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1 Introduction

Recently, a new rule to compute the entanglement entropy in gravitational systems, namely
the island formula [3–7], has led to a remarkable new perspective to understand the long
standing puzzle of the black hole information paradox [8]. The development of the island
formula originates from the celebrated Ryu-Takayanagi (RT) formula [9, 10], which relates the
entanglement entropy in holographic CFT to the minimal surfaces in the dual AdS bulk. Then
the RT formula was refined to the quantum extremal surface (QES) formula [11–13] with the
quantum correction taken into account. In [3, 4] the QES formula was used to compute the
entanglement entropy for the Hawking radiation of an evaporating black hole, and the result
is consistent with the Page curve. Remarkably, the QES formula suggests that, a region in
black hole interior I, which we call the entanglement island, should be considered as a part of
the Hawking radiation R. And the entanglement entropy for R is given by the island formula,

SR = min extI

{Area(∂I)
4G

+ S̃bulk(R ∪ I)
}

, (1.1)

which contains an optimization for all possible I. Soon, it was argued that when we apply
the replica trick in gravitational theory in a path-integral representation, we should take into
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account the new geometric configurations with wormholes in the replica manifold. When the
replica wormhole configuration dominate the path-integral, the entanglement entropy should
be computed by the island formula [6, 7]. Note that, replica wormhole arguments apply to
generic gravitational theories and do not rely on the existence of holography.

When a gravitational system is in island phase, it is interesting to note that for given a
region R and its island region Is(R), the state of the island region Is(R) can be reconstructed
from the information in the R region. The existence of such a reconstruction is implied
by the island formula (1.1) following the same line of argument for entanglement wedge
reconstruction [6, 14–16]. And an explicit scheme of reconstruction in some simple models
of quantum gravity was given in [6] based on the Petz map [17–20]. In other words the
state of Is(R) is encoded in the state of R, hence the degrees of freedom in Is(R) are not
independent and the Hilbert space of the whole system becomes non-factorizable. In [1]
this property was further refined as the so-called self-encoding property between spacelike-
separated sub-regions, and a possible generalization of this property to systems beyond
gravitational theories was explored in [1].

The AdS/BCFT correspondence [21, 22] is a commonly used context under which the
entanglement islands emerges. It was found that the AdS/BCFT configuration can be
perfectly simulated by models of Weyl transformed holographic CFT2 [1, 23, 24]. The
particular Weyl transformations under consideration are special as they depend on the cutoff
scale of theory, which effectively introduces finite cutoff scale to the region where entanglement
islands can emerge. The Weyl transformations will induce a cutoff brane in the bulk. It
was shown in [1, 23, 24] that, the cutoff brane plays the same role as a KR brane where
the RT surfaces are allowed to anchor. If we adjust the Weyl transformation such that the
cutoff brane overlaps with the KR brane in the AdS bulk, we can exactly reproduce the
main features of the AdS/BCFT configuration.

In this paper, we will consider a special Weyl transformation that optimizes the path
integral computation of the reduced density matrix of an interval in a holographic CFT2 [25,
26], and use it to simulate the AdS/BCFT configuration. This means the path-integral-
optimized purification of the interval is in island phase. We give non-trivial consistency
check for this simulation by computing the entanglement entropy and the BPE on the field
theory side via the island formulas, and find that the results match with the RT surfaces
and EWCSs that are allowed to anchor on the cutoff brane.

In section 2, we briefly introduce the setup of the AdS3/BCFT2 correspondence and
its simulation via a holographic Weyl transformed CFT2. In section 3, we introduce the
computation of the reduced density matrix for an interval and the Weyl transformation that
optimizes the path integral. Furthermore, we derive the cutoff branes for holographic CFT2
under such Weyl transformations, which coincide with the KR branes in AdS/BCFT. In
section 4, assuming that the path-integral-optimized purification for an interval is in island
phase, we calculate the entanglement entropy for sub-intervals of the interval from both
sides of the holography and find agreement. Also we show that the island phase perspective
for this purification solves a puzzle of the existence of negative mutual information in this
purification [2]. We give a summary in section 5. In the appendix, assuming the cutoff brane
plays the role of the KR brane, we study the EWCS for bipartite sub-interval AB and the
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corresponding balanced partial entanglement entropy (BPE) in island phases, and test their
correspondence. This gives further evidence for our claim that, the path-integral-optimized
purification is in island phase.

