q)2
n+p(q; q)n

= 1

(q; q)∞

∞∑

n,k,
=0

(−1)k+
 qn(n+1)+k(k+1)/2+
(
+1)/2+pn+pm+pk+p
+nk+mn

(q; q)n(q; q)k(q; q)


=
∞∑

k=0

hm,p,k(q) (259)

where

hm,p,k(q) = 1

(q; q)∞

∞∑

n+ j+
+m=k

(−1) j+
 qn(n+1)+ j ( j+1)/2+
(
+1)/2+pn+pm+pj+p
+nj+mn

(q; q)n(q; q) j (q; q)

.

(260)
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Therefore, we have

f−1,0(q) = q Q(0,0)
0 (q) and h0,0(q) = (q; q)∞

∞∑

n=0

qn(n+1)

(q; q)3
n
. (261)

This implies that the first equality in (255) follows from the p = 0 specialization of

f−1,p(q) = h0,p(q), (p ∈ Z). (262)

This in turn follows (using Equations (257) and (259)) from the following

f−1,p,k(q) = h0,p,k(q), (p ∈ Z, k ∈ N). (263)

Equation (258) expresses the two-variable q-holonomic function f−1,p,k(q) as a one
dimensional sum of a three variable proper q-hypergeometric function. It follows from
[Kou10] that the annihilator ideal of Fk,p(q) := f−1,p,k(q) is generated by the recursion
relations

−qk Fp,k(q) + F1+p,k(q) = 0, (264)

q2+k+2p(−1 + q1+k)2 Fp,k(q)

+q2+k+p(−3 + q1+k + q2+k)Fp,1+k(q) + (−1 + q2+k)Fp,2+k(q) = 0 (265)

This coincides with the annihilator ideal of h0,p,k(q). Thus, the equality (263) for p, k ∈
Z with k ≥ 0 follows from the two special cases (p, k) = (0, 0) and (p, k) = (0, 1),
that is from the identities

∞∑

n=0

qn2

(q; q)2
n

= 1

(q; q)∞

1

1 − q

∞∑

n=0

qn2−n+1(qn+1 − 1)

(q; q)2
n

= q2 − 2q

(q; q)∞(1 − q)

(266)

The first one of the above identities is due to Euler and can be derived using generating
functions of partitions. The second one follows from the q-holonomic system

gm(q) =
∞∑

n=0

qn2+mn

(q; q)2
n

with gm(q) − 2gm+1(q) + (1 − qm+1)gm+2(q) = 0.

(267)

This concludes the proof of the first identity in (255). The remaining two identities follow
(using the above steps) from the following ones

f−2,p,k(q) = 2h0,p,k(q) − h1,p,k(q),

f−3,p,k(q) = (3 + q−1)h0,p,k(q) − (2 + 2q−1)h1,p,k(q) + q−1h2,p,k(q).
(268)

This concludes the sketch of the proof of (255). ��
In the course of the proof, we came up with the following conjecture which expresses

fm,p(q) as Z[q±1]-linear combinations of hm,p(q).
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Conjecture 24. For m ≥ 0 we have:

fm,p(q) =
∞∑

k,i=0

(−1)i qi(i+1)/2+k (q; q)m+k+i

(q; q)m(q; q)i (q; q)k
hk,p(q),

f−1−m,p(q) =
m∑

k=0

m−k∑

i=0

(−1)i qi(i+1)/2+k (q−1; q−1)m

(q−1; q−1)m−i−k(q; q)i (q; q)k
hk,p(q).

(269)
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