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a b s t r a c t

Consider the shape identification of an inclusion in heat conductive medium from the
time average measurement, which is modeled by an initial boundary value problem
for a parabolic system with extra nonlocal measurement data specified on the outer
boundary. For this nonlocal and nonlinear inverse problem for the two-dimensioned
parabolic equation in a doubly-connected domain, the radius function describing the
shape of inner boundary to be identified is defined as the minimizer of a regularizing cost
functional. The existence of this minimizer is firstly proven in a suitable admissible set.
Then we establish the convergence rate of the regularizing solution under a-posteriori
choice strategy for the regularizing parameter. Finally the differentiability of the cost
functional is proven, which provides a fundamental basis for gradient type iteration
scheme. Based on the adjoint and sensitivity problem of the original problem which give
the gradient of the cost functional, we propose a steepest descent iteration algorithm
for finding the minimizer approximately. Numerical examples are presented to show the
validity of our algorithm.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

There are many engineering situations where some ingredients of the conductive system may be unknown, and have
o be determined from measurements. These problems are generally called inverse heat conduction problems (IHCP), for
xample, see [1–4].
A typical problem in IHCP is the boundary shape detection from the measurable temperature on some accessible part

f the medium boundary, see [5,6] and the references cited therein. This thermal imaging technique [7], which physically
elongs to the category of non-destructive testing of materials, aims at the detections of inclusions or interior cracks
f a heat conductor. Besides the technique, in steelworks in modern industries, the outer surface of blast furnace is
ccessible, to temperature measurements, while the inner surface of the furnace is unaccessible. Therefore, to guarantee
he safety of the steel-making process, the important problem is to identify the shape of the inner surface from some
xtra measurement specified in the outer surface of the blast furnace, see [8].
Let Ω1, Ω2 ⊂ R2 be two simply connected domains satisfying Ω1 ⊂ Ω2 with C2 smooth boundary Γi := ∂Ωi for

i = 1, 2. Define Ω := Ω2\Ω1, which represents the 2-dimensional cross section of thermal layer of the furnace, as shown
in Fig. 1. In addition, we also assume that both Ω2 and Ω1 are starlike, i.e., the boundary can be expressed by

∂Ω2 ≡ Γ2 = {(x1, x2) = R(θ )(cos θ, sin θ ), R(θ ) = R(θ + 2π ) > 0, θ ∈ [0, 2π ]}, (1.1)
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Fig. 1. Geometrical configuration of the heat conductive domain Ω (yellow part). (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

∂Ω1 ≡ Γ1 = {(x1, x2) = r(θ )(cos θ, sin θ ), R(θ ) > r(θ ) = r(θ + 2π ) > 0, θ ∈ [0, 2π ]}. (1.2)

Assume that the temperature u(x, t) in a heat diffusion process is governed by the following parabolic system:⎧⎪⎪⎨⎪⎪⎩
∂u
∂t − a2∆u = 0, (x, t) ∈ Ω × (0, T ) := Q
∂u
∂ν
= 0, (x, t) ∈ Γ1 × [0, T ]

∂u
∂ν
= ϕ2(x, t), (x, t) ∈ Γ2 × [0, T ]

u(x, 0) = 0, x ∈ Ω,

(1.3)

here ν(x) is the outward unit normal direction to ∂Ω and a > 0 represents the thermal diffusivity. The homogeneous
eumann boundary condition on Γ1 means that the inner surface of Ω is insulated. For known Ω and ϕ2, the existence
nd uniqueness of a classical solution and also of a weak solution to the direct problem (1.3) are well-known [9–11].
For detecting the unknown inner boundary Γ1, we specify the following time average measurement data of u on the

uter boundary∫ T

0
ω(t)u(x, t)dt = f (x), x ∈ Γ2, (1.4)

r its noisy counterpart f δ(x) satisfyingf δ
− f


L2(Γ2)

≤ δ, (1.5)

here 0 ≤ ω(t) ∈ L1(0, T ) is a given weight function.
The measurement given in the form (1.4) is the so-called time-average data on the boundary, which can weaken the

andom noise by the average process compared with the point wise measurement u(x, t)|Γ2×(0,T ) [12]. We notice that the
easurement data (1.4) will become local data u(x, t1) = f (x), if we take the weight function ω(t) = δ(t−t1) [2,13]. So the
easurement data (1.4) can be considered as some incomplete data between u(·, t1)|Γ2 and u(·, ·)|Γ2×(0,T ) for recovering
1. From physical point of view, boundary corrosion arises from a certain accumulated damage [14], consequently the
onlocal measurement (1.4) represents the accumulated effect of using the temperature information in time interval [0, T ]
nd therefore more reasonable, as compared with the local measurement u(·, t1)|Γ2 .
By the above motivations, we study the shape identification of a cavity from the nonlocal data (1.4)–(1.5). Due to the

ossible non-uniqueness of such inversion input for determining Γ1, this inverse problem is more ill-posed compared
ith that using the boundary temperature measurement data

u(x, t) = f̃ (x, t), (x, t) ∈ Γ2 × (T1, T2) ⊂ (0, T ). (1.6)

There already exist many theoretical and numerical results for the shape identification from local measurement in
arabolic systems such as (1.6), see [15–22], while the shape identifications using the nonlocal measurement (1.4) are still
ather limited. The uniqueness of the inverse boundary value problem with the local measurement data was established
n [21], where the Neumann boundary condition is set in the unknown inner boundary, while the Cauchy data in part
f the outer boundary is specified. As far as we know, iterative, optimization schemes and sampling-type methods
re the main computational tools for numerics. For example, the Newton-type iteration method for the diffusion with
eumann boundary condition and the Landweber method for the diffusion with Dirichlet boundary condition have been
pplied to identify the boundary shape in [21,22]. Some existing numerical examples in [21] show that the Newton-type
teration method is effective with few iterations when the basis functions for the unknowns are specified appropriately.
he Landweber method, which does not need specification of the basis functions, also works well, but it needs more
terations. The other approaches for boundary shape reconstructions are based on optimization schemes for some cost
unctional. In [18], H. Harbrecht et al. reformulated the shape identification by three different shape optimization problems
2
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Fig. 2. Top line: The doubly-connected domain Ω with boundary Γ2
⋃

Γ1 (left) and its rotation ΩRot (right); Bottom line: (f (x(θ )), f Rot (x(θ )))|x(θ )∈Γ2

(left) and the error distribution
⏐⏐f (x(θ ))− f Rot (x(θ ))

⏐⏐
θ∈[0,2π ] (right).

and proposed some iterative methods for exact measurement data. Recently, G. Nakamura and H.B. Wang proposed a
sampling-type non-iterative method to reconstruct the boundary and established its rigorous mathematical justification
in [16,17]. On the other hand, we would like to emphasize that the detection of ∂Ω1 = Γ1 can also be realized in
case of static thermal fields governed by the Laplace’s equation. For this elliptic case, abundant theoretical results and
computational tools have been well established, see [23–26] and the references therein.