2 AdS/BCFT and holographic Weyl transformed CFT

In the AdS/BCFT correspondence [21] (or equivalently the Karch-Randall braneworld [27, 28]),
the boundary theory is a d dimensional CFTd with boundaries, and the gravity dual is an
AdSd+1 gravity in d + 1 dimensions bounded by a co-dimension one KR brane,

IAdS = 1
16πG

∫
N

√
−g(R − 2Λ) + 1

8πG

∫
Q

√
−h(K − T ), (2.1)

where N denotes the bulk AdS spacetime, Q denotes the Karch-Randall (KR) brane anchored
at the boundary of the CFT and T is the tension of Q. In the bulk, the von Neumann
boundary conditions are imposed on the KR brane. In this paper, we focus on the d = 2
case and write the bulk metric in terms of the following coordinates,

ds2 = ℓ2

z2

(
−dt2 + dx2 + dz2

)
= dρ2 + ℓ2 cosh2 ρ

ℓ

(
−dt2 + dy2

y2

)
, (2.2)

where ℓ is the AdS radius which we will set to be unit in the rest of this paper, and the
two sets of coordinates are related by

z = y cosh−1 ρ, x = −y tanh ρ . (2.3)

For a BCFT with one boundary settled at x = 0, the corresponding KR brane locates at
ρ = ρ0, where ρ0 is a constant determined by the tension of the brane ρ0 = arctanh T .

On the other hand, let us consider the vacuum state of a holographic CFT2 in flat
background

ds2 = −dt2 + dx2

ϵ2 , (2.4)

where ϵ represent the UV cutoff of the CFT. Then we perform a Weyl transformation
characterized by a scalar field φ(x), hence the metric changes to be

ds2 = e2φ(x)
(
−dt2 + dx2

ϵ2

)
. (2.5)

It can be understood that, the Weyl transformation changes the cutoff scale in a position-
dependent way,

ϵ → e−φ(x)ϵ . (2.6)

The scalar φ(x) is chosen to be negative hence the Weyl transformation enlarges the cutoff
scale. Accordingly, the entanglement entropy for a single interval A = [a, b] is modified
to be [2, 25, 26]

SA = c

3 log (b − a)
ϵ

− c

6 |φ(a)| − c

6 |φ(b)| , (2.7)
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x0

Figure 1. Cut-off sphere at x = x0. For RT surfaces anchored at x0, the part inside the cutoff sphere
is excluded, which has the same length |ϕ(x0)|

following the transformation rule of the two-point functions of twist operators under Weyl
transformations. The above result is just the original entanglement entropy subjecting the
absolute value of the scalar field at the endpoints. Holographically, the constant subjection
of the entanglement entropy was understood as inserting cutoff spheres with radius |φ(x)|
centered at the endpoints [1]. In other words, when computing the entanglement entropy via
the RT formula, we should exclude the portion of the RT surface inside the cutoff spheres,
see figure 1. Interestingly, the cutoff sphere centered at (x, z) = (x0, ϵ) in AdS3 is just a
circle in flat background with radius α, [1, 29],

(x − x0)2 + (z − α)2 = α2, α = ϵ

2e|φ(x0)| . (2.8)

The particular Weyl transformation, that captures the main features of the AdS/BCFT
with the KR brane settled at ρ = ρ0, is given by [1],1

φ(x) =

0, if x > 0
− log

(
2|x|

ϵ

)
+ κ, if x < 0

, (2.9)

where κ is a constant. The cutoff brane [1] is defined as the common tangent line of all
the cutoff spheres, which represent the boundary of the bulk cutoff region (see figure 2).
In this case the cutoff brane is settled at

ρ = κ , (2.10)

which can be adjust to exactly overlap with the KR brane by setting

κ = ρ0 . (2.11)

To justify the application of the island formula in this Weyl transformed CFT, we
need to give an additional assumption, which is that the x < 0 region was coupled to a
gravity. The gravity is an AdS2 gravity as the Weyl transformation changes the metric at
the x < 0 region to AdS2. Later, we will return to this assumption in the discussion section.
Then entanglement islands are allowed in this region according to the replica wormhole
arguments [5, 6]. Furthermore, for simplicity we assume the AdS2 gravity is a induced gravity
as in [30], hence the area term in (1.1) will not appear.

