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Abstract

In this work, we study the holographic entanglement entropy in AdS3 gravity with the certain mixed 
boundary condition, which turns out to correspond to T T̄ -deformed 2D CFTs. By employing the Chern-
Simons formalism and Wilson line technique, the holographic entanglement entropy in T T̄ -deformed BTZ 
black hole is obtained. We also get the same formula by calculating the RT surface. The holographic en-
tanglement entropy agrees with the perturbation result derived from both T T̄ -deformed CFTs and cutoff 
AdS3. Moreover, our result shows that the deformed entanglement entropy for large deformation parame-
ter behaves like the entanglement entropy of CFT at zero temperature. We also consider the entanglement 
entropy of two intervals and study the effect of T T̄ deformation on phase transition.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
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1. Introduction

The AdS/CFT correspondence gives a geometric interpretation to the conformal field theory. 
This correspondence allows us to study quantum gravity from the conformal field theory, and it 
achieves great success in 3D quantum gravity. It is significant to generalize the AdS/CFT corre-
spondence by deforming the conformal field theory and investigating its geometric interpretation. 
One of the deformed theories called T T̄ deformation was proposed and its holographic descrip-
tions were also explored [1–4]. It is interesting to establish the holographic dictionary under T T̄

deformation. The holographic technique also provides us with a gravitational method to study 
the T T̄ deformed CFT.

The T T̄ deformation is defined through the T T̄ flow equation

∂ST T̄

∂μ
=

∫
d2xOT T̄ , OT T̄ ≡ T ijTij + T 2,

where Tij is the stress tensor of the deformed theory. This flow equation generates a family of 
integrable field theory if the original theory is integrable [1,2]. The factorization of T T̄ operator 
leads to the Burgers equation for the deformed spectrum [5], so that the spectrum of the deformed 
theory can be exactly solved. The partition function of the deformed theory can be obtained from 
various methods, the result turns out that the deformed partition function satisfies a differential 
equation or an integral transformation of the original one [6–8]. The deformed partition func-
tion is still modular invariant [9]. According to the T T̄ flow equation, the Lagrangian form and 
Hamiltonian form were also studied [10,11]. There are also some evidences shown that the T T̄

deformed theory is a non-local theory [12–16]. In this irrelevant deformation, it is difficult to 
study the local properties, such as the correlation function and entanglement entropy. These ob-
servables play the important role in the quantum field theory. By using the perturbative method, 
the correlation functions and entanglement entropy have also been obtained [21–31]. Some non-
perturbative results about the correlation function and entanglement were explored in [17–20]. 
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However, there is still an open question to calculate the correlation function and entanglement 
entropy in T T̄ deformed theory. For a pedagogical review see [32].

According to the AdS/CFT correspondence, the deformed theory can be investigated by using 
the gravitational approach. There are two points of view to understand the T T̄ deformed CFTs 
from gravity. The one is the T T̄ deformed CFTs dual to the AdS3 with a finite radial cutoff [3,4]. 
In this situation, the quasi-local energy of the cutoff region matches the spectrum of the deformed 
theory. The T T̄ flow equation coincides with the Hamilton-Jacobi equation governing the radial 
evolution of the classical gravity action in AdS3. Many holographic features of the T T̄ deformed 
CFT have been explored based on the cutoff perspective [33–42]. The other holographic per-
spective to understand the T T̄ deformation is the AdS3 gravity with certain mixed boundary 
condition [43]. The boundary condition was derived through the flow equation and variational 
principle. It turned out that the solution of the metric flow equation related to the higher order 
Fefferman-Graham expansion, which leads to the mixed boundary condition. For the positive 
deformation parameter, the mixed boundary condition coincides with the induced metric on the 
finite radial cutoff. The AdS3 solutions that satisfy the mixed boundary condition were also con-
structed from AdS3 with Brown-Henneaux boundary condition [44] through a field-dependent 
coordinate transformation [43]. The dynamic coordinate transformation approach to T T̄ was 
also found in field theoretic results [45,46]. The deformed spectrum can also be obtained from 
the deformed AdS3. Moreover, the mixed boundary condition allows boundary graviton degree 
of freedom, which turns out to be a T T̄ deformed theory [47–50]. It also provides us with another 
approach to studying the T T̄ deformation including the holographic entanglement entropy.

In this paper, we would like to investigate the entanglement entropy in T T̄ deformed CFT 
from holography. For the cutoff perspective, the holographic entanglement was obtained by cal-
culating the length of cutoff geodesic line, and the results match perturbative CFT results [22,24]. 
The entanglement entropy in T T̄ deformation was also studied on both the field theory side 
and holographic side in recent works [51–55]. We prefer to use the mixed boundary con-
dition perspective to study holographic entanglement entropy. Since the deformed geometry 
is still AdS3, we will work in the SL(2, R) × SL(2, R) gauged Chern-Simons formalism of 
AdS3 [56]. The Chern-Simons formalism has been used to study T T̄ deformation in the litera-
tures [47–49,57–59]. In the gauge theory form, the holographic entanglement entropy is encoded 
in the Wilson line of Chern-Simons [60], see also [61,62]. The Wilson lines are also related to the 
bulk geometry [63,64]. Generally, the Wilson lines depend on the path and representation of the 
gauge group. If we choose a appropriate representation of sl(2, R), the trace over the representa-
tion can be formulated into the path integral of a SL(2, R) ×SL(2, R) invariant auxiliary theory. 
The on-shell action of the auxiliary is equivalent to the length of geodesics in AdS3. In addition, 
the Wilson line is a probe in gauge theory, just like a point particle in a curved background. 
The Wilson lines give a back-reaction to the bulk geometry, and the resulting geometry turns out 
to be a conical defect on the branch point, which exactly generates a n-sheet manifold [60,62]. 
Therefore, the Wilson line back reaction corresponds to the replica trick along the ending points 
of the Wilson line on the boundary. These results told us that the Wilson line is related to the 
entanglement entropy through

SEE = − log(WR(C)),

where the ending points of the Wilson line correspond to the interval on the boundary. The 
thermal entropy also turned out corresponds to the Wilson loop. We use this technique for the 
deformed AdS3 geometry. The single interval holographic entanglement entropy is calculated 
exactly, which can reproduce the perturbative result obtained in other literatures [22,24,54]. We 
3
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also consider the two intervals entanglement entropy in T T̄ deformation, which implies a certain 
phase transition. Moreover, the holographic entanglement entropy of T T̄ -deformed AdS3 in the 
non-perturbative region is also studied. The results show that the entanglement entropy behaves 
like a zero temperature CFT one for the large deformation parameter.

The paper is organized as follows: In section 2, we give an overview of the gravitational Wil-
son line approach to obtain the holographic entanglement entropy. In section 3, we introduce the 
deformed AdS3 under T T̄ , which is parameterized by the deformed spectrum. The holographic 
entanglement entropy is obtained using the Wilson line approach. We also consider the two in-
tervals entanglement entropy and its phase transition. The same result is derived by calculating 
the RT surface in the deformed AdS3 in section 4. We summarize our results and discussion in 
section 5. The appendix contains our conventions and Wilson line defects.

2. Wilson lines and entanglement entropy in AdS3

This section is a review of using the Wilson lines technique to calculate the holographic entan-
glement entropy, based on [60]. By rewriting the AdS3 gravity in Chern-Simons form, the Wilson 
line in an infinite-dimensional representation of the bulk gauge group is related to the geodesics 
in the bulk. According to the Ryu-Takayanagi proposal [65,66], the holographic entanglement 
entropy or RT surface can be obtained through the Wilson line approach.