As stated above, in the case that the inversion input data are given in the form of the Cauchy data in the outer boundary
Γ2, the recovery of the inner boundary Γ1 is unique [21]. Since our nonlocal inversion input data in the integral form (1.4)
cannot yield the Dirichlet data u(·, t)|Γ2 for given weight function 0 ≤ ω ∈ L1(0, T ), there is possibly no uniqueness for
our inverse problem. Moreover, there is also possibly no stability result, i.e., input data f (·)|Γ2 with small perturbation
can correspond to an inner boundary Γ1 with large error. To show this fact clearly, consider the concrete form of (1.3)⎧⎪⎪⎨⎪⎪⎩

∂u
∂t −∆u = 0, (x, t) = (x1, x2, t) ∈ Ω × (0, 1) = Q ,
∂u
∂ν
= 0, (x, t) = (x1, x2, t) ∈ Γ1 × [0, 1],

∂u
∂ν
= ϕ2(x, t) := x1 exp(−4t + 2), (x, t) = (x1, x2, t) ∈ Γ2 × [0, 1],

u(x, 0) = 0, x = (x1, x2) ∈ Ω

(1.7)

ith the boundary ∂Ω = Γ1
⋃

Γ2 of thedomain Ω defined by

∂Ω2 ≡ Γ2 = {x : (x1, x2) = 1.5(cos θ, sin θ ), θ ∈ [0, 2π ]},

∂Ω1 ≡ Γ1 = {x : (x1, x2) =
√
cos2 θ + 0.26 sin2 θ (cos θ, sin θ ), θ ∈ [0, 2π ]},

see top (left) in Fig. 2.
Now we rotate the domain Ω by π

2 clockwise to yield the domain

ΩRot
: = (Ω2 \Ω1)Rot = Ω2 \Ω

Rot
1

=

{
x = (x1, x2) :

(
x1
x2

)
=

(
0 1
−1 0

)(
z1
z2

)
, ∀ (z1, z2) ∈ Ω

}
,

ee top (right) in Fig. 2. Denote by uRot (x, t) the solution to (1.7) with Ω replaced by ΩRot and the same Neumann data
ϕ (x, t) in Γ . We can firstly compute (u(x, t), uRot (x, t)) for (x, t) ∈ Γ × [0, 1] numerically using the boundary integral
2 2 2

3
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equation method (BIEM) [21], and then generate the nonlocal inversion input data f |Γ2 , f
Rot
|Γ2 corresponding to u, uRot

rom (1.4) with specified ω(t) ≡ 1, t ∈ [0, T ] = [0, 1]. The functions f |Γ2 , f
Rot
|Γ2 as well as their difference are shown in

he bottom line of Fig. 2. It can be seen clearly that, although we have f |Γ2≈ f Rot |Γ2 , the interior boundaries Γ1 and Γ Rot
1

re completely different.
The novel contributions of this work contain the following three points. Firstly, we consider the thermal imaging

echnique for detecting the boundary ∂Ω1 of the inner cavity Ω1 from the nonlocal input data (1.4). Such kind of data
an represent the accumulated damage of a corrosion process. Secondly, we give a rigorous analysis of the optimization
ersion of this inverse problem, including the existence of the minimizer and a choice strategy for the regularizing
arameter. Finally, we also establish the error estimates on both the datafit and the solution approximation. Numerical
mplementations verify our theoretical results well.

This paper is organized as follows. Firstly, we reformulate the inverse problem as an optimization problem for some
ikhonov functional in Section 2. The existence of the minimizer of the cost functional is proven in some admissible set,
hich ensures the reasonability of the generalized solution. The error estimate on the regularizing solution using the a-
osterior choice strategy for the regularizing parameter is established under some source condition for the exact solution.
hen we prove the differentiability of the cost functional and compute its Fréchet derivative rigorously in Section 3, which
rovides the fundamentals for the steepest descent iterations for our reconstruction algorithm. The optimal iteration
imes are also analyzed, which is crucial to weakening the computational cost. The numerical examples are presented in
ection 4, showing the validity of our proposed scheme. Finally we give some conclusions in Section 5.

. Reformulation of the inverse problem

Assume that the origin 0 ∈ Ω1 ⊂ Ω2. We firstly reformulate the inverse problem as an optimizing problem. Introduce
he admissible set

A := {r(θ ) ∈ C2(0, 2π ) : r(θ ) = r(θ + 2π ), 0 ≤ r(θ ) < R(θ ),
r ′L2(0,2π ) ≤ M0}

or r(θ ) representing the radius of the interior boundary Γ1 to be identified, where R(θ ) is the radius of the known outer
oundary Γ2. Obviously, ∥r∥H1(0,2π ) is uniformly bounded for r ∈ A.
Now we establish the Tikhonov type regularizing scheme for our inverse problem. For the direct problem (1.3) with

he inner boundary Γ1 representing by r(θ ), denoted by u[r](x, t) its solution. For the noisy data f δ satisfying (1.5), we
onsider the cost functional

Jδα(r) :=
∫ T

0
ω(t)u[r](·, t)dt − f δ(·)

2
L2(Γ2)
+ α∥r∥2L2(0,2π ) (2.1)

ith regularizing parameter α > 0. Then we will find the minimizer rα,δ of Jδα(r) in A for specified small parameter α,
hich will be regarded as the regularizing solution to our shape identification problem. Since the solution to our inverse
roblem with the exact inversion data f (x) may not be unique as explained in Section 1, we define the minimum norm
olution r+ for exact input data by

