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1 Introduction

The energy spectrum of the simple system of electrons on a two-dimensional square lattice
in a uniform magnetic field has a surprisingly rich structure. After the early studies of
Harper [1], in 1976 D. Hofstadter pointed out [2] that this is a very peculiar system where the
electron spectrum has different features when the value of the magnetic field is rational or
irrational, and he derived a recursion equation which allowed him to plot the energy spectrum
of the electron system against the magnetic field when the magnetic field is rational. The
resulting beautiful plot is later known as the Hofstadter’s butterfly due to its resemblance to
a butterfly in shape, and it raises many puzzling questions. Thanks to the periodicity of the
square lattice, the energy of the electron system displays a band structure that depends on
the Bloch angle. The Hofstadter’s butterfly indicates that the energy is a rather intricate
function of both the magnetic field and the Bloch angle, but the exact nature of such a
function is rather mysterious. In addition, the Hofstadter’s butterfly has a fractal structure,
which can be described by a strong-weak field duality map (E, ¢) — (F,1/¢), where ¢ is the
magnetic flux through a lattice plaquette, but the expression of the mapped energy F is yet
unknown. Due to its simple-looking but rather intricate structure, the Hofstadter’s butterfly
has also attracted attention of many physicists and mathematicians [3-6], and interesting



connections to quantum integrable systems [7, 8], quantum Hall effect [9, 10] and possibly
high-temperature superconductivity [11] were discovered. With the proof of the Ten-Martini
problem [12], there are still some unsolved mysteries for the Harper-Hofstadter model.

One way of studying the energy as a function of the magnetic field is to consider the weak
field limit, where the energy is treated as a perturbative series in the magnetic field. Such a
perturbative series, nevertheless, is oblivious to the Bloch angle and thus cannot explain the
band structure. In fact, the rich band structure is known to be caused by non-perturbative
effects. For instance, the bandwidth is explained by the instanton effects in the path integral
formalism [13]. However, fully understanding the non-perturbative corrections including
all-order instanton effects would still be a challenge.

In recent years there have been several new developments that made the solution of
this problem a distinct possibility. The first development is the discovery of a surprising
connection to an unexpected territory. In 2016, Hatsuda, Katsura and Tachikawa found [14]
that the Harper-Hofstadter model is naturally related to the 5d N'=1 G = SU(2) Super
Yang-Mills theory on S' x R?, or alternatively topological string theory on local P! x P!
as its string theory realization. In the IR, the 5d gauge theory is completely characterized
by an algebraic curve called the Seiberg-Witten curve, and it was noticed that the curve
equation is the same as the Harper Hamiltonian without the magnetic field. Turning on
the magnetic field is equivalent to quantizing the Seiberg-Witten curve. This allows us
to calculate many quantities efficiently in the Harper-Hofstadter model. For instance, the
perturbative energy series of the Harper-Hofstadter model is mapped to the perturbative
series of the Wilson loop, while the instanton corrections are controlled by the free energy of
the field theory, both of which can be computed efficiently using the holomorphic anomaly
equations [15-19]. As a result, the authors of [20] were able to find the complete one-instanton
and the partial two-instanton corrections to the energy series of the Harper-Hofstadter model.
This connection between electrons in 2d lattices and supersymmetric field theory or string
theory was later extended to other models [21-23].

Another development is the powerful resurgence theory [24-27], which claims that a
perturbative series and its non-perturbative corrections are intimately related, and that a
subset of the non-perturbative corrections can be extracted from the perturbative series
itself. Another result of [20] was to use the resurgence technique to confirm the (partial) two-
instanton corrections to the energy series in the Harper-Hofstadter model. More importantly,
in the 5d SYM, the non-perturbative corrections to both the Wilson loops and the free
energies, at least the part accessible by the resurgence techniques have been solved in their
entirety [28], which are conjectured to be controlled by the BPS spectrum of the 5d SYM.
These results should be reinterpreted in the Harper-Hofstadter model.

Finally, the exact WKB method [29], which is the traditional WKB method enhanced
by resurgence techniques, has been very useful in deriving exact quantization conditions
for 1d non-relativistic quantum mechanical models. See [30, 31] for earlier analysis of the
Harper-Hofstadter model with the WKB method. Recently, the exact WKB method has been
revisited [32] so that in many 1d QM models the full energy trans-series including instanton
corrections to all orders are written down, and they all share the same universal structure. It
implies that even if we do not know the exact quantization conditions of a 1d QM model



a priori, we can still try to construct the full energy trans-series by looking for a family of
well-organized basic building blocks fitting the trans-series coefficients.

In this paper, we will combine the results of all these recent developments to construct the
full energy trans-series for the Harper-Hofstadter model in some special cases. The Harper-
Hofstadter model is equivalent to a 1d relativistic QM model. We assume the universal
structure of the full energy trans-series is still valid. We then borrow elements from the 5d
SYM to construct the basic building blocks of this general structure. We use resurgence
results from the 5d SYM to find a subset of the trans-series coefficients and use high precision
numerical calculation to find the remaining coefficients. With this method, we are able to
confirm that the universal structure of the energy trans-series is still valid and find the full
energy trans-series when the magnetic flux is ¢ = 27/Q for natural number Q. Taking the
logic of [32] in reverse, we infer the exact quantization conditions from the full energy trans-
series and find that it is in some sense a “double copy” of the exact quantization condition of
the Mathieu equation, i.e. the 1d non-relativistic QM model with a cosine potential [33-36].

In this process, we clarify a subtlety in the identification between the non-perturbative
corrections to the perturbative Wilson loop in the field theory and the non-perturbative
corrections to the perturbative energy series of the Harper-Hofstadter model, which is akin to
the transition from the large N expansion to the conventional series discussed recently in [37].

In addition, we also find that the energy trans-series is very sensitive to the nature of
the magnetic flux. If the magnetic flux is ¢ = 27 P/Q with coprime natural numbers P, Q
and P > 1, the trans-series coefficients change, and they display a peculiar feature related
to the strong-weak magnetic field duality, and hence could shed some light on the fractal
structure of the spectrum possibly. We also study the expansion of the energy around some
rational values of the magnetic flux, extending the Rammal-Wilkinson formula [30, 31].

The remainder of the paper is organized as the following. In section 2, we review the
previous results of the Harper-Hofstadter model, including the secular equation that computes
the energy spectrum exactly when the magnetic field is rational, and the semi-classical analysis,
including the instanton corrections from the path integral formalism. In section 3, we collect
results from recent developments, including a short introduction to the resurgence ideas
that we will need, the exact WKB method and its implication for the energy trans-series,
and the connection between the Harper-Hofstadter model and the 5d SYM. In section 4,
using these results, we construct the full energy trans-series for the Harper-Hofstadter model
step by step for flux ¢ = 27/Q. In section 5, we make some attempts to characterize the
splitting bands for P > 1. We revisit the self-similarity structure of the butterfly and provide
evidence for a possible exact version of the Rammal-Wilkinson formula. Finally we conclude
and give a list of open problems in section 6.

2 Hofstadter’s butterfly and its semiclassical analysis

The Harper-Hofstadter problem concerns the movement of electrons in the square lattice of
ions with the presence of uniform magnetic field. According to Bloch’s theorem, this can be
effectively captured by a single electron wavefunction obeying the almost Mathieu equation,
which was first studied by Harper [1]. We will quickly review this story here.



2.1 Harper-Hofstadter equation

Let us consider an electron moving in a two dimensional plane with a doubly periodic electric
potential induced by a square lattice of ions. By the tight binding approximation, the
Hamiltonian operator of the electron is

a a
H = 2cos %px—FQCOS 7Py (2.1)

Here a is the lattice spacing, h the reduced Planck constant, and p;, p, are the two independent
momentum operators in the x- and y-directions, and they commute with each other. This
Hamiltonian allows a single continuous band of energy in the range

—4< E<A4. (2.2)

If we impose in addition a uniform magnetic field of field strength B perpendicular
to the plane, the Hamiltonian operator has to be modified where we replace p;, p, by the
operators of canonical momenta [1;,[1,

H=eiM o @M ol 4o i, (2.3)

Here the canonical momenta are defined by
N=p+ed (2.4)

and the two components no longer commute

We will call this the Harper-Hofstadter model.
We can simplify the notation by defining the scaled operators

a a
X = ﬁnm y = _ﬁ”y (2.6)
with the commutator
ia’eB .
oyl = —— =4, (2.7)
so that the Hamiltonian simply reads
H=e"+e ™ 4e¥ e, (2.8)

This is equivalent to a relativistic one dimensional quantum mechanical model where x,y play
the roles of the position and the momentum operators respectively, and the flux through a
lattice plaquette ¢ plays the role of the reduced Planck constant. In the position representation,
the time-independent Schrédinger equation reads

Y(x+ ) + (- ¢) + 2coszyp(z) = EY(x). (2.9)
Introduce the parametrization
T=nd+0, Pn(d) =v(né+0), (2.10)
we arrive at the famous Harper’s equation
i1+ Yn1 +2cos(ng + 6)b, = Eby,. (2.11)



2.2 Butterfly at rational fluxes

When the magnetic flux ¢ is rational of the form

¢ =21a = 2772, P,QeN, (PQ)=1, (2.12)

the energy spectrum of the Harper’s equation can be derived relatively easily, as first found
out by [2]. In this case, the Harper’s equation is invariant under the shift n — n 4+ @, and
we can introduce the Bloch wavefunction

Y (8) = e* M, (8, k), (2.13)
where k is the Bloch wavenumber, and u,, is periodic with
Un+Q(0, k) = un(0, k). (2.14)

The matrix of the Hamiltonian operator in the Hilbert space then truncates to finite size
and we have the eigenvalue equation

Hg -ug = Bug, wug = (uo,u1,...,ug_1)" (2.15)

where Hg is the matrix

2cosd elk e ik
—ik P ik
e 2 cos (5 + 27T§) e |
Ho(0, k) = e ik 2 cos ((5 + 47r§) ek . (2.16)
eiF e 2 cos (5 +27(Q — 1)5)

The energy spectrum is solved from the secular equation
FP/Q(E,5, k) = det(HQ — E]_Q) =0. (2.17)

The left hand side defines a degree ) polynomial in F, which we denote by Fp /Q(E ,0,k),
and it indicates that for fixed 9, k, there are () eigen-energies.
It can be shown (see e.g. [38]) that the secular equation can be equivalently written as

Fp/o(E,0,0) = 2(cos Qk + cos QJ) =: 2(cos 0 + cos 0,). (2.18)

Here we have denoted Qk, Q4 respectively by 60,,0,. They can be treated on equal footing:
both of them are periodic with 6, , — 0, + 27, and the secular equation is not changed by
exchanging 6,,60,. In fact, it was pointed out in [20] that the Harper-Hofstadter model is
special in the sense that when the flux ¢ is rational there can be Bloch angles in both the z-
and y-directions, and 0,, 0, defined here are precisely these two Bloch angles.