2.1. Wilson lines in AdS3 gravity

It is well-known that 3D general relativity has no local degrees of freedom, which is purely 
topological and can be formulated as a Chern-Simons theory [56]. In the case of AdS3 gravity, 
the relevant Chern-Simons gauge group is SO(2, 2) � SL(2, R) ×SL(2, R), so Einstein-Hilbert 
action can be written as

SEH[e,ω] = ICS[A] − ICS[Ā], (2.1)

where the Chern-Simons action is

ICS[A] = k

4π

∫
M

Tr

(
A ∧ dA + 2

3
A ∧ A ∧ A

)
, k = 1

4G
. (2.2)

The gauge fields A and Ā are valued in sl(2, R), which are the linear combination of gravitational 
vielbein and spin connection

A = (
ωa + ea

)
La, Ā = (

ωa − ea
)
La. (2.3)

The La are sl(2, R) generators, see Appendix A for our conventions. Variation of the action leads 
to the equations of motion

F ≡ dA + A ∧ A = 0, F̄ ≡ dĀ + Ā ∧ Ā = 0, (2.4)

which are equivalent to the first order gravitational field equation and torsion free equation. The 
AdS3 metric can also be recovered from the gauge fields via

gij = 1

2
Tr

[
(Ai − Āi)(Aj − Āj )

]
. (2.5)

As a consequence, the AdS3 gravity is formulated into a Chern-Simons gauge theory. By 
using the Chern-Simons form, we can introduce the gravitational Wilson lines in AdS3 gravity
4
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WR(C) = TrR

⎛
⎝P exp

∫
C

A

⎞
⎠ , (2.6)

where R denotes a representation of sl(2, R), and C is a curve on M with two ending points 
living on the boundary of M. If the path C is closed, it gives the Wilson loop which is invariant 
under the gauge transformation

A → A′ = �−1(d +A)�. (2.7)

We can use the Wilson lines to probe the bulk geometry, instead of a massive particle. The 
massive particle moving in bulk is characterized by its mass m and spin s. These parameters 
would contribute to the backreaction on the bulk geometry. The trajectory of the particle can be 
understood as geodesics. When we turn to use the Wilson line to probe the bulk geometry, we 
have to use the infinite-dimensional representations of sl(2, R), characterized by (h, h̄). So that 
the mass m and spin s of the particle can be encoded in the representation of sl(2, R) through 
the relations m = h + h̄ and s = h − h̄. For the representation of sl(2, R) see Appendix A.

Note that infinite-dimensional representations of symmetry algebras can be regarded as the 
Hilbert spaces of quantum mechanical systems in physics. The trace over all the states in the 
representation R can be formulated into a path integral of an auxiliary quantum mechanical 
system. Then the Wilson line can be written as

WR(C) =
∫

DU exp [−S(U ;A)C] , (2.8)

where S(U ; A)C is the action of the auxiliary quantum mechanical system that lives on the 
Wilson line. The action should have a global symmetry group SL(2, R) × SL(2, R), so that the 
Hilbert space of the system will be precisely the representation of sl(2, R) after quantization.

For the free theory (without gauge fields), an appropriate system is described by a particle 
moving on the group manifold [67], whose action reads

S(U,P )free =
∫
C

ds

(
Tr

(
PU−1 dU

ds

)
+ λ(s)

(
Tr

(
P 2

)
− C

))
, (2.9)

where P lives in the Lie algebra sl(2, R) and U lives in Lie group SL(2, R). The trace in this 
action means contraction with Cartan-Killing metric. The equations of motion for the free theory 
are

U−1 dU

ds
+ 2λP = 0, (2.10)

dP

ds
= 0, (2.11)

TrP 2 = C. (2.12)

This action has a SL(2, R) × SL(2, R) global symmetry, namely under the following global 
gauge transformation

U(s) → LU(s)R, P (s) → R−1P(s)R, L,R ∈ SL(2,R), (2.13)

the action (2.9) is invariant.
5
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In [60], it turns out that the system coupled with the external gauge fields A and Ā should be

S(U,P ;A)C =
∫
C

ds
(

Tr
(
PU−1DsU

)
+ λ(s)

(
Tr

(
P 2

)
− C

))
, (2.14)

where the covariant derivative is defined by

DsU = d

ds
U + AsU − UĀs, As = Aμ

dxμ

ds
. (2.15)

The equations of motion become

U−1DsU + 2λP = 0, (2.16)

d

ds
P + [

Ās,P
] = 0, (2.17)

TrP 2 = C. (2.18)

After introducing the covariant derivative, the global symmetry (2.13) is enhanced to the local 
gauge symmetry. The action (2.14) is invariant under local gauge transformation

Aμ → L(x)
(
Aμ + ∂μ

)
L−1(x), Āμ → R−1(x)

(
Āμ + ∂μ

)
R(x), (2.19)

U(s) → L(xμ(s))U(s)R(xμ(s)), P (s) → R(xμ(s))P (s)R(xμ(s)). (2.20)

We have to point out that the equations of motion do not change under these gauge transfor-
mations. This feature is useful to construct the solutions of the equations of motion from the 
free theory solutions. If the gauge fields A and Ā are pure gauge, the solutions for the equations 
(2.16)-(2.18) can be obtained from the free theory solution through the gauge transformation 
(2.19) and (2.20). We will treat more details in section 2.3.

2.2. Equivalence to the geodesic equation

This Wilson line probe should be equivalent to a massive particle moving in AdS3. Then we 
will show that the usual geodesic equation with respect to the metric would appear in the Wilson 
line path. We denote the Wilson line path in the bulk by xμ(s). Using the classical equation of 
motion (2.16)-(2.18), the action (2.14) can be reduced into a second order one

S(U ;A, Ā)C = √
C

∫
C

ds

√
Tr

(
U−1DsU

)2
. (2.21)

In this form, the action is essentially a gauged sigma model, whose equation of motion reads

d

ds

((
Au − Ā

)
μ

dxμ

ds

)
+ [

Āμ,Au
ν

] dxμ

ds

dxν

ds
= 0, (2.22)

where

Au
s = U−1 d

ds
U + U−1AsU. (2.23)

For the given gauge fields (A, Ā), the equation of motion depends on the choice of path 
xμ(s). From the perspective of the equation of motion, we learn that U(s) acts like a gauge 
transformation on the connection A. There is a good choice for U(s), so that the particle does 
not move in the auxiliary space, i.e. U(s) = 1. In this case, the equation of motion reduces to
6
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d

ds

(
ea
μ

dxμ

ds

)
+ ωa

μbe
b
ν

dxμ

ds

dxν

ds
= 0. (2.24)

This is precisely the geodesic equation for the curve xμ(s) on a spacetime with vielbein and spin 
connection which is equivalent to the more familiar Christoffel symbols forms. Furthermore, the 
on-shell the action (2.14) for U(s) = 1 becomes

S(U ;A, Ā)C = √
2C

∫
C

ds

√
gμν(x)

dxμ

ds

dxν

ds
, (2.25)

which is manifestly the proper distance along the geodesic.
We have learned that the Wilson line in AdS3 gravity can be expressed as a path integral of 

an auxiliary quantum mechanical system, whose action is (2.14). The on-shell action turns out to 
be the proper distance along the geodesic. Thus in the classical limit, one can find that the value 
of the Wilson line

WR(xi, xf ) = exp(−√
2CL(xi, xf )), (2.26)

where L(xi, xf ) is the length of the bulk geodesic connecting these two endpoints on the bound-
ary. Holographically, it was proposed by Ryu and Takayanagi that the field-theoretical entangle-
ment entropies correspond to the length of the bulk geodesics ending on the boundary [65,66]. 
In terms of the Chern-Simons description of AdS3 gravity, we can calculate the entanglement 
entropy from the Wilson line

SEE = − log(WR(C)). (2.27)

In [60], it was also shown that the Wilson line backreaction on the geometry would create a 
non-trivial holonomy, which can be interpreted as the conical singularity in the bulk. The conical 
defects hence reproduce the field-theoretical entanglement entropy formula. In the later of this 
paper, we would like to use the Wilson line technique to compute the holographic entanglement 
entropy in Chern-Simons AdS3 gravity, including the T T̄ -deformed AdS3.