∥r+∥L2(0,2π ) := min
r∈A

{
∥r∥L2(0,2π ) :

∫ T

0
ω(t)u[r](x, t)dt = f (x) for x ∈ Γ2

}
. (2.2)

ue to the compactness of A in L2(0, 2π ), the existence of r+(θ ) defined in terms of (2.2) is obvious. However, r+ may
ot be unique. In the sense that r+ yields the boundary data which match up the exact inversion data f (x) from the exact
oundary Γ1, we consider

Γ +1 := {x := r+(θ )(cos θ, sin θ ) : θ ∈ [0, 2π ]}

s the exact inner boundary. We will estimate the error between regularizing solution rα,δ and r+ in the sequel for a-
osteriori choice strategy for α > 0. More precisely, we apply the Morozov’s discrepancy principle (MDP) to determine α,
.e., α is chosen such that the corresponding minimizer rα,δ of (2.1) meets∫ T

0
ω(t)u[rα,δ

](·, t)dt − f δ(·)

L2(Γ2)

= µδ (2.3)

ith some specified µ > 1, which is chosen artificially.
4
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The following existence result for the minimizer rα,δ ensures the reasonability of our generalized solution for specified
> 0.

heorem 2.1. For known outer boundary Γ2, the optimization version

inf{Jδα(r) : r ∈ A} (2.4)

f the original inverse boundary problem (1.3)–(1.5) has a solution rα,δ
∈ A for fixed α, δ > 0.

roof. Obviously, Jδα(r) ≥ 0 for all r ∈ A. Then we can define

inf{Jδα(r) : r ∈ A} := M1(ω, α, f δ,M0) ≡ M1 ≥ 0.

et {rn : n ∈ N} ⊂ A be the minimizing sequence, i.e., limn→∞ Jδα(r
n) = M1, which says

∥rn∥2L2(0,2π ) ≤
Jδα(r

n)
α
≤

C(M1)
α

for all n = 0, 1, . . . .

n the other hand, rn ∈ A means that
(rn)′L2(0,2π ) ≤ M0. By Arzela theorem, there exists a subsequence of {rn : n ∈ N}

converging to some r∗ ∈ L2(0, 2π ) with 0 ≤ r∗(θ ) ≤ R(θ ) in L2(0, 2π ). For simplicity of the notations, we still denote by
{rn : n ∈ N} this subsequence.

By Theorem 2.1 in [21], the cost functional Jδα(r) is weak lower semi-continuous with respect to r , i.e., it follows that

Jδα(r∗) ≤ lim
n→∞

Jδα(r
n) = M1,

o r∗ is the minimizer of Jδα(r) in A, which is taken as rα,δ , the approximate solution of the inverse problem (1.3)–(1.5)
for the noisy input data f δ(x). The proof is complete. □

The important issue for our regularizing solution is that the choice strategy for α in terms of (2.3) is implementable.
By the analogous arguments used in [27,28], we have the following result.

Theorem 2.2. For fixed (ϕ2, f δ) and µ > 1, assume that the solution û(x, t) to the direct problem (1.3) with Ω = Ω2
i.e., Ω1 = ∅) satisfies∫ T

0
ω(t )̂u(·, t)dt − f (·)


L2(Γ2)

> (µ+ 1)δ. (2.5)

hen there exists a parameter α := α∗ ∈

[
(µ2
−1)δ2

∥r+∥
2
L2(0,2π )

,∞

)
to (2.3) for fixed r+ solving (2.2).

roof. Denote by rαi,δ the minimizer of cost functional (2.1) in A corresponding to α = αi with i = 1, 2. Then we
ave ∫ T

0
ω(t)u[rα1,δ

](·, t)dt − f δ(·)
2
L2(Γ2)
+ α1∥rα1,δ

∥
2
L2(0,2π )

≤

∫ T

0
ω(t)u[rα2,δ

](·, t)dt − f δ(·)
2
L2(Γ2)
+ α1∥rα2,δ

∥
2
L2(0,2π ),

and ∫ T

0
ω(t)u[rα2,δ

](·, t)dt − f δ(·)
2
L2(Γ2)
+ α2∥rα2,δ

∥
2
L2(0,2π )

≤

∫ T

0
ω(t)u[rα1,δ

](·, t)dt − f δ(·)
2
L2(Γ2)
+ α2∥rα1,δ

∥
2
L2(0,2π ).

The above two inequalities yield

(α1 − α2)

(∫ T

0
ω(t)u[rα1,δ

](·, t)dt − f δ(·)
2 − ∫ T

0
ω(t)u[rα2,δ

](·, t)dt − f δ(·)
2
)
≥ 0,

which implies that
∫ T

ω(t)u[rα,δ
](·, t)dt − f δ(·)

2 is an increasing function with respect to α.
0 L2(Γ2)

5
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On the other hand, we also have

0 ≤ lim
α→∞

rα,δ
2
L2(0,2π ) ≤ lim

α→∞

Jα(rα,δ)
α
≤ lim

α→∞

Jα(0)
α

≤ lim
α→∞

∫ T
0 ω(t )̂u(·, t)dt − f δ(·)

2
L2(Γ2)

α

≤ lim
α→∞

2 ∥ω∥2L2(0,T )
û2L2(Γ2×(0,T ))

+ 2
f δ
2
L2(Γ2)

α
= 0.

Due to this estimate and also rα,δ(θ ) ≥ 0, we have limα→∞ rα,δ(θ ) = 0 for θ ∈ [0, 2π ], i.e., limα→∞Ω
α,δ
1 = ∅, or,

equivalently,

lim
α→∞

Ω2\Ω
α,δ
1 = Ω2.