The secular equation (2.18) also indicates that by varying 6,6, in their respective
domain, the @) eigen-energies are broadened to ) continuous energy bands, where the top
and the bottom edges correspond respectively to ¢, = 6, = 0 and 0, = 6, = m. The spectrum
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Figure 1. Hofstadter. We plot the band structure for P/Q with (P,Q) =1 and Q up to 60.

of energy as a function of the flux is plotted in figure 1.! As the Harper’s equation (2.11),
and therefore the energy F, is invariant under the shift ¢ — ¢ + 2m, the plot is restricted
to the domain of ¢ € [0,27].

This plot of spectrum in figure 1 is the famous Hofstadter’s butterfly. It has a striking
fractal structure, which implies that the energy spectrum as a function of the flux has very
rich non-perturbative structures, which we try to understand.

2.3 Semi-classical analysis

As mentioned in section 2.1, the Harper’s equation can be viewed as the Schrédinger equation
of a relativistic one dimensional quantum mechanical model with ¢ plays the role of the
reduced Planck constant. It is natural then to treat the spectrum problem semiclassically,
and consider the energy F first as a perturbative series in ¢.

In one-dimensional non-relativistic quantum mechanical problems, in principle the per-
turbative energy series can be calculated by the Rayleigh-Schrédinger perturbation theory,
but in practise, one cannot go very far. Instead, it is more efficient to use the method of
Bender and Wu [40, 41], which makes the ansatz that the wavefunction is a deformation of
that of the harmonic oscillator, and which allows very fast calculation of the perturbative

'There’s also a useful open-source package [39] that can be used to compute the band structure of a
generalized Hofstadter model on any regular Euclidean lattice, as well as its key properties.



energy around any local minimum of a polynomial potential where the second derivative of
the potential does not vanish. This algorithm was made into a Mathematica package called
BenderWu in [42], which was expanded in [43] to allow relativistic systems whose Hamiltonians
are polynomials of e™ e*¥ z y. As pointed out in [20], after a Wick rotation x,y — iz, iy,
our Hamiltonian (2.8) falls into this category. With the help of the BenderWu package, one
can easily calculate the perturbative energy series for the Harper-Hofstadter model up to
close to 100 terms, and the first few terms are
ert _ 1 V2 9 v V3 3

EP (y,¢)—4—2u¢+<16+4>¢ +<_128_96>¢ + ... (2.19)
with the Landau level v = N +1/2, N = 0,1,2,....

As discussed at the end of section 2.2, the spectrum of the Harper-Hofstadter model has
significant non-perturbative corrections, which presumably come from instanton effects. The
leading instanton corrections can be computed by the path integral formalism [20]. For this
purpose, we recall that in the more standard one dimensional periodic quantum mechanical
model with a single Bloch angle 8, we can define the Bloch wavefunction

Yp(x) = Z e Ny (x + Na) (2.20)

NeZ

where 1o(x) is the approximate eigenstate wavefunction centered around the origin, as well
as the twisted thermal partition function

(| e TT19 |g) = 276(0 — 0') Zo(T) = 2m6(0 — ') > e HeWT/9, (2.21)
veN+1/2

Assuming the energy spectrum is not degenerate, the ground state energy can then be
computed using the twisted thermal partition function

Ep(1/2) = —TIEI;O%long(T). (2.22)

The twisted partition function can be computed in path integral, and in the semiclassical
limit with ¢ — 0, it decomposes by

Zg =20 + 25 4 25 4 25 4 20 4 (2.23)
where
7 = / [Da)e™58/0%n0, (2.24)
with the boundary conditions
Dzl : (=T/2) =0, 2(+71/2) = na, (2.25)

which describe precisely an |n|-instanton configuration.
In the case of the Harper-Hofstadter model, this path integral analysis was performed
in [20] for the cases of ¢ = 27/Q), i.e. P = 1. It was observed that one can find 1-instanton



configurations in both the z- and y-directions, with the corresponding Bloch angles 0,,0,,
and the instanton action is identically

S.=8C (2.26)

C being the Catalan’s number. With instantons in both z- and y-directions, and in both
positive and negative directions, the one-instanton correction of the ground state energy is?

1/2
Eél)e (1/2,¢) = 16(cos b, + cos b,) (;) e 5 /P(14..). (2.27)
z,Vy T

This can be checked by comparing with the bandwidth of each energy band

bw () = |ES (v, ¢) — EL (v, 9)], (2.28)

)

which at the leading order is controlled by the 1-instanton correction. In fact, with this
method, one finds numerically that at any Landau level [20]?

16 - 8N 1/2—N B
B, (0,0) = (cos 0, +cost) (DN Tt () e st 229)

If we take into account instanton corrections of all orders, we expect the non-perturbative

energy series to be of the form

E(v,¢) = EO(v,0) + Y E)"” (v.9), (2.30)

n>1

where the n-instanton correction is of the order
EM ~ en5/9, (2.31)

We will make this expression more concrete in section 4.

3 Resurgence, exact WKB, and 5d SYM

3.1 Resurgence program

We give here a quick overview of the resurgence theory. See [24-27] for more detailed
discussion. Given a perturbative series ¢(z), which is of 1-Gevrey type, meaning that its
coefficients grow factorially fast

o
e(z) = > anz", an~nl (3.1)
n=0

such that it has zero radius of convergence, there is a well-studied procedure called Borel
resummation to evaluate, or to resum such a divergent series.
For this purpose, we first construct the Borel transform of the 1-Gevrey series

o0

B(Q) =) e (3:2)

n=0

2There is a typo in [20], where 1-instanton amplitude should be increased by a factor of two.
3See footnote 2.



which is regular in the neighborhood of the origin. It can be analytically continued to the
entire complex plane, and let us make the mild assumption that it has a discrete set 2 C C
of singular points, known as the Borel singularities.

Let us define Stokes lines in the complex z-plane, which are rays from the origin and
whose inclinations are the arguments of the Borel singularities. These Stokes lines divide
the complex z-plane into disjoint cones. For any value of z inside a cone, we can define
the Borel resummation

1 iarg z

e oo
e =< [ e (33)
If z is on a Stokes line, naive definition above of Borel resummation would fail as the
integration contour will be obstructed by a Borel singularity. In this case, we have to define
not one but a pair of lateral Borel resummations by slightly raising or lowering the inclination
of the integration contour to bypass the Borel singularity

1 eilarg ze) oo

F W) = - [ e B(OAC, (34)
z.Jo

and the two resummations differ by an exponentially suppressed discrepancy known as the

Stokes discontinuity

discgp(z) = . Fp(2) — S Op(z) ~e7V3, (3.5)

where 6 is the inclination of the Stokes line.

Suppose there is a sequence of Borel singularities kA = A,2A,3A,... which share
the same argument as z and which obstruct the naive integration contour for the Borel
resummation. According to the resurgence theory, the Stokes discontinuity can be attributed
in a precise manner to these Borel singularities. In fact, each such Borel singularity kA
represents a non-trivial saddle point in the theory, and to each is associated a new 1-Gevrey
series ¥ such that

(0]
discop(z) = Z Spe kA2 7 (F) k) (7). (3.6)
k=1
The proportionality constants Si are known as the Borel residues and they depend on the
normalization of the series p*).
It is sometimes more useful to encode in a different manner contributions of individual
singular points to the Stokes discontinuity. For instance, we can introduce a map of power

series known as Stokes automorphism

Gop(z) == p(z) + > SkeF2pF) (2). (3.7)
k=1
so that
S Pop(z) = S TSgp(2). (3.8)



which has the property that it is an automorphism in the ring of power series. Alternatively,
we can introduce pointed alien derivatives associated to each of the Borel singularities [24]*

Supl=) = exp (i AM> o(2)

k=1

[3 [3 1 o
= 0(2) + Baple) + (Dot 5 (BaP) o)+ (39)
Each alien derivative is a map of 1-Gevrey power series, and in particular, we have
Apap(z) = S 71 (2) (3.10)

The coefficients S here are called the Stokes constants, and they are related to the Borel
residues by simple combinatoric formulas. The alien derivatives have very nice properties:
they follow the Leibniz rule and chain rule, just like ordinary derivatives, and furthermore
commute with ordinary derivations.

As the new series ¢ uncovered from the original perturbative series ¢ are also 1-
Gevrey, the same resurgence analysis of Borel singularities and Stokes discontinuities can
be repeated, revealing even more Borel singularities and the associated additional 1-Gevrey
power series. Together all these 1-Gevrey series are said to form a minimal resurgent structure
starting from ¢ [44].

