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1 Introduction

Complex Chern-Simons theory remains an active field of research that links up many fields
in both physics and mathematics. From the physics side, sl(2,C) Chern-Simons theory
was first considered in [1] as a means to describe three dimensional quantum gravity on
Lorentzian spacetime with positive cosmological constant. Later a beautiful connection
was revealed between sl(N,C) Chern-Simons theory and 3d N = 2 superconformal field
theories by the name of the 3d-3d correspondence [2–5] (see [6] for a review), which was
used to define a large class of 3d SCFTs. Conversely, the BPS sector of the dual 3d SCFT
was used in [7, 8] to define homological invariants Ẑ for the three manifold.
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From the mathematical side, complex Chern-Simons theory plays an important role
in quantum topology. It was found by Witten long time ago [9] that Jones polynomials
of knots, which are Laurent polynomials in q, are vacuum expectation values of Wilson
loops along the knot in SU(2) Chern-Simons theory with q = exp(2πi/(k + 2)), where k is
the discrete level. It is then natural to consider more general complex values of q, which
translates to the complexification of the gauge group [10]. The complex Chern-Simons
theory then provides a new topological invariant for 3d manifolds.

For instance, when M is a knot complement, the partition function of the sl(2,C)
Chern-Simons theory on M is generally believed to reduce to a finite-dimensional integral
called the state integral, as proposed in [11–15] based on [16, 17], which is constructed based
on an ideal triangulation of the manifold. The saddle points of the state integral in the
weak coupling limit are non-Abelian sl(2,C) flat connections on the three manifold [9], and
the associated asymptotic series ϕ(σj) (j ≥ 1) can be obtained by Gaussian expansion [17].
The state integral and thus the asymptotic series are believed to be topological invariants
as they do not change with a different triangulation scheme.

On the other hand, the state integral model has the disadvantage that it is incomplete
in the sense that it misses the information of Abelian flat connections [18]. Instead, the
asymptotic series ϕ(σ0)(τ) associated to the Abelian flat connection σ0 can be determined
from the colored Jones polynomials of the knot expanded in terms of h = log q [19–22].

It is natural to study the resurgent structure of these asymptotic series. On the one
hand, complex Chern-Simon theory is a special quantum field theory with no renormalons,
and therefore these asymptotic series of saddle points must transform to each other by
Stokes automorphism, forming a so-called resurgent structure. On the other hand, the
resurgence theory tells us that the Stokes constants that control all the Stokes automor-
phisms define necessarily new invariants which are non-perturbative in nature. The resur-
gence problem in Chern-Simons theory was first considered in [23], where it was found
(and later emphasized again in [24]) that the Borel transform of ϕ(σ0)(τ) has poles at
Vol(M) + iCS(M) + 4π2Zi, which can be interpreted as a resurgent formulation of the
Volume Conjecture [25, 26]. Later the resurgent problems of the series ϕ(σj)(τ) (j 6= 0) for
non-Abelian saddle points were considered in [27–29]. See also [30] on related results on
Faddeev’s quantum dilogarithm which is a crucial ingredient of state integrals.

Recently the resurgent problem for the sl(2,C) Chern-Simons theory at level k = 1
on the complement of the two simplest hyperbolic knots 41 and 52 were completely solved
in [24, 31, 32]. It was demonstrated that ϕ(σ0)(τ) of the Abelian flat connection is related to
ϕ(σj)(τ) (j 6= 0) of non-Abelian flat connections by Stokes automoprhisms but not the other
way around, while ϕ(σj)(τ) (j 6= 0) transform to themselves. The Stokes constants of all
these Stokes automorphisms were computed explicitly. Surprisingly the Stokes constants
relating ϕ(σj)(τ) (j 6= 0) were found to coincide with the BPS invariants in the dual 3d
N = 2 superconformal field theory on S1 [31, 32], providing another interesting entry of
dictionary in the 3d-3d correspondence. Furthermore, Stokes automorphisms were used to
construct a new state integral for the knot 41, which now includes the contribution of the
Abelian flat connection as well [24]. Finally, the statement that the series ϕ(σ0)(τ) Borel
resums to the Ẑ invariant [33] was corrected to include additional contributions from Borel
resummation of ϕ(σj)(τ) [24].
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In this work we continue this line of research, and generalise the results of [31, 32] to
sl(2,C) Chern-Simons theories with levels k ≥ 1 with small boundary holonomy deforma-
tion x. We first demonstrate that the asymptotic series ϕ(k,σj)(x; τ) (j ≥ 1) associated to
non-Abelian flat connections are such that their coefficients always live in the trace field
of the knot extended by the holonomy parameter x. We then show that these asymptotic
series enjoy universal resurgent structures: both the distribution of Borel plane singular-
ities and the associated Stokes constants are independent of the level k, despite that the
asymptotic series themselves depend highly non-trivally on the level.

The remainder of the paper is structured as follows. We summarise our results, both
on the properties of the asymptotic series and their resurgent structure in section 2. We
then give details in two example sections 3, 4. Finally we conclude and list open questions
in section 5.

2 Resurgent structure of complex Chern-Simons theory at generic level

2.1 Perturbative complex Chern-Simons theory at generic level

The sl(2,C) Chern-Simons theory on a three manifold M has action

Ik,s = tSCS(A) + t̃SCS(A) (2.1)

where SCS(A) is the three dimensional Chern-Simons action

SCS(A) = 1
4π

∫
M

Tr
(
A ∧ dA+ 2

3A ∧A ∧A
)
, (2.2)

A is a connection of the sl(2,C) bundle over M , and A its complex conjugation. The
couplings t, t̃ can be split as

t = 1
2(k + is), t̃ = 1

2(k − is). (2.3)

In a consistent quantum theory, the level k must be an integer so that the partition function
of the Chern-Simons theory is invariant under large gauge transformations. The other level
s is constrained to be either real or imaginary in order for the CS theory to be unitary,
which, however, we do not impose in this work.

Suppose the 3-manifoldM is a knot complementM = S3\K with torus boundary. The
sl(2,C) connection on the boundary torus is parametrised by the holonomies x, y along the
meridian and the longitude. The condition that the sl(2,C) connection can be extended to
the interior of M constrains that x, y are not independent but are related by a polynomial
equation

A(x, y) = 0 (2.4)

called the A-polynomial. Furthermore, in a quantum theory, the holonomy x should be
parametrised as

x = exp
(2πbµ

k
− 2πin

k

)
, (2.5)
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where µ ∈ C, n ∈ Zk, and the parameter b is related to the levels k, s by

b2 = k − is
k + is. (2.6)

By the 3d-3d correspondence, the sl(2,C) Chern-Simons theory at discrete level k ≥ 1
on M is dual to a 3d N = 2 SCFT denoted by T2[M ] put on an orbifold of the squashed
3-sphere S3

b/Zk [15],

S3
b/Zk =

{
(z, w) ∈ C2 | b2|z|2 + b−2|w|2 = 1

}
/(z, w) ∼ (e2πi/kz, e−2πi/kw). (2.7)

Here b has the geometric meaning of the squashing parameter. When M is a knot com-
plement, the T2[M ] theory has a u(1) flavor symmetry. The parameters µ, n are then
respectively the flavor mass, and the holonomy of the flavor vector field. The latter takes
value in π1(S3

b/Zk) = Zk.
WhenM = S3\K is a hyperbolic manifold, it can be triangulated, namely decomposed

to N ideal tetrahedra glued along their faces. In [4], the T2[M ] theory was constructed
based on the triangulation data from the T2[∆] associated with an ideal tetrahedron ∆,
which is well understood. Based on this construction, the partition function of T2[M ] on
S3

b/Zk was computed [15], and it was used to give the state integral model for the sl(2,C)
Chern-Simons theory at level k.

It is important to note that, as first pointed out in [18], the construction in [4] misses
an entire sector related to the Abelian flat connection, and thus the partition function
computed in [15] is also not complete. Rather, the state integral model should be regarded
as the reduced partition function of the sl(2,C) Chern-Simons theory that does not include
the contribution from the Abelian flat connection.

Let us discuss in a bit detail the state integral model. The triangulation of M in terms
of N tetrahedra is described by the small Neumann-Zagier data1 that can be encoded in a
tuple γ = (AAA,BBB, ν) consisting of two matrices AAA,BBB ∈ GL(N,Z) and a vector ν ∈ ZN . They
encode the coefficients of Thurston’s gluing equations for the triangulation including N −1
independent equations imposing condition on internal edges, and one equation describing
holonomy on external edges. We order rows of AAA,BBB and elements of ν so that the first
rows of AAA,BBB and the first element of ν corresponds to the external edge.

It was shown in [36] that (AAA BBB) forms the top half of a symplectic matrix, so that
AAABBBT is symmetric and (AAA BBB) is of full rank. On the other hand, giving a triangulation of
M , the choice of Neumann-Zagier data is not unique. Following [34, 35] we always choose
a set of Neumann-Zagier data where BBB is invertible over integers, and then BBB−1AAA must be
symmetric.

Let us introduce in addition σ = (σ1, . . . , σN ) ∈ CN , mmm = (m1, . . . ,mN ) ∈ (Zk)N as
well as µ = (µ, 0, . . . , 0) ∈ C × 0N−1, nnn = (n, 0, . . . , 0) ∈ Zk × 0N−1. By following the
procedure in [15] and extending slightly the formulas in [34], the state integral model can

1The complete Neumann-Zagier data introduced in [34, 35] also includes a choice of the solution to the
Neumann-Zagier equation.
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be written as

Z(k)
γ (µ, n; b)

= 1
kN
√

detBBB
∑

m∈(Zk)N

∫
dNσe

2πi
k

(−σBBB−1µ+mmmBBB−1nnn)e
πi
k

(−σBBB−1AAAσ+mmmBBB−1AAAmmm+2cbσBBB
−1ν)

(−1)mmmBBB−1AAAmmm
N∏
i=1
Z(k)

b [∆](σi,mi).

(2.8)

The part in blue is due to non-vanishing boundary holonomy and thus new compared to the
results in [34]. Here Z(k)

b [∆](σi,mi) is the partition function of the Chern-Simons theory on
a tetrahedron, which can be expressed in terms of Faddeev’s quantum dilogarithm Φb(x)

Z(k)
b [∆](µ, n) =

∏
(r,s)∈Γ(k;n)

Φb(cb −
1
k

(µ+ ibr + ib−1s)) (2.9)

where
Γ(k;n) = {(r, s) ∈ Z2 | 0 ≤ r, s < k, r − s ≡ n(mod k)} (2.10)

and cb = i
2(b + b−1). This defines a meromorphic function of µ ∈ C for each n ∈ Zk, and

it is defined for all values of b with b2 in the cut plane C′ = C\R≤0. When Im b > 0 or
Im b < 0, it has the factorisation form

Z(k)
b [∆](µ, n) = (qx−1; q)∞(q̃−1x̃−1; q̃−1)∞ (2.11)

where we use the notation

q = exp 2πi
k

(b2 + 1), q̃ = exp−2πi
k

(b−2 + 1),

x = exp
(2πbµ

k
− 2πin

k

)
, x̃ = exp

(
2πb−1µ

k
+ 2πin

k

)
,

(2.12)

and (a, q)∞ is the q-Pochhammer symbol defined to be ∏∞j=1(1 − aqj) if |q| < 1 or
1/(q−1a; q−1)∞ if |q| > 1.

One can give explicitly the contour of integral to make the N dimensional integral
convergent [15]. But it is a bit complicated and we specify the contours in individual
examples in sections 3, 4.

We are interested in the double scaling limit

b→ 0, µ→∞, bµ fixed, (2.13)

where the last condition guarantees that the holonomy parameter x remains finite. Let us
introduce

ζ = e2πi/k, τ = b2 (2.14)

By scaling the variables

Zi = 2πbσi, ui = 2πbµi =

2πbµ, i = 1
0, i ≥ 2

(2.15)
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and using the asymptotic expansion (A.15) of the tetrahedron partition function, the inte-
gral (2.8) can be written as

Z(N)
γ (µ, n; τ) = 1

kN
√

detBBB(4π2τ)N/2∑
mmm∈(Zk)N

(−1)mmmBBB−1AAAmmmζ
1
2mmmBBB

−1AAAmmm+mmmBBB−1nnn
∫

dNZZZ exp
∞∑
`=0

(2πiτ)`−1U
(mmm)
` (uuu,ZZZ)

(2.16)

where the coefficient functions are

U0(uuu,ZZZ) = 1
k
ZZZBBB−1uuu+ 1

2kZ
ZZBBB−1AAAZZZ − πi

k
ZZZBBB−1ν + 1

k

N∑
i=1

Li2(e−Zi), (2.17a)

U
(mmm)
`≥1 (uuu,ZZZ) = − 1

2kZ
ZZBBB−1νδ`,1 +

N∑
i=1

k∑
s=1

B`(s/k)
`! Li2−`(e

2πi
k

(s+mi)e−
Zi
k ). (2.17b)

We drop the superscript (mmm) for U0 since it does not depend on the index mmm. We have also
simplified the expression of U0 using the identity

k∑
s=1

Li2(e2πis/kx) = 1
k

Li2(xk), (2.18)

which can be easily proved by the series expansion of Li2(x). The saddle point equations,
i.e. the critical point equations for U0 are

uj +
N∑
i=1

AjiZi +
N∑
i=1

Bji log(1− e−Zi) = πiνj , j = 1, . . . , N, (2.19)

or equivalently with
zi = eZi , wi = eui (2.20)

we find

wj

N∏
i=1

z
Aji
i (1− z−1

i )Bji = (−1)νj , j = 1, . . . , N. (2.21)

Note that at the end of the day, we must set uj = 0 or equivalently wj = 1 for j = 2, . . . , N .
Since

x = exp 2πi
k

(−ibµ− n) = exp
(
u

k
− 2πin

k

)
= ζ−nw

1/k
1 , (2.22)

the critical equations can also be written as

xk
N∏
i=1

z
Aji
i (1− z−1

i )Bji = (−1)νj , j = 1, (2.23a)

N∏
i=1

z
Aji
i (1− z−1

i )Bji = (−1)νj , j = 2, . . . , N. (2.23b)
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They can be regarded as a deformation of the Neumann-Zagier equations. Each solution
zzz∗ = expZZZ∗ to the critical equations corresponds to a non-Abelian sl(2,C) flat connection
σ∗ over M .

