W-algebras and Bethe ansatz in 2d CFT

Tomáš Procházka

Institute of the Physics of the Czech Academy of Sciences

March 4, 2024

Shing-Tung Yau Center of Southeast University

Co-funded by the European Union

YOUTH AND SPORTS
Fundamental constituents of matter through frontier technologies CZ.02.01.01/00/22_008/0004632

XXX $\mathfrak{s u}(2)$ spin chain Bethe equations (Bethe, 1931)

$$
1=q\left(\frac{u_{j}-\frac{\epsilon}{2}}{u_{j}+\frac{\epsilon}{2}}\right)^{N} \prod_{k \neq j} \frac{u_{j}-u_{k}+\epsilon}{u_{j}-u_{k}-\epsilon}
$$

$$
\Uparrow
$$

CFT/ $\mathcal{W}_{1+\infty}$ Bethe equations
(Litvinov, Nekrasov, Shatashvili, BSTV,... 2013)

$$
1=q \prod_{I=1}^{N} \frac{u_{j}+a_{l}-\epsilon_{3}}{u_{j}+a_{l}} \prod_{k \neq j} \frac{\left(u_{j}-u_{k}+\epsilon_{1}\right)\left(u_{j}-u_{k}+\epsilon_{2}\right)\left(u_{j}-u_{k}+\epsilon_{3}\right)}{\left(u_{j}-u_{k}-\epsilon_{1}\right)\left(u_{j}-u_{k}-\epsilon_{2}\right)\left(u_{j}-u_{k}-\epsilon_{3}\right)}
$$

Overview

- \mathcal{W}-algebras and \mathcal{W}_{∞}
- affine Yangian
- integrable structure - KdV and BLZ
- instanton R-matrix and ILW Bethe equations

W algebras - motivation

\mathcal{W}-algebas: extensions of the Virasoro algebra (2d CFT) by higher spin currents - appear in many different contexts:

- integrable hierarchies of PDE $(\mathrm{KdV} / \mathrm{KP}) \rightsquigarrow \mathcal{W}$ is quant. KP
- (old) matrix models
- instanton partition functions and AGT
- holographic dual description of 3d higher spin theories
- quantum Hall effect
- topological strings
- higher spin square (Gaberdiel, Gopakumar)
- $4 d \mathcal{N}=4$ SYM at codimension 2 junction of three codimension 1 defects (Gaiotto, Rapčák)
- geometric representation theory (equivariant cohomology of various moduli spaces)

Zamolodchikov \mathcal{W}_{3} algebra

\mathcal{W}_{3} algebra constructed by Zamolodchikov (1984) has a stress-energy tensor (Virasoro algebra) with OPE

$$
T(z) T(w) \sim \frac{c / 2}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{\partial T(w)}{z-w}+r e g .
$$

together with spin 3 primary field $W(w)$

$$
T(z) W(w) \sim \frac{3 W(w)}{(z-w)^{2}}+\frac{\partial W(w)}{z-w}+r e g .
$$

To close the algebra we need to find the OPE of W with itself consistent with associativity (Jacobi, crossing symmetry...).

The result:

$$
\begin{aligned}
W(z) W(w) \sim & \frac{c / 3}{(z-w)^{6}}+\frac{2 T(w)}{(z-w)^{4}}+\frac{\partial T(w)}{(z-w)^{3}} \\
& +\frac{1}{(z-w)^{2}}\left(\frac{32}{5 c+22} \Lambda(w)+\frac{3}{10} \partial^{2} T(w)\right) \\
& +\frac{1}{z-w}\left(\frac{16}{5 c+22} \partial \Lambda(w)+\frac{1}{15} \partial^{3} T(w)\right)+r e g .
\end{aligned}
$$