2.3. Holographic entanglement entropy

In this section, we calculate WR(C) with C ending on the AdS3 boundary at two points 
denoted by xi = x(si), xf = x(sf ). Classically, we just need to calculate the on-shell action of 
the auxiliary system

Son-shell =
∫
C

ds Tr
(
PU−1DsU

)
= −2C

sf∫
si

dsλ(s), (2.28)

which depends on the solution of the equations of motion. The solutions can be constructed from 
the free theory solutions, i.e. (2.10)-(2.12), through the gauge transformation (2.19) and (2.20). 
First of all, we should note the solutions to free theory, denoting them by U0(s) and P0, are

U0(s) = u0 exp(−2α(s)P0), with
dα(s)

ds
= λ(s), (2.29)

where P0 and u0 are constant. Next, we assume the bulk gauge fields are in pure gauge

A = L(x)dL−1(x), Ā = R−1(x)dR(x). (2.30)
7
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In fact, most of the AdS3 solutions are in pure gauge, such as BTZ black hole and Banãdos 
geometry. Then one can verify the following is the classical solution of (2.16)-(2.18)

U(s) = L(x(s))U0(s)R(x(s)), P (s) = R−1(x(s))P0R(x(s)). (2.31)

These solutions are directly obtained from the local gauge symmetry of the equations of motion. 
As argued in [60], the boundary conditions for U(s) on the boundary ending points can be chosen 
as

U(si) =L(x(si))u0 exp(−2α(si)P0)R(x(si)) = 1, (2.32)

U(sf ) =L(x(sf ))u0 exp(−2α(sf )P0)R(x(sf )) = 1. (2.33)

We then have to eliminate the initial value P0 and u0. Solving u0 from (2.32) and substituting 
into (2.33), one can find

exp(−2	αP0) =R(x(si))L(x(si))L
−1(x(sf ))R−1(x(sf )). (2.34)

Taking the trace on both sides, we arrive at

cosh
(
−2	α

√
2C

)
= 1

2
Tr

(
R(x(si))L(x(si))L

−1(x(sf ))R−1(x(sf ))
)
, (2.35)

where we have used

Tr (exp(−2	αP0)) = 2 cosh
(
−2	α

√
2C

)
. (2.36)

Finally, according to (2.27), we obtain the holographic entanglement entropy formula

SEE =√
2C cosh−1

[
1

2
Tr

(
R(x(si))L(x(si))L

−1(x(sf ))R−1(x(sf ))
)]

. (2.37)

We then use this formalism to check the holographic entanglement entropy in Poincare AdS3 and 
BTZ black hole.

2.3.1. Poincaré AdS3
For the case of Poincare AdS3, the line element reads

ds2 = dr2

r2 + r2(dθ2 − dt2). (2.38)

In terms of the Chern-Simons gauge connection, this geometry is described by

A =dr

r
L0 + rL1(dθ + dt), (2.39)

Ā = − dr

r
L0 − rL−1(dθ − dt). (2.40)

The gauge connections can be written in pure gauge form

A =LdL−1, L = exp(− ln rL0) exp(−(θ + t)L1), (2.41)

Ā =R−1dR, R = exp((θ − t)L−1) exp(− ln rL0). (2.42)

In order to calculate the entanglement entropy, we consider a time slice (t = 0) of this geometry 
and impose the following boundary conditions for the ending points of the Wilson line
8
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r(si) = r(sf ) = r0, (2.43)

	θ = θ(sf ) − θ(si) = l, (2.44)

which means we work on a constant radial boundary and the length of the interval is l. Plugging 
(2.41) and (2.42) into (2.37), one obtains

SEE =√
2C cosh−1

(
1 + r2

0 l2

2

)
. (2.45)

Then taking the limit r0 
 1, so that the result corresponds to the theory living on the conformal 
boundary, we arrive at1

SEE = c

3
log

(
l

ε

)
. (2.46)

where the UV cutoff of the boundary field theory corresponds to the radial cutoff in the bulk, and 
the central charge relates to the expectation value of Casimir

ε = 1

r0
,

√
2C = c

6
. (2.47)

The relation between the expectation value of Casimir and central charge can be derived by 
calculating the Wilson line defect, for the details see Appendix B. This result is exactly the en-
tanglement entropy of CFT2. The same answer can also be obtained by solving the bulk geodesic 
equation. However, in terms of the Wilson line form, we do not require the solution of any dif-
ferential equations and follow from purely algebraic operations. This technique can be used for 
more complicated AdS3 geometry.

2.3.2. BTZ black hole
For the BTZ black hole, the metric in Fefferman–Graham gauge is

ds2 = dr2

r2 + r2
(

dzdz̄ + 1

r2L0dz2 + 1

r2 L̄0dz̄2 + 1

r4L0L̄0dzdz̄

)
, (2.48)

where L0 and L̄0 are constants related to the mass and angular momentum of the black hole

L0 = M − J

2
, L̄0 = M + J

2
. (2.49)

The corresponding Chern-Simons gauge connections read

A =dr

r
L0 +

(
rL1 − 1

r
L0L−1

)
dz, (2.50)

Ā = − dr

r
L0 +

(
1

r
L̄0L1 − rL−1

)
dz̄. (2.51)

In this case, one can obtain

1 We have used the relation

cosh−1(x) ∼ log(2x) for x 
 1.
9
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L(r, z, z̄) = exp (− ln rL0) exp (−zL1 +L0zL−1) , (2.52)

R (r, z, z̄) = exp
(
L̄0z̄L1 − z̄L−1

)
exp (− ln rL0) . (2.53)

In addition, such solutions can be parametrized as

A = b−1(d + a)b, Ā = b(d + ā)b−1, b = eln rL0, (2.54)

Then a, ā are also flat connections, but do not depend on the radial coordinate

a = (L1 −L0L−1) dz, (2.55)

ā = (
L̄0L1 − L−1

)
dz̄. (2.56)

Following the same steps in pure AdS3 and the boundary conditions for the ending points of 
the Wilson line, we can get

Tr
(
R(r0, θ(si),0)L(r0, θ(si),0)L−1(r0, θ(sf ),0)R−1(r0, θ(sf ),0)

)

= − 2 cosh
(
l
√
L0

)
cosh

(
l

√
L̄0

)
+

(
L0L̄0 + r4

0

)
sinh

(
l
√
L0

)
sinh

(
l
√
L̄0

)
r2

0

√
L0

√
L̄0

∼
r2

0 sinh
(
l
√
L0

)
sinh

(
l
√
L̄0

)
√
L0

√
L̄0

, (r0 
 1) (2.57)

This result leads to the entanglement entropy

SEE = c

6
log

⎛
⎝ r2

0 sinh
(
l
√
L0

)
sinh

(
l
√
L̄0

)
√
L0

√
L̄0

⎞
⎠ . (2.58)

If we consider the spinless black hole, i.e. L0 = L̄0, the entanglement entropy reduces to

SEE = c

3
log

(
β0

πε
sinh

(
πl

β0

))
, β0 = π√

L0
, (2.59)

where β0 is the inverse temperature of the BTZ black hole [68–70]. This result coincides with 
the entanglement entropy of a CFT in thermal state.

2.4. Loops and thermal entropy

One can also consider the Wilson loops in AdS3. In this case, WR(C) turns out to be the 
proper distance around the horizon, which corresponds to the black hole thermal entropy. We will 
then check it in the BTZ black hole. Consider the Wilson loop along the S1 cycle θ ∼ θ + 2π . 
In contrast to the open interval case, the closed path should be smooth and hence impose the 
periodic boundary condition

U
(
sf

) = U(si), P
(
sf

) = P(si). (2.60)

According to (2.31), the boundary condition for P(s) implies[
P0,R (si)R−1(sf )

]
= 0, (2.61)

Hence, the boundary condition for U(s) implies
10
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exp (−2	αP0) = u−1
0

(
L−1 (

sf
)
L(si)

)
u0

(
R(si)R

−1 (
sf

))
. (2.62)

In addition, note the relations

L−1 (
sf

)
L(si) = exp

(∮
dθaθ

)
, (2.63)

R(si)R
−1 (

sf
) = exp

(
−

∮
dθāθ

)
, (2.64)

which are the holonomies of the connection, we can rewrite (2.62) as

exp (−2	αP0) = u−1
0 exp (2πaθ )u0 exp (−2πāθ ) . (2.65)

Here we just consider the case of BTZ black hole, so that one can perform the simple integral 
over θ .