We can choose one of the critical points (saddle points) ZZZ∗ = (Z∗i ) and expand around
the critical point by Zj = Z∗j + (2πiτ)1/2δZj . By an expansion first in terms of τ and then
performing Gaussian integral order by order, we obtain a trans-series Φ(k,σ∗)

γ (µ, n; τ). This
was worked out in [34] when µ = 0 and n = 0. In the generic case the calculation is similar,
and we present the results here.

Let us introduce z = eZ , as well as

z′ = (1− z)−1, z′′ = 1− z−1 (2.24)

so that
zz′z′′ = −1. (2.25)

From (2.17b) it is necessary to choose a k-th root of Z∗. We introduce θi such that

(θi)k = z∗i . (2.26)

Let us also define the Average and Vev of a function g

Av(g(mmm)) =
∑
mmm∈(Zk)N ammm(x, θ)g(mmm)∑

mmm∈(Zk)N ammm(x, θ) (2.27)

with

ammm(x, θ) = x−mmmBBB
−1(−1)mmmBBB−1AAAmmmζ

1
2 (mmmBBB−1AAAmmm+mmmBBB−1ν)θ−BBB

−1AAAmmm
N∏
i=1

(ζθ−1
i ; ζ)−1

mi . (2.28)

and

〈g(δZZZ)〉 =
∫

dNδZZZ e− 1
2 δZZZ

THHHδZZZg(δZZZ)∫
dNδZZZ e− 1

2 δZZZ
THHHδZZZ

(2.29)

with

HHH = 1
k

(
−BBB−1AAA+ ∆z∗′

)
, (2.30)

and
∆z = diag(z1, . . . , zN ). (2.31)

The perturbative expansion of the state integral (2.8) near the critical point ZZZ∗ then
reads

Φ(k,σ∗)
γ (u, n; τ) = eU

(k)
0,0 (σ∗)/(2πiτ)ω(k,σ∗)

γ ϕ(k,σ∗)
γ (u, n; τ). (2.32)

The 1-loop contribution is

ω(k,σ∗)
γ = 1

(ik)N/2
√

det(A∆z∗′′ +B∆−1
z∗ )zzz∗BBB−1ννν/k

N∏
i=1

D∗k(θ−1
i )1/k ∑

mmm∈(Zk)N
ammm(x, θ). (2.33)

– 7 –
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Here recall the cyclic quantum dilogarithms are defined by

Dk(z) =
k−1∏
s=1

(1− ζsz)s, D∗k(z) =
k−1∏
s=1

(1− ζ−sz)s. (2.34)

Higher loop contributions are given in

ϕ(k,σ∗)
γ (u, n; τ) = Av (〈g(δZZZ,mmm;x, θ)〉) = 1 + τ C[[τ ]] (2.35)

and

g(δZZZ,mmm;x, θ) = exp

∑
`≥0

(2πiτ)`+d/2−1∑
d≥0

′
U

(`,mmm)
k,(id)δZ

d
i

 , (2.36)

where ∑d≥0
′ means d ≥ 3 for ` = 0, d ≥ 1 for ` = 1, and d ≥ 0 for ` ≥ 2. Besides, in each

sum a summation over i = 1, . . . , N is implicit. The coefficients are

U
(k)
0,0 = 1

k
ZZZ∗BBB−1uuu− πi

k
ZZZ∗BBB−1ν + 1

2kZ
ZZ∗BBB−1AAAZZZ∗ + 1

k

N∑
j=1

Li2(e−Z
∗
j ), (2.37a)

U
(k)
0,(id) = (−1)d

kd! Li2−d(e−Z
∗
i ), d ≥ 3, (2.37b)

U
(k,mmm)
`≥1,(id) = δ`,1δd,0

(
− 1

2kZ
ZZ∗BBB−1ν

)
+ δ`,1δd,1

(
− 1

2k (BBB−1ν)i
)

+ (−1)d
kdd!`!

N∑
j=1

k∑
s=1

B`(s/k) Li2−`−d(e
2πi
k

(s+mj)e−
Z∗
j
k )(δij)d. (2.37c)

The trans-series Φ(k,σ∗)
γ (u, n; τ) has some very important properties. First of all, unlike

the other coefficients, U0,0(σ∗) in (2.37a) depends on the level k only as an overall factor 1/k,

U
(k)
0,0 (σ∗) = 1

k
U0,0(σ∗). (2.38)

And U0,0(σ∗) only depends on the Neumann-Zagier data γ, the choice of solution σ∗, and
the holonomy parameter u = log(xk) (but not on the other holonomy parameter n). When
|u| � 1, U0,0(σ∗) is the deformed complexified hyperbolic volume of the knot complement
S3\K [37].

Next, even though the expression of the trans-series Φ(k,σ∗)
γ (u, n; τ) depends explicitly

on θ∗i , a choice of the k-th root of z∗i , one can show that a different choice of θ∗i merely
amounts to an overall constant factor. The exponential expU0,0/(2πiτ) manifestly depends
on z∗i instead of θ∗i . Besides, one can prove that both (ω(k,σ∗)

γ )2k and ϕ(k,σ∗)
γ (τ) are invariant

under the transformation θi → ζθi. This has already been proved when the holonomy x
is turned off in [34], and the coefficients of the power series ϕ(k,σ∗)

γ (τ) are said to live in
the trace field of the knot. When the holonomy x is turned on, a similar proof following
closely [34] can be written down with all the necessary ingredients provided in (2.33), (2.35),
and we do not repeat the proof here.

– 8 –
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In addition, the dependence on the holonomy of the trans-series Φ(k,σ∗)
γ (u, n; τ) is quite

elegant. Both (ω(k,σ∗)
γ )2k and ϕ(k,σ∗)

γ (τ) depend on the combination x = exp(u/k− 2πin/k)
but not on u and n individually. This is because the NZ solution z∗ depends on u and
n implicitly through the modified NZ equations (2.23a), (2.23b), which only depend on
xk. On top of that, (ω(k,σ∗)

γ )2k and ϕ
(k,σ∗)
γ (τ) depend on u, n through the NZ solution

z∗ as well as ammm(x, θ), which is also a function of x. Combining the discussion of these
two paragraphs, we thus claim that the coefficients of the power series ϕ(k,σ∗)

γ (u, n; τ) are
understood to live in Fk,x, the trace field of the knot extended by holonomy x, defined by

Fk,x = Fk(x), Fk = F (ζ), F = Q(z1, . . . , zN ). (2.39)

Finally, although a universal expression (2.33) of the one-loop contribution ω(k,σ∗)
γ at

any level is possible, the power series ϕ(k,σ∗)
γ depend on the level in a very complicated way,

as we will see in example sections 3.1, 4.1.
We also comment that the trans-series (2.32) can be computed from radial asymptotics

of q-series that come from the evaluation of the state integral model for q at complex roots of
unity, similar to the discussion in [38]. Examples of the q-series, also known as holomorphic
blocks, are shown in sections 3.2 and 4.2. They can be regarded as x-feformation of the
Nahm sums.

Even though the form of trans-series (2.32) is elegant and it allows us to infer the
above universal properties, it is computationally inefficient as it involves an N -dimensional
integral. Often the state integral (2.8) can be simplified. For example in the case of com-
plements of knots 41 and 52, in Thurston’s scheme of triangulation the number N of ideal
tetrahedra is respectively 2 and 3, and their state integral models involve a two- and a
three-dimensional integral respectively. However using integral identities of the tetrahe-
dron partition function Z(k)

b [∆](σ,m), both of them can be reduced to one-dimensional
integrals [13, 15], and their perturbative expansion in terms of Gaussian integral is much
simpler. This will be demonstrated in sections 3, 4. Nevertheless the universal properties
of the asymptotic series discussed in this section still hold.

2.2 Resurgent structure of complex Chern-Simons theory

The power series ϕ(k,σ∗)
γ (u, n; τ) are asymptotic. To make sense of them, we need to apply

the resurgence theory [39, 40] (see reviews [41–43] by physicists). Generically in physics
perturbation series are asymptotic. The coefficients grow factorially due to the proliferation
of Feynman diagrams,2

f(τ) =
∞∑
`=0

anτ
n, an ∼ O(Ann!). (2.40)

The series is divergent and it cannot be summed to an exact finite value in the traditional
sense. Nevertheless, we can convert it into an analytic function of τ by the means of Borel
resummation.

2Renormalons can also contribute to factorial growth of coefficients in a general QFT, but they are
absent in complex Chern-Simons theory.

– 9 –



J
H
E
P
0
5
(
2
0
2
3
)
0
8
6

We first construct the Borel transform of the original series

B[f ](t) =
∞∑
`=0

an
n! t

n, (2.41)

which is now a convergent series with a finite radius of convergence 1/A. The boundary
of the disk of convergence is punctuated by singular points. If the singular points are
sparse, the convergent series can be analytically continued to the entire complex plane,
known as the Borel plane. The Borel transform is said to be resurgent if its singular points
are isolated and it can be analytically continued to infinity in all directions bypassing its
singular points. In this case, we can perform the Laplace transform and define the Borel
resummation

s[f ](τ) =
∫ ∞

0
B[f ](τt)e−tdt. (2.42)

This definition involves integration along a ray ρθ of angle θ = arg τ . If the Borel transform
has no singular points along the ray, the integral is well-defined and it gives us a function
of τ . If, however, the Borel transform does have a singular point w on the ray ρθ, the
integration is obstructed, and we are missing non-perturbative corrections of the order
e−w/τ coming from another saddle point, and the action of the new saddle point is Vw =
V0 + w, where V0 is the action at the original saddle point associated to the series f we
start with. We can define a pair of lateral Borel resummations

s±[f ](τ) =
∫ e±i0∞

0
B[f ](τt)e−tdt, (2.43)

and their difference, called the Stokes discontinuity

discθ[f ](τ) = s+[f ](τ)− s−[f ](τ), (2.44)

is of the order e−w/τ .
The Borel transform B[f ] is in addition called a simple resurgent function if all its

singular points are simple poles or branch points. In this paper, we assume there are only
logarithmic branch points. Then at the vicinity of a singular point at w, the resurgent
function B[f ](t) has the form

B[f ](t+ w) = −Sw2πiB[g](t) log(t) + reg(t). (2.45)

where both B[g](t) and reg(t) are regular at t = 0, and the constant Sw is called the Stokes
constant. Here we make it manifest that the regular function B[g](t) can be regarded as the
Borel transform of another asymptotic series g(τ), which in fact is the perturbation series
at the new saddle point w. Suppose no other singular points of B[f ](t) share the same
argument θ = argw, the Stokes discontinuity of the original Borel resummation across the
Stokes ray ρθ is

discθ[f ](τ) = Swe−w/τs−[g](τ). (2.46)

To put it in a more democratic form, we can introduce elementary trans-series

F (τ) = e−V0/τf(τ), G(τ) = e−Vw/τg(τ). (2.47)
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Figure 1. Demonstration of resurgent structure.

Then the formula of Stokes discontinuity reads

discθ[F ](τ) = s+[F ](τ)− s−[F ](τ) = Sws−[G](τ). (2.48)

Abstractly, it can also be represented as a linear transformation of trans-series, whose
coefficient is the Stokes constant,

SθF = F + SwG. (2.49)

This is called the Stokes automorphism.
In summary, starting from a single perturbation series ϕ0 in a theory, one can find

new saddle points and their actions by looking for singular points of the Borel transform
B[ϕ0], and furthermore explore the asymptotic series associated to the new saddle points
by computing the Stokes discontinuity (or expansion of Borel transform at the singular
point) of ϕ0. The same procedure can be repeated on the new asymptotic series to uncover
additional saddle points. In general, all the saddle points of the theory are interconnected
in this way, which is called the resurgent structure of the theory, cf. figure 1. These rela-
tionships are completely controlled by Stokes constants, which define for us new invariants
of the theory. We note that Stokes constants are not necessarily symmetric, i.e. Sij 6= Sji.

In practise we usually do not have the entire asymptotic series f(τ) but only the
truncated power series up to certain (relatively high) order. The Borel transform of the
truncated power series is only a polynomial which has no poles. In order to mimic the
singularity structure of the Borel transform of the full series, we make use of the Padé
approximant to approximate B[f ](t),

PN [f ](t) = p0 + p1t+ · · ·+ pN t
N

1 + q1t+ · · ·+ qN tN
. (2.50)

pi and qi are determined by requiring that the power series expansion of PN [f ](t) in t

coincides with B[f ](t) up to order 2N . Thus the poles of PN [f ](t) can be used to infer
the singularities of the Borel transform. Then we numerically Laplace transform the Padé
approximant to obtain the Borel resummation. The precision of the Padé approximant
can be improved by utilizing, say, the conformal mapping method. One can find more
numerical techniques in [44].