Λ is a quasiprimary 'composite' (spin 4) field,

$$
\Lambda(z)=(T T)(z)-\frac{3}{10} \partial^{2} T(z)
$$

The algebra is non-linear, not a Lie algebra in the usual sense

W_{N} series and \mathcal{W}_{∞} algebra

- W_{N} : an interesting family of W-algebras associated to $\mathfrak{s l}(N)$ Lie algebras (spins $2,3, \ldots, N$, Virasoro $\leftrightarrow \mathfrak{s l}(2)$)
- \mathcal{W}_{∞} : interpolating algebra for W_{N} series; spins $2,3, \ldots$
- Gaberdiel-Gopakumar: solving associativity conditions for this field content \rightsquigarrow two-parameter family: central charge c and rank parameter λ
- choosing $\lambda=N \rightarrow$ truncation of \mathcal{W}_{∞} to $\mathcal{W}_{N}=\mathcal{W}[\mathfrak{s l}(N)]$, i.e. \mathcal{W}_{∞} is interpolating algebra for the whole \mathcal{W}_{N} series
- adding spin 1 field, we have $\mathcal{W}_{1+\infty} \rightsquigarrow$ many simplifications
- triality symmetry of the algebra (Gaberdiel \& Gopakumar) $\mathcal{W}_{\infty}\left[c, \lambda_{1}\right] \simeq \mathcal{W}_{\infty}\left[c, \lambda_{2}\right] \simeq \mathcal{W}_{\infty}\left[c, \lambda_{3}\right]$

$$
\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}=0, \quad c=\left(\lambda_{1}-1\right)\left(\lambda_{2}-1\right)\left(\lambda_{3}-1\right)
$$

- MacMahon function as vacuum character of the algebra (enumerating all the local fields in the algebra)

$$
\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{n}\right)^{n}}=1+q+3 q^{2}+6 q^{3}+13 q^{4}+24 q^{5}+48 q^{6}+\cdots
$$

- The same generating function is well-known to count the plane partitions (3d Young diagrams)

- triality acts by permuting the coordinate axes
- restriction to \mathcal{W}_{N} corresponds to max N boxes in one of the directions
- this can be generalized to degenerate primaries (not only vacuum rep) by allowing 2d Young diagram asymptotics
- counting exactly as in topological vertex \rightsquigarrow topological vertex can be interpreted as being a character of degenerate $\mathcal{W}_{1+\infty}$ representations

- box counting generalizes also to minimal models (Ising...) \rightsquigarrow lozenge tilings on cylinder

Yangian of $\mathfrak{g l}(1)$

The Yangian of $\widehat{\mathfrak{g l}(1)}$ (Arbesfeld-Schiffmann-Tsymbaliuk) is an associative algebra with generators $\psi_{j}, e_{j}, f_{j}, j \geq 0$ and relations

$$
\begin{aligned}
0= & {\left[e_{j+3}, e_{k}\right]-3\left[e_{j+2}, e_{k+1}\right]+3\left[e_{j+1}, e_{k+2}\right]-\left[e_{j}, e_{k+3}\right] } \\
& +\sigma_{2}\left[e_{j+1}, e_{k}\right]-\sigma_{2}\left[e_{j}, e_{k+1}\right]-\sigma_{3}\left\{e_{j}, e_{k}\right\} \\
0= & {\left[f_{j+3}, f_{k}\right]-3\left[f_{j+2}, f_{k+1}\right]+3\left[f_{j+1}, f_{k+2}\right]-\left[f_{j}, f_{k+3}\right] } \\
& +\sigma_{2}\left[f_{j+1}, f_{k}\right]-\sigma_{2}\left[f_{j}, f_{k+1}\right]+\sigma_{3}\left\{f_{j}, f_{k}\right\} \\
0= & {\left[\psi_{j+3}, e_{k}\right]-3\left[\psi_{j+2}, e_{k+1}\right]+3\left[\psi_{j+1}, e_{k+2}\right]-\left[\psi_{j}, e_{k+3}\right] } \\
& +\sigma_{2}\left[\psi_{j+1}, e_{k}\right]-\sigma_{2}\left[\psi_{j}, e_{k+1}\right]-\sigma_{3}\left\{\psi_{j}, e_{k}\right\} \\
0= & {\left[\psi_{j+3}, f_{k}\right]-3\left[\psi_{j+2}, f_{k+1}\right]+3\left[\psi_{j+1}, f_{k+2}\right]-\left[\psi_{j}, f_{k+3}\right] } \\
& +\sigma_{2}\left[\psi_{j+1}, f_{k}\right]-\sigma_{2}\left[\psi_{j}, f_{k+1}\right]+\sigma_{3}\left\{\psi_{j}, f_{k}\right\} \\
0= & {\left[\psi_{j}, \psi_{k}\right] } \\
\psi_{j+k}= & {\left[e_{j}, f_{k}\right] }
\end{aligned}
$$