Therefore, we have

lim
α→∞

∫ T

0
ω(t)u[rα,δ

](·, t)dt − f δ(·)

L2(Γ2)

= lim
α→∞

∫ T

0
ω(t)u[rα,δ

](·, t)dt − f (·)+ f (·)− f δ(·)

L2(Γ2)

≥ lim
α→∞

∫ T

0
ω(t)u[rα,δ

](·, t)dt − f (·)

L2(Γ2)
−
f − f δ


L2(Γ2)

≥

∫ T

0
ω(t )̂u(·, t)dt − f (·)


L2(Γ2)
− δ > µδ (2.6)

in terms of (2.5). Moreover, for α0 =
(µ2
−1)δ2

∥r+∥
2
L2(0,2π )

, we also have that

∫ T

0
ω(t)u[rα0,δ

](·, t)dt − f δ(·)
2
L2(Γ2)

≤ Jα0 (r
α0,δ)

≤

∫ T

0
ω(t)u[r+](·, t)dt − f δ(·)

2
L2(Γ2)
+ α0∥r+∥2L2(0,2π ) ≤ µ2δ2. (2.7)

Since
∫ T

0 ω(t)u[rα,δ
](·, t)dt − f δ(·)

2
L2(Γ2)

is an increasing continuous function with respect to α > 0, (2.6)–(2.7) imply

that there exists a solution α∗ ∈

[
(µ2
−1)δ2

∥r+∥
2
L2(0,2π )

,∞

)
to (2.3). The proof is complete. □

Remark 2.3. For any fixed µ > 1, since the exact input data f (x) are from Ω with some inclusion Ω1, the condition (2.5)
always holds for nonempty cavity Ω1 and small δ > 0.

To establish the convergence rate of regularizing solution, we introduce the following source condition for the exact
solution r+ defined in (2.2). The analogous source condition was also assumed in [27,28] for obtaining convergence rate
in terms of the Morozov’s discrepancy principle.

SC2.1 : For r+ defined in (2.2), there exist two constants c1, τ ∈ (0, 1) such that

2|⟨r+, r − r+⟩| ≤ c1∥r − r+∥2L2(0,2π ) +

∫ T

0
ω(t)(u[r](·, t)− u[r+](·, t))dt

2τ
L2(Γ2)

(2.8)

holds for all r ∈ A, where ⟨·, ·⟩ is the inner product in L2(0, 2π ).
As explained before, r+ defined in terms of (2.2) may not be unique. However, under the extra assumption that the

minimum norm solution meets (2.8), we have

Lemma 2.4. If the minimum norm solution r+ also meets (2.8), then it is unique.
6
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Proof. Assume we have two minimum norm solutions r+1 and r+2 in A. Then for r+1 meeting (2.8), we have by taking
= r+2 ∈ A that

2|⟨r+1 , r+2 − r+1 ⟩| ≤ c1∥r+2 − r+1 ∥
2
L2(0,2π ) +

∫ T

0
ω(t)(u[r+2 ](·, t)− u[r+1 ](·, t))dt

2τ
L2(Γ2)

= c1∥r+2 − r+1 ∥
2
L2(0,2π ),

ince r+1 , r+2 ∈ A. On the other hand, we have

∥r+2 − r+1 ∥
2
L2(0,2π ) ≡ ∥r

+

2 ∥
2
L2(0,2π ) − ∥r

+

1 ∥
2
L2(0,2π ) − 2⟨r+1 , r+2 − r+1 ⟩ ≤ −2⟨r

+

1 , r+2 − r+1 ⟩,

oticing that r+2 is also the minimum norm solution. The above two estimates yield

∥r+2 − r+1 ∥
2
L2(0,2π ) ≤ c1∥r+2 − r+1 ∥

2
L2(0,2π )

or 0 < c1 < 1, i.e., ∥r+2 − r+1 ∥
2
L2(0,2π )

= 0. The proof is complete. □

Since r+ is unique under the source condition SC2.1, we can analyze the error between r+ and our regularizing
olution.

heorem 2.5. Let the source condition SC2.1 hold for r+. For the regularization parameter α chosen according (2.3), we have
he error estimates∫ T

0
ω(t)u[rα,δ

](·, t)dt −
∫ T

0
ω(t)u[r+](·, t)dt


L2(Γ2)

≤ (µ+ 1)δ,

∥rα,δ
− r+∥L2(0,2π ) ≤

1
√
1− c1

(µ+ 1)τ δτ ,

here rα,δ is the minimizer of (2.1) for µ > 1, 0 < τ < 1.

roof. Since rα,δ is the minimizer, we have∫ T

0
ω(t)u[rα,δ

](·, t)dt − f δ(·)
2
L2(Γ2)
+ α∥rα,δ

∥
2
L2(0,2π )

≤

∫ T

0
ω(t)u[r+](·, t)dt − f δ(·)

2
L2(Γ2)
+ α∥r+∥2L2(0,2π ) ≤ δ2 + α∥r+∥2L2(0,2π ),

which yields for µ > 1 and α chosen by (2.3) that

∥rα,δ
∥
2
L2(0,2π ) − ∥r

+
∥
2
L2(0,2π ) =

(1− µ2)δ2

α
< 0. (2.9)

n the other hand, we have that∫ T

0
ω(t)(u[rα,δ

](·, t)− u[r+](·, t))dt

L2(Γ2)

≤

∫ T

0
ω(t)u[rα,δ

](·, t)dt − f δ(·)

L2(Γ2)
+

f δ(·)−
∫ T

0
ω(t)u[r+](·, t)dt


L2(Γ2)

= µδ +
f δ(·)− f (·)


L2(Γ2)

≤ (µ+ 1)δ. (2.10)

Under the source condition SC2.1, by inequality (2.9), it follows that

∥rα,δ
− r+∥2L2(0,2π )

= ∥rα,δ
∥
2
L2(0,2π ) − ∥r

+
∥
2
L2(0,2π ) − 2⟨r+, rα,δ

− r+⟩

≤ c1∥rα,δ
− r+∥2L2(0,2π ) +

∫ T

0
ω(t)(u[rα,δ

](·, t)− u[r+](·, t))dt
2τ
L2(Γ2)

,

which generates

∥rα,δ
− r+∥L2(0,2π ) ≤

1
√
1− c1

∫ T

0
ω(t)(u[rα,δ

](·, t)− u[r+](·, t))dt
τ

L2(Γ2)