Suppose that the theory in question has finitely many saddle points σi, with the asso-
ciated trans-series

Fi(τ) = e−Vi/τfi(τ), i = 1, . . . , r. (2.51)
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We represent all the trans-series at once by an r-dimensional vector F (τ)

F (τ) =


F1(τ)

...
Fr(τ)

 . (2.52)

If saddle point j appears as a singular point at Vj − Vi of the Borel transform of Fi(τ) and
the Stokes constant is Sij , and it is the only singular point on the Stokes ray ρθij where
θij = arg(Vj − Vi), then the Borel resummation above and below ρθij are related by the
Stokes automorphism

s+[F ](τ) = Sθijs−[F ](τ), (2.53)

where Sθij is an r × r matrix called the Stokes matrix, and it has the form

Sθij = I + SijEij (2.54)

with I the identity matrix, and Ei,j the elementary matrix with (i, j)-entry 1 and all other
entries zero.

If there are multiple singular points on the ray ρθ, we assume the locality condition:
the Stokes matrices of any two Borel plane singular points commute if they are on the same
Stokes ray. In this case, (2.53) should be generalised to

s+[F ](τ) = Sθs−[F ](τ), Sθ =
∏

arg ι=θ
Sι. (2.55)

The order of the product of the local Stokes matrices is irrelevant due to the locality
condition. Furthermore, given two rays ρθ+ and ρθ− whose arguments satisfy 0 < θ+−θ− ≤
π, we define the global Stokes automorphism

sθ+ [F ](τ) = Sθ−→θ+sθ− [F ](τ) (2.56)

where both sides should be analytically continued to the same value of τ . The global Stokes
automorphism Sθ−→θ+ has the property of unique factorisation

Sθ−→θ+ =
←∏

θ−<θ<θ+

Sθ. (2.57)

The superscript ← indicates that the product is ordered so that θ increases from right
to left.

We can apply this theory to the trans-series Φ(k,σi)
γ (u, n; τ) with (i = 1, . . . , r) in (2.32)

coming from the state integral of sl(2,C) Chern-Simons theory. We also define the vector
of trans-series

Φ(k)
γ (u, n; τ) =


Φ(k,σ1)
γ

...
Φ(k,σr)
γ

 (u, n; τ). (2.58)
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We will be concerned with the regime where |u| � 1, which is equivalent to |x| ∼ 1. We
note that in this regime both holonomy parameters (u, n) can be read off uniquely from x:
u is given by

u = log(xk), (2.59)

after which n ∈ Zk is chosen such that

ζnx = eu. (2.60)

The Borel transform B[Φ(k,σi)
γ ](u, n; t) has singularities at

Λ(k),0
i = {ιi,j/k | j = 1, . . . , r, j 6= i} (2.61)

where
ιi,j = U0,0(σi)− U0,0(σj)

2πi . (2.62)

They correspond to the flat connections j 6= i as predicted by the resurgence theory.
Furthermore, there are additional singularities on top of and slightly away from these
singular points and on the imaginary axis as well; the full set of singular points is

Λ(k)
i =

 ιi,j + 2πi`+ log(xk)m
k

∣∣∣ j = 1, . . . , r, ` ∈

Z j 6= i

Z 6=0 j = i
, m ∈ I(i, j, `)

. (2.63)

Here I(i, j, `) are finite and continuous sets of integers centered on 0. These singularities
form infinite towers in the imaginary direction (see figures 2, 5 for illustrations), and the
Stokes rays passing through them are said to form “peacock patterns” [31]. This type
of distribution of Borel plane singularities is in fact quite univeral. Similar patterns have
already been seen in large N expansion of Chern-Simons matrix integral [45, 46], in closedly
related topological string free energies [47–50], in earlier studies of complex Chern-Simons
theory [23], and in other related works [30]. In the context of complex Chern-Simons theory,
this reflects the fact that due to ambiguity of the Chern-Simons action,3 each trans-series
Φ(k,σi)
γ (u, n; τ) should be upgraded to a family of trans-series with the same power series

but with shifted instanton action. Recall the definition

q̃ = exp
(
−2πi
kτ
− 2πi

k

)
, x̃ = exp

(
log(xk)
kτ

+ 2πin
k

)
. (2.64)

It is convenient to parametrise the trans-series in each family as

Φ(k,σi)`,m
γ (u, n; τ) = x̃mq̃`Φ(k,σi)

γ (u, n; τ), `,m ∈ Z. (2.65)

On the other hand, the Stokes constant that relates two trans-series labelled by (σi)`,m
and (σj)`′,m′ only depends on σi, σj and the differences ` − `′, m −m′, and we denote it
by Si,j;`−`′,m−m′ . As a consequence, we only need to study the resurgent properties of the

3For instance by a large gauge transformation the Chern-Simons action changes by 2π. This will change
the complexified hyperbolic volume U0,0/(2πi) in (2.38), whose imaginary part is the Chern-Simons action.
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vector of trans-series Φ(k)
γ (u, n; τ) defined in (2.58). The Stokes automorphism associated

to the Borel plane singularity ιi,j;`,m/k = (ιi,j + 2πi`+ log(xk)m)/k is given by

s+[Φ(k)
γ ](u, n; τ) = Sιi,j;`,m/k(x̃, q̃)s−[Φ(k)

γ ](u, n; τ) (2.66)

where the Stokes matrix is

Sιi,j;`,m/k(x̃, q̃) = I + Si,j,`,mx̃mq̃`Ei,j . (2.67)

Due to the factorisation property (2.57), in order to compute all the Stokes constants,
it suffices to compute a suitable choice of finite number of global Stokes automorphisms,
and extract the Stoks constants from their factorised form. For instance we can choose to
compute

S
(k)
+ (x̃, q̃) = S

(k)
0−→π+0−(x̃, q̃), S

(k)
− (x̃, q̃) = S

(k)
π+0−→2π+0−(x̃, q̃). (2.68)

The entries of the global Stokes automorphisms are no longer constants, but elements in
Z[x̃±1][[q̃]] (upper half plane) or Z[x̃±1][[1/q̃]](lower half plane). See [24, 31] for concrete
examples.

In the case of the two simplest hyperbolic knots 41,52, at level k = 1 and for |u| � 1,
the global Stokes automorphisms S(1)

± (x̃, q̃) have been conjectured in [31, 32]. In this paper,
we generalise the studies of these two knots to generic level k ≥ 1, and the main result of
this paper is that the Stokes automorphisms are independent of the level k

S
(k)
± (x̃, q̃) = S

(1)
± (x̃, q̃). (2.69)

This is rather surprising because the power series ϕ(k,σ∗)
γ (u, n; τ) are very different at differ-

ent levels. We will demonstrate the complexity of power series at higher levels and provide
numerical evidence of (2.69) in sections 3, 4. But before ending this section, we give some
philosophical argument for (2.69). The following subsection is more speculative.

2.3 Stokes constants and BPS invariants

An interesting discovery concerning the Stokes constants extracted from the Stokes auto-
morphisms S(k=1)

± (x̃, q̃) was made in [31, 32]: they were identified with the BPS invariants
of the 3d SCFT T2[M ] related to the sl(2,C) Chern-Simons theory onM = S3\K by the 3d-
3d correspondence [4]. In particular, the entries of S(k=1)

+ (x̃, q̃) (respectively S
(k=1)
− (x̃, q̃)),

which are power series in Z[x̃±1][[q̃]] (respectively Z[x̃±1][[q̃−1]]), were identified with linear
combinations of the rotated superconformal indices Indrot

K (m, ζ; q) [14, 51] with different
magnetic fluxes m. The identification is most clean in the (1, 1) entry associated to the
geometry flat connection σ1, where one found

S
(k=1)
+ (x, q)(1,1) = Indrot

K (0, x; q). (2.70)

The original motivation of this work was to generalise this relationship.
The identification (2.70) has not been proved. Nevertheless, it should certainly be

understood in the framework of 3d-3d correspondence, which in particular claims that the
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supersymmetric vacua of the dual 3d SCFT are given by sl(2,C) flat connections on M [2],
which are precisely the saddle points of the complex Chern-Simons theory. At a generic
level k ≥ 1, on the one hand, the Hilbert space of the quantised Chern-Simons theory is
merely [15]

H(k) = H(k=1) ⊗C Ck. (2.71)

On the other hand, there are no more BPS states on the side of the SCFT.4 It then seems
natural that the Stokes automorphism at generic level k ≥ 1 should still be identified with
the 3d BPS invariants, and therefore be independent of the level k of the Chern-Simons
theory.

3 Figure eight

3.1 Asymptotic series

The state integral of figure eight knot at level k is already given as a one-dimensional
integral in [13]

χ
(k)
41 (µ, n; τ) =ηk

k

∑
m∈Zk

∫
R+i Im(cb)−i|µ|−i0

dσZ(k)
b [∆](σ − µ,m− n)Z(k)

b [∆](σ,m)

× (−1)me
πi
k

((σ−cb)2−2(µ−σ+cb)2−m2+2(n−m)2), (3.1)

where ηk = exp πi
6 (k+ 2c2

b/k). This can be derived from the generic formula (2.8). We can
choose the Neumann-Zagier data

AAA =
(

1 0
1 1

)
, BBB =

(
0 −1
−1 −1

)
, ν =

(
0
0

)
, (3.2)

with which (2.8) yields

Z(k)
γ (µ,n;b)

= 1
ik2

∑
m∈(Zk)2

∫
d2σe

2πi
k

(−σ1µ1+σ2µ1+m1n1−m2n1)e
πi
k

(2σ1σ2−2m1m2)Z(k)
b [∆](σ1,m1)Z(k)

b [∆](σ2,m2)

=e πi
12 (k+

8c2
b
k

)

ik
∑
m∈Zk

∫
dσZ(k)

b [∆](σ,m)Z(k)
b [∆](σ+µ,m+n)

(−1)m+n exp πi
k

(
−(σ−cb)2−4µσ−µ2+2cbµ+m2+4mn+n2

)
. (3.3)

In the last step, we have integrated over σ2 and summed over m2 using the Fourier trans-
formation (A.13). We then relabeled (σ1,m1) to (σ,m) as well as (µ1, n1) to (µ, n). After
changing the signs of µ, n we find the same expression as (3.1) up to an overall irrelevant
factor

χ
(k)
41 (µ, n; τ) = ie

πi
12 (k−

4c2
b
k

)(−1)ne
πi
k

(−µ2−2cbµ+n2)Z(k)
γ (−µ,−n; ~). (3.4)

4There are missing BPS states concerning the Abelian flat connection σ0. But they are related to the
Stokes automorphisms of the asymptotic series associated to σ0, which is invisible in the state integral
model. See some discussion in section 5.
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As a one-dimensional integral, it is much easier to perform saddle point analysis
on (3.1). We first introduce an alternative representation of the tetrahedron partition
function5

D(k)
b (u,m) = Z(k)

b [∆](cb −
√
ku,m), (3.5)

in terms of which, the state integral (3.1) reads

χ
(k)
41 (µ, n; τ) = ηk

k

∑
m∈Zk

(−1)me
πi
k

(2n2−4nm+m2)

×
∫
R+i0

dσD(k)
b ( 1√

k
(σ + µ),m− n)D(k)

b ( 1√
k
σ,m)e

πi
k

(−2µ2−4µσ−σ2). (3.6)

We scale the variables
Z = 2πbσ, u = 2πbµ (3.7)

and then perform asymptotic expansion of the tetrahedron partition functions in the small
b limit using (A.15),

χ
(k)
41 (µ, n; b) ∼ ηk

2πbk
∑
m∈Zk

(−1)me
πi
k

(2n2−4nm+m2)
∫

dZ exp
∑
`≥0

(2πib2)`−1U`(u, Z) (3.8)

where the potential functions are

U0(u, Z) =1
k

(
u2 + 2uZ + Z2

2 + Li2(−eZ) + Li2(−eu+Z)
)
, (3.9a)

U`≥1(u, Z) = 1
`!
∑
j∈Zk

B`(1− 1/(2k)− j/k)
(
Li2−`(ζm−j−1/2eZ/k) + Li2−`(ζm−j−1/2eZ/kx)

)
.

(3.9b)

The critical equation of the leading order potential function reads

0 = ∂

∂Z
U0(u, Z) = 1

k

(
2u+ Z − log(1 + eZ)− log(1 + eu+Z)

)
, (3.10)

which can be simplified to the algebraic equation

−X2Y = (1−XY )(1− Y ), (3.11)

with
X = eu = xk, Y = −eZ . (3.12)

We also introduce the variable θ such that

Y = −θk. (3.13)

The critical point equation (3.11) has two solutions in terms of Y , corresponding to the
geometric and conjugate flat connections σ1, σ2 on the knot complement. Numerically, they

5This version of tetrahedron partition function was introduced in [13].
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are the ones that in the limit X → 1 reduce respectively to the solutions eπi/3 and e−πi/3

of (3.11). Near each critical point σj , the integrand is approximated by the exponential

exp
(
V (k)(σj)

2πiτ

)
, (3.14)

where

V (k)(σj) = U0(log(X), log(−Yj)) + π2

6k . (3.15)

The extra factor π2/(6k) comes from the factor ηk. Note the interesting relation
V (k)(X,Y ) = V (1)(X,Y )/k.