From the discussion of resurgent structure, a paradigm to study generic perturbative series
called resurgence program can be formulated. One distinguishes between the weak resurgence
program and the strong resurgence program [45]. The weak resurgence program conjectures
that any physical quantity that allows a perturbative expansion ¢ can be expressed in terms
of the Borel resummation of a trans-series, whose leading contribution is the perturbative
series ¢. Trans-series is a rather broad concept, see [46] for a good exposition. The most
common form of trans-series, which is enough for us, is

D(z) =p(z) + Y cpe A2 oA (2) (3.11)
k

where p(Ar)(2) are usually power series just like ((z), but may also contain terms with
log(z). The strong resurgence program in addition requires that all go(Ak) belong to the
minimal resurgence structure starting from ¢. In many scenarios, the strong resurgence
program is too strong, and only a subset of ¢(4*) which is sometimes called the minimal
trans-series [32], belong to the minimal resurgent structure. Regardless, the trans-series
coefficients ¢j associated to this subset of power series will jump as we cross a Stokes line
in order to compensate for the Stokes discontinuity so that the exact physical quantity can
be a continuous function of z and is ambiguity free. In general, as z moves in the complex
plane, crossing various Stokes lines, all ingredients of the minimal resurgent structure will
appear in the full trans-series.

4Alien derivatives can also be introduced even if the Borel singularities are spaced unevenly.

,10,



3.2 Structure of trans-series from exact WKB

Following the weak resurgence program, the exact energy eigenvalue should be the Borel
resummation of an energy trans-series. In 1d QM models, a particularly powerful method to
derive such an energy trans-series is to solve exact quantization conditions (EQCs) obtained
via the exact WKB method [29], which is based on the resurgence theory. It was implied
in [32] that full energy trans-series seems to have a universal structure, which we explain. In
later sections, we will demonstrate that the full energy trans-series of the Harper-Hofstadter
model shares this universal structure.
Suppose we have the Schrodinger equation for a 1d non-relativistic QM model

H(x,y)p(z) = Ep(), (3.12)

which is a second order ODE. We can write down the WKB ansatz for the wavefunction
1 xT
W) = exp (}'1 / P(x’,h)d:c') . (3.13)

Here P(z,h) is a formal power series

P(z,h) = i P, (z)h". (3.14)
n=0

The coefficients P,(z) can be solved by plugging in the WKB ansatz into the Schrodinger
equation. The leading coefficient Py(x) = +y(x) is the momentum satisfying the classical
equation

H(z,y)=E. (3.15)

Higher order coefficients P,>1(x) can be solved recursively.

If we promote z,y to complex variables, the classical equation (3.15) defines a complex
curve known as the WKB curve 3. We will assume that the WKB curve is of genus one,
so that it has two independent 1-cycles, called the A-cycle v4 and the B-cycle yp with
intersection number (y4,7v5) = 1. We choose the A-cycle v4 and B-cycle yp so that when
projected to the complex z-plane, they are mapped to respectively the classical allowed and
classically forbidden regions, cf. figure 2. We can then define the quantum A- and B-periods

_ 1 - 2n
HEB) = 5 nz:joh 72 Pon(a)a, (3.16a)
p(E,h)=—=i> 1" ¢ Pyp(a)dx. (3.16b)
n=0 B

They are also known as the perturbative and the non-perturbative quantum periods, as
they are responsible for respectively the perturbative and non-perturbative contributions to
the quantization conditions that we will see momentarily. And the normalization in (3.16a)
and (3.16b) are chosen so that they are positive in the leading order. Both quantum periods
are power series in £, and the leading terms are classical periods of the 1-form A\ = y(x)dz.
In addition, both quantum periods are 1-Gevrey, as

jé Pon()d ~ (2n)! (3.17)
)

— 11 —



class. allowed  class. forb’n

Figure 2. Classically allowed and forbidden regions.

The difference is that when h > 0, the perturbative quantum period is not Borel summable,
so that a prescription of lateral resummation is needed, while the non-perturbative quantum
period is Borel summable, and a vanilla version of Borel resummation is applicable.

In general, the EQCs for the eigen-energy E take the form

1+Va=fv2 vy, (3.18)
with the Voros symbols

Va = 2B/ o—tp(E)/h (3.19)

Here f(u,v) is certain single-valued function of w,v, and it vanishes in the v — 0 limit,
corresponding to the semi-classical limit 4 — 0. For instance this is true for the cubic
mode, the double-well model (see e.g. [32]), and in particular for the cosine model, whose
Schrédinger equation is the famous Mathieu equation. This is the one dimensional quantum
mechanical model with the Hamiltonian

2

H = % + 1 — cos(z), (3.20)

and it can be regarded as the non-relativistic limit of the Hamiltonian (2.8) of the Harper-
Hofstadter model. The EQC for this model is well-known and it reads [33-36]

DF =1+ V(14 Vg) —2/VI'Vpcosf = 0. (3.21)

Depending on the choice of the lateral resummation .+ of the perturbative quantum period,
one of the two quantization conditions D;t is used. Here 0 is the Bloch angle.

To solve the energy trans-series, we first consider the semi-classical limit i — 0, with the
non-perturbative contributions due to e *2/" turned off. The EQC is reduced to

1+V4=0 (3.22)
which is equivalent to the all-orders Bohr-Sommerfeld quantization conditions

t(E,h) = hv, (3.23)

— 12 —



where v = N +1/2, N =0,1,2,.... Let £(t,h) be the inverse of t(F,h) as a function of
FE, the perturbative energy series is

EO (v, h) = E(t = hw, h). (3.24)

To solve the EQC (3.18) with the non-perturbative corrections turned on, one can assume
that t is a small deviation from hv

t=nh(v+ Av), (3.25)
and solve At from the equation
1 — e2midv _ f(ef%tD(V+AV,h)7 iiemAu)’ (3.26)
where the exponent tp(v, h) is
tp(v, h) :=tp(E = EO(v,h), h), (3.27)

while the full enery trans-series is then obtained by substituting the deformed v + Av for
v in the perturbative series

E(w,h) = A" EQO (v, 1) = EO®w + Av, h). (3.28)
This is the strategy pursued in [32], where it is proposed to recast the eq. (3.26) in the form of°

1

Av=RAv+Av)) = > mpdv + Av)k,  A(v) = e 220, (3.29)
k=1

whose solution as a trans-series can be explicitly written down via the Lagrange inversion
theorem (see e.g. [47, 48]). One then finds that the full energy trans-series obtained via (3.28)
has the general structure [32]

E(v,h) = EO (k) + i nf Un g (1) ET™ (1, B). (3.30)

n=1m=0

The basic building blocks are the basic trans-series

O\™ (OEO (v, h)
EMmm)(, B) = ( > 1Y) g—ntp(wh)/h ) 31
)=+ eSO (331)
All of E(™™) with m = 0,1,2,...,n — 1 account for the n-instanton corrections. Note that

EM™) with n > 2,m > 1 may contain log(h) terms and they arise due to instanton /
anti-instanton interactions. The trans-series coefficients read

1
Upm(r) = ﬁBn’m_,_l(l!rl7 2rg, oy (n—m)lrp_m), (3.32)

5Note that the power series on the right hand side must start with & = 1 as it should vanish in the
semi-classical limit & — 0.
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where B,, ;41 are the incomplete Bell’s polynomials. Finally the weak resurgence program
requires that the Borel resummation of the full energy trans-series gives the exact value
of energy in the regime v < 1.

Compared to the general full trans-series (2.30), the structure (3.30) is much simpler. The
basic building blocks E(™) only depend on two ingredients, the perturbative energy series
E©)(y, k) and the non-perturbative quantum period ¢p(v, i), and once they are identified,
the remaining job is to fix relatively simpler trans-series coefficients w,, p,.

For non-relativistic one dimensional quantum mechanical models whose Schréodinger
equations are second order difference equations, the exact WKB method is still applicable,
although it is difficult to write down EQCs in this way as the connection formulas are yet not
competely clear (see [49] though for recent progress). The EQCs have been written down in
some examples by other methods [50-53], for instance via the T'S/ST corresondence [50, 54],
but these EQCs have a more complicated form. Nevertheless, we will see in later sections
that the universal structure (3.30) for energy trans-series also holds for the Harper-Hofstadter
model, as least when ¢ = 27/@Q. Furthermore, the basic building blocks can be readily written
down. For instance, it has already been shown [20] via examples of 1-instanton corrections
that the non-perturbative quantum period can be easily computed as it has an interesting
interpretation in supersymmetric field theories, which we quickly review.

3.3 5d SYM and its resurgent structure

We will be interested in 5d N' = 1 supersymmetric Yang-Mills theory with gauge group
G = SU(2) on S' x R The IR effective theory is described by the Seiberg-Witten curve
given by the equation [55, 56]°

Y. ef4+e"4+eV+e YV —u=0 (3.33)
The Seiberg-Witten curve is equipped with the meromorphic 1-form
A = ydz, (3.34)

and its integration along closed 1-cycles on 3 are known as classical periods.

A 5d N = 1 supersymmetric theory usually has degenerate vacuum states, and they
form a moduli space M. Due to N’ = 1 supersymmetry, the moduli space has the structure
of a special Kdhler manifold, which means that in any patch of the moduli space, one can
choose a basis of flat coordinates to locally parametrise the moduli space, and these flat
coordinates are paired with their conjugates (see e.g. [57])

0Fy 1
a o .
<t78t“>’ a—l,...,idlmM, (3.35)
so that they are related to each other via a single function called the prepotential Fy. Such
a choice of flat coordinates is called choosing a frame. Here both t* and 0« Fyy are integral
periods of the meromorphic form X over the Seiberg-Witten curve, and togethe with 472
they span the period lattice.