≤
1

√
1− c1

(µ+ 1)τ δτ

y (2.10). The proof is complete. □
7
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Remark 2.6. It is well-known that, for nonlinear inverse problems, some source conditions on the unknown are
ecessary for establishing the convergence rate in general. Since r+ is the exact boundary and A is our admissible set
or reconstruction, r − r+ is the error between the exact solution r+ and the possible solution r ∈ A. The left hand side
f (2.8) is essentially the first order error, while the first term on the right hand side is the second order error. For our
ondition SC2.1, it can be explained as the requirement that the error r − r+ on the left hand side should be bounded
y the quadratic term ∥r − r+∥2 together with the corresponding data match error in Γ2 (the second term of the right
and side in (2.8)) as extra compensation, which is essentially determined by the unknown cavity Ω1 represented by r+.
otice, it is impossible in general to bound the first order small quantity by its quadratic form. Without such a source
ondition, we can still get the data-fit error (µ + 1)δ yielding from the regularizing solution rα,δ and r+, but no norm
rror between rα,δ and r+ can be established.

. Numerical implementations

Obviously, the optimization version inf{Jδα(r) : r ∈ A} for our inverse problem is a constraint optimization problem
bout the data-fit term of input data for the elements r with uniform bounds on ∥r∥2 ,

r ′2. So we consider the following
nconstraint optimization problem

rα,δ
:= inf

r∈A
J̄δα(r);

J̄δα(r) :=
∫ T

0
ω(t)u[r](·, t)dt − f δ(·)

2
L2(Γ2)
+ α∥r∥2H1(0,2π ) (3.1)

irectly in the following numerical implementations.
Next we will deduce the Fréchet derivative of cost functional J̄δα(r) with respect to r . For inner boundary Γ1 with radius

(θ ) ∈ A, consider its perturbation direction

d(θ ) := q(θ )(cos θ, sin θ ),

here q(θ ) ∈ C2(0, 2π ) satisfying q(θ ) = q(θ + 2π ) for θ ∈ [0, 2π ].
For ϵ > 0 small enough, denote by rϵ := r + ϵq ∈ A, which is the representation of inner boundary

Γ ϵ
1 := {(x1, x2) = (r(θ )+ ϵq(θ ))(cos θ, sin θ ) : θ ∈ [0, 2π ]}

of cavity Ωϵ
1 ⊆ Ω2. Now we introduce the domain derivative

u′[r; q](x, t)|Γ2×(0,T ):= lim
ϵ→0

u[rϵ](x, t)|Γ2×(0,T )−u[r](x, t)|Γ2×(0,T )

ϵ

to deduce the Fréchet derivative of J̄δα(r) along direction d. By straightforward computations, u′(x, t) satisfies the following
ensitivity problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂u′
∂t − a2∆u′ = 0, (x, t) ∈ Q
∂u′
∂ν
= −

(
rq

√
r2+r ′2

)
∂u
∂t +

∂
∂s

((
rq

√
r2+r ′2

)
∂u
∂s

)
, (x, t) ∈ Γ1 × [0, T ]

∂u′
∂ν
= 0, (x, t) ∈ Γ2 × [0, T ]

u′(x, 0) = 0, x ∈ Ω,

(3.2)

here ∂
∂s denotes the derivative with respect to arc length on Γ1, and u(x, t) = u[r](x, t) is the solution to the direct

roblem.
The next result shows the differentiability of J̄δα(r) with respect to r , which forms the theoretical fundamental on the

radient-type iteration algorithm for minimizing the cost functional.

heorem 3.1. The functional J̄δα(r) is Fréchet differentiable with respect to r ∈ A. The derivative at Γ1 along direction d has
he representation

∇ J̄δα(r) ◦ q = 2
∫ 2π

0
q(θ )r(θ )

(∫ T

0
v(x(θ ), t)

∂u(x(θ ), t)
∂t

+
∂u(x(θ ), t)

∂s
∂v(x(θ ), t)

∂s

)
dt dθ +

2α
∫ 2π

0
q(θ )(r(θ )− r ′′(θ ))dθ, (3.3)

here x(θ ) = r(θ )(cos θ, sin θ ), and v(x, t) is the solution to the adjoint system⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

∂v
∂t − a2∆v = 0, (x, t) ∈ Q

∂v
∂ν
= 0, (x, t) ∈ Γ1 × [0, T ]

∂v
∂ν
= −ω(t)

(∫ T
0 ω(t)u[r](x, t)dt − f δ(x)

)
, (x, t) ∈ Γ2 × [0, T ]

v(x, T ) = 0, x ∈ Ω.

(3.4)
8
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Proof. Let u[rϵ](x, t) be the solution of forward problem (1.3) with inner boundary Γ ϵ
1 . Based on the sensitivity problem

3.2), we have

u[rϵ](x, t)|(x,t)∈Γ2×(0,T )

= u[r](x, t)|(x,t)∈Γ2×(0,T )+ϵu′[r; q](x, t)|(x,t)∈Γ2×(0,T )+O(ϵ
2). (3.5)

ince

J̄δα(rϵ)− J̄δα(r)

=

∫ T

0
ω(t)u[rϵ](·, t)dt − f δ(·)

2
L2(Γ2)
−

∫ T

0
ω(t)u[r](·, t)dt − f δ(·)

2
L2(Γ2)
+

α

(
∥r + ϵq∥2H1(0,2π ) − ∥r∥

2
H1(0,2π )

)
=

∫
Γ2

(∫ T

0
ω(t)(u[rϵ] + u[r])(x, t)dt − 2f δ(x)

)(∫ T

0
ω(t)(u[rϵ] − u[r])(x, t)dt

)
ds(x)+

αϵ

(∫ 2π

0
q(θ )(2r(θ )+ ϵq(θ ))dθ +

∫ 2π

0
q′(θ )(2r ′(θ )+ ϵq′(θ ))dθ

)
,

e can derive

lim
ϵ→0

J̄δα(rϵ)− J̄δα(r)
ϵ

= 2
∫

Γ2

(∫ T

0
ω(t)u[r](x, t)dt − f δ(x)