1See [30] for an earlier discussion.
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Figure 2. This figure shows the cutoff spheres and cutoff brane on a time slice for the Weyl
transformed CFT with the scalar field (2.9). The radius of the cutoff sphere centered at x = x0 is
given by α = −x0e−κ.

On the field theory side, let us apply the island formula (1.1) to calculate SA for
the interval A = [0, L] in this Weyl transformed CFT and assuming the island region
Is(A) = [−a, 0), then we have

SA = min exta

[
c

3 log (L + a)
ϵ

+ c

6φ(−a) + c

6φ(L)
]

. (2.12)

Plugging into (2.9), the above formula is minimized at a = L, hence

SA = c

6 log 2L

ϵ
+ c

6κ . (2.13)

This exactly matches the result in AdS/BCFT with ρ0 = κ.
On the gravity side, the holographic entanglement entropy is given by the area of the

minimal extreme surface (the RT surface) which is homologous to A and is allowed to anchor
at any of the cutoff spheres. As expected [1], the RT surface is just the circle emanating
from the endpoint x = L on the boundary and anchored on the cutoff brane vertically, see
the blue circle in figure 2. Provided κ = ρ0, this is exactly the RT surface anchored on the
KR brane in the AdS/BCFT correspondence.

The above configuration exactly matches with the AdS/BCFT correspondence given
ρ0 = κ. The key for this simulation is that, we should adjust κ1 such that the cutoff brane
overlaps with the KR brane in the AdS/BCFT configuration which we simulate. Also, the
coincidence between the two set-ups can be straightforwardly checked for the calculation
of the entanglement entropy for any interval A = [a, b] in the x > 0 region, with phase
transitions for the RT surfaces.

3 Weyl transformed CFT from path-integral optimization and AdS/BCFT

In the previous section, we simulated the AdS/BCFT configuration via the holographic Weyl
transformed CFT2 with the scalar field (2.9) and the constant κ adjusted to satisfy κ = ρ0.
Note that, in this case the Weyl transformation is adjusted by hand such that the cutoff
brane and the KR brane overlap. Since in the AdS/BCFT correspondence, the location of
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the KR brane is determined by details of the theory, including the tension and the boundary
conditions of the brane. It is intriguing to ask what is special about the corresponding
Weyl transformation (2.9) from the perspective on the field theory side. One of the main
observation in this paper is that, the particular Weyl transformation (2.9) that makes the
simulation a success is the one that optimizes the path integral computation for the reduced
density matrix of the non-gravitational (or bath) region, which satisfies two key points: 1)
it preserves the reduced density matrix ρA for an interval A at a particular time, and 2) it
minimizes the path-integral complexity CL[ϕ] defined later [25, 31].

Let us start with the path integral computation for a quantum state of the whole system.
Consider a 2d CFT on Euclidean flat space ds2 = (dτ2 + dξ2)/ϵ2 = δab/ϵ2, where ϵ represents
the UV cutoff. Under this metric the ground state |Ψ⟩ wave functional Ψ[φ̃(ξ)] at τ = −ϵ

is given by the Euclidean path integral on the half plane,

Ψδab/ϵ2 [φ̃(ξ)] =
∫ ∏

ξ

∏
−∞<τ<−ϵ

Dφ(τ, ξ)

 e−SCF T (φ) ·
∏
ξ

δ(φ(−ϵ, ξ) − φ̃(ξ)). (3.1)

Here the subscript of the wave function Ψ represents the metric of the Euclidean space
where the path integral is performed. One can perform a Weyl transformation, which is
a symmetry of the theory, to the metric,

ds2 = e2ϕ(τ,ξ) dτ2 + dξ2

ϵ2 , e2ϕ(τ=−ϵ,ξ) = 1. (3.2)

where the second equation is the boundary condition for the scalar field that characterizes
the Weyl transformation. Then the state Ψ computed under the Weyl transformed metric
is proportional to (3.1),