In addition, by expanding near the critical point and performing the Gaussian inte-
gration order by order, for each critical point σj we can find an asymptotic power series
ϕ(k,σj)(x; τ), which, together with the exponential factor (3.14), forms the trans-series

Φ(k,σj)
41 (x; τ) = eV (k)(σj)/(2πiτ)ϕ

(k,σj)
41 (x; τ), j = 1, 2. (3.16)

The one-loop contribution ϕ(k,σj)
41 (x; 0) = ω

(k,σj)
41 (x) has a universal expression

ω
(k,σj)
41 (x) =eπi

4 +πik
6 + 2πi

k
(n2−1/12)√

k(xkθ2k − 1)
θ1/2xD∗k(ζ−1/2θ)1/kD∗k(ζ−1/2θx)1/k

×
∑
m∈Zk

(−1)mζm2/2θmx2m(ζ1/2θ; ζ)−1
m (ζ1/2θx; ζ)−1

m . (3.17)

The power series ϕ(k,σj)
41 (x; τ)/ω(k,σj)

41 (x) on the other hand, depends in a very complicated
way on the level k.

The case of k = 1 is particularly simple. The dependence on n ∈ Z1 is trivial, and the
state integral reduces to [31]

χ41(µ; τ) = χ
(1)
41 (µ; τ) = Φb(0)−2

∫
R+i0

dvΦb(µ+ v)Φb(v)eπi(v2−2(µ+v)2). (3.18)

where we have used η1 = Φb(0)−2. The power series ϕ(σi)
41 (x; τ) = ϕ

(k=1,σi)
41 (x; τ) are given

by [31]

(ω(σ1)
41 )−1ϕ

(σ1)
41 (x; τ

2πi) = 1− 1
24γ(x)3

(
x−3 − x−2 − 2x−1 + 15− 2x− x2 + x3

)
τ

+ 1
1152γ6(x)

(
x−6 − 2x−5 − 3x−4 + 610x−3 − 606x−2 − 1210x−1

+ 3117− 1210x− 606x2 + 610x3 − 3x4 − 2x5 + x6
)
τ2 +O(τ3).

(3.19)

with
γ(x) =

√
x−2 − 2x−1 − 1− 2x+ x2. (3.20)
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while ϕ(σ2)
2 (x; τ) = iϕ(σ2)

1 (x;−τ). At level k = 2, the power series are

(ω(k=2,σj)
41 )−1ϕ

(k=2,σj)
41 (x;τ)

=1−((1+6x+5x2−30x3+10x4+30x5−3x6+30x7+10x8−30x9+5x10+6x11+x12)
(−1−x2+x4+2x2Yj))/(48(−1−x+x2)2(1−x+x2)2(−1+x+x2)2(1+x+x2)2)τ+O(τ2).

(3.21)

Additional terms as well as first few terms of the power series at level k = 3 can be found
in appendix B.1.

Several conclusions can be drawn from these data. It is clear that the coefficients of
the power series depend only on the solution Yj to the NZ equation, but not on a k-th
root of Yj . Furthermore, they depend on the deformation parameters u, n only through
the holonomy parameter x. Finally, it is evident that the power series become increasingly
more complicated at higher levels k.

3.2 Holomorphic blocks

One happy fact of state integral model of knot 41 at level 1 is that when Im b 6= 0, it can be
evaluated by summing over residues and it factorises to products of q- and q̃-series [52], i.e.,
the holomorphic blocks [51]. In addition, variants known as the descendants of the state
integral can be written, which also enjoys factorisation. This fact turns out to be very useful
in the resurgence analysis, as the Stokes matrices can be written in terms of them [31, 32].
We find here at generic level k, we can also write down descendants of the state integral and
they also factorise to holomorphic blocks. In fact, the holomorphic blocks are independent
of k (only implicitly through x, x̃, q, q̃, cf. [15]), while the factorisation formulas are not.

We introduce the following descendant state integral for knot 41

χ
(k)
41;r,s(µ, n; τ) = ηk

k

∑
m∈Zk

∫
C

dσZ(k)
b [∆](σ − µ,m− n)Z(k)

b [∆](σ,m)

× (−1)me
πi
k

((σ−cb)2−2(µ−σ+cb)2−m2+2(n−m)2)

×e
2πi
k

(−i(rb+sb−1)(cb−σ)+(r−s)m). (3.22)

The motivation for the particular form of the descendant state integral is that both the
tetrahedron partition function Z(k)

b [∆](σ,m) and the extra factor colored in blue

f(σ,m) = exp
(2π
k

(rb + sb−1)(cb − σ) + 2πi
k

(r − s)m
)

(3.23)

in the integrand enjoys nice quasi-periodicity property under the shift

(σ,m)→ (σ − ib±1,m± 1), (σ,m)→ (σ + ib±1,m∓ 1). (3.24)

The former is given in (A.8), and the latter is simply

f(σ ∓ ib,m± 1) = f(σ,m)q±r, (3.25a)
f(σ ± ib−1,m± 1) = f(σ,m)q̃±s. (3.25b)
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In addition, the form of the descendant state integral may be related to insertion of a light
knot from the Chern-Simons theory point of view [53], or to turning on FI parameters from
the 3d SCFT point of view [54].

Note that compared to the state integral χ(k)
41 (µ, n; τ) defined in (3.1), here the contour

of integral C has to be modified such that it asymptotes at both ±∞ to the horizontal
line Im σ = σ0 with σ0 < Im(cb) − | Im(µ)| − |Re(rb + sb−1)| but is deformed near the
origin so that all the poles of the integrand are below the contour. The integrand only
has poles coming from the two tetrahedron partition functions Z(k)

b [∆](σ − µ,m− n) and
Z(k)

b [∆](σ,m), and they are located respectively at

v = µ− ibα− ib−1, α− β ≡ m− n (mod k), (3.26)
σ = −ibα− ib−1β, α− β ≡ m (mod k). (3.27)

On the other hand, since the integrand decays exponentially fast towards infinity below
the contour C, we can evaluate the descendant state integrand by completing the contour
from below and adding up residues from these poles. Then we find in this way that

χ
(k)
41;r,s(µ, n; τ) = e−

πik
4 −

πi
2k−

πi
4k (τ+τ−1)Ar(x, q)A−s(x̃, q̃−1)

+ e
πik
4 + πi

2k+ πi
4k (τ+τ−1)Br(x, q)B−s(x̃, q̃−1). (3.28)

Here Ar(x, q), Br(x, q) are descendant holomorphic blocks defined by

Ar(x, q) = θ(−q1/2x; q)−2x2rJ(qrx2, x; q), (3.29)
Br(x, q) = θ(−q−1/2x; q)xrJ(qrx, x−1; q), (3.30)

where J(x, y; qε) := Jε(x, y; q) for |q| < 1 and ε = ± is the q-Hahn Bessel function

J+(x, y; q) = (qy; q)∞
∞∑
n=0

(−1)n q
1
2n(n+1)xn

(q; q)n(qy; q)n
(3.31a)

J−(x, y; q) = 1
(y; q)∞

∞∑
n=0

(−1)n q
1
2n(n+1)xny−n

(q; q)n(qy−1; q)n
. (3.31b)

Note that the definition of descendant holomorphic blocks as function of x, q are indepen-
dent of k. They enjoy the same properties as discussed in [31]. If we define the descendant
Wronskian matrix

Wr(x; q) =
(
Ar(x; q) Br(x; q)
Ar+1(x; q) Br+1(x; q)

)
, (3.32)

it enjoys the inversion property that

Wm(x; q)
(

1 0
0 −1

)
W`(x; q−1)T ∈ GL(2,Z[q±1x±1]). (3.33)

In particular

W−1(x; q)
(

1 0
0 −1

)
W−1(x; q−1)T =

(
x−2 + x−1 − 1 1

1 0

)
. (3.34)
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Figure 2. Singular points of the Borel transform of the vector of trans-series of the sl(2,C) Chern-
Simons theory at level k = 1 on the complement of the knot 41.

3.3 Resurgent structure

We collect the trans-series associated to the geometric and conjugate flat connections in a
vector

Φ(k)
41 (x; τ) =

(
Φ(k,σ1)

41

Φ(k,σ2)
41

)
(x; τ). (3.35)

The singularities of the Borel transform of each component trans-series are located in Λ(k)
i

given in (2.63). In the case of level k = 1, we superimpose the Borel singularities of the
components of Φ(1)

41 (x; τ) and plot them in figure 2. At a generic level k ≥ 1, the distrubtion
of the Borel plane singularities is the same and their actual locations are reduced by a factor
of 1/k according to (2.63).

As explained in section 2, Stokes constants of individual Borel plane singularities can
be extracted from global Stokes automorphisms. The entire Borel plane is divided by
Stokes rays of components of Φ(k)

41 (x; τ) into infinitely many cones. We label the four
cones above and below the positive and negative real axes by I, II, III, IV , ordered in
counter-clockwise direction, as illustrated in figure 2. We choose to calculate the global
Stokes automorphism S

(k)
+ (x̃; q̃) = S

(k)
IV→II(x̃; q̃) and S

(k)
− (x̃; q̃) = S

(k)
II→IV (x̃; q̃), both in

the anti-clockwise direction, which encode all the Stokes constants.
In order to derive the Stokes automorphisms, we first calculate the Borel resummation

of the trans-series. Following [31] and with numerical evidence presented shortly after,
We claim that they can be written as bilinear products of holomorphic blocks in q and q̃.
Concretely,

sI(Φ(k)
41 )(x;τ) =

(
−x̃ 1+x̃−1

0 1

)
W−1(x̃; q̃−1)∆(k)(τ)B(x;q), |q̃|< 1, (3.36a)

sII(Φ(k)
41 )(x;τ) =

(
0 −x̃
1 −x̃−x̃2

)
W−1(x̃−1; q̃−1)

(
1 0
0 −1

)
∆(k)(τ)B(x;q), |q̃|< 1, (3.36b)
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sIII(Φ(k)
41 )(x;τ) =

(
0 −x̃
1 1

)
W−1(x̃−1; q̃−1)

(
1 0
0 −1

)
∆(k)(τ)B(x;q), |q̃|> 1, (3.36c)

sIV (Φ(k)
41 )(x;τ) =

(
−x̃ −x̃
0 1

)
W−1(x̃; q̃−1)∆(k)(τ)B(x;q), |q̃|> 1. (3.36d)

Here W−1(x, q) is the Wronskian of holomorphic blocks defined in (3.32), and

B(x; q) =
(
A0(x; q)
B0(x; q)

)
(3.37)

∆(k)(τ) is the diagonal matrix defined by

∆(k)(τ) = diag(e−
πik
4 −

πi
2k−

πi
4k (τ+τ−1), e

πik
4 + πi

2k+ πi
4k (τ+τ−1)). (3.38)

From (3.36a) and (3.36b), we can derive the Stokes automorphism S
(k)
I→II(q̃) which encom-

passes all the Stokes constants in the upper half plane. Concretely it is done by analytically
continuing the right hand side of (3.36a) to the cone II and compare with the right hand
side of (3.36b) after substituting both of them in the definition of the Stokes automorphism

sII(Φ(k)
41 )(x; τ) = S

(k)
I→II(q̃)sI(Φ

(k)
41 )(x; τ). (3.39)

This step involves only multiplication of q̃-series. On the other hand, from (3.36a)
and (3.36d) we can derive the Stokes constants associated to the three Borel plane sin-
gularities on the positive real axis, and this step involves analytic continuation of the
Wronskian W−1(x̃−1; q̃−1) from inside to outside the unit circle with the help of (3.34).
We can combine the two results to write down the global Stokes automorphism S

(k)
+ (x̃; q̃)

from the ray ρ0− to ρπ+0− . Likewise, we can compute the global Stokes automorphism
S

(k)
− (x̃; q̃) from the ray ρπ+0− to ρ2π+0− . Together they encompass the Stokes constants of

all the Borel plane singularities.

S
(k)
+ (x̃; q̃) =

(
0 −1
x̃−1 −1− x̃

)
W−1(x̃−1; q̃−1)W−1(x̃; q̃)T

(
0 x̃

−1 −1− x̃−1

)
, |q̃| < 1 (3.40)

S
(k)
− (x̃; q̃) =

(
x̃ x̃

0 −1

)
W−1(x̃; q̃)W−1(x̃−1; q̃−1)T

(
x̃−1 0
x̃−1 −1

)
, |q̃| < 1. (3.41)

In particular, we notice that the Stokes automorphisms and therefore the Stokes constants
do not depend on the level k.

At level k = 1 numerical evidences for the position of Borel plane singularities as well
as (3.36a), (3.36b), (3.36c), (3.36d) were given in detail in [31].

For higher levels, the computation is similar, although the expression becomes more
complicated. At level k = 2, we first choose x = 6/5, corresponding to u = 2 log(6/5) and
n = 0. We truncate the power series to N = 100 terms. The poles of the Padé approximant
for Φ(2)

41 (x, τ) are shown in figure 3. Notice that the accumulating poles on the real axis
hint at a branch cut on the corresponding exact Borel plane.