)(∫ T

0
ω(t)u′[r; q](x, t)dt

)
ds(x)+

2α
(∫ 2π

0
q(θ )r(θ )dθ +

∫ 2π

0
q′(θ )r ′(θ )dθ

)
= 2

∫
Γ2

∫ T

0
ω(t)

(∫ T

0
ω(t)u[r](x, t)dt − f δ(x)

)
u′[r; q](x, t)dtds(x)+

2α
∫ 2π

0
q(θ )(r(θ )− r ′′(θ ))dθ (3.6)

from (3.5) and r ′′(0) = r ′′(2π ), q(0) = q(2π ). By subtracting two boundary value problems (3.2) and (3.4) and applying
the divergence theorem, we have

0 =
∫

Ω

∫ T

0
v(u′t − a2△u′)dtdx

=

(∫
Ω

u′vdx
) ⏐⏐⏐⏐T

0
−

∫
Ω

∫ T

0
vtu′dtdx−

a2
(∫ T

0

∫
∂Ω

v
∂u′

∂ν
− u′

∂v

∂ν
ds(x)dt +

∫ T

0

∫
Ω

u′△vdxdt
)

=

∫ T

0

∫
Ω

u′(−vt − a2△v)dxdt − a2
∫ T

0

∫
∂Ω

(
v
∂u′

∂ν
− u′

∂v

∂ν

)
ds(x)dt

= −a2
∫ T

0

∫
∂Ω

(
v
∂u′

∂ν
− u′

∂v

∂ν

)
ds(x)dt

= −a2
(∫ T

0

∫
Γ1

v
∂u′

∂ν
ds(x)dt −

∫ T

0

∫
Γ2

u′
∂v

∂ν
ds(x)dt

)
.

Moreover, since both r(θ ) and q(θ ) are 2π-periodic functions, we have∫
Γ2

∫ T

0
ω(t)

(∫ T

0
ω(t)u[r](x, t)dt − f δ(x)

)
u′[r; q](x, t)dtds(x)

=

∫
Γ2

∫ T

0
−

∂v(x, t)
∂ν

u′[r; q](x, t)dtds(x)

=

∫ ∫ T

−
∂u′[r; q](x, t)

v(x, t)dtds(x)

Γ1 0 ∂ν

9
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=

∫
Γ1

∫ T

0

(
rq

√
r2 + r ′2

∂u
∂t
−

∂

∂s

(
rq

√
r2 + r ′2

∂u
∂s

))
v(x, t)dtds(x)

=

∫ 2π

0
r(θ )q(θ )

∫ T

0

(
v(x(θ ), t)

∂u(x(θ ), t)
∂t

+
∂u(x(θ ), t)

∂s
∂v(x(θ ), t)

∂s

)
dt dθ. (3.7)

inally, we can get (3.3) from (3.6) and (3.7). The proof is complete. □

From Theorem 3.1, we can represent the gradient of the cost functional as

grad J̄δα(r) = 2r(θ )
∫ T

0

(
v(x(θ ), t)

∂u(x(θ ), t)
∂t

+
∂u(x(θ ), t)

∂s
∂v(x(θ ), t)

∂s

)
dt +

2α(r(θ )− r ′′(θ )). (3.8)

To construct an iteration scheme for minimizing J̄δα(r) based on the steepest descent algorithm, we need grad J̄δα(r),
which has the expression (3.8). However, the determination of the step size β at each iteration is of heavy computational
ost, which should be generated by solving a nonlinear equation

∂ J̄δα(r + βq)
∂β

= 0

ith respect to β > 0. To weaken the amount of computations, similarly to the techniques applied in [29], we take the
pproximate value of step size β along the direction q. Based on (3.5), we can linearize ∂ J̄δα (r+βq)

∂β
for β as

∂ J̄δα(r + βq)
∂β

≈ 2
∫

Γ2

(∫ T

0
ωu[r]dt − f δ

)∫ T

0
ωu′dt ds(x)+

2α
(∫ 2π

0
r(θ )q(θ )dθ +

∫ 2π

0
r ′(θ )q′(θ )dθ

)
+

2β

(∫
Γ2

(∫ T

0
ωu′dt

)2

ds(x)+ α

∫ 2π

0
q2(θ )dθ + α

∫ 2π

0
q′2(θ )dθ

)
.

y this approximation, the step size β can be determined approximately from

β = −

∫
Γ2

(∫ T
0 ωu[r]dt − f δ

) ∫ T
0 ωu′dt ds(x)+ α

∫ 2π
0 (r(θ )q(θ )+ r ′(θ )q′(θ ))dθ∫

Γ2

(∫ T
0 ωu′dt

)2
ds(x)+ α

∫ 2π
0 (q2(θ )+ q′2(θ ))dθ

. (3.9)

ow we can state our iteration algorithm as follows.

Algorithm 1 Steepest Descent Iteration Algorithm (SDIA).

Input: initial guess r0, tolerance ε and maximum iteration number Nmax;
utput: rF
1: for k = 0 to Nmax do
2: Obtain u[rk](·, t)|Γ1 , u[r

k
](·, t)|Γ2 by solving system (1.3);

3: Obtain v(·, t)|Γ k
1
by solving system (3.4);

4: Compute q = −grad J̄δα|rk based on adjoint system (3.8);
5: if ∥q∥ < ε or k = Nmax then
6: rF ← rk and output rF ;
7: end if
8: Compute u′[rk; q](·, t)|Γ2 based on system (3.2);
9: Determine step size β based on equation (3.9);

10: Update rk+1 ← rk + βq and go to step 2;
11: end for

4. Numerical experiments

We present some numerical results by our proposed algorithm. First, we generate the synthetic data {u(x, t), (x, t) ∈
Γ2× [0, T ]} by solving the direct problem for known Γ1 using the boundary integral equation method (BIEM) [21]. Then,
we generate the nonlocal observation data f δ for the noisy data of f on Γ2.

In testing our reconstruction algorithm, the solutions of the forward problem (1.3), the sensitivity problem (3.2) as
ell as the adjoint problem (3.4) are solved numerically by the BIEM [21]. To avoid the so-called inverse crime, the setup
10
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of the discretization scheme for the BIEM solving the inverse problem differs from that used for yielding the synthetic
data f (and f δ).