From (2.61), we learn that P0 and āθ can be diagonalized simultaneously. If the initial value 
of u0 is fixed, we can always choose a matrix V , such that aθ can also be diagonalized by u0V

exp (−2	αλP ) = (u0V )−1 exp (2πaθ )u0V exp
(−2πλ̄θ

)
= exp (2πλθ ) exp

(−2πλ̄θ

)
, (2.66)

where λP , λθ and λ̄θ are diagonalized matrix of P0, aθ and āθ . Contracting (2.66) with L0, we 
obtain the on-shell action for the loop

Sth = 2π
√

2CTr
(
(λθ − λ̄θ )L0

)
. (2.67)

For the BTZ black hole, the diagonalized gauge connections are

λθ = 2
√
L0L0, λ̄θ = −2

√
L̄0L0. (2.68)

Finally, the Wilson loop gives precisely the entropy of the BTZ black hole

Sth = 2π

√
c

6
L0 + 2π

√
c

6
L̄0. (2.69)

3. Holographic entanglement entropy in T T̄ - deformed AdS3

We turn to investigate the entanglement entropy of T T̄ deformed CFTs from the gravity side. 
In [43], it is proposed that the holographic interpretation of T T̄ deformed CFTs is still AdS3
gravity but with the mixed boundary condition. The AdS3 solutions associated with the mixed 
boundary condition can be obtained from the Bañados geometry through a coordinate transfor-
mation. As the deformed geometry is still AdS3, we prefer to work in Chern-Simons formulation. 
In this section, we introduce the T T̄ deformed AdS3 geometry. The holographic entanglement 
entropy of T T̄ deformed CFTs can be obtained using the Wilson line technique in the deformed 
AdS3.

3.1. T T̄ deformed AdS3 geometry

We start from the general AdS3 solution with a flat conformal boundary, which is called the 
Bañados geometry [71]. In Fefferman-Graham gauge, the line element reads
11
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ds2 = dr2

r2 + r2
(

dzdz̄ + 1

r2L(z)dz2 + 1

r2 L̄(z̄)dz̄2 + 1

r4L(z)L̄(z̄)dzdz̄

)
. (3.1)

The parameters L(z) and L̄(z̄) are arbitrary holomorphic and antiholomorphic functions, which 
are related to the energy and angular momentum

L = E + J

2
, L̄ = E − J

2
. (3.2)

The corresponding Chern-Simons gauge fields are

A =dr

r
L0 +

(
rL1 − 1

r
L(z)L−1

)
dz, (3.3)

Ā = − dr

r
L0 −

(
1

r
L̄(z̄)L1 − rL−1

)
dz̄. (3.4)

In this sense, the deformed Bañados geometry can be constructed through a field-dependent 
coordinate transformation [43], which reads

dz = 1

1 − μ2LμL̄μ

(dw − μL̄μdw̄), dz̄ = 1

1 − μ2LμL̄μ

(dw̄ − μLμdw), (3.5)

where μ is the deformation parameter. One should note that the parameters L and L̄ in (3.1)
would turn into Lμ and L̄μ under the coordinate transformation. Generally, the parameters Lμ

and L̄μ are different from the undeformed ones L and L̄. The relations between deformed param-
eters Lμ, L̄μ and undeformed parameters L, L̄ can be fixed by two ways. The first one is that the 
deformation smoothly changes the spectrum but does not change the local degeneracy of states. 
Therefore, in the bulk, this implies that the T T̄ deformation does not change the horizon area of 
a black hole. The second one is that the deformed geometry can be transformed into the unde-
formed one without changing the periodicity of the spatial coordinate. Indeed, the transformation 
is different from the inverse of (3.5). These considerations lead to

Lμ(1 − μL̄μ)2

(1 − μ2LμL̄μ)2
= L,

L̄μ(1 − μLμ)2

(1 − μ2LμL̄μ)2
= L̄. (3.6)

One can turn to [43] for more details about fixing these relations.
By using the coordinate transformation (3.5), we obtain the deformed Chern-Simons gauge 

fields

A =1

r
L0dr + 1

1 − μ2LμL̄μ

(
rL1 − 1

r
LμL−1

)
(dw − μL̄μdw̄), (3.7)

Ā = − 1

r
L0dr − 1

1 − μ2LμL̄μ

(
1

r
L̄μL1 − rL−1

)
(dw̄ − μLμdw). (3.8)

Note that L(z) and L̄(z̄) correspond to the charges of the solution in the Bañados geometry. 
However, in the deformed geometry, the parameters L(z) and L̄(z̄) do not correspond to the 
charges. Indeed, the deformed energy and angular momentum can be obtained from both field 
theory and gravity side

Eμ = 1

μ

(
1 −

√
1 − 2μ(L+ L̄) + μ2(L− L̄)2

)
, Jμ = J. (3.9)
12
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Analogous to (3.2), we introduce the new parameters

Q = Eμ + Jμ

2
= 1

2μ

[
1 + μ(L− L̄) −

√
1 − 2μ(L+ L̄) + μ2(L− L̄)2

]
, (3.10)

Q̄ = Eμ − Jμ

2
= 1

2μ

[
1 − μ(L− L̄) −

√
1 − 2μ(L+ L̄) + μ2(L− L̄)2

]
. (3.11)

We can regard Q and Q̄ as the generalized parameters of L and L̄ in the deformed geometry, 
and Q and Q̄ reduce to L and L̄ in the limit μ → 0. We find it is more convenient to parametrize 
the deformed gauge fields or metric in terms of these two independent charges. In terms of these 
charges, the Chern-Simons gauge connections are formulated as

A =dr

r
L0 + 1 − μQ

1 − μ(Q+ Q̄)

(
r(1 − μQ̄)L1 − 1

r
QL−1

)
dw

− μQ̄
1 − μ(Q+ Q̄)

(
r(1 − μQ̄)L1 − 1

r
QL−1

)
dw̄, (3.12)

Ā = − dr

r
L0 + μQ

1 − μ(Q+ Q̄)

(
1

r
Q̄L1 − r(1 − μQ)L−1

)
dw

− 1 − μQ̄
1 − μ(Q+ Q̄)

(
1

r
Q̄L1 − r(1 − μQ)L−1

)
dw̄. (3.13)

In the following, we prefer to use the coordinates θ = (w + w̄)/2, t = (w − w̄)/2, where 
t represents the time direction while θ denotes the spatial coordinate at the boundary with the 
identification θ ∼ θ + 2π . We then have

Ar = 1

r
L0, Aθ =r(1 − μQ̄)L1 − 1

r
QL−1, At = K

(
r(1 − μQ̄)L1 − 1

r
QL−1

)
,

(3.14)

Ār = −1

r
L0, Āθ =1

r
Q̄L1 − r(1 − μQ)L−1, Āt = K̄

(1

r
Q̄L1 − r(1 − μQ)L−1

)
,

(3.15)

where

K =1 + μ(Q̄−Q)

1 − μ(Q+ Q̄)
, K̄ = −1 − μ(Q̄−Q)

1 − μ(Q+ Q̄)
. (3.16)

The radial gauge (2.54) still holds for the deformed gauge fields, so that the induced gauge 
connections are

aθ =(1 − μQ̄)L1 −QL−1, at = K
(
(1 − μQ̄)L1 −QL−1

)
, (3.17)

āθ =Q̄L1 − (1 − μQ)L−1, āt = K̄
(
Q̄L1 − (1 − μQ)L−1

)
. (3.18)

In addition, we can also write down the deformed

ds2 =dr2

r2 + 1

r2(1 − μ(Q+ Q̄))2
×(

Q(1 − μQ)(1 − μr2)dw +
(
μQQ̄+ r2(1 − μQ)(1 − μQ̄)

)
dw̄

)
×(

Q̄(1 − μQ̄)(1 − μr2)dw̄ +
(
μQQ̄+ r2(1 − μQ)(1 − μQ̄)

)
dw

)
. (3.19)
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We will use the deformed geometry to calculate the holographic entanglement entropy in the T T̄

deformed CFTs. For simplicity, we just consider the constant charges Q and Q̄, namely we work 
in T T̄ deformed BTZ black hole.

3.2. T T̄ -deformed holographic entanglement entropy

For the T T̄ -deformed AdS3, the metric still satisfies the Einstein equation or flat connection 
condition in the Chern-Simons theory although it takes a complicated form. In the Poincaré 
AdS3, the Wilson line would produce a back-reaction in the bulk geometry. The back-reaction 
would then lead to a conical defect on the ending points of Wilson line, which generates the n-
sheet manifold on the boundary. According to the replica trick on the boundary field theory, the 
Wilson line exactly leads to the entanglement entropy. One can turn to Appendix B for details. We 
can always transform the T T̄ -deformed AdS3 solution into the Poincaré form [72,73]. However, 
the temperature (the period of Euclidean time) in deformed AdS3 is different from the original 
one. The crucial point is that we have to identify the deformed temperature and length of interval 
on the boundary under T T̄ deformation. We will treat these considerations in more details and 
obtain the T T̄ deformed holographic entanglement entropy in this section.