Clearly, if we consider the vector Φ(x, τ), the Borel plane is divided into four regions
as promised. It remains to check (3.36a), (3.36b), (3.36c), (3.36d). The comparison is
tabulated in table 1.
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-2 -1 1 2
Re(t)

-4

-2

2

4
Im(t)

(a)

-2 -1 1 2
Re(t)

-4

-2

2

4
Im(t)

(b)

Figure 3. The distribution of poles of the Padé approximant for (a): ϕ
(k=2,σ1)
41

(x, τ) and
(b): ϕ(k=2,σ2)

41
(x, τ) with x = 6/5 and N = 100 terms.

| sI(Φ)(x;τ)
FI(x;τ) − 1| | sI(Φ)(x;τ)

s′I(Φ)(x;τ) − 1| |q̃(τ)| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 8.6× 10−16 3.5× 10−15
1.9× 10−8 0.36

σ2 3.7× 10−23 2.4× 10−22

(a) Region I: τ = 1
8 eπi

4

| sII(Φ)(x;τ)
FII(x;τ) − 1| | sII(Φ)(x;τ)

s′II(Φ)(x;τ) − 1| |q̃(τ)| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 3.7× 10−23 2.4× 10−22
1.9× 10−8 0.36

σ2 8.6× 10−16 3.5× 10−15

(b) Region II: τ = 1
8 e 3πi

4

| sIII(Φ)(x;τ)
FIII(x;τ) − 1| | sIII(Φ)(x;τ)

s′III(Φ)(x;τ) − 1| |q̃(τ)−1| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 3.7× 10−23 2.4× 10−22
1.9× 10−8 0.36

σ2 8.6× 10−16 3.5× 10−15

(c) Region III: τ = 1
8 e− 3πi

4

| sIV (Φ)(x;τ)
FIV (x;τ) − 1| | sIV (Φ)(x;τ)

s′IV (Φ)(x;τ) − 1| |q̃(τ)−1| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 8.6× 10−16 3.5× 10−15
1.9× 10−8 0.36

σ2 3.7× 10−23 2.4× 10−22

(d) Region IV : τ = 1
8 e−πi

4

Table 1. We perform the numerical Borel resummation for Φ(k=2)
41

(x; τ) at x = 6/5 (u =
2 log 6/5, n = 0) with 100 terms, after choosing suitable τ in four different regions. We compare
them with equations (3.36a), (3.36b), (3.36c), (3.36d) whose right hand side is denoted as FR(x; τ).
Meanwhile, we estimate the contribution of higher order terms by resumming Φ(k=2)

41
(x; τ) with 95

terms. The values of |q̃(q̃−1)| and |x̃±1| are also provided for comparison.
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Re(t)
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Figure 4. The distribution of poles of the Padé approximant for (a) : ϕ(k=2,σ1)
41

(x, τ) and (b) :
ϕ

(k=2,σ2)
41

(x, τ) with x = −5/4 and N = 200 terms.

We consider next x = −5/4, corresponding to u = 2 log(5/4) and n = 1, and we
truncate the power series up to N = 200 terms. The positions of poles for the Padé
approximant Φ(k=2)

41 (x, τ) are shown in figure 4. Again one observes the emergent branch
cut on the real axis. We then present the numerical evidence of (3.36a), (3.36b), (3.36c),
(3.36d) for each region in table 2. As we can see, the relative errors between two sides
of (3.36a), (3.36b), (3.36c), (3.36d) (the first column) are always within the precision of
the Borel resummation (the second column), and are always far smaller than a potential q̃
(or 1/q̃ in the lower half plane) or a x̃±1 correction (the third and the fourth columns).

We also perform numerical analysis at level k = 3. We choose x = 6
5e2πni/3 (n = 0, 1, 2)

corresponding to u = 3 log(6/5) and n = 0, 1, 2 respectively. The power series are truncated
up to N = 220 terms. The poles of the Padé approximant have a similar structure to the
cases k = 1, 2, so we omit them here. The numerical evidence for the Borel resummation
of the trans-series (3.36a), (3.36b), (3.36c), (3.36d) in each region are given in tables 3, 4
and 5 respectively.

4 Three twists

4.1 Asymptotic series

The state integral of knot 52 at level k is given as a one-dimensional integral in [13]

χ
(k)
52 (µ, n; b)

=(ηk)3

k

∑
m∈Zk

∫
R+i Im(cb)−i0

dσZ(k)
b [∆](σ,m)Z(k)

b [∆](σ + µ,m+ n)Z(k)
b [∆](σ − µ,m− n)

× (−1)ne
πi
k

(−(σ+µ−cb)2−(σ−µ−cb)2−µ2+(m+n)2+(m−n)2+n2). (4.1)

This can also be derived from the generic formula (2.8). We choose the Neumann-Zagier
data

AAA =

 0 1 0
−1 0 −1
0 2 0

 , BBB =

−1 0 0
0 1 0
−1 0 −1

 , ν =

0
0
0

 , (4.2)
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| sI(Φ)(x;τ)
FI(x;τ) − 1| | sI(Φ)(x;τ)

s′I(Φ)(x;τ) − 1| |q̃(τ)| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 8.2× 10−22 8.6× 10−22
9.6× 10−9 0.16

σ2 3.9× 10−36 5.1× 10−36

(a) Region I: τ = 1
10 eπi

5

| sII(Φ)(x;τ)
FII(x;τ) − 1| | sII(Φ)(x;τ)

s′II(Φ)(x;τ) − 1| |q̃(τ)| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 3.9× 10−36 5.1× 10−36
9.6× 10−9 0.16

σ2 8.2× 10−22 8.6× 10−22

(b) Region II: τ = 1
10 e 4πi

5

| sIII(Φ)(x;τ)
FIII(x;τ) − 1| | sIII(Φ)(x;τ)

s′III(Φ)(x;τ) − 1| |q̃(τ)−1| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 3.9× 10−36 5.1× 10−36
9.6× 10−9 0.16

σ2 8.2× 10−22 8.6× 10−22

(c) Region III: τ = 1
10 e− 4πi

5

| sIV (Φ)(x;τ)
FIV (x;τ) − 1| | sIV (Φ)(x;τ)

s′IV (Φ)(x;τ) − 1| |q̃(τ)−1| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 8.2× 10−22 8.6× 10−22
9.6× 10−9 0.16

σ2 3.9× 10−36 5.1× 10−36

(d) Region IV : τ = 1
10 e−πi

5

Table 2. We perform numerical Borel resummation for Φ(k=2)
41

(x; τ) at x = −5/4 (u = 2 log 5/4, n =
1) with 200 terms, after choosing suitable τ in four different regions. We compare them with
equations (3.36a), (3.36b), (3.36c), (3.36d) whose right hand side is denoted as FR(x; τ). Meanwhile,
we estimate the contribution of higher order terms by resumming Φ(k=2)

41
(x; τ) with 195 terms. The

values of |q̃(q̃−1)| and |x̃±1| are also provided for comparison.

with which (2.8) yields

Z(k)
γ (µ, n; b)

= 1
k3

∑
m∈(Zk)3

∫
d3σ e

2πi
k

(σ1(σ2+µ1)−m1(m2+n1)) Z(k)
b [∆](σ1,m1)

e
2πi
k

(σ3(σ2−µ1)−m3(m2−n1)) Z(k)
b [∆](σ3,m3) Z(k)

b [∆](σ2,m2)

= eπi
6 (k+

8c2
b
k

)

k

∑
m∈Zk

∫
dσ Z(k)

b [∆](σ,m) Z(k)
b [∆](σ + µ,m+ n) Z(k)

b [∆](σ − µ,m− n)

e−
2πi
k

((σ−cb)2+µ2−m2−n2). (4.3)
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| sI(Φ)(x;τ)
FI(x;τ) − 1| | sI(Φ)(x;τ)

s′I(Φ)(x;τ) − 1| |q̃(τ)| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 3.1× 10−15 1.6× 10−15
1.5× 10−5 0.27

σ2 4.6× 10−27 5.2× 10−26

(a) Region I: τ = 1
9 eπi

5

| sII(Φ)(x;τ)
FII(x;τ) − 1| | sII(Φ)(x;τ)

s′II(Φ)(x;τ) − 1| |q̃(τ)| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 5.8× 10−27 1.7× 10−27
1.5× 10−5 0.27

σ2 1.1× 10−15 8.3× 10−16

(b) Region II: τ = 1
9 e 4πi

5

| sIII(Φ)(x;τ)
FIII(x;τ) − 1| | sIII(Φ)(x;τ)

s′III(Φ)(x;τ) − 1| |q̃(τ)−1| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 5.8× 10−27 1.7× 10−27
1.5× 10−5 0.27

σ2 1.1× 10−15 8.3× 10−16

(c) Region III: τ = 1
9 e− 4πi

5

| sIV (Φ)(x;τ)
FIV (x;τ) − 1| | sIV (Φ)(x;τ)

s′IV (Φ)(x;τ) − 1| |q̃(τ)−1| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 3.1× 10−15 1.6× 10−15
1.5× 10−5 0.27

σ2 4.6× 10−27 5.2× 10−26

(d) Region IV : τ = 1
9 e−πi

5

Table 3. We perform numerical Borel resummation for Φ(k=3)
41

(x, τ) at x = 6/5 with 220
terms, after choosing suitable τ in four different regions. We compare them with equa-
tions (3.36a), (3.36b), (3.36c), (3.36d) whose right hand side is denoted as FR(x, τ). Meanwhile,
we estimate the contribution of higher order terms by resumming Φ(k=3)

41
(x, τ) with 215 terms. The

values of |q̃(q̃−1)| and |x̃±1| are also provided for comparison.

where we have used again the formula of Fourier transformation of the tetrahedron partition
function (A.13). This is the same as (4.1) up to an overall factor

χ
(k)
52 (µ, n; b) = e

πi
3 (k−

c2
b
k

)(−1)ne
πi
k

(−µ2+n2)Z(k)
γ (µ, n; b). (4.4)

We now also perform the saddle point expansion of the one-dimensional integral (4.1).
We introduce the alternative representation of the tetrahedron partition function (3.5), in
terms of which, the state integral (4.1) reads

χ
(k)
52 (µ, n; b) = (ηk)3

k
(−1)ne

3πi
k

(n2−µ2) ∑
m∈Zk

e
2πim2
k

×
∫
R+i0

dσD(k)
b ( 1√

k
σ,m)D(k)

b ( 1√
k

(σ − µ),m+ n)D(k)
b ( 1√

k
(σ + µ),m− n)e−

2πiσ2
k .

(4.5)
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| sI(Φ)(x;τ)
FI(x;τ) − 1| | sI(Φ)(x;τ)

s′I(Φ)(x;τ) − 1| |q̃(τ)| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 4.5× 10−16 4.9× 10−16
1.5× 10−5 0.27

σ2 6.5× 10−27 3.8× 10−27

(a) Region I: τ = 1
9 eπi

5

| sII(Φ)(x;τ)
FII(x;τ) − 1| | sII(Φ)(x;τ)

s′II(Φ)(x;τ) − 1| |q̃(τ)| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 3.7× 10−26 1.1× 10−25
5.3× 10−5 0.31

σ2 6.1× 10−15 5.7× 10−15

(b) Region II: τ = 1
8 e 4πi

5

| sIII(Φ)(x;τ)
FIII(x;τ) − 1| | sIII(Φ)(x;τ)

s′III(Φ)(x;τ) − 1| |q̃(τ)−1| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 3.2× 10−26 1.3× 10−25
5.3× 10−5 0.31

σ2 3.0× 10−15 9.8× 10−15

(c) Region III: τ = 1
8 e− 4πi

5

| sIV (Φ)(x;τ)
FIV (x;τ) − 1| | sIV (Φ)(x;τ)

s′IV (Φ)(x;τ) − 1| |q̃(τ)−1| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 4.5× 10−16 4.9× 10−16
1.5× 10−5 0.27

σ2 6.5× 10−27 3.8× 10−27

(d) Region IV : τ = 1
9 e−πi

5

Table 4. We perform numerical Borel resummation for Φ(k=3)
41

(x, τ) at x = 6
5 e4πi/3 with

220 terms, after choosing suitable τ in four different regions. We compare them with equa-
tions (3.36a), (3.36b), (3.36c), (3.36d) whose right hand side is denoted as FR(x, τ). Meanwhile,
we estimate the contribution of higher order terms by resumming Φ(k=3)

41
(x, τ) with 215 terms. The

values of |q̃(q̃−1)| and |x̃±1| are also provided for comparison.

We scale the variables
Z = 2πbσ, u = 2πbµ (4.6)

and then perform asymptotic expansion of the tetrahedron partition functions in the small
b limit using (A.15).