In our two examples with a = 1 and different internal boundary Γ1 to be sought, we consider the same known external
oundary

Γ2 = {x := (x1, x2) = 1.5× (cos θ, sin θ ), θ ∈ [0, 2π ]}

with the excitation heat source

ϕ2(x, t) = 4t2 exp(−4t + 2), t ∈ (0, T ) := (0, 1), x ∈ Γ2, (4.1)

nd the weight function

ω(t) =
{
0, t ∈ [0, 0.25)

⋃
(0.75, 1],

1, t ∈ [0.25, 0.75].

Under the above configurations, we consider the interior boundary represented by

Γ1 :=
{
x : x = r∗(θ )(cos θ, sin θ ) : θ ∈ [0, 2π ]

}
ith polar radius r∗(θ ) for testing the performances of our reconstructions.
In our numerical implementations, we choose the equidistant mesh by setting θi =

iπ
M for i = 0, 1, . . . , 2M for

discretizing the interval [0, 2π ], while the time internal [0, T ] is divided as N subintervals with grids tj = jT
N for

= 0, 1, . . . ,N . For inversion input, the random noisy data uδ(x(θi), tj) are simulated by

uδ(x(θi), tj) := u(x(θi), tj)+
δ

κ
random(i, j), (x(θi), tj) ∈ Γ2 × [0, T ],

here random(i, j) represent random numbers uniformly distributed in [−1, 1] and the constant

κ :=

√ 2M∑
i=1

⎛⎝ N∑
j=1

ω(tj)random(i, j)T
N

⎞⎠2

π |x′(θi)|
M

.

he introduction of the above artificial constant κ is for yielding the noisy data f δ with suitable noise level δ > 0. By
irect computations, the nonlocal observation data f δ on Γ2 generated from uδ is of the noise levelf δ

− f

L2(Γ2)

=

∫ T

0
ω(t)(uδ(·, t)− u(·, t))dt


L2(Γ2)

= δ.

For our reconstructed solution rk(θ ) at the k-th iteration step, the reconstruction performance is checked quantitatively
in terms of the following three errors

Errα(rk+1, rk) :=
rk+1 − rk


2 =

√ π

M

2M∑
i=1

(rk+1(θi)− rk(θi))2,

Errα(rk, r∗) :=
rk − r∗


2 =

√ π

M

2M∑
i=1

(rk(θi)− r∗(θi))2,

Mω(rk, f δ) :=
∫ T

0
ω(t)u[rk](·, t)dt − f δ(·)


L2(Γ2)

,

where r∗(θ ) is the exact polar radius of Γ1 to be sought. These three values reveal the algorithm performances in terms of
the iterative convergence, the error between the iterative solution and the exact one and data-fitting error, respectively.
We also consider an optimal stopping step defined by

N0,α := {k : argmin Errα(rk, r∗), k = 1, 2, . . . ,Nmax} (4.2)

or the reconstructed Γ
N0,α
1 corresponding to rN0,α (θ ) with given regularizing parameter α > 0, where Nmax is the

pecified maximum iteration times. Then we choose the appropriate regularization α∗ based on the rule (2.3) and the
topping step N0,α . However, as shown in our second example, the smallness of Errα(rk, r∗) is not completely equivalent
o the satisfactory reconstruction of r∗, i.e., the iteration process stopped at N0,α may not be the optimal for satisfactory
econstruction, some other a-prior information such as the curvature of Γ1 should be embedded into the regularizing
cheme furthermore.
11
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Table 1
Reconstruction indices for rounded rectangle shape.
α k = N0,α Errα(rN0,α , r∗) Mω(rN0,α , f δ) Mω(rN0,α , f )

1× 10−8 20 0.15724 0.03041 0.010086
1× 10−7 20 0.15725 0.03042 0.010099
1× 10−6 29 0.15728 0.03031 0.010019
5× 10−6 100 0.15753 0.03032 0.010047
1× 10−5 100 0.15940 0.03103 0.010917
1× 10−4 100 0.17956 0.03336 0.014523

Fig. 3. Error distributions with respect to k for rounded rectangle shape.

xample 1. Firstly we recover the rounded rectangle Γ1 parameterized by its polar radius

r∗(θ ) :=

(
(cos θ )10 +

(
2
3
sin θ

)10
)−0.1

, θ ∈ [0, 2π ].

Obviously, the domain with boundary Γ1 is convex and symmetric with respect to the origin.
For the noisy data uδ(x, t), we simulate the nonlocal input data f δ in Γ2 with noise level δ = 0.03. Firstly we analyze

the reconstruction behaviors with respect to the regularizing parameter α for the noisy input data. To this end, we set
max = 100 and µ = 1.0106 in (2.3) which yields the regularization parameter α̂ = 1×10−6 approximatively. The related
hree indices are given in Table 1. To compare the reconstruction performances for different regularizing parameters, we
lso show the indices for the other five values of α = 1× 10−8, 1× 10−7, 5× 10−6, 1× 10−5, 1× 10−4 in Table 1.
From this table, we see that although both Errα(rN0,α , r∗) and Mω(rN0,α , f δ) are not sensitive to α, α̂ determined from

our strategy is indeed the optimal value for Mω(rN0,α , f δ) and Mω(rN0,α , f ). Moreover, we also have for this optimal value
α that the data-fitting error

Mω(rN0,̂α , f ) = 0.010019 < 0.03 = δ,

which means our strategy leads to better date-fit error, as compared with the theoretical error bound Mω(rN0,̂α , f ) ≤
(µ+ 1)δ. This performance supports Theorem 2.5 in Section 2 quantitatively.

To show the iterative performances, three indices, namely, J̄δα(r
k) and Errα(rk+1, rk) as well as Errα(rk, r∗) with respect

to the iteration step k are shown in Fig. 3 for different values of α. We find that, although both J̄δα(r
k) and Errα(rk+1, rk)

are decreasing in the iteration process, there exists some optimal step k which minimizes the L2 error Errα(rk, r∗). This
is reasonable, since our iterative process only decreases the cost functional J̄δα(r

k). In addition, the iterative solution rN0,α

from our strategy is indeed optimal of Errα(rk, r∗) among all iteration steps k = 1, . . . ,Nmax, as shown in the third
column of Fig. 3.