'initial/boundary conditions'

$$
\begin{array}{lll}
{\left[\psi_{0}, e_{j}\right]=0,} & {\left[\psi_{1}, e_{j}\right]=0,} & {\left[\psi_{2}, e_{j}\right]=2 e_{j}} \\
{\left[\psi_{0}, f_{j}\right]=0,} & {\left[\psi_{1}, f_{j}\right]=0,} & {\left[\psi_{2}, f_{j}\right]=-2 f_{j}}
\end{array}
$$

and finally the Serre relations

$$
0=\operatorname{Sym}_{\left(j_{1}, j_{2}, j_{3}\right)}\left[e_{j_{1}},\left[e_{j_{2}}, e_{j_{3}+1}\right]\right], \quad 0=\operatorname{Sym}_{\left(j_{1}, j_{2}, j_{3}\right)}\left[f_{j_{1}},\left[f_{j_{2}}, f_{j_{3}+1}\right]\right] .
$$

Parameters $\epsilon_{1}, \epsilon_{2}, \epsilon_{3} \in \mathbb{C}$ constrained by $\epsilon_{1}+\epsilon_{2}+\epsilon_{3}=0$ and

$$
\begin{aligned}
\sigma_{2} & =\epsilon_{1} \epsilon_{2}+\epsilon_{1} \epsilon_{3}+\epsilon_{2} \epsilon_{3} \\
\sigma_{3} & =\epsilon_{1} \epsilon_{2} \epsilon_{3}
\end{aligned}
$$

We have both commutators and anticommutators in defining quadratic relations (but no \mathbb{Z}_{2} grading) - for $\sigma_{3} \neq 0$ not a Lie (super)-algebra.

Introducing generating functions (Drinfel'd currents)

$$
e(u)=\sum_{j=0}^{\infty} \frac{e_{j}}{u^{j+1}}, \quad f(u)=\sum_{j=0}^{\infty} \frac{f_{j}}{u^{j+1}}, \quad \psi(u)=1+\sigma_{3} \sum_{j=0}^{\infty} \frac{\psi_{j}}{u^{j+1}}
$$

the first set of formulas above (almost!) simplify to

$$
\begin{aligned}
e(u) e(v) & \sim \varphi(u-v) e(v) e(u), & f(u) f(v) & \sim \varphi(v-u) f(v) f(u), \\
\psi(u) e(v) & \sim \varphi(u-v) e(v) \psi(u), & \psi(u) f(v) & \sim \varphi(v-u) f(v) \psi(u)
\end{aligned}
$$

with rational structure function (scattering phase in BAE)

$$
\varphi(u)=\frac{\left(u+\epsilon_{1}\right)\left(u+\epsilon_{2}\right)\left(u+\epsilon_{3}\right)}{\left(u-\epsilon_{1}\right)\left(u-\epsilon_{2}\right)\left(u-\epsilon_{3}\right)}
$$

The representation theory of the algebra is much simpler in this Yangian formulation and is controlled by this function
$\psi(u), e(u)$ and $f(u)$ in representations act like

$$
\begin{aligned}
\psi(u)|\Lambda\rangle & =\psi_{0}(u) \prod_{\square \in \Lambda} \varphi\left(u-\epsilon_{\square}\right)|\Lambda\rangle \\
e(u)|\Lambda\rangle & =\sum_{\square \in \Lambda^{+}} \frac{E(\Lambda \rightarrow \Lambda+\square)}{u-\epsilon_{\square}}|\Lambda+\square\rangle
\end{aligned}
$$

where the states $|\Lambda\rangle$ are associated to geometric configurations of boxes (plane partitions,...) and where $\epsilon_{\square}=\sum_{j} \epsilon_{j} x_{j}(\square)$ is the weighted geometric position of the box.