5We have chosen the special so-called diagonal slice in the moduli space where the radius of S* is one.
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In the case of SYM, the moduli space is P!, parametrised by z = 1/u2, and when quantum
corrections are taken into account, it has three singular points, located at z = 0,1/16, oo,
known as the large radius point, the conifold point, and the orbifold point. The neighborhood
of the conifold point will be of particular interest for us. Here, the suitable flat coordinate
and its conjugate are (see e.g. [58])

1 (1320110 2
to= = (FG373 ( A 16z) 2, (3.36a)
OFy(t 33
80t( o _ 7r(10g(z) t Az Ry <1, L3 5222 16z)> 1 it (3.36b)
C

which have the property that t.(z = 1/16) = 0. We use a slightly different convention of
Oy, Fo(te) than in the literature, as we will be interested in the regime z > 1/16, where our
convention has the property that 0 Fy(t.) € Ry.

We couple the gauge theory to a background gravity by turning on the Omega back-
ground [59] and restrict ourselves to the so-called Nekrasov-Shatashvili (NS) limit [60]. The
Seiberg-Witten curve is promoted to a quantum operator known as the quantum Seiberg-
Witten curve [61]. It is a relativistic Schrédinger equation

HSYMyy = ) (3.37)
with the Hamiltonian operator
HSYM — X f o™ 4 e¥ 467, (3.38)
and x,y satisfy the canonical quantization condition
[x,y] = ih. (3.39)

As shown in [52], the quantum Seiberg-Witten curve can be identified with the Hamiltonian
of the two particle closed relativisitc Toda lattice [62]. On the other hand, if we make
the Wick rotation [14]

(z,y) = (iz,iy), (3.40)
as well as the map
h— —o, (3.41)

the quantum Seiberg-Witten curve (3.37) can be identified with the Hamiltonian operator (2.8)
of the Harper-Hofstadter model. While the EQCs of the relativistic Toda lattice have been
written down, with no distinction between the rational and irrational £ [50, 51], those for the
Harper-Hofstadter model are much more complicated. This is akin to the difference between
the Mathieu equation and the modified Mathieu equation.

We will be interested in finding in the Harper-Hofstadter model the full energy trans-
series and the implied EQCs in the form of (3.18). We fix our convention and define the
perturbative quantum period and non-perturbative quantum periods (3.16a), (3.16b) so that
their leading terms are respectively ¢. and 9;, Fy(t.) in (3.36a), (3.36b).
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Two interesting observables can be defined in the 5d SYM. The first is the vev Wy(¢, h)
of the half-BPS Wilson loop operator in the fundamental representation r = [J where the
Wilson loop wraps the S' and is located at the center of R*. In the NS limit, the perturbative
Wilson loop vev is a power series in A [18, 19]

Wn(t, h) = fj W, (t)h*". (3.42)
n=0

where the coefficients W,,(t) are functions over the moduli space. More importantly it is
identified with the perturbative eigenvalue of the Hamiltonian operator HSYM [60, 63, 64]

u = Wa(t, h), (3.43)

and therefore also with the perturbative energy series of the Harper-Hofstadter model with
the dictionary (3.41). In the semi-classical limit with A = —¢ — 0, the energy of the Harper-
Hofstadter model is 4, corresponding to the conifold point singularity at z = 1/u? = 1/16. We
should thus evaluate the Wilson loop vev in the conifold frame. The first few coefficients are

2

t

WMQ):4+2%+~5+.”, (3.44a)
1t 3t2

Wit = =+ —+ —% +..., (3.44Db)

16 128 1024
13 151t 159¢2

te) = — e 44
Walte) 24576 393216 + 524288 + (344c)
It is easy to see that indeed (3.42) reproduces (2.19) through
EO = Wo(te, i . 3.45
6 = Wolte ] (3.45)

Another interesting physical observable is the NS free energy, which is also a perturbative
power series in A [60]

Fxs (tt:a h) = i Fn(tc)hQn' (3'46)
n=0

In the conifold frame, the perturbative free energy can be decomposed in terms

Fo(te) = Fo™8(t.) + F™5(t,) (3.47)
where the singular parts are
- t2 t 3
Fsmg - 1 _C> _ ) A4
0o ()= (og< 6) " 3) (3.48a)
in 1 t
M8 (te) = —55 108 (—152> , (3.48D)
i 1—2'"?mp
Foine(t,) = ( ) Bz n>2. (3.48¢)

(2n)(2n — 1)(2n — 2)15%"*2’ >

,16,



while the first few terms of the regular parts are

3 5t 3

Fy(te) = =8Ct = 35+ 1608 ~ G1ad0 T (3.49%)
11t,  49¢2 T3
Fres(t,) = ——= c _ < 4., 3.49b
1 (te) w2+%m 7W%+ ( )
101 889¢ 181981¢2
Fio8(t,) = ¢ ¢ (3.49¢)

221184 2949120 ' 707788800 @

It was found out by calculations in the 1-instanton sector that the non-perturbative quantum
period tp can be identified with the free energy through [20]

p(,6) = 51 Flte, )

. 3.50
le=—¢v,h=—¢ ( )

These identifications between quantities in the Harper-Hofstadter model and observ-
ables in 5d SYM is very useful, as both the perturbative Wilson loop vev and the per-
turbative free energy can be computed very efficiently through the holomorphic anomaly
equations [15, 17-19, 65]. More importantly, both of them turn out to be 1-Gevrey divergent
power series, and their resurgent structures have been recently completely understood [28].

First of all, each Borel singularity corresponds conjecturally to a BPS state of the 5d
SYM. The position of the Borel singularity is a classical period”

A’y = pathO(tC) + 27“th + 47T2i7“, Y= (pa q, T)? (351)

which is the central charge of the BPS state, and the lattice charge v is the electromagnetic
charge of the BPS state. For free energies, all the BPS states are conjectured to appear,
while for Wilson loop vevs, only those whose charges have non-zero Dirac pairing with the
charge vector of the flat coordinate appear. In the conifold frame where the flat coordinate is
t., this means those BPS states with p # 0. We give examples of plots of Borel singularities
for Wilson loop vevs for z on the real axis smaller than and greater than the conifold point
1/16 respectively in figures 3. These two plots indicate that in the case of z < 1/16, the

BPS states with small central charges are®

v ==£(2,-1,0), £(2,0,0), £(2,—-1,1). (3.52)
while in the case of z > 1/16, the BPS states with small central charges are
v =%£(2,0,0), £(2,1,1). (3.53)

The difference of the BPS spectrum in different chambers of the moduli space is known as
the wall-crossing phenomenon [66-68], and here it is clearly demonstrated via the change
of Borel singularities of Wilson loop vevs. See [37] for additional demonstrations via the
change of Borel singularities of free energy.’

"We use a slightly different convention from [28].

8The charge vectors differ from the usual convention in the literatuer by (0,-1,0), as we shifted the
definition of 0:_ Fo(tc)-

9To be precise, Borel singularities of self-dual free energy are considered in [37], but they should be
one-to-one correspondent with Borel singularitie of NS free energy [69].
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Figure 3. Borel singularities for Wilson loop vev in the 5d SYM theory with (a) z < 1/16 and (b)
z > 1/16 respectively. In the left figure with z < 1/16, the Borel singularities marked by black dots
have charge vectors v = (2,—1,0) (on the real axis), (2,0,0) (slightly away), (2, —1,1) (far off in the
first quadrant). In the right figure with z > 1/16, the Borel singularities marked by black dots have
charge vectors v = (2,0,0) (on the positive real axis), (2,1,1) (far off in the first quadrant).

Secondly, the Stokes discontinuities across Stokes rays are best illustrated through the
alien derivatives. If these are a sequence of Borel singularities A, 2A, ..., the alien derivatives
associated to these singular points are

2 S8 (=1)* —tpd, FE . (t,0)/h
Apa, Wlte, h) = = —h=—=pOu, W (te, h)e” "™ ns(tR)/h (3.54a)
T

Aga, Frs(te, h) = ;wi h? 7

where the superscript § means the leading term of free energy is shifted

o~ POicFs(teh) /1 (3.54b)

i 4A72ir
Folte) — Fi(te) = Fo(te) + ?qti e (3.55)
so that
Ay = pdy, Fi(te). (3.56)

Most importantly, the Stokes constant is conjectured to coincide with the multiplicity

SBPS
9
€1, of the BPS state with charge vector . For Borel singularities of the perturbative Wilson
loop vev at z < 1/16 in figure 3(a), which corresponds to the weak coupling regime of the 5d
SYM, the Stokes constant of the singularity on the real axis with v = (2, —1,0) and that of
the singularity slightly away with v = (2,0,0) and v = (2, —2,0) are respectively [37]

BPS,[weak] BPS,[weak]  oBPS,[weak]

Se-10 =% Seeo)  —Se20 =% (3.57)
while for the Borel singularities at z > 1/16 in figure 3(b), which corresponds to the strong
coupling regime of the 5d SYM, the Stokes constant of the singularity on the positive real
axis with v = (2,0,0) is [37]

BPS,[strong]
Saooy B =2 (3.58)
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4 Full trans-series of Hofstadter’s butterfly

In this section, following the weak resurgence program, we will demonstrate that for the
Harper-Hofstadter model, at least in the case of ¢ = 27/Q), the exact energy spectrum is the
Borel resummation of the full energy trans-series with different Landau levels. We assume
that the universal structure of the full trans-series (3.30) inspired from the analysis of the
exact WKB method, which we copy below,

co n—1

E(,¢) = EQw,¢) + 3 > unmBE"™ (v, 6), (4.1)

n=1m=0

where we have replaced h by ¢, and in addition to the perturbative series E(O)(V, ®), the
basic building blocks are the basic trans-series

m (0)
E(n,m)(y’ ¢) _ <£> (M(;(Vy’(b)e—me(V@)ﬂﬁ) . (42)

We have also discussed in section 3.3 that F(©) (v, $) and tp(v, ¢) can be identified with
perturbative Wilson loop vev and perturbative free energy from 5d SU(2) SYM via (3.45)
and (3.50). We will justify the assumption (4.1) by calculating the trans-series coefficients
Un,m and then by making precision comparison with the exact spectrum from the secular
equation (2.18).