Now, we can use the Wilson line technique to calculate the holographic entanglement entropy 
in T T̄ -deformed AdS3. First of all, we can give a glance at the Poincaré AdS3, which turns 
out correspond to the zero temperature entanglement entropy. In Fefferman-Graham gauge, the 
Poincaré AdS3 can be written as Bañados geometry (3.1) with L and L̄ vanish. In this case, the 
bulk geometry is the same as the undeformed one, so the zero temperature entanglement entropy 
remains unchanged. This result coincides with the perturbative calculation in field theory and 
cutoff perspective in the bulk [22,24].

We then consider the deformed BTZ black hole, in which the charges Q and Q̄ are constants. 
For the deformed geometry, on a time slice, we obtain

L(r, θ, t = 0) = exp (− ln rL0) exp

⎛
⎝−

x∫
x0

dxiai

⎞
⎠

= exp (− ln rL0) exp
(−(1 − μQ̄)θL1 +QθL−1

)
, (3.20)

R (r, θ, t = 0) = exp

⎛
⎝ x∫

x0

dxi āi

⎞
⎠ exp (− ln rL0)

= exp
(
Q̄θL1 − (1 − μQ)θL−1

)
exp (− ln rL0) . (3.21)

As the deformed geometries are still AdS3 solution, we use the boundary condition for U(s)

U(si) = 1, U(sf ) = 1, (3.22)

as well as the same boundary conditions for the ending points of the Wilson line

r(si) = r(sf ) = r0, (3.23)

	θ = θ(sf ) − θ(si) = l. (3.24)

We should point out that the boundary condition for U is actually the unique choice because of 
the Lorentz invariance at the boundary [60,74]. As the T T̄ deformation does not break Lorentz 
invariance, we can use the same boundary condition (3.22) for U . It seems that l is just the length 
14
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of the interval in the deformed boundary. But it equals to the deformed length of interval, because 
the length is defined in the (w, w̄) coordinates.

Using the gauge transformation (2.31), one can get the solution U(s) for the Wilson line cou-
pled to the deformed gauge fields. The boundary condition for U(s) and ending points boundary 
condition for the Wilson line imply

Tr
(

(R(si)L(si))
(
R

(
sf

)
L

(
sf

))−1
)

=2 cosh

(
l

√
Q̄ (1 − μQ)

)
cosh

(
l

√
Q(1 − μQ̄)

)

+
r2

0

√
Q̄(1 − μQ)

√
Q(1 − μQ̄) sinh

(
l
√
Q̄(1 − μQ)

)
sinh

(
l
√
Q(1 − μQ̄)

)
QQ̄

+
QQ̄ sinh

(
l
√
Q̄(1 − μQ)

)
sinh

(
l
√
Q(1 − μQ̄)

)
r2

0

√
Q̄(1 − μQ)

√
Q(1 − μQ̄)

∼
r2

0

√
Q̄(1 − μQ)

√
Q(1 − μQ̄) sinh

(
l
√
Q̄(1 − μQ)

)
sinh

(
l
√
Q(1 − μQ̄)

)
QQ̄

. (3.25)

In the last step, we consider the r0 
 1 limit. It is straightforward to get the holographic entan-
glement entropy for T T̄ deformation

SEE =√
2C cosh−1

⎛
⎝ r2

0

√
Q̄(1 − μQ)

√
Q(1 − μQ̄) sinh

(
l
√
Q̄(1 − μQ)

)
sinh

(
l
√
Q(1 − μQ̄)

)
2QQ̄

⎞
⎠

∼ c

6
log

⎛
⎝ r2

0

√
Q̄(1 − μQ)

√
Q(1 − μQ̄) sinh

(
l
√
Q̄(1 − μQ)

)
sinh

(
l
√
Q(1 − μQ̄)

)
QQ̄

⎞
⎠.

(3.26)

If the original geometry is non-rotating BTZ black hole, namely Q = Q̄, the deformed entan-
glement entropy becomes

SEE = c

3
log

(
r0

√
Q(1 − μQ) sinh

(
l
√
Q(1 − μQ)

)
Q

)
. (3.27)

We then want to identify the deformed temperature. For the deformed BTZ black hole, the tem-
perature can be obtained by analyzing the period of Euclidean time, which is discussed in the 
next section (equation (4.10)). We quote the result here

β = 1

T
= π(1 − 2μQ)√

Q(1 − μQ)
. (3.28)

This temperature can also be derived using the first law of thermodynamics, and we will show it 
in section 3.3. For the limit μ → 0, the temperature reduces to the BTZ black hole temperature. 
The length of interval l is already the deformed one, which can be seen from the coordinate 
transformation (3.5) on a time slice. In terms of the deformed temperature, we can express the 
entanglement entropy as
15
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SEE = c

3
log

(√
β2 + 4μπ2 + β

2πε
sinh

(
πl√

β2 + 4μπ2

))
. (3.29)

This is actually the T T̄ deformed entanglement entropy obtained from the holographic approach. 
For μ = 0, the deformed entanglement entropy reduces to the familiar entanglement entropy of 
CFT at finite temperature. For the small μ, we can obtain the perturbative result

SEE = c

3
log

(
β

πε
sinh

(
πl

β

))
+ μc

3

(
π2

β2 − 2π3l

β3 coth

(
πl

β

))
+ O(μ2). (3.30)

In the “low temperature” limit β 
 l, up to the first order, the entanglement entropy becomes

SEE-low = c

3
log

(
β

πε
sinh

(
πl

β

))
+ μc

3

(
π2

β2

)
+ O(μ2). (3.31)

In the “high temperature” limit β � l, the first order corrected entanglement entropy is

SEE-high = c

3
log

(
β

πε
sinh

(
πl

β

))
− 2μc

3

π3l

β3 coth

(
πl

β

)
+ O(μ2). (3.32)

The “high temperature” result coincides with the result obtained from both boundary field side 
and AdS3 with cutoff perspective [22,24].2 We apply the Wilson line approach to the T T̄ -
deformed AdS3 and obtain the holographic entanglement entropy formula, which agree with 
the perturbation results. However, the “low temperature” result is different from the cutoff AdS3
perspective.

We are more interested in the non-perturbative result. In order to make sure the entanglement 
entropy is real, we have

− β2

4π2 < μ, (3.34)

which means the holographic description maybe loses when μ out of this region. For μ > 0 the 
entanglement entropy is always real. In the following discussion, we just consider the μ > 0
case, which also corresponds to the cutoff perspective. For a fixed temperature, we can consider 
the entanglement entropy for large deformation parameter

SEE = c

3
log

(
l

2ε

)
+ βc

6π

1√
μ

+
(

cl2

72
− β2c

24π2

)
1

μ
+ O

(
1

μ

)
. (3.35)

The leading order coincides with the entanglement entropy of the zero temperature CFT with the 
length of interval l/2. Therefore the holographic entanglement entropy has nothing to do with the 
temperature for large deformation parameter. However, we can not directly see this feature from 
the cutoff perspective, the reason is that the cutoff surface would move into the horizon for large 
deformation parameter at a fixed finite temperature. In order to see this feature from cutoff per-
spective, we have to consider the holographic entanglement entropy at the high temperature limit, 

2 Note that our convention is different from Ref. [22]. In [22], the deformation parameter is related to the radial cutoff 
r2
c = 6

μπc , while we have r2
c = 1

μ in this paper. Therefore, if one replaces μ by μπc
6 , the equation (3.32) becomes

SEE-high = c

3
log

(
β

πε
sinh

(
πl

β

))
− μπ4c2l

9β3
coth

(
πl

β

)
, (3.33)

which is exactly the result in [22].
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so that we can keep the cutoff surface outside the horizon even for large deformation parameter. 
In this case, we first take the high temperature limit and then consider the large deformation 
parameter limit. For the high temperature limit, the entanglement entropy (3.28) becomes

SEE = c

3
log

(√
μ

ε
sinh

(
l

2
√

μ

))
+ cβ

6π
√

μ
+ O(β2). (3.36)

This formula leads to (3.35) for the large deformation parameter as well. These results imply 
the T T̄ deformation behaves like the free theory at the large μ limit. The similar feature was 
also found in [75,76], in which the authors shown that at the level of the equations of motion the 
left- and right-chiral sectors of T T̄ deformed free theories are decoupled when the deformation 
parameter is sent to infinity.