χ
(k)
52 (µ, n; b) ∼ (ηk)3

2πbk (−1)ne
3πi
k

(n2−µ2) ∑
m∈Zk

e
2πi
k
m2
∫

dZ exp
∑
`≥0

(2πib2)`−1U`(u, Z) (4.7)

where the potential functions are

U0(u, Z) = 1
k

(
Z2 + Li2(−eZ) + Li2(−eZ−u) + Li2(−eZ+u)

)
, (4.8a)

U`≥1(u, Z) = 1
`!
∑
j∈Zk

B`(1− 1/(2k)− j/k)
(

Li2−`(ζm−j−1/2e
Z
k )

+ Li2−`(ζm+n−j−1/2e
Z−u
k ) + Li2−`(ζm−n−j−1/2e

Z+u
k )
)
. (4.8b)
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| sI(Φ)(x;τ)
FI(x;τ) − 1| | sI(Φ)(x;τ)

s′I(Φ)(x;τ) − 1| |q̃(τ)| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 2.4× 10−16 7.5× 10−16
1.5× 10−5 0.27

σ2 4.4× 10−27 7.9× 10−27

(a) Region I: τ = 1
9 eπi

5

| sII(Φ)(x;τ)
FII(x;τ) − 1| | sII(Φ)(x;τ)

s′II(Φ)(x;τ) − 1| |q̃(τ)| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 3.2× 10−26 1.3× 10−25
5.3× 10−5 0.31

σ2 3.0× 10−15 9.8× 10−15

(b) Region II: τ = 1
8 e 4πi

5

| sIII(Φ)(x;τ)
FIII(x;τ) − 1| | sIII(Φ)(x;τ)

s′III(Φ)(x;τ) − 1| |q̃(τ)−1| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 3.7× 10−26 1.1× 10−25
5.3× 10−5 0.31

σ2 6.1× 10−15 5.7× 10−15

(c) Region III: τ = 1
8 e− 4πi

5

| sIV (Φ)(x;τ)
FIV (x;τ) − 1| | sIV (Φ)(x;τ)

s′IV (Φ)(x;τ) − 1| |q̃(τ)−1| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 4.5× 10−16 7.5× 10−16
1.5× 10−5 0.27

σ2 4.4× 10−27 7.9× 10−27

(d) Region IV : τ = 1
9 e−πi

5

Table 5. We perform numerical Borel resummation for Φ(k=3)
41

(x, τ) at x = 6
5 e2πi/3 with

220 terms, after choosing suitable τ in four different regions. We compare them with equa-
tions (3.36a), (3.36b), (3.36c), (3.36d) whose right hand side is denoted as FR(x, τ). Meanwhile,
we estimate the contribution of higher order terms by resumming Φ(k=3)

41
(x, τ) with 215 terms. The

values of |q̃(q̃−1)| and |x̃±1| are also provided for comparison.

The critical equation of the leading order potential function reads

0 = ∂

∂Z
U0(u, Z) = 1

k

(
2Z − log(1 + eZ)− log(1 + e−u+Z)− log(1 + eu+Z)

)
, (4.9)

which can be simplified to the algebraic equation

Y 2 = (1− Y )(1−XY )(1−X−1Y ), (4.10)

with
X = eu = xk, Y = −eZ . (4.11)

We also introduce the variable θ such that

Y = −θk. (4.12)

The critical point equation (4.10) has three solutions in terms of Y , corresponding to
the geometric, conjugate, and the real flat connections σ1, σ2, σ3 on the knot complement
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S3\52. Numerically they are the ones which in the limit X → 1 reduce respectively to the
solutions 0.78492 + 1.30714 . . . i, 0.78492−1.30714 . . . i and 0.43016 . . . to (4.10). Near each
critical point σj , the integrand is approximated by the exponential

exp
(
V (k)(σj)

2πiτ

)
, (4.13)

where

V (k)(σj) = U0(log(X),− log(Yj)) + 3u2

2k + π2

2k . (4.14)

The last two terms come from the prefactors outside the summation over m ∈ Zk. We
again notice the curious fact that V (k)(σj) = V (1)(σj)/k.

By expanding near the critical point and performing the Gaussian integration order
by order, for each critical point σj we can find an asymptotic power series ϕ(k,σj)(x; τ),
which, together with the exponential factor (4.13), forms the trans-series

Φ(k,σj)
52 (x; τ) = eV (k)(σj)/(2πiτ)ϕ

(k,σj)
52 (x; τ), j = 1, 2, 3. (4.15)

The one-loop contribution ϕ(k,σj)
52 (x; 0) = ω

(k,σj)
52 (x) has a universal expression

ω
(k,σj)
52 (x)

= (−1)n−1eπi
4 +πik

2 + πi
2k (6n2−1)√

−k(3 + 2s(xk)θk + (s(xk)− 1)θ2k)
θD∗k(ζ−1/2θ)1/kD∗k(ζ−1/2θx)1/kD∗k(ζ−1/2θ/x)1/k

×
∑
m∈Zk

ζm
2
θ2m(ζ1/2θ; ζ)−1

m (ζ1/2θx; ζ)−1
m (ζ1/2θ/x; ζ)−1

m , (4.16)

where

s(x) = 1 + x+ 1/x. (4.17)

The power series ϕ(k,σj)
52 (x; τ)/ω(k,σj)

52 (x) on the other hand depends in a complicated way
on the level k.

The case of k = 1 is particularly simple. The dependence on n ∈ Z1 drops out, and
the state integral reduces to [31]

χ52(µ; τ) = χ
(1)
52 (µ, 1; τ) = Φb(0)−6

∫
R+i0

dvΦb(v)Φb(v + µ)Φb(v − µ)e−πi(2v2+3µ2) (4.18)
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where we have used η1 = Φb(0)−2. The power series ϕ(σi)
1 (x; τ) are given by [31]

(ω(σj)
52 )−1ϕ

(σ1)
52

(
x; τ

2πi

)
=1+

Y 4
j

12γ3
j

(
−12+18s−4s2−5s3+s4+(27−16s−s2+6s3−s4)Yj+s(−19+2s)Y 2

j

)
τ

+
Y 10
j

288γ6
j

(
24201−34032s+7438s2+8872s3−7337s4+5128s5−3479s6+1135s7−93s8

−13s9+s10+(4680+2562s−1132s2−8688s3+6400s4−4338s5+3353s6−1145s7

+94s8+13s9−s10)Yj+(−5832+6972s+4921s2−6026s3+3034s4−2454s5+1030s6

−105s7−12s8+s9)Y 2
j

)
τ2+O(τ3), (4.19)

where
s = s(x) = 1 + x+ x−1, (4.20)

and
γj(x) = 3− 2s(x)Yj(x) + (s(x)− 1)Yj(x)2 (4.21)

At level k = 2, the first few terms of the power series are given in appendix B.2. It is clear
that the coefficients of the power series depend only on the solution Yj to the NZ equation,
but not on a k-th root of Yj . Furthermore, they depend on the deformation parameters
u, n only through the holonomy parameter x. Finally, the power series are increasingly
more complicated at higher levels k.

4.2 Holomorphic blocks

As in the example of knot 41, here we introduce descendants of the state integral and
demonstrate their property of factorisation into holomorphic blocks.

The descendant state integral for the knot 52 takes the form,

χ
(k)
52;r,s(µ, n; b) = (ηk)3

k

∑
m∈Zk

∫
C

dσZ(k)
b [∆](σ,m)Z(k)

b [∆](σ + µ,m+ n)Z(k)
b [∆](σ − µ,m− n)

× (−1)ne
πi
k

(−(σ+µ−cb)2−(σ−µ−cb)2−µ2+(m+n)2+(m−n)2+n2)

×e
2πi
k

(−i(rb+sb−1)(cb−σ)+(r−s)m), (4.22)

where the contour of integral C is such that it asymptotes at both ±∞ to the horizontal
line Im σ = σ0 with σ0 < Im(cb)− |Re(rb + sb−1)| but is deformed near the origin so that
all the poles of the integrand are below the contour.

The integrand only has poles coming from the tetrahedron partition functions and they
are located at

v = −ibα− ib−1β, α− β ≡ m (mod k), (4.23)
v = µ− ibα− ib−1β, α− β ≡ m− n (mod k), (4.24)
v = −µ− ibα− ib−1β, α− β ≡ m+ n (mod k). (4.25)
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We can evaluate the descendant state integral by completing the contour from below and
summing up residues from all these poles. We find in this way that

χ
(k)
52;r,s(µ, n; b) =(−1)nqr/2q̃−s/2

(
e−

πi
12 + 5πi

6k + 5πi
12k (τ+τ−1)Ar(x; q)As(x̃, q̃−1)

+ e−
5

12πik+ πi
6k+ πi

12k (τ+τ−1)Br(x; q)Bs(x̃, q̃−1)

+ e−
5

12πik+ πi
6k+ πi

12k (τ+τ−1)Cr(x; q)Cs(x̃, q̃−1)
)
. (4.26)

Here Ar(x, q), Br(x, q), Cr(x, q) are descendant holomorphic blocks defined by

Ar(x; q) = H(x, x−1, qr; q), (4.27a)
Br(x; q) = θ(−q1/2x; q)−2xrH(x, x2, qrx2; q), (4.27b)
Cr(x; q) = θ(−q−1/2x; q)−2x−rH(x−1, x−2, qrx−2; q), (4.27c)

where H(x, y, z; qε) for |q| < 1 and ε = ±1 and

H+(x, y, z; q) = (qx; q)∞(qy; q)∞
∞∑
n=0

qn(n+1)zn

(q; q)n(qx; q)n(qy; q)n
(4.28a)

H−(x, y, z; q) = 1
(x; q)∞(y; q)∞

∞∑
n=0

(−1)n q
1
2n(n+1)x−ny−nzn

(q; q)n(qx−1; q)n(qy−1; q)n
. (4.28b)

Note again that the definition of descendant holomorphic blocks as functions of x, q are
independent of k. They thus enjoy the same properties as discussed in [31]. If we define
the descendant Wronskian matrix

Wr(x; q) =

 Ar(x; q) Br(x; q) Cr(x; q)
Ar+1(x; q) Br+1(x; q) Cr+1(x; q)
Ar+2(x; q) Br+2(x; q) Cr+2(x; q)

 , (4.29)

it enjoys the identity

Wm(x−1; q) = Wm(x; q)

1 0 0
0 0 1
0 1 0

 , (4.30)

as well as the inversion property

Wm(x; q)W`(x; q−1)T ∈ PSL(3,Z[x±1, q±1]). (4.31)

In particular

W−1(x; q)W−1(x; q−1)T =

1 0 0
0 0 1
0 1 x+ x−1

 . (4.32)

4.3 Resurgent structure

We collect the trans-series associated to the geometric and conjugate flat connections in a
vector

Φ(k)
52 (x; τ) =


Φ(k,σ1)

52

Φ(k,σ2)
52

Φ(k,σ2)
53

 (x; τ). (4.33)

– 30 –



J
H
E
P
0
5
(
2
0
2
3
)
0
8
6

III

IVIII

Figure 5. Singular points of the Borel transform of the vector of trans-series of the sl(2,C) Chern-
Simons theory at level k = 1 on the complement of the knot 52.

The singularities of the Borel transform of each component trans-series are located in Λ(k)
j

given in (2.63). In the case of level k = 1, we superimpose the Borel singularities of the
components of Φ(1)

52 (x; τ) and plot them in figure 5. At a generic level k ≥ 1, the distrubtion
of the Borel plane singularities is the same and their actual locations are reduced by a factor
of 1/k according to (2.63).

As explained in section 2, Stokes constants of individual Borel plane singularities can
be extracted from global Stokes automorphisms. The entire Borel plane is divided by
Stokes rays of components of Φ(k)

52 (x; τ) into infinitely many cones. We label the four
cones above and below the positive and negative real axes by I, II, III, IV , ordered in
counter-clockwise direction, as illustrated in figure 5. We choose to calculate the global
Stokes automorphism S

(k)
+ (x̃; q̃) = S

(k)
IV→II(x̃; q̃) and S

(k)
− (x̃; q̃) = S

(k)
II→IV (x̃; q̃), both in

the anti-clockwise direction, which encode all the Stokes constants.

As in the previous section, in order to derive the Stokes automorphisms, we first
calculate the Borel resummation of the trans-series. Following [31] and with numerical
evidence presented shortly after, We claim that the Borel resummation of trans-series can
be written as bilinear products of holomorphic blocks in q and q̃. Concretely,

sI(Φ)(x; τ) =

 0 1 1
0 1 0
−1 0 0

W−1(x̃; q̃−1)∆(k)(τ)B(x; q), |q̃| < 1, (4.34a)

sII(Φ)(x; τ) =

 0 1 0
0 1 1
−1 0 0

W−1(x̃−1; q̃−1)∆(k)(τ)B(x; q), |q̃| < 1, (4.34b)
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sIII(Φ)(x; τ) =

 0 1 0
0 −s(x̃) 1
−1 0 0

W−1(x̃−1; q̃−1)∆(k)(τ)B(x; q), |q̃| > 1, (4.34c)

sIV (Φ)(x; τ) =

 0 −s(x̃) 1
0 1 0
−1 0 0

W−1(x̃; q̃−1)∆(k)(τ)B(x; q), |q̃| > 1. (4.34d)

Here W−1(x, q) is the Wronskian of holomorphic blocks defined in (3.32), and

B(x; q) =

A0(x; q)
B0(x; q)
C0(x; q)

 (4.35)

∆(k)(τ) is the diagonal matrix defined by

∆(k)(τ) = diag(e−
πi
12 + 5πi

6k + 5πi
12k (τ+τ−1), e−

5
12πik+ πi

6k+ πi
12k (τ+τ−1), e−

5
12πik+ πi

6k+ πi
12k (τ+τ−1)).

(4.36)
As in the example of knot 41, we use (4.34a) and (4.34b) to derive Stokes automorphism
in the upper half plane, and use (4.34a) and (4.34d) to calculate Stokes constants for
Borel plane singularities in the positive axis, which involves analytic continuation of the
holomorphic blocks with the help of (4.32). Combining these results, we can write down
the global Stokes automorphism S

(k)
+ from sector IV to sector II in anti-clockwise diretion.

Similar calculations can be done to write down S
(k)
− from sector II to sector IV in anti-

clockwise direction.

S
(k)
+ (x̃; q̃) =

 0 1 0
0 1 1
−1 0 0

W−1(x̃−1; q̃−1)W−1(x̃; q̃)T
0 0 −1

1 1 0
0 1 0

 , |q̃| < 1 (4.37a)

S
(k)
− (x̃; q̃) =

 0 −s(x̃) 1
0 1 0
−1 0 0

W−1(x̃; q̃)W−1(x̃−1; q̃−1)T
 0 0 −1
−s(x̃) 1 0

1 0 0

 , |q̃| < 1. (4.37b)

we notice that the Stokes automorphisms and therefore the Stokes constants do not depend
on the level k.