4.1 Borel summability of perturbative energy series

We first discuss the Borel summability of the perturbative energy series, i.e. whether we can
perform the vanilla version of the Borel resummation or lateral resummations are needed.

We collect about 200 terms of the perturbative energy series E(O)(V7 ¢) computed via
either the BenderWu package or via Wilson loop vev, the position of Borel singularities for
the energy series at different Landau levels are given in figure 4. In all these plots, the
dominant Borel singularities are

16C, 16C + 4n?%, (4.3)

where C is the Catalan number. There are several consequences of this pattern of Borel
singularities.

The first consequence is that since the singular point 16C' is on the positive real axis,
the naive version of Borel resummation fails. We have to adopt either choice of lateral Borel
resummations, and the ambiguity thus entailed should be compensated by an appropriate
jump of the trans-series coefficients. We should update the structure of full trans-series (4.1) to

co n—1

B,y e(v,8) = BO,0) + 3° 37 ttnm(0ay, OE™™ (v, 9), (4.4)
n=1m=0
such that the exact energy spectrum is
b, (v 0) = S (Ey,,, 1)1, 9). (4.5)
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Figure 4. Borel singularities of perturbative energy series at Landau levels N = 0,1,2. The
singularities marked by black dots on the positive real axis and off in the first quadrant in all three
plots are 16C and 16C + 4m2i, where C is the Catalan number. The arcs of singular points on the
right periphery of each plot are due to numerical instability and thus are spurious.

Note that only the trans-series coefficients u, ,, depend on the contour of lateral resummation
as well as the Bloch angles, while the trans-series building blocks E(™™) do not.

Furthermore, the position of the most dominant Borel singularity coincides with twice the
l-instantion S. = 8C' discussed in section 2.3. This means that the 1-instanton contribution
E(0) is invisible from the Borel transform of the perturbative series, and cannot be extracted
from the latter by the resurgence technique. In other words, the strong resurgence program
fails for the Harper-Hofstadter energy spectrum, which is the second consequence of the
pattern of Borel singularities. This failure of the strong resurgence program is due to the
presence of Bloch angles, and similar phenomena are already well-known, for instance in
the non-relativistic cosine model [35].1°

Finally, we comment that even though the perturbative energy series of the Harper-
Hofstadter model and the perturbative Wilson loop vev of the 5d SYM are identified via (3.45),
the distribution of their Borel singularities look rather different, cf. figures 4 and 3. The most
conspicuous discrepancy is that the singular points in figures 3 for the Wilson loop are left-right
symmetric while those in figures 4 for the Harper-Hofstadter energy are one-sided. This can be
explained by the observation that the perturbative Wilson loop vev (3.42) has the symmetry

W (te, —h) = W (te, h), (4.6)

which is broken in the perturbative Harper-Hofstadter energy. More detailed explanation
is the following.
In the identification (3.45) we use the dictionary

tc = _¢V7 h = _¢7 (47)

which means in the limit A = —¢ — 0, both ¢, and h are sent to zero simultaneously. The
relation between the series E(v, ¢) and the series W (t., k) is akin to the relation between a

100r even in simpler models like the double-well model, where the parity is a discrete analogue of the Bloch
angle.
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1/N expansion and its 't Hooft limit, and the relation between their respective resurgent
structures, including the Borel singularities, the non-perturbative series, and the Stokes
constants, is recently discussed in detail in [37]. We will follow their discussion and explain
the relation between the resurgent structure of E(v,¢) and W (t., h).

When we map from the resurgent structure of W(t., h) to that of E(v, ¢), several changes
will happen. The first change is that half of the non-perturbative series will vanish and
thus the associated Borel singularities will disappear. Let us examines how this happens by
deriving carefully the non-perturbative series for E (v, ¢) from those for W(t., h). Recall that
if there is a sequence of Borel singularities A,,2A,,... for W(t., h), the alien derivatives for
these singular points are given in (3.54a), from which we read off the lowest non-perturbative
series, the contribution at ¢ = 1 excluding the Stokes constant

WO (t,, h) p OF o (te, )
) — hip——— _PINs\le, ) 4
W (te,h) = hp o, exp | —% ot ) (4.8)

Here p is the magnetic charge of the BPS state associated to the Borel singularity A,, and
we will assume that it is positive.

As seen in (3.46), (3.47), the free energy consists of both the singular part and the regular
part, and we discuss their behavior after the dictionary (4.7) is applied. The coefficients
of the regular part (3.49) have the form

FrrLeg(tc) = Z fn,mtgna (4.9)

m>1

where we ignore the constant term. After applying the dictionary (4.7), its derivative

becomes!!
BFreg(tc, h) n /2] n—2m
2 fort 20" X (L= 2m) fnpa T, (410)
c n>2 m=0

where the leading constant is, cf. (3.49)

reg
fo1= aF%t(tC) = —8C. (4.11)

te—0

Next, we consider the singular part. With (3.48), one finds, after applying the dic-
tionary (4.7),

1 OFs8(t,, h) v 1 1—21=2n B,
——————=v —vl — — —vl . 4.12
h Ote voviee (16) ot 7;2 (2n)(2n — 1) 21 vlog ¢ (4.12)

It is proposed in [70] that this can be regularised as

1 OFs"8(t, h) V271 16Y
——————— 2 log | ==
h Ot L(v+1/2)

> —vlog ¢, (4.13)

the reason being that the large v expansion of the right hand side reproduces the power
series in A in the left hand side. The similar idea is used in [37].

"The n = 1 terms vanishes because it only involves fo.2, which according to (3.49) is zero.
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Combining (4.10) and (4.13), non-perturbative correction W (¢, ) becomes

OEOw,¢) [ var ' /16\P" _rAwn .
(1) ’ b ® 2miqu
WO (te,h) = p——s o1 (¢> o

/2]
exp (p Do) Y (1 2m)fm,n+1_2mv”2m> : (4.14)

n>2 m=0
where
Apry = —pfo1 — dn’ir. (4.15)
The Wilson loop vevs have Borel singularities not only at A,,2A,,..., but also at the
opposite sites —A,, —2A,,..., and the associated non-perturbative corrections are denoted

by W The non-perturbative corrections to the Harper-Hofstadter energy series inherited
from WO according to [37], are obtained from (4.14) (in the £ = 1 case) via

(p,v) = (=0, -v), (4.16)
which can be justified by the following symmetry of the perturbative energy series
EO(—v, —¢) = EO (v, ¢). (4.17)
Therefore, for instance, the leading one of these non-perturbative corrections is

W(O\l) (t FL) o iaE(O)(_V, _¢) \/ﬂ b (_16>py e+p€%72ﬂ'iqu
“ 2mi o I(—v+1/2) é

[n/2]
exp (p Z("‘d’)nil Z (n +1- 2m)fm,n+1—2m(_7/)n2m) 5 (4.18)

n>2 m=0

which vanishes for v = 1/2,3/2, ... due to the pole of the Gamma function in the denominator.
This explains why we do not see these Borel singularities at opposite sites for the perturbative
energy series of the Harper-Hofstadter model.

A corollary of this analysis and (4.14) is that the set of Borel singularities A, ) of
the perturbative Wilson loop vev with fixed p,r but different ¢ all collapse to a single Borel
singularity A, ) of the perturbative Harper-Hofstadter energy series. In addition, the alien
derivative at this Borel singularity is

. Sior) i
A'A(P,T)E(O) (V’ d)) = (Lv)g(p, )(V’ ¢)’ (4.19)

2mi

where

g, o OEO @) [ var  \T/16\P _rden
S T b e vy ((ﬁ) e

[n/2]
exp (p Z(_¢)n—1 Z (n + 1- 2m)fm,n+12myn_2m) y (4.20)

n>2 m=0
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and
BPS | —2mwiqu
S(pﬂn) :pZS(p’qm)e q . (421)
q

Since v = N+1/2 and g € Z, the right hand side of (4.21) does not depend on the Landau level.

One important subtlety is that after using the dictionary (4.7), in the limit ¢ — 0, the
flat coordinate t. is sent to zero, and we are approaching the wall of marginal stability across
which the Borel singularities as well as the Stokes constants change, a phenomenon related
to the wall-crossing phenomenon in 5d SYM as we mentioned at the end of section 3.3. It
is then ambiguous which Stokes constants of the perturbative Wilson loop vev should be
used to compute the Stokes constants of the perturbative Harper-Hofstadter energy series, a
question already posed in a similar contextd in [37]. The answer from [37], which was found
emprically, is that we should use Stokes constants from the strong coupling regime, which
corresponds to z > 1/16 in this example. We verify that this is also the case here.

Let us consider the dominant Borel singularity

for the perturbative energy series on the positive real axis. We recognise that €20 (v, ¢) =
E@0)(y ¢), and in particular, this implies that

OEO (v, ¢)  V2m 16\
B0y, ¢) = , () s 12
which agrees with (2.29) up to a trans-series coefficient, i.e.
1

Eéi?ey (V7 (b) - wl,O (ex,y)E(LO) (Vv ¢) (424>

and the trans-series coefficient wy (6,,) is given by
0, 5 0

w0 y) = (—1)V TR T (4.25)
as we will confirm in section 4.3. Then (4.19) becomes

: 52,0

Ao B0, 0) = S22 ECO(1,9). (4.26)

This Borel singularity can descend via (4.21) either from the three Borel singularities with
v =(2,-1,0),(2,—1 £ 1,0) and respective Stokes constants in (3.57) of the perturbative
Wilson loop in the weak coupling regime, in which case, the predicted Stokes constant
associated to Ay is

[weak]
Siyed = 16, (4.27)

or from the single Borel singularity with v = (2,0,0) and Stokes constant in (3.58) of the
Wilson loop in the strong coupling regime, in which case, the predicted Stokes constant
associated to Ay ) is

[strong]
S(2.0) 8 =4, (4.28)
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The actual numerical calculation of the Stokes discontinuity of E(®) across the positive real
axis compared with the right hand side of (4.26) shows the latter is the case, i.e.