Ψe2ϕδab/ϵ2 [(φ̃(ξ))] = eCL[ϕ]−CL[0]Ψδab/ϵ2 [(φ̃(ξ))] , (3.3)

where CL[ϕ] the Liouville action [32],

CL[ϕ] = c

24π

∫ ∞

−∞
dξ

∫ −ϵ

−∞
dτ
(
(∂ξϕ)2 + (∂τ ϕ)2 + µe2ϕ

)
. (3.4)

This means the state Ψ is preserved under the Weyl transformation (3.2). In [25, 31], the
Liouville action CL[ϕ] is further related to the complexity functional of the quantum state
|Ψ⟩. The path integral optimization then means by computing the path integral under the
Weyl transformation that minimizes the Liouville action CL[ϕ]. This can be achieved by
solving the equation of motion (∂2

ξ + ∂2
τ )ϕ = e2ϕ/ϵ2 of CL[ϕ] (or the Liouville equation),

which gives us the following simple solution,

e2ϕ = ϵ2

τ2 . ds2 = dτ2 + dξ2

τ2 (3.5)

It is easy to check that the above solution satisfies the boundary condition in (3.2). Note that,
one can shift the above scalar field by a constant by choosing a different UV cutoff scale ϵ.

The above optimization procedure was generalized to optimizing the path integral
computations that preserve the state (or the reduced density matrix) on a single interval
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A = [a, b], t = 0 as described in [26]. This involves the Euclidean path integral over a complex
plane (η, η̄) = (x + it, x − it) with the interval A cut open. Interestingly, one can relate this
path integral to the one on a half plane by performing a conformal transformation which
maps the interval A to an infinitely long line,

w =
√

η − a

b − η
, (ω, ω̄) = (ξ + iτ, ξ − iτ) . (3.6)

Then we can optimize the Euclidean path integral on the half ω plane whose optimization
gives (3.5). Finally, we may obtain the Weyl transformation by mapping (3.5) back to
the (t, x) plane. Hence, we get the Weyl transformation that optimizes the path integral
computation for the reduced density matrix ρA of the interval A. More explicitly, the relation
ϵ2

τ2 dωdω̄ = e2ϕ(x)dηdη̄ gives us,

ϕ(x) =
{

0 a < x < b

log
[

ϵ(b−a)
2(x−a)(x−b)

]
+ κ x > b or x < a

}
, (3.7)

where κ is a constant which depends on the choice of ϵ.
Now we are ready to derive the cutoff brane induced by the above Weyl transformation,

which is again the common tangent line of all the cutoff spheres. Firstly, according to (2.8)
the cutoff spheres are circles on a time slice described by

(x − x0)2 + (z − α)2 = α2, α = (x0 − a)(x0 − b)
b − a

e−κ. (3.8)

Then it is easy to check that the common tangent line of all the spheres is also a part of a
circle which passes the two endpoints of the interval (see figure 3),

cutoff brane:
(

x − a + b

2

)2
+ (z − z0)2 = z2

0 + (b − a)2

4 , (3.9)

where z0 = b−a
4 (eκ−e−κ). Changing the constant κ will change the intersection angle between

the cutoff brane and the asymptotic boundary. In figure 3, we give the cutoff brane for
the same interval with different κ.

When we send one of the endpoint to infinity by taking the limit b → ∞, we are back
to the BCFT with one boundary discussed in the previous section. Interestingly, under this
limit the cutoff brane (3.9) becomes,

z = (a − x) csch(κ) . (3.10)

According to the coordinate transformation (2.3), the above equation is just ρ = κ if we
put the other endpoint at the origin by setting a = 0. This exactly coincides with the
cutoff brane (2.10), which is adjusted by hand to match the KR brane in the AdS/BCFT
correspondence. Note that, if we choose an arbitrary smooth function ϕ(x) for the Weyl
transformation, the shape of the cutoff brane could be arbitrary. It is remarkable that
the Weyl transformations that optimize the path integral exactly reproduce the KR brane
configurations in the AdS/BCFT correspondence for the BCFT with one boundary.
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Figure 3. This figure shows the numerical results of to series of cut-off spheres and the corresponding
cutoff brane (dashed line). We have set a=1, b=2 and κ = 0, 1 in the left and right figures respectively.