For the holographic entanglement entropy in BTZ black hole, it turns out that there will be a 
phase transition when the interval becomes larger [65,66]. The similar phase transition still exists 
in T T̄ -deformed BTZ black hole. As the size of interval becomes larger, we find the deformed 
holographic entanglement entropy becomes

SEE ∼ cπl

3

1√
β2 + 4π2μ

, (3.37)

which is proportional to the thermal entropy (3.48). This result can be interpreted as follows. In 
the presence of horizon, the RT surface (geodesic line) would approach the horizon and cover a 
part of the horizon when the size of interval becomes larger. Since the geodesic lines could wrap 
different parts of the horizon, there are two geodesics connecting the endpoints of the interval. 
The one being homologous to the boundary interval should be chosen to evaluate the holographic 
entanglement entropy, and the other geodesic is used to evaluate the entanglement entropy for 
the complementary interval

S′
EE = c

3
log

(√
β2 + 4μπ2 + β

2πε
sinh

(
π(2π − l)√
β2 + 4μπ2

))
. (3.38)

However, if l > π the S′
EE is smaller than SEE, but S′

EE is not homologous to the interval l. 
Similar to the BTZ black hole [77], we can construct another disconnected extremal surface by 
combining S′

EE and thermal entropy (3.48). Finally, the deformed entanglement entropy for a 
general interval is given by

S = min{SEE, S′
EE + Sth}. (3.39)

Clearly, there is a phase transition between these two settings of extremal surface. In the high 
temperature limit and small deformation parameter, it turns out that the phase transition occurs 
at

l ∼ 2π −
√

β2 + 4μπ2

2π
log 2. (3.40)

We show the phase transition of the holographic entanglement entropy is preserved under T T̄

deformation.
Moreover, the Casini-Huerta entropic c-function [78] for the T T̄ deformed entanglement en-

tropy is

C(l,μ) = l
dSEE

dl
= πcl

3
√

β2 + 4π2μ
coth

(
πl√

β2 + 4π2μ

)
, (3.41)
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which is always positive, and does not depend on the ultraviolet regulator. We also find that

∂C(l,μ)

∂l
= πc

3

⎛
⎜⎜⎝

coth

(
πl√

β2+4π2μ

)
√

β2 + 4π2μ
−

πlcsch2
(

πl√
β2+4π2μ

)
β2 + 4π2μ

⎞
⎟⎟⎠ ≥ 0, (3.42)

which implies the entropic c-function is non–decreasing along the renormalization group flow 
towards the ultraviolet. The similar result was also found in single trace T T̄ deformation [79].

3.3. Thermal entropy

The thermal entropy of the deformed BTZ black hole can also be calculated from the Wilson 
loop. As discussed in section 2.4, the thermal entropy can be obtained by diagonalizing the 
induced gauge connections aθ and āθ in (3.17) and (3.18). For the deformed BTZ black hole, the 
diagonalized gauge connections read

λθ = 2
√
Q(1 − μQ̄)L0 = 2

√
LL0, (3.43)

λ̄θ = −2
√
Q̄(1 − μQ)L0 = −2

√
L̄L0. (3.44)

Finally, according to (2.67), we obtain the thermal entropy

Sth = 2π

√
c

6
L+ 2π

√
c

6
L̄, (3.45)

which is the same as the BTZ black hole entropy. This result means the black hole entropy does 
not change under the T T̄ deformation. On the field theory side, the degeneracy of states does not
change under the T T̄ flow.

For the deformed theory, the thermal entropy should be expressed in terms of the deformed 
energy. In case of Q = Q̄, the entropy can be written as

Sth = 4π

√
c

6
Q(1 − μQ) = 2π

√
c

6
Eμ(2 − μEμ), (3.46)

which agrees with the result in [3]. The thermal entropy can help us to define the temperature in 
the T T̄ -deformed theory. In fact, according to the first law of thermodynamics, the temperature 
can be determined by

T = ∂Eμ

∂Sth
=

√
6

c

√
Q(1 − μQ)

π(1 − 2μQ)
∼

√
Q(1 − μQ)

π(1 − 2μQ)
, (3.47)

where we have used the convention k = c/6 = 1 in the definition of temperature. This is actually 
the temperature we have used in (3.28). The black hole thermal entropy can also be written in 
terms of temperature

Sth = c

3

2π2√
2 2

. (3.48)

β + 4π μ

18



M. He and Y. Sun Nuclear Physics B 990 (2023) 116190
Fig. 1. The two minimal surfaces for the two intervals boundary region. We consider the two intervals have the same 
length l separated by x. The left is the disconnected case, and the right is the connected case.

3.4. Two intervals entanglement entropy

We proceed to consider the entanglement entropy of the system consists of two disjoint inter-
vals. For the single interval case, we have shown that the entanglement entropy is the Wilson line 
or length of geodesic in AdS3 with ending points on the spatial infinity boundary for both Brown-
Henneaux boundary condition and mixed boundary condition. According to Ryu-Takayanagi’s 
proposal [65,66], we have two choices for how to draw the geodesics that end on the ending 
points of two intervals, which are shown in Fig. 1. For each choice, the two intervals entan-
glement entropy decouples into a sum of single interval cases. The two intervals holographic 
entanglement entropy should be the minimal one of them

SEE-2 = min{Sdis, Scon}. (3.49)

This implies that there are two phases of the entanglement entropy. It turns out that there actually 
exist a phase transition between the connected and disconnected phase [80].

We first brief review the zero temperature entanglement entropy of two disjoint intervals. We 
assume the two intervals have the same length l separated by x, described in Fig. 1. Then the 
difference between two phases is

	S = Sdis − Scon = c

3
log

(
l2

x(2l + x)

)
. (3.50)

One can find the phase transition critical point is determined by the cross-ratio

η = l2

(l + x)2 = 1

2
or

x

l
= √

2 − 1. (3.51)

For the finite temperature case, the similar phase transition was shown in [81,82]. However, there 
is no quantity like cross-ratio to illustrate the critical point.

Now we would like to investigate the similar feature for the T T̄ deformed entanglement en-
tropy. For the different choices of Wilson lines or RT surfaces, we have

Sdis = c

3
log

⎛
⎝π2μ + 1

2β
(√

β2 + 4π2μ + β
)

π2ε2 sinh2

(
πl√

β2 + 4μπ2

)⎞
⎠ , (3.52)

Scon = c

3
log

⎛
⎝π2μ + 1

2β
(√

β2 + 4π2μ + β
)

π2ε2 sinh

(
πx√

β2 + 4μπ2

)
sinh

(
π(2l + x)√
β2 + 4μπ2

)⎞
⎠.

(3.53)
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The two intervals entanglement entropy is the minimal one of them. In order to determine which 
is the minimal one and under what conditions the phase transition happens, we consider the 
difference between two RT surfaces

	S =Sdis − Scon = c

3
log

⎛
⎜⎜⎝

sinh2
(

πl√
β2+4μπ2

)

sinh

(
πx√

β2+4μπ2

)
sinh

(
π(2l+x)√
β2+4μπ2

)
⎞
⎟⎟⎠ . (3.54)

This quantity is also related to the mutual information between two disjoint subsystems. 
From (3.54), we learn that 	S behaves like the undeformed one but with different tempera-
ture. We first consider the low temperature and high temperature limit. For the low temperature 
limit β 
 1, we have

	S = c

3
log

(
l2

x(2l + x)

)
+ O

(
1/β2

)
. (3.55)

The leading order is exactly the zero temperature case. The phase transition occurs at x/l =√
2−1 and does not depend on the deformation parameter. For the high temperature limit β � 1, 

we have

	S = c

3
log

⎛
⎝ cosh

(
l√
μ

)
− 1

cosh
(

l+x√
μ

)
− cosh

(
l√
μ

)
⎞
⎠ + O

(
β2

)
. (3.56)

In this case, the critical point depends on the deformation parameter.
We find it is convenient to introduce the following parameters

l̃ = x

l
, x̃ = x

β
, μ̃ = μ

β2 . (3.57)

In terms of the new parameters, the 	S reduces to

	S = c

3
log

⎛
⎜⎜⎝

sinh2
(

πx̃

l̃
√

1+4μ̃π2

)

sinh

(
πx̃√

1+4μ̃π2

)
sinh

(
π(2+l̃)x̃

l̃
√

1+4μ̃π2

)
⎞
⎟⎟⎠ , (3.58)

in which the temperature is implicit. We plot the critical lines 	S = 0 in (l̃, x̃) plane for different 
deformation parameters in Fig. 2. Then we consider some special limit about the critical lines. 
For x̃ � 1, we have

	S = c

3

[
log

(
1

l̃2 + 2l̃

)
− π2(l̃ + 1)2x̃2

3l̃2
(
1 + 4μ̃π2

)
]

+ O
(
x̃3

)
. (3.59)

The leading order is just the zero temperature case and also does not depend on the deforma-
tion parameter. This result can be seen from Fig. 2 that the critical lines coincide with the zero 
temperature one for small x̃.