At level k = 1, the numerical evidences for the Borel plane singularities as well the
Borel resummation formulas (4.34a), (4.34b), (4.34c), (4.34d) were provided in detail in [31].

We verify these results numerically at level k = 2. We choose x = (−1)n 6
5 (n = 0, 1)

corresponding to u = 2 log 6/5, n = 0, 1 with power series truncated to N = 200 terms.
The Stokes plane is divided into four regions similar to figure 5. For example, the positions
of poles for the Padé approximant Φ(k=2)

52 (x, τ) at x = 6
5 are shown in figure 6. Finally we

present the numerical results in tables 6 and 7 respectively. As we can see, the relative
errors between two sides of (4.34a), (4.34b), (4.34c), (4.34d) (the first column) are always
within the precision of the Borel resummation (the second column), and in regions I, II
are always far smaller than a potential q̃ (or 1/q̃ in the lower half plane) or a x̃±1 correction
(the third and the fourth columns). In region III, the relative error between two sides
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of (4.34b) is relatively high, due to discrete singular points that break off from the branch
cut of the Borel transform of the truncated series Φ(k=2,σ2)

52 (x; τ) and stray into region
III, as seen in figure 6b. The relative error is still much smaller than a x̃±1 correction,
although it does not preclude a potential q̃−1 correction. The latter, however, is not
possible. Figure 6b indicates that Φ(k=2,σ2)

52 (x; τ) in regions II and III must be related by
a Stokes automorphism that accounts for the three Borel plane singularities in the negative
real axis. Indeed from (4.34b), (4.34c) we find that

sIII(Φ)(x; τ) = SII→III(x̃)sII(Φ)(x; τ), SII→III(x̃) =

 1 0 0
−1− s(x̃) 1 0

0 0 1

 (4.38)

The (2, 1) entry of SII→III(x̃)

SII→III(x̃)2,1 = −x̃− 2− x̃−1 (4.39)

should encode the Stokes constants of these three Borel plane singularities. Any cor-
rection to the right hand side of (4.34c) should involve a correction of the coefficients of
SII→III(x̃)2,1 and thus must be of relative order at least x̃±1. Likewise, from (4.34a), (4.34d)
we find that

sI(Φ)(x; τ) = SIV→I(x̃)sIV (Φ)(x; τ), SIV→I(x̃) =

1 1 + s(x̃) 0
0 1 0
0 0 1

 (4.40)

The (1, 2) entry of SIV→I(x̃)

SIV→I(x̃)1,2 = x̃+ 2 + x̃−1 (4.41)

accounts for the three singularities of the Borel transform of Φ(k=2,σ1)
52 (x; τ) in the positive

real axis shown in figure 6a. Any correction to the right hand side of (4.34d) should involve
a correction of the coefficients of SIV→I(x̃)1,2 and thus must be of relative order x̃±1, which
is also excluded in tables 6, 7.

5 Conclusion and discussion

In this short note we study the resurgent properties of the sl(2,C) Chern-Simons state
integral model on knot complemnets S3\41, S3\52 at generic level k ≥ 1. When the
level k increases, the saddle point expansion of the sl(2,C) Chern-Simons state integral
becomes increasingly more complicated. But there are several interesting universal featrues.
First of all, the coefficients of the power series always live in the trace field of the knot
extended by the holonomy paramter x. Second, these power series enjoy universal resurgent
properies. When the holonomy deformed is weak so that | log xk| � 1, the distribution of
the singularities of the Borel transform is the same and they are all related to the level
k = 1 singularites by a factor of 1/k. In addition, the Stokes constants associated to these
singularities are independent of the level k. We speculate that this is related to the fact
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-1.0 -0.5 0.5 1.0
Re(t)

-1.0

-0.5

0.5

1.0
Im(t)

(a)

-1.0 -0.5 0.5 1.0
Re(t)

-1.0

-0.5

0.5

1.0
Im(t)

(b)

-1.0 -0.5 0.5 1.0
Re(t)

-1.0

-0.5

0.5

1.0
Im(t)

(c)

Figure 6. The distribution of poles of the Padé approximant for (a) : Φ(k=2,σ1)
52

(x, τ), (b) :
Φ(k=2,σ2)

52
(x, τ) and (c) : Φ(k=2,σ3)

52
(x, τ) with x = 6/5 and N = 200 terms.

the Hilbert space of the quantum Chern-Simons theory at level k is simply a k copy of
the level one theory, and that they all coincide with the same BPS invariants of the dual
3d SCFT.

Some interesting questions remain unanswered following this work. Both this work and
its predecessor [31] focus on the case when the holonomy is weak.6 It will be interesting
to understand the resurgent structure of the Chern-Simons theory in the entire holonomy
space. Due to the identification of the Stokes constants with the BPS invariants in the dual
3d SCFT [31, 32], the evolution of the resurgent structure as the holonomy changes may
enjoy features similar to the Wall Crossing Formulas of Kontsevich and Soibelman [55].

Second, it was shown in [24] that the resurgent structures presented in [31, 32] are
not complete: they involve only asymptotic series ϕ(k=1,σj)(x; τ) (j ≥ 1) associated to
non-Abelian flat connections, while there still remains the asymptotic series ϕ(k=1,σ0)(x; τ)
associated to the Abelian flat connection. It was revealed in [24] with examples of 41 and 52
that there are non-trivial Stokes automorphisms that relate ϕ(k=1,σ0)(x; τ) to ϕ(k=1,σj)(x; τ)
(j ≥ 1) but not the other way around. This is similar to the discovery in the case of compact
three manifolds in [27]. It would be interesting to also generalise this connection to generic
levels.

6There are some limited but unsystematic discussion for large holonomy in [31].
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| sI(Φ)(x;τ)
FI(x;τ) − 1| | sI(Φ)(x;τ)

s′I(Φ)(x;τ) − 1| |q̃(τ)| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 1.4× 10−17 1.7× 10−17

σ2 1.1× 10−27 1.0× 10−26 1.7× 10−5 0.33
σ3 1.9× 10−21 1.9× 10−21

(a) Region I: τ = 1
7 eπi

6

| sII(Φ)(x;τ)
FII(x;τ) − 1| | sII(Φ)(x;τ)

s′II(Φ)(x;τ) − 1| |q̃(τ)| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 1.1× 10−27 1.0× 10−26

σ2 1.4× 10−17 1.7× 10−17 1.7× 10−5 0.33
σ3 1.9× 10−21 1.9× 10−21

(b) Region II: τ = 1
7 e 5πi

6

| sIII(Φ)(x;τ)
FIII(x;τ) − 1| | sIII(Φ)(x;τ)

s′III(Φ)(x;τ) − 1| |q̃(τ)−1| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 3.8× 10−27 7.2× 10−26

σ2 1.3× 10−2 1.5× 10−3 1.7× 10−5 0.36
σ3 1.1× 10−23 1.9× 10−24

(c) Region III: τ = 1
7 e− 5πi

6

| sIV (Φ)(x;τ)
FIV (x;τ) − 1| | sIV (Φ)(x;τ)

s′IV (Φ)(x;τ) − 1| |q̃(τ)−1| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 1.3× 10−2 1.5× 10−3

σ2 3.8× 10−27 7.2× 10−26 1.7× 10−5 0.36
σ3 1.1× 10−23 1.9× 10−24

(d) Region IV : τ = 1
7 e−πi

6

Table 6. We perform the numerical Borel resummation for Φ(k=2)
52

(x, τ) at x = 6/5 (u = 2 log 6/5,
n = 0) with 200 terms, after choosing suitable τ in regions I and II. We compare them with
equations (4.34a)(4.34b)(4.34c)(4.34d) whose right hand side is denoted as FR(x, τ). Meanwhile,
we estimate the contribution of higher order terms by resumming Φ(k=2)

52
(x, τ) with 196 terms. The

values of |q̃(q̃−1)| and |x̃±1| are also provided for comparison.

In fact, the power series ϕ(k=1,σ0)(x; τ) were computed by expanding colored Jones
polynomial near q → 1. Both ϕ(k=1,σ0)(1; τ) and ϕ(k=1,σj)(1; τ) with holonomy turned
off appear in the Refined Quantum Modularity Conjecture [29, 56] in the case of S-
transformation (see also [34, 35]). For a generic sl(2,Z) transformation ( a bc d ), the power
series should be replaced by ϕ(k=c,σ0)(1; τ) and ϕ(k=c,σj)(1; τ) or their Galois transformation
in the trace field. The power series ϕ(k=c,σ0)(x; τ) can be computed by expanding colored
Jones polynomial near q → exp 2πi/c. We conjecture then that ϕ(k,σ0)(x; τ) constructed
this way is also related to ϕ(k,σj)(x; τ) (j ≥ 1) computed in this work by non-trivial Stokes
automorphisms, where the Stokes constants coincide with those in [24].
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| sI(Φ)(x;τ)
FI(x;τ) − 1| | sI(Φ)(x;τ)

s′I(Φ)(x;τ) − 1| |q̃(τ)| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 3.9× 10−18 4.0× 10−18

σ2 2.9× 10−28 2.5× 10−28 1.7× 10−5 0.33
σ3 2.2× 10−21 7.3× 10−21

(a) Region I: τ = 1
7 eπi

6

| sII(Φ)(x;τ)
FII(x;τ) − 1| | sII(Φ)(x;τ)

s′II(Φ)(x;τ) − 1| |q̃(τ)| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 2.9× 10−28 2.5× 10−28

σ2 3.9× 10−18 4.0× 10−18 1.7× 10−5 0.33
σ3 2.2× 10−21 7.3× 10−21

(b) Region II: τ = 1
7 e 5πi

6

| sIII(Φ)(x;τ)
FIII(x;τ) − 1| | sIII(Φ)(x;τ)

s′III(Φ)(x;τ) − 1| |q̃(τ)−1| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 2.4× 10−29 1.7× 10−29

σ2 8.1× 10−3 2.0× 10−4 3.5× 10−6 0.36
σ3 2.7× 10−25 1.1× 10−24

(c) Region III: τ = 1
8 e− 5πi

6

| sIV (Φ)(x;τ)
FIV (x;τ) − 1| | sIV (Φ)(x;τ)

s′IV (Φ)(x;τ) − 1| |q̃(τ)−1| Min(|x̃(x, τ)|, |x̃(x, τ)−1|)

σ1 8.1× 10−3 2.0× 10−4

σ2 2.4× 10−29 1.7× 10−29 3.5× 10−6 0.36
σ3 2.7× 10−25 1.1× 10−24

(d) Region IV : τ = 1
8 e−πi

6

Table 7. We perform the numerical Borel resummation for Φ(k=2)
52

(x, τ) at x = −6/5 (u = 2 log 6/5,
n = 1) with 200 terms, after choosing suitable τ in regions I and II. We compare them with
equations (4.34a), (4.34b), (4.34c), (4.34d) whose right hand side is denoted as FR(x, τ). Meanwhile,
we estimate the contribution of higher order terms by resumming Φ(k=2)

52
(x, τ) with 196 terms. The

values of |q̃(q̃−1)| and |x̃±1| are also provided for comparison.

We have been focusing on the generalisation of [31, 32] to sl(2,C) Chern-Simons theory
with higher levels k ≥ 1. Other directions of generalisation are also possible. For instance
one can consider sl(N,C) Chern-Simons theory with N ≥ 2. State integral models have
also been written down in [5]. Alternatively, one can also study the resurgent structures
of the Chern-Simons theory at level k = 0. This is a special case, and by the 3d-3d
correspondence, it is dual to the 3d SCFT on S2 × S1 [14], whose partition function is
nothing else but the supersymmetric indices of the 3d SCFT. In other words, one could
study the saddle point expansion of the indices and their resurgent structures. See related
work in [57]. Furthermore, three manifolds obtained from Dehn filling of hyperbolic knot
complements are also interesting objects to study [58, 59].
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Finally, following the arguments in [60] (see a similar application of the same idea [61]),
the Stokes automorphism together with the asymptotic behavior define for us a Riemann-
Hilbert problem for the Borel resummed asymptotic series. The latter may be solved
by a TBA-like equation. It is interesting to explore if such a TBA-like equation can be
written down for Borel resummed asymptotic series in complex Chern-Simons theory. As
showcased in [61], such an equation could help answer the question of the evolution of
the resurgent structure as we change the moduli of the system, which are the holonomy
parameter x here.
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A Tetrahedron partition function at level k

The partition function of sl(2,C) Chern-Simons theory at level k on an ideal tetrahedron
is given by

Z(k)
b [∆](µ, n) =

∏
(r,s)∈Γ(k;n)

Φb(cb −
1
k

(µ+ ibr + ib−1s)) (A.1)

where
Γ(k;n) = {(r, s) ∈ Z2 | 0 ≤ r, s < k, r − s ≡ n(mod k)} (A.2)

and cb = i
2(b+b−1). Φb(x) is Faddeev’s quantum dilogarithm. This defines a meromorphic

function of µ ∈ C for each n ∈ Zk, and it is defined for all values of b with b2 in the cut
plane C′ = C\R≤0.