S20) = Siro " = 4. (4.29)

Another way to see that this has to be the case is notice that the energy of the Harper-
Hofstadter model has the property that —4 < E < 4, and this is translated to the modulus in
the 5d SYM as z = 1/u? = 1/E? > 1/16, which corresponds to the strong coupling regime.

4.2 Minimal trans-series

We would like to study the general resurgent structure of the perturbative energy series, not
only the dominant Borel singularity. Since we will be interested in the Borel resummation
with real and positive ¢, we focus on the Borel singularities on the positive real axis. We
conjecture the only Borel singularities of this type are A, ) = 16C and its multiples, and
we will denote them simply by

gA, A = A(Zo), € == 1, 2, [P (430)

The action of the alien derivatives of these Borel singularities Ak 4 on the perturbative
energy series should follow from the alien derivatives of the Wilson loop vev (3.54a). By a
similar calculation as in the previous section, or by simply comparing the right hand side
of (3.54a) with the definition of E(™™) given in (3.31) together with the dictionary (3.50),
we can conclude that

_ 57,4 (_1)6—1

AZ.AE(O) (V7 d’) i /

E®O(v, ¢), (4.31)
where, as we discussed in the previous section,
SA = 5(270) = 4 (432)

It is also useful to consider the resurgent structure of the trans-series building blocks
EM™)(y, ¢). Starting from (3.54b), and using the chain rule of alien derivatives as well as
that it commutes with ordinary derivatives, one finds

. SBPS ] (e—1)
AEA(MO)e_nachNs(tc,h)/h: (2.00) R( l? (QnangNs(tc,h))e—(n+24)athNs(tC,h)/h‘ (4.33)

2mi

Using this result, the Leibniz rule of alien derivatives, and following the derivation as in the
previous section, together with (4.21), (4.29), one finds that

h n,m Sa(-1 1 n m
AaB) (v, 9) = SA CU gty g) (431)

It also implies that E("™) (v, $) has the same Borel singularities as E(© (v, ¢).
It was then argued in [32] that we can include all corrections to the energy perturbative
series from all of its Borel singularities on the positive real axis via the minimal trans-series

oo n'—1

Er(l?i)n(y, p;0) = EO(v, ¢) + Z Z O.m"i‘lvn/’m/E(Qn’,m/)(y’ ), (4.35)

n/=1m/=0
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m 0 1 2 3

Vim 35
i 1
U2vm 4 8
v ST E
3,m 67 82 4873
v i 1 i 1
4,m 87 9672 32m3  3847%

Table 1. Trans-series coefficients vy, ,,, in minimal trans-series.

where the trans-series coefficients are
1
Upom = EBn,m-l-l(l!Sla 2159, ..., (n—m)!sp_m), (4.36)

with By, ;41 being the incomplete Bell’s polynomials and

—1)7-1 1
i—_, i=12.... (4.37)

%= J 2i

The first few trans-series coefficients vy, ,,, are given in table 1. The minimal trans-series El(m)n

has the nice property that its Stokes automorphism across the positive real axis is given by

e”O‘Emln( ¢7 ) mm( ¢aU+SA) (438)

To see this, we first notice that

&oEO (v, h) = (expz AZA) EO (v, h)
=1

oo n'—1

+ Z Z By m+1 ‘AJ'A)E(O)
n'=1m'= 0

oo n'—1

1 / /
+ Z Z m+1n nm—l—l(J!Sj)E@n’m)
n'=1m'=0

co n'—1

043 3 S5y B, (4.39)

n/=1m/=0

where from the first line to the second line we used the Faa di Bruno formula, and from the
second line to the third line we have used the resurgent properties (4.31), (4.34) as well as
the homogeneity property of incomplete Bell’s polynomials

Bn,m—l—l(aﬂxla 0425.%'2, s 7an7mﬂxn—m) = an/Beran,m—i—l(wla Z2,... 7xn—m) (44())
Comparing (4.39) with (4.35), we conclude that
S0 (v, h) = Go B, (v, 13 0) = ES) (v, hi Sa). (4.41)

Furthermore, let us define

o (s _1\—1
AEJZE(n,m) _ ( 12 E(n+2€,m+1) (442)

,25,



FSOED(0,6,-2)  SOED(0,6,+2)
3.545 4+ 3.794 x 10~'2i  3.545 — 3.794 x 10712
3.545 — 2.485 x 10723  3.545 4 2.485 x 10~
3.545 — 6.074 x 107331 3.545 + 6.074 x 10733
3.545 — 2.074 x 10738  3.545 + 2.074 x 10738i

S o O 3

Table 2. Borel resummation of minimal trans-series Er(m)n(N ¢; F2) at Landau level N = 0 with
¢ = 27/13. n is the level of instanton corrections included. As higher level instanton corrections are

included, the imaginary part of the resummation becomes smaller.

n y( I(I(l)l)l’l( (b? _2) y( )Emln( ¢7 +2)
0 3.736+2.985 x 10722j 3.736 — 2.985 x 1022
2 3.736 —2.651 x 10743 3.736 4+ 2.651 x 10~43i

4 3.736 +2.247 x 10790 3.736 — 2.247 x 10769;

Table 3. Borel resummation of minimal trans-series Er(m)n(N ¢; F2) at Landau level N = 0 with
¢ = 27/23. n is the level of instanton corrections included. As higher level instanton corrections are

included, the imaginary part of the resummation becomes smaller.

so that AM = SAAEj and

e (s)
Go[S4] = exp (s YO INLY A) : (4.43)
(=1
Since
So[$1]S0[S2] = Go[S1 + 5], (4.44)

we finally arrive at

SoE (v, ¢;0) = S[S.a]G0[o] B (v, ¢;0) = So[Sa + o] Elon (v, $:0)
- Emln( ¢7 o+ SA) (445)

In the example of the Harper-Hofstadter model, with S4 = 4 for the Borel singularities
A = 16C, this implies that there is an ambiguity-free prescription of performing Borel
resummation of the minimal trans-series

SOEO (v, ¢;-2) = SOEQ (v, 63 +2), (4.46)

which has the additional nice property that it is a real value, in contrast to lateral resum-
mations of E() (v, ¢) which are always complex. Some numerical evidences are provided
in tables 2, 3, 4, 5.

For later purpose, we will also introduce the minimal trans-series for the building blocks
E(mm) and they read

ES™ (0, ¢50) = EP™ (0,8) + 37 3 0" Ty ECFmE D () gy (4.47)
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n SOEY (1,6,-2)  SOEN,6,+2)
0 2.691+3.190 x 1079 2.691 — 3.190 x 1079
2 2.691 —2.001 x 10717 2.691 + 2.001 x 10717
4
6

2.601 — 2.454 x 10724 2.691 4 2.454 x 10~24
2.691 + 7.118 x 10732i  2.691 — 7.118 x 10732

Table 4. Borel resummation of minimal trans-series Er(m)n(N ,¢; F2) at Landau level N = 1 with
¢ = 27/13. n is the level of instanton corrections included. As higher level instanton corrections are

included, the imaginary part of the resummation becomes smaller.

n SOBEQ(1Le,-2)  FSOEN(16,+2)
0 3.226+48.873 x 107 3.226 — 8.873 x 10~ 19
2 3.226 — 2.514 x 107361 3.226 + 2.514 x 1073
4 3.226 —2.138 x 107°%i  3.226 + 2.138 x 1075

Table 5. Borel resummation of minimal trans-series Er(r?i)n(N ,¢; F2) at Landau level N = 1 with

¢ = 2m/23. n is the level of instanton corrections included. As higher level instanton corrections are
included, the imaginary part of the resummation becomes smaller.

Using a similar argument with (4.34), one can show that across the positive real axis

SoEuin" (v, ¢30) = ESer™ (v, 8.0 + S.a). (4.48)

min mln
4.3 Full trans-series and the exact quantization condition

, ®; 0) encodes the minimal resurgent structure starting from

The minimal trans-series mm(

E(O)(u, ¢) accessible via Borel singularities on the positive real axis. If the strong resurgence
program were to hold here, it would be the entire story, and the Borel resummation (4.46)
would be the exact energy spectrum. But as we have discussed in section 4.1, it misses
at least the 1-instanton sector, and the full energy trans-series would be a superset of the
minimal energy trans-series.

The way to construct a larger and full trans-series which includes the minimal trans-series
as a consistent component is via the procedure of “tensor product” of trans-series introduced
in [32]. We assume that the full energy trans-series still has the form of (3.30). Suppose the
right hand side of (3.29) can split into the sum of two functions

o0

R(A) = R*(\) + RE(\) =D (rit + rf) A" (4.49)
k=1
where we have replaced h by ¢, we can define two implicit equations'?
Avy = RA\ (v + Avy)), (4.50)
Avg = RE(\(v + Avg)), (4.51)

2Note that Av as solution to (3.29) is not equal to the sum of Ava,Avp as solutions to (4.50), (4.51).
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with A\(v) = e ~atp (¥, ¢), and the solutions define respectively two sets of trans-series: the
trans-series of A type

EY (v, ¢) = 2% EO) (1, ¢)
oo n'—1

© v ¢) + Z Z un/:m/(ZA)E(nl7m,)(V7 ¢)7 (4523‘>

n’=1m/=0
EG (v, ¢) = A% B0 (1, )

oo n/—1

= EOM(0,6) + 33 U () B 6y (4.52D)

n/=1m/=0

and the trans-series of B type

EY (v,0) = 2% EO) (1, ¢)
oo n'—1
Ow,e)+ 3 M Ut (PP ) BT (1, ), (4.53a)

n’=1m/=0
g™ (v,6) = A% B (1, 9)

oo n/—1

= BOM(0) + S0 S e PV BN ), (453b)
n’/=1m/=0

and the full trans-series

co n—1

E(,¢) = EQw,¢) + 3 > unm(®)E™™ (v, 6), (4.54)

n=1m=0

can be formulated as the “tensor product”,
full trans-series ~ trans-series A ® trans-series B, (4.55)

in the sense that it can be equally written as

oo n—1

Ew,¢) = EQ(1,8) + 3. 3 (e ES™ (v, 9). (4.56)

n=1m=0

This can be understood as arising from a two step application of (3.28), (3.30),

co n—1
E(V,(b):eA”Aa”eA”Ba”E(O)( )= E© V+AV +Z Zunm "m)(l/—i-AI/ ,0)
n=1m=0
co n—1
@)+ wam?)ES™ (w,9), (4.57)
n=1m=0

and it can be verified by checking the identities of trans-series coefficients

min(m—1,n'—1)

Un,m (T) = Unp m( ) + Un, m + Z Z un—n’,m—m’—l(fB)un’,m’ (EA)u
n’=1m’=max(m—n+n’,0)
n=12,...,00, m=0,1,...,n—1, (4.58)

obtained by comparing coefficients of (4.54) and (4.56).
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In the case of the Harper-Hofstadter model, we first notice that the minimal trans-
series (4.35) can be put in the form of (3.30) with

. v , even n, : Si/9, even 7,
() = A TR e g (459)
0, odd n, 0, odd j.