Of course, the above three quantitative values are only artificial indices for our reconstructions. The actual evaluation
criterion on the algorithm should be the reconstruction effect. So we show the reconstruction performances with α =

1× 10−8, 1× 10−6, 1× 10−4 in Fig. 4 geometrically, where the known external boundary Γ2, exact internal boundary Γ1,
our initial guess Γ0 as well as the reconstructed Γ k

1 are also shown simultaneously. Since N0,α = Nmax for α = 1× 10−4,
the reconstruction Γ

N0,α
1 is the same as Γ

Nmax
1 in the third column of Fig. 4. Moreover, the reconstruction Γ

N0,α
1 in the

first row of Fig. 4 is indeed better than Γ
Nmax
1 in the second row of Fig. 4 obviously for α = 1× 10−8 and α = 1× 10−6,

which means that there exists some optimal step k for recovering Γ1 approximately, although J̄δα(r
k) is always decreasing

with respect to k. On the other hand, the reconstruction Γ
N0,α
1 in the middle sub-figure (first row) of Fig. 4 from our

a-posterior choice strategy for α is indeed optimal, compared with the other five reconstructed Γ k
1 in this figure.

In the next example, we will show that the L2 error Errα(rk+1, r∗) is not always an appropriate index for evaluating
the recovery effect of Γ1.
12
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Fig. 4. Recovery for optimal and maximum iteration step for rounded rectangle shape.

Table 2
Reconstruction indices for kite-shaped Γ1 for different α.
α k = N0,α Errα(rN0,α , r∗) Mω(rN0,α , f δ) Mω(rN0,α , f )

1× 10−9 2 0.50069500 0.0257491 0.0230288
1× 10−8 2 0.50069501 0.0257491 0.0230288
1× 10−7 2 0.50069530 0.0257488 0.0230285
5× 10−7 2 0.50069657 0.0257476 0.0230271
1× 10−6 2 0.50069815 0.0257460 0.0230254
1× 10−5 2 0.50072671 0.0257184 0.0229950

Example 2. Consider the kite-shaped internal boundary Γ1 parameterized by

Γ1 := {(x1, x2) := (0.5 cos θ + 0.325 cos 2θ − 0.325, 0.75 sin θ ) : θ ∈ [0, 2π ]}

with the polar radius

r∗(θ ) =
√
0.144375− 0.325 cos θ + 0.735 sin2 θ + 0.325 cos θ cos 2θ + 0.3252 cos2 2θ,

which is non-convex and asymmetric.
We also test the reconstruction performances with respect to different regularization parameters α. For this model, we

simulate the boundary input data f δ in Γ2 with noisy level δ = 0.01. Moreover, we take Nmax = 100 with initial guess
r0(θ ) = 1 in our iteration process, while µ = 2.5749 in (2.3) is specified to yield the regularizing parameter α̂ = 1×10−7
approximatively.

We firstly show the reconstruction performances in terms of Errα(rk, r∗), Mω(rN0,α , f δ) and Mω(rN0,α , f ) quantitatively
for different values of α in Table 2. One important observation is that, if we measure the optimal step in terms of (4.2),
then both the optimal step N0,α and the L2 error Errα(rN0,α , r∗) are not sensitive to α > 0.

We also show the reconstruction performances with respect to the iteration step k for different α in Fig. 5. It can be
found that J̄δα(r

k) is decreasing and Errα(rk+1, rk) is decreasing with small disturbance, which support our reconstruction
algorithm quantitatively. However, although there exists some optimal step N0,α which minimizes Errα(rk, r∗), the actual
reconstruction behavior may not be optimal at such a step N0,α . Such an observation can be found in Fig. 6 for three
different values α = 1 × 10−9, 1 × 10−7, 1 × 10−5. Obviously, the reconstructions Γ k

1 for k = Nmax are better than
those for k = N0,α in both cases. Noticing that Γ1 in this example is non-convex, these numerical observations remind us
that, to indicate the reconstruction performances, the L2 error Errα(rk, r∗) for Γ1 of general shape is not sufficient, more
quantitative indices such as the curvature of the curve should be introduced, which will be the topic in further studies.

On the other hand, from the second row of Fig. 6, we see that Γ
Nmax
1 with respect to α = 1×10−7 is indeed optimal,

compared with the other five reconstructed Γ k
1 . Due to the above observation, we then take the artificial parameter

α∗ = 1× 10−7 and the optimal stop step k = Nmax = 100 to yield our reconstructions.
13
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Fig. 5. Error distributions with respect to k for different α for kited-shape Γ1 .

Fig. 6. Reconstruction performances of different k for kited-shape boundary.

. Conclusions

We have considered a cavity detection problem in a two-dimensioned heat conductive medium from extra time-
verage temperature measurement on the outer boundary of the medium. For this inverse problem, under the starlike
ssumption for the cavity shape, we identify the radius function of the cavity. However, the uniqueness of solution still
emains an open issue of future research.

We firstly construct a Tikhonov regularizing functional for recovering the radius function stably, and then we establish
he existence of the minimizer of the cost functional. Since the solution of the inverse problem may not be unique, we
efine the minimum norm solution r+. Moreover, we also prove the uniqueness of the minimum norm solution under
ertain conditions. The error estimates between the regularizing solution rα,δ and r+ under the a-posterior choice strategy
or the regularizing parameter and some source condition are rigorously established. Finally, we propose a steepest descent
teration algorithm for the numerical implementations, based on the adjoint and sensitivity problems of the original
roblem.
For the numerical examples, the parameter µ in (2.3) is chosen artificially. The convex and symmetric Example 1

eveals that a-posterior choice strategy for α is indeed optimal, and the numerical performance supports Theorem 2.5
uantitatively. However, for the non-convex and asymmetric Example 2, the L2 error Errα(rk, r∗) is not always an
ppropriate index for evaluating the recovery effect of the unknown cavity. The numerical observations reveal that more
uantitative indices such as the curvature of the curve should be introduced to check the reconstruction performance,
hich will be the topic in further studies.
14
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