It is interesting to investigate the μ dependence of phase transition. For the small μ̃, there is 
actually exists a phase transition, which has been discussed in [24] using the perturbative method.
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Fig. 2. Plot the critical lines 	S = 0 in l̃ − x̃ plane for different deformation parameters. The critical lines separate the 
connected phase (left side) and disconnected phase (right side). The green line corresponds to the undeformed case. The 
dashed line denotes the zero temperature critical line l̃ = √

2−1. The critical lines tend to the zero temperature case with 
the increase of deformation parameter.

We can also see from Fig. 2 the critical line is around the undeformed case for both μ̃ < 0 and 
μ̃ > 0. For the μ̃ 
 1 region, we have

	S = c

3
log

(
1

l̃2 + 2l̃

)
− c(l̃ + 1)2x̃2

36l̃2μ̃
+ O(1/μ̃2). (3.60)

The leading order is just the zero temperature case. One can also see from Fig. 2 that the critical 
lines would become the zero temperature one as the increase of deformation parameters. This 
result implies the T T̄ deformed theory becomes a decoupled free theory for large μ limit [75,76].

These results show that there still exist the phase transition for two intervals entanglement 
entropy under T T̄ deformation. The transition point is depends on the deformation parameter. 
The T T̄ deformation does not introduce new phases. For large deformation parameter, the critical 
point is the same as zero temperature CFT case, it would be interesting to study this feature from 
the field theoretic results.

4. Geodesic line method

In this section we re-compute the holographic entanglement entropy in BTZ background with 
mix boundary condition using RT formula, i.e., identifying the holographic entanglement entropy 
as the geodesic distance. The results turn out to be consistent with the computation via Wilson 
line method.
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The metric of BTZ black hole with mass M and angular momentum J takes the form (2.48).3

For simplicity we consider the case where the black hole being static J = 0. It follows from (3.6)
that the deformed parameters Lμ, L̄μ are constant and satisfy

Lμ = L̄μ = 1 − μM ± √
1 − 2μM

Mμ2 , (4.1)

where only the solution with “-” is well defined in μ → 0 limit. We start from the following 
metric

ds2 =dr2

r2 + r2
(
dzdz̄ + 1

r2 (Lμdz2 + L̄μdz̄2) + 1

r4LμL̄μdzdz̄
)
, (4.2)

in which we have replaced the L, L̄ by Lμ, L̄μ in the BTZ black hole solution, so that we can 
obtain the deformed BTZ only by using the coordinate transformation. Let z = x + iy, and define

r = √
Lμeρ, x = x̄√

4Lμ

, y = ȳ√
4Lμ

, (4.3)

then the metric becomes the global AdS3

ds2 =dρ2 + cosh2 ρdx̄2 + sinh2 ρdȳ2, (4.4)

where ȳ is treated as the Euclidean time and x̄ the spatial coordinate. The requirement of no 
conical singularity in ρ − ȳ plane implies the identification ȳ ∼ ȳ + 2π , where the periodic-
ity is related with the temperature for BTZ black hole. It is convenient to work in embedding 
coordinate

Y 0 = coshρ cosh x̄, Y 3 = coshρ sinh x̄,

Y 1 = sinhρ sin ȳ, Y 2 = sinhρ cos ȳ.
(4.5)

In this coordinate system the BTZ black hole is a hypersurface −(Y 0)2 + (Y 3)2 + (Y 1)2 +
(Y 2)2 = −1 in the background ds2 = −d(Y 0)2 + d(Y 1)2 + d(Y 2)2 + d(Y 3)2. The geodesic 
distant d between two points Ya

1 , Yb
2 is simply computed by

coshd = −Y1 · Y2 = Y 0
1 Y 0

2 − Y 1
1 Y 1

2 − Y 2
1 Y 2

2 − Y 3
1 Y 3

2 . (4.6)

The deformed metric corresponding to T T̄ deformation can be obtained by transformation of

dz = 1

1 − μ2LμL̄μ

(dw − μL̄μdw̄), dz̄ = 1

1 − μ2LμL̄μ

(dw̄ − μLμdw). (4.7)

In the present case, (4.7) can be solved straightforwardly as

z = 1

1 − μ2LμL̄μ

(w − μL̄μw̄), z̄ = 1

1 − μ2LμL̄μ

(w̄ − μLμw). (4.8)

And its inverse

w = z + μL̄μz̄, w̄ = μLμz + z̄, (4.9)

3 We follow the convention in [43], and set 4πG = 1, l = 1 and R = 2π (periodicity of spatial dimension) in their 
paper. We also use r which is related with the radial coordinate ρ in [43] as r2 = 1/ρ. The cutoff in [43] locates at 
ρ = ρc = μ, then in r-coordinate, r0 = rc = 1/

√
μ.
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where w = θ + it, w̄ = θ − it . From the periodicity of ȳ discussed above, we can work out the 
period of t , which is

t ∼ t + 2π(1 − μLμ)√
4Lμ

= t + β, β = π(1 − 2μQ)√
Q(1 − μQ)

, (4.10)

where the β is the inverse temperature of deformed black hole, as well as the inverse temperature 
of the T T̄ deformed CFT.

To compute the HEE of a single interval, we consider two ending points on the boundary 
locate at (r1, t1, θ1) = (

√
Lμeρ0, 0, 0) and (r2, t2, θ2) = (

√
Lμeρ0 , 0, l) respectively. Then w1 =

w̄1 = 0, w2 = w̄2 = l

z1 = z̄1 = 0, z2 = z̄2 = l

1 + μLμ

. (4.11)

In terms of embedding coordinates

Y 0
1 = coshρ0, Y 3

1 = 0, Y 1
1 = 0, Y 2

1 = sinhρ0, (4.12)

and

Y 0
2 = coshρ0 cosh

√
4Lμz2, Y 3

2 = coshρ sinh
√

4Lμz2, Y 1
2 = 0, Y 2

2 = sinhρ0.

(4.13)

Finally using (4.6), the geodesic distance between the points is

coshd = cosh2 ρ0 cosh
√

4Lμz2 − sinh2 ρ0

= Q
2r2

0 (1 − μQ)
sinh2 l

√
Q(1 − μQ) + cosh2 l

√
Q(1 − μQ)

+ r2
0 (1 − μQ)

2Q sinh2 l
√
Q(1 − μQ),

(4.14)

where we made the replacement 
√
Lμz2 = l

√
Q(1 − μQ). It follows that the HEE is

SEE = 1

4G
cosh−1

[
Q

2r2
0 (1 − μQ)

sinh2 l
√
Q(1 − μQ) + cosh2 l

√
Q(1 − μQ)

+ r2
0 (1 − μQ)

2Q sinh2 l
√
Q(1 − μQ)

]
.