Therefore, the minimal trans-series can be written as

mln( ¢7 ) - 0)(V + UAVmin? ¢) (460)
where Av™" is solution to
Av min __ Z 5 )\2] _ len(A) A=e %tD(V"rAymln’(ﬁ) (461)
7j=1

Now without loss of generality, we can assume that for the Harper-Hofstadter model,
the right hand side of (3.29) can indeed be split as

Av = g R™()\) 4+ R™ed()) = Z(or;mn + r}ned))\j (4.62)
Jj>1
where r}med are yet unknown. Then the full trans-series can be written as
(0 oo n—1
Eaz,y, ( ¢) Emln + Z Z wnm z y mln ( ¢7 )7 (463>
n=1m=0

where we have denoted the trans-series coefficients
Wn,m = un,m(fmed(em,y)) (464)

which depend on the Bloch angles 6, 0,.
The weak resurgence program dictates that in the regime ¢v < 1, the exact energy
spectrum is given by

By (v,0) = SN Eg, g, 2(v,¢) = S T Ey, 9, 12(v, 0). (4.65)

The resurgent properties (4.38) and (4.48) make sure that the two prescriptions of lateral Borel
resummation yield the same result. This gives us a method to fix the unknown trans-series
coefficients wy, ,,. By comparing with the exact energy spectrum solved from the secular
equation (2.18) at ¢ = 2x/@Q, with high precision numerical calculations, we find the first
few trans-series coefficients wy, ,, up to n = 6, i.e. up to 6-instanton order, as tabulated in
table 6. Here we have introduced notation

0 := (=1)V*(cos 0, + cosb,). (4.66)

Some numerical evidences are provided in figure 5, 6. It turns out that these trans-series
coefficients can indeed be written in the form of (3.32). In fact, we find the trans-series
coefficients wy, ,, can be expressed as

1
wmm = EBn,erl(l!tla 2!t2, ey (n — m)!tn,m) (467)
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Figure 5. The order of magnitude (—log;,(| * |), vertical axis) of the difference between the exact
spectrum and the Borel resummation of full energy trans-series in the form of (4.63) at Landau level
0 with varying © (horizontal axis). We include progressively contributions of increasing instanton
orders n =0,1,2,... from lower data points to higher data points.
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Figure 6. The order of magnitude (—log;,(| * |), vertical axis) of the difference between the exact
spectrum and the Borel resummation of full energy trans-series in the form of (4.63) at Landau level
1 with varying © (horizontal axis). We include progressively contributions of increasing instanton
orders n =0,1,2,... from lower data points to higher data points.

where the parameters ¢; are such that the generating function for ¢; is

S)

o1
Z t]A‘j = ; arcsin m

Jj=1

(4.68)

This in turn validates our conjecture that the full energy trans-series can be written as a
tensor product of the minimal trans-series and a secondary trans-series, which is called the
medium in the sense of (4.56).

Note that the medium trans-series coefficients all have the property that they vanish
in the van Hove singularity with © = 0. In particular this implies that

EgS(v,¢) = SDEO) (v, ¢;-2) = OB (v, ¢ +2). (4.69)
Moreover, taking the difference between full trans-series evaluated at ® = 2 and © = —2,

one finds the exact formula for the energy bandwidths at P = 1 to be

co n—1
n—1,m 1
Wi (6) =23 " wan 1.m(© = 2.7 BT )(N t5® :FQ)' (4.70)
n=1m=0
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Once we have calculated the coefficients w,, ,, for the medium trans-series, we can
use (4.58) to build the coefficients uy, n, for the full trans-series from vy, ,, and wy, . The
first few examples are in table 7. They reduce to vy, ,, if we set © = 0 and reduce to wy, m,
if we set € = 0. Alternatively, we can add up the generating series for s; and ¢; and find
the generating series for the parameter r; of the full trans-series,

SN = é log (\/1 F(2—O2)A2 4 M — ie@)\) . (4.71)

Jj=1

Taking the logic in section 3.2 backwards, this implies the EQCs

Dy g, : 1+Vi(1+Vp) —2@@:0, (4.72)

The two conditions Dg; 0, are suitable for the two choices of the lateral Borel resummations
&) respectively. These two quantization conditions lead to the same energy spectrum as
they are correctly related by the Stokes transformation of the Voros symbols. As explained
in [28, 69], the Stokes transforms of Voros symbols are controled by the BPS invariants of
the corresponding supersymmetric field theory

So: Vi — Va(l 4 Vp)anets) (4.73)

where we take the convention for the Dirac pairing of EM charges,

(Ya,YB) = PBYA — PGB, YA = (PA,qa,7T4), VB = (PB,4B,TB)- (4.74)

As we discussed in the previous sections, the supersymmetric field theory corresponding to
the Harper-Hofstader model is the 5d SYM on S! x R? in the strong coupling regime. The
charge vectors associated to V4, Vp are respectively

YA = (07 17 0)7 B = (27 07 0)7 (475>
with
(va,v8) =2, Q) =2 (4.76)
as discussed in section 3.3, so that

Go: Va— Va(l+Vp), (4.77)

which makes sure that the two conditions in (4.72) are equivalent to each other. Note that
this is different from Mathieu equation, where the corresponding supersymmetric field theory
is 4d SYM, and the BPS invariant Q(yp) = 1. This implies a slightly different form of
Stokes transformation of Voros symbols

Go: Va— Va(l+Vp), (4.78)

which also makes sure that the two forms of EQC in (3.21) are equivalent to each other.
If we introduce the medium resummation

p(med) _ é (70 +70), (4.79)
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m 0 1 2 3 4 5}

W1,m %

W2 m 0 %

wim  —9 G 0 6

W4, m 0 —?22 + % 0 %

Ws5.m % - 97:: + i%i 0 —% + % 0 12%%

we,m 0 Sor = 37 + o 0 it 0 e

Table 6. Trans-series coefficients wy, ,, in medium trans-series.

m 0 1 2 3 4 5
Ul,m %
w2m E 5
g 9+ G 2 6
g R i Dot
wn S-S+ 5t —21 — 53 + 1o o TS0
um e ot -3t e —am U tie —hi - gataom b mow

Table 7. Trans-series coefficients u, ., for the full energy trans-series.

the EQC can be written as
Dg%G, : (1+Va)(1+Vp) =2/ VaVp O = 0. (4.80)

which is more symmetric between the perturbative and the non-perturbative Voros symbols.
Note that the medium trans-series with coefficients (4.67) can be solved from this quantization

condition, which explains its name.

5 Characterization of splitting bands

The result of the last section provides an alternative quantization method for the Harper-
Hofstadter model with flux ¢ = 27/Q. From the left graph of figure 7, we can easily tell
that this approach is valid pretty well into the non-perturbative regime. In fact, we have
checked that the alternative quantization method is valid for Q > 2N + 3. For P > 1,
an important difference from the P = 1 case is that a single energy band at ¢ = 27 P/Q,
which we call the primary Landau level, splits to P smaller secondary energy bands, which
is also visible on the right graph of figure 7. How to characterize this phenomenon would
be the main goal of this section.

5.1 Self-similarity of the butterfly revisited

The discussion of the resurgent properties of the energy trans-series as well as the construction
of minimal trans-series in section 4.2 is universal and it holds true for any rational value of ¢.
The construction of the medium trans-series and the consequent matching with the exact
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Figure 7. Left: Hofstadter’s butterfly with energy trans-series for P = 1 up to the sixth Landau
level. Right: zooming in on the lowest Landau level. We depict P = 2 band splitting in yellow and
P = 3 band splitting in red.

energy spectrum, however, depends surprisingly on the numerator of ¢ = 27 P/Q. If the flux
¢ is such that P > 1, the generating series (4.67) with (4.68) are no longer valid. In fact, the
coefficients wy, ,, for the medium trans-series become vastly more complicated.

For instance, we find the 1-instanton coefficient wy o is one of the P solutions to

1 1
0= §FQ/P(27TU1’0,0,0) =: §FQ/P(27TU170) (5.1)

where F,p () is the secular polynomial defined in section 2.2. Note that here the subscript
is inverted from P/Q to /P, which may be related to the fractal structure of the energy
spectrum. The secular polynomial has the property that

Fo/p(x) = Fi_q/p(@). (5.2)
Some examples are

Fi(z) ==, (5.3a)

Fipp(z) = -4+ 2%, (5.3b)

F1/3(l') = —6x + 133, (5 ?)C)

Fyj(z) =4 -8z + 2, (5.3d)

Fyjs() = 2(7 —VB)a — 1028 + a7, (5.3¢)

Fys(z) = 2(7 + V5)x — 1023 + 25, (5.3f)

Fijg(x) = —4 4 242 — 122" + 2°. (5.3g)

Some numerical evidence of (5.1) are provided in figure 8 and figure 9.
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Figure 8. The orders of magnitude (—logo(| * |), vertical axis) of the difference between the exact
spectrum and the Borel resummation of full energy trans-seriesin the form of (4.63) at Landau level
0 with varying © (horizontal axis). We include progressively contributions of increasing instanton
orders n = 0,1 from lower data points to higher data points. The six plots are examples of (a)
P=2Q=1modP (a) P=3,QQ=1mod P (a) P=4,Q =1mod P (a) P=5,Q =1mod P (a)
P=5Q=2mod P (a) P=6,Q =1 mod P for ¢ =27P/Q.