Two different descriptions of the algebra:

- usual CFT point of view with local fields $J(z), T(z), W(z), \ldots$ with increasingly complicated OPE as we go to higher spins
- Yangian point of view (Arbesfeld-Schiffmann-Tsymbaliuk) where all the spins are included in the generating functions $\psi(u), e(u)$ and $f(u)$ but accessing higher mode numbers is difficult

Integrable structures

- there are two natural distinct infinite familites of commuting quantities (Hamiltonians):
(1) the Yangian (Bejamin-Ono) family of generators ψ_{j}
(2) the family of local conserved charges (BLZ, quantum KdV)
- the Yangian charges are very easy to diagonalize and their spectrum is determined by combinatorics of plane partitions
- the diagonalization of the local commuting quantities on the other hand is quite non-trivial and has a long history
- we will relate these two families by constructing a family of quantum ILW Hamiltonians (Litvinov) that interpolate between these two families

Classical KdV/KP

- in the classical limit, the theory reduces to the theory of integrable hierarchies of PDEs (KdV, KP)
- the classical object associated to Virasoro algebra is the one-dimensional Schrödinger operator

$$
L^{2}=\partial_{x}^{2}+u(x)
$$

- there exists an infinite dimensional family of continuous deformations of $u(x)$ which preserve the spectrum of L^{2} and are organized into commuting flows
- the first such deformation is the trivial rigid translation of the potential

$$
\partial_{t_{1}} u=\partial_{x} u
$$

- the next one is already rather non-trivial and is captured by the Korteweg-de-Vries equation (Boussinesq 1877)

$$
4 \partial_{t_{3}} u=6 u \partial_{x} u+\partial_{x}^{3} u
$$

- the space of Schödinger potentials is a Hamiltonian system if we equip it with Poisson bracket
$\{u(x), u(y)\}=-\delta^{\prime \prime \prime}(x-y)-4 u(x) \delta^{\prime}(x-y)-2 u^{\prime}(x) \delta(x-y)$
(whose Fourier transform is just the classical Virasoro algebra)
- the deformations are generated by Hamiltonians which are at the same time conserved quantities capturing the spectral data of the family of Schrödinger operators

$$
I_{1}=\int u(x) d x, \quad I_{3}=\int u^{2}(x) d x, \quad \ldots
$$

- e.g. KdV soliton (Pöschl-Teller potential) with a single bound state

$$
\exp \left(\sum_{j} \frac{I_{j}}{j \lambda^{j}}\right)=\frac{\lambda+1}{\lambda-1}
$$

- the KdV conserved charges survive quantization in the form

$$
\begin{aligned}
& I_{1}=\int T(x) d x=L_{0}-\frac{c}{24} \\
& I_{3}=\int(T T)(x) d x=L_{0}^{2}+2 \sum_{m=1}^{\infty} L_{-m} L_{m}-\frac{c+2}{12} L_{0}+\frac{c(5 c+22)}{2880}
\end{aligned}
$$

so it makes sense to ask what their spectrum is

- since L_{0} is part of the family, the problem is to diagonalize finite dimensional matrices level by level
- a surprising description of their spectrum was found by Bazhanov-Lukyanov-Zamolodchikov (in the context ODE/IM correspondence initiated by Dorey and Tateo)
- consider a Schrödinger operator

$$
-\partial_{z}^{2}+\frac{\ell(\ell+1)}{z^{2}}+\frac{\#}{z}+\lambda z^{h^{2}-2}
$$

associated to a CFT primary state (central charge c and conformal dimension Δ are encoded in h and ℓ) and dress it by allowing for additional collection of regular singular points

$$
\sum_{j=1}^{M}\left(\frac{2}{\left(z-z_{j}\right)^{2}}+\frac{\gamma_{j}}{z-z_{j}}\right)
$$

(M is the Virasoro level)

- the requirement of trivial monodromy around these singularities leads to a system of BLZ Bethe equations

$$
\sum_{k \neq j} \frac{z_{j}\left(h^{4} z_{j}^{2}-\left(h^{2}-2\right)\left(2 h^{2}+1\right) z_{j} z_{k}+\left(h^{2}-1\right)\left(h^{2}-2\right) z_{k}^{2}\right)}{\left(z_{j}-z_{k}\right)^{3}}=\left(1-h^{2}\right) z_{j}-h^{4} \Delta .
$$

- given any solution of BLZ Bethe equations, the eigenvalues of I_{j} are determined, for instance

$$
I_{3}=(\Delta+M)^{2}-\frac{c+2}{12}(\Delta+M)+\frac{c(5 c+22)}{2880}+4\left(h^{-4}-h^{-2}\right) \sum_{j=1}^{M} z_{j} .
$$

- how does this generalize to higher ranks?
- how are these local Hamiltonians related to Yangian conserved quantities?