(4.15)

For the r0 → ∞ limit, note the definition of temperature (4.10) and relation 1/4G = c/6, we 
arrive at

SEE = c

3
log

(√
β2 + 4μπ2 + β

2πε
sinh

(
πl√

β2 + 4μπ2

))
, ε = 1

r0
. (4.16)

This coincides with (3.29) in the case of non-rotating BTZ black hole. We obtain the same holo-
graphic entanglement entropy formula by calculating the RT surface in the deformed BTZ black 
hole.
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5. Conclusion and discussion

The T T̄ deformed CFT was proposed dual to the AdS3 with a certain mixed boundary con-
dition. The AdS3 with mixed boundary condition or the T T̄ -deformed AdS3 geometry can be 
obtained from the Banãdos geometry using the dynamical change of coordinates. In this paper, 
we studied the holographic entanglement entropy in the T T̄ -deformed AdS3 under this situation. 
In terms of Chern-Simons form, we derived the holographic entanglement entropy formula us-
ing the Wilson line technique. For the zero temperature case, the entanglement entropy turned 
out unchanged under the T T̄ deformation. For the finite temperature case, we calculated the 
Wilson line with ending points on the boundary of deformed AdS3. After identifying the de-
formed temperature and length of interval on the boundary, we found the Wilson line lead to 
holographic entanglement entropy formula, which is closely related to the entanglement entropy 
in T T̄ -deformed CFTs. The same formula was also obtained by calculating the RT surface in the 
T T̄ -deformed BTZ black hole. The deformed entanglement entropy formula can reproduce the 
known perturbative results, which were obtained from both field theory and cutoff AdS3 in other 
literature. We also showed that the entropic c-function is always positive and non–decreasing 
along the renormalization group flow towards the ultraviolet. For the non-perturbative region, 
our results show that the entanglement entropy behaves like entanglement entropy of CFT at 
zero temperature.

Moreover, we also considered the two intervals entanglement entropy and found there still 
exist a certain phase transition between disconnected and connected phase. It turned out that 
the critical point for the phase transition depends on the deformation parameters. The critical 
point is sensitive to the deformation parameter for the high temperature region. But the critical 
point becomes independent of deformation parameter for the low temperature region. For a fixed 
temperature, the critical point tends to the zero temperature case at large deformation parameter, 
which is shown in Fig. 2.

Finally, we want to point out that the holographic entanglement entropy formula was derived 
from the holographic study and the formula agrees with the perturbative result. However, we still 
need an exact calculation from T T̄ -deformed CFTs. In addition, since we found the entanglement 
entropy behaves like a free CFT, it would be interesting to study the T T̄ deformation for large 
deformation parameter following [75,76].
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Appendix A. Conventions

In this paper, we choose the following standard Lie algebra generators of sl(2, R)

L−1 =
[

0 1
0 0

]
, L0 =

[ 1
2 0
0 − 1

2

]
, L1 =

[
0 0

−1 0

]
, (A.1)

whose commutators simplify to

[La,Lb] = (a − b)La+b, a, b ∈ {0,±1}. (A.2)

The non-zero components of non-degenerate bilinear form are given by

Tr(L0L0) = 1

2
, Tr(L−1L1) = Tr(L1L−1) = −1. (A.3)

We use the following representation of the sl(2, R) Lie algebra, i.e. the highest-weight repre-
sentation. The highest-weight state |h〉 satisfies

L1|h〉 = 0, L0|h〉 = h|h〉. (A.4)

There is an infinite tower of descendant states found by acting with the raising operator

|h,n〉 = (L−1)
n|h〉. (A.5)

These states form an irreducible, unitary, and infinite-dimensional representation of sl(2, R). The 
quadratic Casimir operator of the algebra is

C = 2L2
0 − (L1L−1 + L−1L1), (A.6)

which commutes with all the elements of the algebra. The expectation value of Casimir operator 
on highest-weight state is

C = 〈h|C|h〉 = 2h2 − 2h. (A.7)

Appendix B. Wilson line defects

The Wilson line as a probe in the bulk will produce a back-reaction in the bulk. To solve for 
this back-reaction, we consider the total action

S = SCS[A] − SCS[Ā] + B + S(U ;A, Ā)C. (B.1)

where B denotes the boundary term, the last term is the auxiliary action associated with the 
Wilson line. For different boundary conditions, there will be different boundary terms. In case of 
the T T̄ deformation, the boundary term turns out to be

B = k

4π

∫
∂M

d2x
1

μ

(√
1 − 2μ

(
Tr(AθAθ ) + Tr(Āθ Āθ )

) + μ2
(
Tr(AθAθ ) − Tr(Āθ Āθ )

)2 − 1

)
.

(B.2)
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This boundary term leads to the T T̄ deformed spectrum and can also help to reduce the gravita-
tional action to T T̄ deformed Alekseev-Shatashvili action on the boundary [48]. The boundary 
term does not contribute to the equation of motion, but the Wilson line term will contribute as a 
source for the equations of motion

k

2π
Fμν =

∫
ds

dxρ

ds
εμνρδ(3)(x − x(s))UPU−1, (B.3)

k

2π
F̄μν = −

∫
ds

dxρ

ds
εμνρδ(3)(x − x(s))P . (B.4)

We can choose the Wilson line trajectory as a bulk geodesic, the corresponding Wilson line 
variables is

r(s) = s, U(s) = 1, P (s) = √
2CL0. (B.5)

Contracting (B.3) and (B.4) with the tangent vector to the curve, we find the non-vanishing 
components of field strength F, F̄ are tangent to the curve

Fμν

dxμ

ds
= 0, (B.6)

F̄μν

dxμ

ds
= 0. (B.7)

Since we can always transform the AdS3 solution into the Poincaré coordinate [72,73], we just 
consider the Poincaré AdS3. The solution is asymptotic AdS3 in Poincaré coordinate

A =L(asource + d)L−1, L = e− ln rL0e−zL1 , (B.8)

Ā =R−1(asource + d)R, R = e−z̄L−1e− ln rL0, (B.9)

where the coupling to the source is taken into account by

asource =
√
C
2

1

k

(
dz

z
− dz̄

z̄

)
L0. (B.10)

With the help of the identities ∂ 1
z̄

= ∂̄ 1
z

= πδ(2)(z, ̄z), one can verify these connections satisfy the 
sourced equations of motion. The connections are flat except for where the Wilson line sources 
them. We can obtain the specific form of the gauge field

A =L0
dr

r
+ rL1dz +

√
C
2

1

k

(
dz

z
− dz̄

z̄

)
(L0 − rzL1), (B.11)

Ā = − L0
dr

r
− rL−1dz̄ +

√
C
2

1

k

(
dz

z
− dz̄

z̄

)
(L0 − rz̄L−1). (B.12)

This solution produces the metric

ds2 = dr2

r2 +
r2

(
−√

2
√
Ck (zdz̄ − z̄dz)2 + C (zdz̄ − z̄dz)2 − 2k2zz̄dzdz̄

)
2k2zz̄

. (B.13)

Consider the map from plane to cylinder (τ, ϑ)

z = eτ+iϑ , z̄ = eτ−iϑ , (B.14)

the metric becomes
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ds2 =dr2

r2 − r2e2τ

⎛
⎜⎝dτ 2 +

dϑ2
(√

2C − k
)2

k2

⎞
⎟⎠ . (B.15)

One can see this is precisely the metric for AdS3 with a conical singularity surrounding the Wil-
son line. The boundary geometry with Wilson line back-reaction becomes the n-sheet cylinder if 
we set the defect angle to be 2π(1 − 1

n
). Then we can find the relation

√
2C
k

= (n − 1) + O((n − 1)2). (B.16)

Since the Wilson line action generates the n-sheet manifold, the partition function for n-sheet 
manifold can be written as

Zn = logWR(C) = −√
2CL(xi, xj ), (B.17)

therefore the entanglement entropy can be obtained

SEE = lim
n→1

1

1 − n
logWR(C) = kL(xi, xj ), (B.18)

which coincides with the RT formula.
The stress tensor corresponds to Poincaré AdS3 vanishes, namely L = 0 in (3.1). For the BTZ 

black hole, the stress tensor is a constant. According to the transformation law of the stress-tensor, 
we can transform the stress tensor to a constant by using a conformal map. After rescaling the 
radial coordinate, the BTZ black hole becomes Poincaré AdS3 geometry with different period of 
the time direction. For the deformed BTZ black hole, we can perform the following coordinate 
transformation to (3.19)

w = (1 − μQ)ξ +Qξ̄ , (B.19)

w̄ = (1 − μQ̄)ξ̄ + Q̄ξ, (B.20)

r = (1 − μQ)(1 − μQ̄)r̃, (B.21)

so that the metric becomes the same as BTZ black hole

ds2 = dr̃2

r̃2 + r̃2

(
dξdξ̄ + 1

r̃2

(
Ldξ2 + L̄dξ̄2

)
+ LL̄

r̃4 dξdξ̄

)
. (B.22)

One should note that the temperature (the period of Euclidean time) is different from the original 
BTZ black hole. The above consideration for the holographic entanglement entropy still holds 
for BTZ black hole and deformed BTZ black hole.
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