It’s quite clear from the right figure of figure 7 that the entire structure of Hofstadter’s
butterfly reemerges within each primary Landau level. From our preliminary analysis on
higher instanton corrections for splitting bands, the higher trans-series coefficients are more
complicated to be determined numerically and they are not naive generalizations of trans-
series coefficients for P = 1 case.

5.2 Evidence for exact Rammal-Wilkinson formula

Another approach to characterize these splitting bands is identifying the proper expansion
base point of these bands such that the secondary Landau levels become primary Landau
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(a) ¢/(2m) = 2/49 (b) ¢/(2m) = 3/73
(c) ¢/(2m) = 4/97 (d) ¢/(2m) = 5/121
(e) ¢/(2m) = 5/122 (f) ¢/(2m) = 6/145

Figure 9. The orders of magnitude (—logyo(| * |), vertical axis) of the difference between the exact
spectrum and the Borel resummation of full energy trans-seriesin the form of (4.63) at Landau level
1 with varying © (horizontal axis). We include progressively contributions of increasing instanton
orders n = 0,1 from lower data points to higher data points. The six plots are examples of (a)
P=2Q=1modP (a) P=3,Q=1mod P (a) P=4,Q =1mod P (a) P=5,Q =1mod P (a)
P=5=2mod P (a) P=6,Q =1mod P for ¢ =27P/Q.

levels in this new expansion scenario. In [31, 71], they discovered a formula for perturbative
energy expansion near arbitrary rational values. However, due to limitations of technology at
that age, their computation of the perturbative energy from the quantization condition were
quite primitive and incomplete, i.e, the perturbative expansion of Rammal-Wilkinson formula
was calculated only to the first order and their consideration of non-perturbative instanton
corrections are hand-waving without any determination of instanton action or prefactor.

In order to perform similar numerical analysis for bands near certain rational values as
in [20] and [22], we need to introduce the concept of almost canonical continued fraction. For
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a given non-negative rational number «, it can always be expressed as

1
a=nyg+——7— (5.4)
nT oL
2+ +”l
and be denoted as [ng,n1,n2, - ,ny]. This is the canonical continued fraction. Due to the

symmetry property of the butterfly, we can restrict our attention to real numbers that satisfy
0 <r <1/2 and ng can be set to 0. The almost canonical continued fraction representation
of a real number can be achieved by allowing n; to be negative and requiring

Ing| > 2. (5.5)

The representation of a rational number written in almost canonical representation should be
unique since we can always start with a canonical continued fraction and rewrite

[07n17n27"' 7ni—1717ni+17ni+27"' 7nl] (5 6)
%[Ovnlv’naa e, My + 17 *(ni+1 + 1)7 —Ni42, 7”[}
whenever we find n; = 1 in the sequence.
After representing the rational magnetic flux @ = ¢/(27) in the almost canonical

fashion, ny is nothing but the number of principal Landau levels, and ny is in general the
number of sub-levels at that nested layer assuming there’s no merging of subbands. For a
rational magnetic flux o = [0, n1,ng, -+ ,n;_1,ny], we can regard it as a small deviation from
ap = [0,n1,n2,- -+ ,n;_1] and consider the perturbative expansion of the energy from certain
exact energy value at «q, usually at an edge of energy bands. In the examples shown below,
we will focus on bands at [0,n1,n2] expanded around [0,7n1] = 1/n;.

The simplest possible example to illustrate the expansion around rational points other
than zero would be considering the base point oy = 1/2, and taking the energy value at the
top edge of the first energy band Ey = 2v/2, solved from

If we use ¢ = ¢ — ¢g with ¢9 = 2may = 7 as our expansion parameter, the perturbative
series can be approximated numerically from the exact spectra

o5 (@N+1)¢  (AN?+4N +3)¢”
=22 7 + 573 .
(8N3 + 12N2 + 30N + 13) ¢/ "

The leading instanton contribution to the bandwidths near [0,2] can also be approximated

E(¢';N)

in reasonable precision,

by (&) 22N+4 o—2C/4' (1 B 3N2+9N+5¢, _ 9N'434N?4+9N?—46N —56

2 13
V7 N! 12 288 9 +0( )>'

(5.9)
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We next consider the bands at a = [0, 3, na] away from the base point ag = 1/3 expanded
around the top band edge Fy = V3 + 1 solved from

Fy3(E,0,0) —4 =0, (5.10)

as another case study. If we use ¢/ = ¢ — ¢p with ¢9 = 27y = 27/3 as our expansion
parameter, then

B¢ N) = VB 41— S(VB— )N + 1)J¢/| + (“f - 1) o

+ 3—12 (18(7\/§ —11)N(N +1) +65v3 — 95) ¢ (511)
_ %(5\/5 — 8)(2N + D)sgn(¢)¢? + O(¢°),

and the bandwidth is approximated by

9
24N+§ 1

bWN((z)/) ~ COHSt.W¢/2 N678C/9¢/Pinst(¢/; N), (512)

where Pi"t(¢'; N) is a power series starting from 1 that represents the instanton fluctuation.
If we use instead ¢ as our expansion parameter, which is given by

2w
3%

(5.13)

the perturbative energy series is

V3-2
18

BN = Va4 - B neN 0+ (B2 ) sro@. e

and the energy bandwidth is approximated by

9
24N+§ 1

a0 e P, (5.15)

is again a power series starting from 1. The prefactor and the instanton action

bw N(‘Z;) ~
where Pinst
of (5.15) is identical to the one appearing for bandwidths formula for [0, 7], which suggests
that (5.13) perhaps is a more natural way of performing the expansion. Extracting information
of the instanton fluctuation can help us learn about the quantum periods expanded near the
corresponding quantum conifold points. We wish to come back to this problem in future works.

6 Conclusion and discussion

In this paper, we begin to study the full energy trans-series for the Harper-Hofstader model.
Using inspiration from the structure of energy trans-series of 1d non-relativistic QM models
obtained by the exact WKB method, and the connection between the Harper-Hofstadter
model and the 5d SYM theory, we are able to write down a conjectural full energy trans-
series including instanton corrections at all levels when the magnetic flux is ¢ = 27/Q,
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@ € N, and we checked our conjectural formula with very high numerical precisions, up
to six instanton levels.

One prominent feature of the full energy trans-series is that the perturbative series only
determines even instanton sectors via resurgence but not the odd instanton sectors, which
are in different topological sectors, so that the strong resurgence program does not hold.

When the magnetic flux is ¢ = 27 P/Q with P > 1, although we argue the resurgent
structure of the perturbative series remains the same, the coefficients of the full energy
trans-series could be quite different. For instance, the coefficient of the 1-instanton sector
is given by roots of the secular equation with the inverted flux. In addition, we also made
progress in the expansion of energy around a rational value of magnetic flux instead of at
the zero flux, including both the perturbative energy series and the leading contribution to
energy bandwidth, extending the Rammal-Wilkinson formula.

There are many open problems following this work. The energy spectrum of the Harper-
Hofstadter model is mesmerizing for the distinction between rational and irrational values of
the magnetic flux, and for the self-similarity structure of the energy spectrum. To understand
the self-similarity structure of the energy spectrum, it will be worthwhile to push further
the calculation of the trans-series coefficients for higher instanton levels when the magnetic
flux is ¢ = 27 P/Q with P > 1. One should also explore further the expansion of energy
around a non-zero rational value of magnetic flux. One important line of attack is to use
the supersymmetric localization results of the Wilson loop vev of 5d SYM [64, 72], which we
argued to coincide with the energy of the Harper-Hofstadter model, as it is more suitable for
expansion around the rational value of magnetic flux.'® To understand the distinction between
rational and irrational values of the magnetic flux, it would be very beneficial to exploit the
relation between the Harper-Hofstadter model and the quantum group U,(slz) [4, 73] and
quantum integrable models [7, 8]. It would also be interesting to consider other lattices which
are related supersymmetric gauge theories or topological string [21-23]. It would also be
interesting to perform a systematic exact WKB analysis on the Harper-Hofstadter model
as previous studies on 4d SYM [36, 74] as another line of attack. We would like to return
to these problems in the near future.

In an orthogonal direction, as we discussed in section 4.1, we can calculate the Stokes
constants of the Harper-Hofstadter perturbative energy series from those of the perturbative
Wilson loop vevs in 5d SYM. However, in this process, we face the problem of choosing
between using the Stokes constants in the strong coupling regime or in the weak coupling
regime from the 5d SYM. A similar problem was already encountered in [37] where one
wished to reconstruct the Stokes constants of topological string free energy in the conifold
limit from the Stokes constants of conventional topological string free energy. The authors
of [37] proposed to use the Stokes constants in the strong coupling regime, but could not
provide an explanation. Here we find the same prescription is true, and we argue that the
reason is because the range of energy of the Harper-Hofstadter model is mapped to the
Coulomb modulus of the 5d SYM in the strong coupling regime. We hope this argument
can shed some light on the mystery in [37].

3The Wilson loop vev, or equivalently the inverse quantum mirror map should be expanded around the
rational value flux together with the identification of the perturbative quantum period as the perturbative
quantization condition near the rational value flux in consideration.
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