When Im b > 0 or Im b < 0, it has the factorisation form

Z(k)
b [∆](µ, n) = (qx−1; q)∞(q̃−1x̃−1; q̃−1)∞ (A.3)

where we use the notation

q = exp 2πi
k

(b2 + 1), q̃ = exp−2πi
k

(b−2 + 1),

x = exp
(2πbµ

k
− 2πin

k

)
, x̃ = exp

(
2πb−1µ

k
+ 2πin

k

)
,

(A.4)

and (a, q)∞ is the q-Pochhammer symbol defined to be ∏∞j=1(1 − aqj) if |q| < 1 or
1/(q−1a; q−1)∞ if |q| > 1.
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A.1 Fundamental properties

• Inversion relation

Z(k)
b [∆](cb + x, n)Z(k)

b [∆](cb − x,−n) = (−1)ne
πi
k

(x2−n2)η−1
k , (A.5)

where
ηk = eπi(k+2c2

bk
−1)/6. (A.6)

Note that this implies the special value

Z(k)
b [∆](cb, 0)2 = η−1

k . (A.7)

• Quasi-periodicity (Faddeev’s difference equations). For x, b ∈ C, Im(b) 6= 0, n ∈ Z

Z(k)
b [∆]

(
x− ib±1, n± 1

)
= Z(k)

b [∆](x, n)
(
1− q±x−1

±

)−1

Z(k)
b [∆]

(
x+ ib±1, n∓ 1

)
= Z(k)

b [∆](x, n)
(
1− x−1

±

)
.

(A.8)

where q+ = q, q− = q̃, x+ = x, x− = x̃.

• Asymptotic behavior

Z(k)
b [∆](µ, n) ∼

eπi
k

(cb−µ)2 Re(µ)� 0
1 Re(µ)� 0.

(A.9)

A.2 Zeros and poles

For Im(b) > 0, the tetrahedron partition function Z(k)
b [∆](x, n) has zerosx = 2cb + ib−1l + ibm

n = l −m (mod k)
(A.10)

and poles x = −ib−1l − ibm
n = m− l (mod k)

(A.11)

for l,m ∈ Z≥0, and the residue is

k

2πb−1
(q; q)∞
(q̃; q̃)∞

1
(q; q)m

1
(q̃−1; q̃−1)l

. (A.12)

A.3 Integral identities

The tetrahedron partition function has the following property of Fourier transformation,

1
k

∑
n∈Zk

∫
R+cb

duZ(k)
b [∆](u,n)e

2πi
k

(uw−nm) =Z(k)
b [∆](w,m)(−1)me−

πi
k

((w−cb)2−m2)+ πi
12 (k+8c2

bk
−1).

(A.13)
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A.4 Semi-classical limit

In the double scaling limit
b→ 0, µ→∞, bµ fixed (A.14)

the tetrahedron partition function has the asymptotic expansion

logZ(k)
b [∆](µ,m) =

∞∑
`=0

(2πib2)`−1

`!
∑
j∈Zk

B`(j/k) Li2−`
(
e

2πi
k

(j+m)e−
2πbµ
k

)
. (A.15)

Alternatively, define
D(k)

b (u,m) = Z(k)
b [∆](cb −

√
ku,m). (A.16)

In the double scaling limit

b→ 0, u→∞, bu fixed, (A.17)

it has the asymptotic expansion

logD(k)
b (u,m) =

∞∑
`=0

(2πib2)`−1

`!
∑
j∈Zk

B`

(
1− 1

2k −
j

k

)
Li2−`(e−

πi
k

(1+2j−2m)e
2πbu√
k ). (A.18)

B Power series of state integrals at different levels

B.1 Knot 41

At level k = 2, the power series are

(ω(k=2,σj)
41 (x))−1ϕ

(k=2,σj)
41

(
x; τ

2πi

)
= 1 + a

(σj)
1 (x)τ + a

(σj)
2 (x)τ2 + a

(σj)
3 (x)τ +O(τ4),

(B.1)

where a(σj)
1 (x) is given in (3.21) and some additional coefficients are

a
(σj)
2 (x) =(1+12x+46x2−576x3+1413x4+1608x5+202x6+7788x7+3258x8−34572x9

+1094x10+27816x11−3555x12+27816x13+1094x14−34572x15+3258x16

+7788x17+202x18+1608x19+1413x20−576x21+46x22+12x23+x24)/
(4608(−1−x+x2)3(1−x+x2)3(−1+x+x2)3(1+x+x2)3), (B.2a)

a
(σj)
3 (x) =−((5−8550x−10329x2−84870x3+534081x4+156600x5+907732x6+7978680x7

+4743126x8−47249100x9+10187454x10+68274900x11−8491270x12+156024000x13

+16794912x14−565084800x15+12734439x16+387780030x17−42351651x18

+387780030x19+12734439x20−565084800x21+16794912x22+156024000x23

−8491270x24+68274900x25+10187454x26−47249100x27+4743126x28+7978680x29

+907732x30+156600x31+534081x32−84870x33−10329x34−8550x35+5x36)
(−1−x2+x4+2x2Yj))/(3317760(−1−x+x2)5(1−x+x2)5(−1+x+x2)5(1+x+x2)5).

(B.2b)
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At level k = 3, the power series are

(ω(k=3,σj)
41 (x))−1ϕ

(k=3,σj)
41

(
x; τ

2πi

)
= 1 + c

(σj)
1 (x)τ + c

(σj)
2 (x)τ2 +O(τ3), (B.3)

where

c
(σj)
1 (x) =(1+8x+17x2+8(2+3ζ)x3−24(1+ζ)x4−24(1+ζ)x5−4(1+6ζ)x6

+8(−1+3ζ)x7+36(−1+2ζ)x8+2(47−48ζ)x9+24(1+2ζ)x10+142x11

+(95−24ζ)x12+8(4+15ζ)x13++3(53−8ζ)x14−194x15+8(5+ζ)x16

−2(89+48ζ)x17+2(25+36ζ)x18−8(1−3ζ)x19−2(7+12ζ)x20+2(17−12ζ)x21

+8(2−3ζ)x22+2(5+12ζ)x23−17x24−8x25−x26

+2x3(1+8x+17x2+3x3−20x4−29x5+6x6+8x7−26x8+139x9−28x10

+139x11−26x12+8x13+6x14−29x15−20x16+3x17+17x18+8x19+x20)Yj)/
(72(1+x2)(1−3x3+x6)2(1+x3+x6)2), (B.4)

c
(σj)
2 (x) =(1+16(5+8ζ)x+(33−128ζ)x2+2(207+440ζ)x3−16(129+103ζ)x4

−2(−167+1144ζ)x5+(3101+6256ζ)x6−112(−64+49ζ)x7+(−5923+2928ζ)x8

−2(−14241+3544ζ)x9−16(484+459ζ)x10+2(40457+6680ζ)x11

+2(−6751+13744ζ)x12−32(1406+615ζ)x13−2(63311+27248ζ)x14

+2(6179+48568ζ)x15−16(635+1871ζ)x16−2(54965+10456ζ)x17

+(228909−59120ζ)x18−16(1402+1109ζ)x19+(329133+141328ζ)x20

−2(72397+45320ζ)x21−16(−128+345ζ)x22−10(4033+824ζ)x23

+2(−32943+33488ζ)x24+32(−964+269ζ)x25−2(26287+25328ζ)x26

−2(−36257+1720ζ)x27+16(−249+11ζ)x28+2(20473+8920ζ)x29

+(−11011−7248ζ)x30+16(680+121ζ)x31+(−2275−4496ζ)x32

+2(1247+1016ζ)x33+16(−18+119ζ)x34−2(233+440ζ)x35+(161+128ζ)x36

−16(3+8ζ)x37+x38−16(1+2ζ)x4(8−8x+55x2−111x3−135x4+336x5

−224x6+310x7−724x8−346x9+390x10+2778x11−1108x12−3486x13+2569x14

−1109x15+2569x16−3486x17−1108x18+2778x19+390x20−346x21−724x22

+310x23−224x24+336x25−135x26−111x27+55x28−8x29+8x30)Y )/
(10368(1+x2)(1−3x3+x6)3(1+x3+x6)3); (B.5)

B.2 Knot 52

At level k = 2, the power series are

(ω(k=2,σj)
52 (x))−1ϕ

(k=2,σj)
52

(
x; τ

2πi

)
= 1 + a

(σj)
1 τ + a

(σj)
2 τ2 +O(τ3), (B.6)

where

a
(σj)
1 =(1 + 6x+ 14x2 − 30x3 − 245x4 − 216x5 + 944x6 + 1428x7 − 1231x8 − 2346x9 + 1326x10

+ 3042x11 − 1873x12 − 6168x13 − 3400x14 − 2556x15 − 3935x16 − 4950x17 − 5474x18

− 4950x19 − 3935x20 − 2556x21 − 3400x22 − 6168x23 − 1873x24 + 3042x25 + 1326x26

− 2346x27 − 1231x28 + 1428x29 + 944x30 − 216x31 − 245x32 − 30x33 + 14x34 + 6x35
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+ x36 + (−1− 3x− 10x2 + 15x3 + 262x4 + 381x5 − 964x6 − 2118x7 + 697x8 + 2886x9

+ 469x10 − 873x11 + 1656x12 + 4797x13 + 2911x14 + 903x15 + 899x16 + 984x17 + 1185x18

+ 984x19 + 899x20 + 903x21 + 2911x22 + 4797x23 + 1656x24 − 873x25 + 469x26 + 2886x27

+ 697x28 − 2118x29 − 964x30 + 381x31 + 262x32 + 15x33 − 10x34 − 3x35 − x36)Yj
+ (x2 + 3x3 + 9x4 − 27x5 − 273x6 − 318x7 + 973x8 + 1737x9 − 916x10 − 2070x11

+ 193x12 + 288x13 − 2922x14 − 6345x15 − 4154x16 − 1221x17 − 825x18 − 1221x19

− 4154x20 − 6345x21 − 2922x22 + 288x23 + 193x24 − 2070x25 − 916x26 + 1737x27

+ 973x28 − 318x29 − 273x30 − 27x31 + 9x32 + 3x33 + x34)Y 2
j )/

(24(1 + 3x+ 3x2 + 3x3 + x4)(1− 2x− x2 + 8x3 − 11x4 + 8x5 − x6 − 2x7 + x8)2

(1 + 2x− x2 − 8x3 − 11x4 − 8x5 − x6 + 2x7 + x8)2), (B.7a)
a

(σj)
2 =(1 + 9x+ 183x2 + 27x3 − 4394x4 − 6915x5 + 24656x6 + 55122x7 − 7429x8 − 73344x9

− 227211x10 − 497652x11 + 35060x12 + 948795x13 + 659308x14 + 607485x15 + 3506489x16

+ 4523433x17 − 7706054x18 − 16876941x19 + 1410725x20 + 16099737x21 − 1232206x22

− 18943725x23 − 8872703x24 + 6776679x25 + 10490726x26 + 6776679x27 − 8872703x28

− 18943725x29 − 1232206x30 + 16099737x31 + 1410725x32 − 16876941x33 − 7706054x34

+ 4523433x35 + 3506489x36 + 607485x37 + 659308x38 + 948795x39 + 35060x40 − 497652x41

− 227211x42 − 73344x43 − 7429x44 + 55122x45 + 24656x46 − 6915x47 − 4394x48 + 27x49

+ 183x50 + 9x51 + x52 + (−1− 9x− 318x2 + 546x3 + 7812x4 + 5967x5 − 42735x6

− 59742x7 + 74478x8 + 179832x9 + 140847x10 + 36363x11 − 270391x12 − 424173x13

+ 219178x14 + 505557x15 − 3042062x16 − 4952124x17 + 5787235x18 + 12365862x19

− 1529844x20 − 11109657x21 + 1982588x22 + 14755839x23 + 7961410x24 − 3333816x25

− 7012037x26 − 3333816x27 + 7961410x28 + 14755839x29 + 1982588x30 − 11109657x31

− 1529844x32 + 12365862x33 + 5787235x34 − 4952124x35 − 3042062x36 + 505557x37

+ 219178x38 − 424173x39 − 270391x40 + 36363x41 + 140847x42 + 179832x43 + 74478x44

− 59742x45 − 42735x46 + 5967x47 + 7812x48 + 546x49 − 318x50 − 9x51 − x52)Y
+ x2(1 + 9x+ 319x2 − 531x3 − 7770x4 − 6363x5 + 43157x6 + 66417x7 − 72273x8

− 213864x9 − 169562x10 + 14532x11 + 375824x12 + 532452x13 − 180770x14 − 559596x15

+ 2833078x16 + 4801236x17 − 5971218x18 − 14640504x19 − 223658x20 + 13591086x21

+ 3954688x22 − 7274442x23 − 8512366x24 − 7274442x25 + 3954688x26 + 13591086x27

− 223658x28 − 14640504x29 − 5971218x30 + 4801236x31 + 2833078x32 − 559596x33

− 180770x34 + 532452x35 + 375824x36 + 14532x37 − 169562x38 − 213864x39 − 72273x40

+ 66417x41 + 43157x42 − 6363x43 − 7770x44 − 531x45 + 319x46 + 9x47 + x48)Y 2)/
(1152(1 + 3x+ 3x2 + 3x3 + x4)(1− 2x− x2 + 8x3 − 11x4 + 8x5 − x6 − 2x7 + x8)3

(1 + 2x− x2 − 8x3 − 11x4 − 8x5 − x6 + 2x7 + x8)3) (B.7b)

Open Access. This article is distributed under the terms of the Creative Commons
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