Miura transformation and \mathcal{R}-matrix

- consider the following factorization of N -th order differential operator

$$
\left(\partial+\partial \phi_{1}(z)\right) \cdots\left(\partial+\partial \phi_{N}(z)\right)=\sum_{j=0}^{N} U_{j}(z) \partial^{N-j}
$$

with N commuting free fields $\partial \phi_{j}(z) \partial \phi_{k}(w) \sim \delta_{j k}(z-w)^{-2}$

- OPEs of U_{j} generate \mathcal{W}_{N} and furthermore are quadratic
- $\mathcal{W}_{N} \leftrightarrow$ quantization of N-th order differential operators
- the embedding of \mathcal{W}_{N} in the bosonic Fock space depends on the way we order the fields on the LHS
- Maulik-Okounkov: \mathcal{R}-matrix as intertwiner between two embeddings, $\mathcal{R}: \mathcal{F}^{\otimes 2} \rightarrow \mathcal{F}^{\otimes 2}$

$$
\left(\partial+\partial \phi_{1}\right)\left(\partial+\partial \phi_{2}\right)=\mathcal{R}^{-1}\left(\partial+\partial \phi_{2}\right)\left(\partial+\partial \phi_{1}\right) \mathcal{R}
$$

- \mathcal{R} defined in this way satisfies the Yang-Baxter equation (two ways of reordering $321 \rightarrow 123$)

$$
\begin{aligned}
& \mathcal{R}_{12}\left(u_{1}-u_{2}\right) \mathcal{R}_{13}\left(u_{1}-u_{3}\right) \mathcal{R}_{23}\left(u_{2}-u_{3}\right)= \\
& =\mathcal{R}_{23}\left(u_{2}-u_{3}\right) \mathcal{R}_{13}\left(u_{1}-u_{3}\right) \mathcal{R}_{12}\left(u_{1}-u_{2}\right)
\end{aligned}
$$

- the spectral parameter u - the global $U(1)$ charge
- \mathcal{R}-matrix satisfying YBE \rightsquigarrow apply the algebraic Bethe ansatz

- spin chain of length $N \rightsquigarrow \widehat{\mathfrak{g l}}(1) \times \mathcal{W}_{N}$ algebra
- once we have an \mathcal{R}-matrix, we can couple a CFT to a probe, in our case this is another CFT
- consider an auxiliary Fock space \mathcal{F}_{A} and a quantum space $\mathcal{F}_{Q} \equiv \mathcal{F}_{1} \otimes \ldots \otimes \mathcal{F}_{N}$
- we associate to this the monodromy matrix $\mathcal{T}_{A Q}: \mathcal{F}_{A} \otimes \mathcal{F}_{Q} \rightarrow \mathcal{F}_{A} \otimes \mathcal{F}_{Q}$ defined as $\mathcal{T}_{A Q}=\mathcal{R}_{A 1} \cdots \mathcal{R}_{A N}$
- in the usual algebraic Bethe ansatz the next step is to take the trace over the auxiliary space
- since our auxiliary spaces are infinite dimensional Fock spaces, we have to regularize the trace, $\mathcal{H}_{q}(u)=\operatorname{Tr}_{A} q^{L_{A, 0}} \mathcal{T}_{A Q}(u)$

- this leads for every q to a different infinite family of commuting Hamiltonians, Hamiltonians of intermediate long wave equation, the first non-trivial being

$$
H_{3}=\left(\Phi_{3}\right)_{0}+\sum_{m>0} m \frac{1+q^{m}}{1-q^{m}} J_{-m} J_{m}
$$

- interpolates between Yangian/BO Hamiltonians at $q \rightarrow 0$, local quantum KP/BLZ Hamiltonians at $q \rightarrow 1$ limit and to charge conjugate Yangian/BO Hamiltonians as $q \rightarrow \infty$

$$
m \frac{1+q^{m}}{1-q^{m}} \rightarrow|m|, q \rightarrow 0, \quad m \frac{1+q^{m}}{1-q^{m}} \rightarrow \frac{2}{1-q}-1+\ldots, q \rightarrow 1
$$

- these Hamiltonians can be diagonalized by Bethe ansatz equations (Litvinov, Nekrasov, Shatashvili, Bonelli, Sciarappa, Tanzini, Vasko)

$$
1=q \prod_{l=1}^{N} \frac{u_{j}+a_{l}-\epsilon_{3}}{u_{j}+a_{l}} \prod_{k \neq j} \frac{\left(u_{j}-u_{k}+\epsilon_{1}\right)\left(u_{j}-u_{k}+\epsilon_{2}\right)\left(u_{j}-u_{k}+\epsilon_{3}\right)}{\left(u_{j}-u_{k}-\epsilon_{1}\right)\left(u_{j}-u_{k}-\epsilon_{2}\right)\left(u_{j}-u_{k}-\epsilon_{3}\right)}
$$

- these equations are the same as in the simplest Heisenberg XXX $S U(2)$ spin chain, except for the fact that the interaction between Bethe roots is now a degree 3 rational function instead of degree 1!
- very rich structure of solutions: capture all the representation theory of Virasoro of \mathcal{W}_{N} algebras (singular vectors / null states / minimal models, ...)
- the parameter q is very natural from various points of view:
(1) the twist parameter from spin chain point of view
(2) encodes the shape (complex structure) of the auxiliary torus
(3) controls the non-locality of the Hamiltonians

4 serves as a natural homotopy parameter for numerical solution of the equations

- once we solve Bethe ansatz equations, the spectrum of $\mathcal{H}_{q}(u)$ can be written as

$$
\frac{\mathcal{H}_{q}(u)}{\mathcal{H}_{q=0}(u)} \rightarrow \frac{1}{\sum_{\lambda} q^{|\lambda|}} \sum_{\lambda} q^{|\lambda|} \prod_{\square \in \lambda} \psi_{\Lambda}\left(u-\epsilon_{\square}+\epsilon_{3}\right)
$$

where

$$
\psi_{\Lambda}(u)=A(u) \prod \varphi\left(u-x_{j}\right)
$$

which is a conjectural Yangian version of a formula by Feigin-Jimbo-Miwa-Mukhin (TP \& Akimi Watanabe)

- somewhat similar to functions related to $q q$ characters?
- the local limit $q \rightarrow 1$ is rather singular (actually any q a root of unity!), but in this limit the Heisenberg subalgebra and \mathcal{W}_{∞} decouple
- in particular, the Bethe roots associated to \mathcal{W}_{∞} remain finite in the $q \rightarrow 1$ limit while those associated to Heisenberg subalgebra diverge
- Bethe equations for free CFT: the singular behaviour of Heisenberg roots encodes in rather subtle way the shape of the Young diagram - connection to equilibrium positions of rational Calogero model, to rational deformations of harmonic oscillator or to Airault-McKean-Moser locus of KdV potentials (work in progress with Matěj Kudrna)

$$
-\partial_{x}^{2}+x^{2}+\frac{8\left(2 x^{2}-1\right)}{\left(2 x^{2}+1\right)^{2}}+4
$$

Questions

Many questions

- how are the ILW and BLZ Bethe ansatz equations related? understanding this could shed light on mysterious fiber-base duality / Miki automorphism in Yangian setting (spectral duality)
- another set of Bethe ansatz equations based on affine Gaudin model (nested BA structure)
- how can the ILW generating function be regularized to extract interesting information in $q \rightarrow 1$ limit? qq-characters?
- refined characters \& modularity (Dijkgraaf, Maloney-Ng-Ross-Tsiares)
- quantum periods, TBA, mirror symmetry in topological string
- elliptic Calogero model (TBA equations of Nekrasov-Shatashvili)

Thank you!