Then it is intriguing to propose that, the cutoff brane configurations from path integral
optimization can match to the KR branes in more generic AdS/BCFT setups. If this proposal
is right, there should be KR brane configurations as circles (3.9) in the Poincaré AdS3
bulk that homologous to the strip BCFT2 with two boundaries. Since the cutoff brane is
connected in the bulk, it belongs to the confined phase [21, 22, 33], rather than the deconfined
phase where the brane is disconnected in the bulk.2 Unfortunately, such configurations in
AdS/BCFT were not confirmed in the literature yet. There are AdS/BCFT configurations
where the KR brane on a time slice are circles, but the BCFT is not a strip. For example,
in [22] the authors considered a BCFT on a round disk: τ2 + x2 ≤ L2 in Euclidean spacetime,
and find that the KR brane in AdS bulk dual is given by a sphere,

τ2 + x2 + (z − sinh(ρ0)L)2 − L2 cosh2(ρ0) = 0, (3.11)

where ρ0 = arctanh T . For any fixed τ , the KR brane is also a portion of a circle. Also
in [35], the KR branes connecting the two asymptotic boundaries in the eternal black hole
are circles on a time slice when mapping to the Poincaré patch (see figure 6 in [35]). Similar
configurations or KR branes were also proposed in [36].

4 The path-integral-optimized purification as a state in island phase

In [37, 38], it was claimed that the entanglement of purification (EoP) is the holographic dual
of the EWCS in holographic theories. The optimization for the path integral that computes
the reduced density matrix for an interval was first studied in [26] as a special purification for
the interval, where they can compute the entanglement of purification (EoP), and confirm
the claim of [37, 38]. In [26], this special purification is taken as a pure state in a normal
quantum system without entanglement islands. However, it was pointed out in [2] that,
there exist negative mutual information in this purification. On the other hand, following
the [1, 23, 24], as well as the discussion in the previous section, we should understand the

2The deconfined configurations were used to derive the co-dimension two Wedge holography [34].
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holographic CFTs under path-integral-optimized Weyl transformation as a simulation of
the AdS/BCFT correspondence, hence we should take this purification as a pure state in
island phase. In this section, we will compare between these two perspectives and show
that, taking this path-integral-optimized purification as a state in island phase solves the
puzzle of negative mutual information.

Let us consider a bipartite region in the boundary field theory with a partition AB ≡ A∪B,
and ρAB is the corresponding reduced density matrix. On a time slice, the entanglement wedge
WAB of AB is the region enclosed by AB and the RT surface EAB . Given the entanglement
wedge we can define the EWCS ΣAB as the minimal area cross-section of WAB separating
the regions A and B. Let |Ψ⟩ ∈ HAA′ ⊗HBB′ be any purification of ρAB, the EoP between
A and B is defined as [39]

Ep(A : B) = min
|Ψ⟩,A′

SAA′ , (4.1)

where we take the minimization over all possible purifications of AB and over all possible
partitions of A′B′. The EoP is then given by the minimal value of SAA′ . The authors in [26]
start from the vacuum state of the holographic CFT2 which duels to Poincaé AdS3 and
AB is an interval in this state, then they perform different Weyl transformations for the
complement of AB (or A′B′) to get a class of pure states computed by path integral since
the Weyl transformations change the boundary condition for the path integral. As ρAB is
preserved by these Weyl transformations, the resulting pure states can be considered as
different purification for ρAB. The key observations of [26] are that, 1) the purification |Ψ⟩
where SAA′ is minimized is exactly the one given by the Weyl transformation that optimizes
the path-integral computation of ρAB, i.e. the one characterized by (3.7). And 2), in the
path-integral-optimized |Ψ⟩, the minimized SAA′ over all the possible partition of the purifying
system A′B′ exactly matches the length of the EWCS, upon an additional choice of κ = 0.

More explicitly, let us consider the configuration shown in figure 4, where the purification
of the mixed state ρAB is path-integral optimized, hence the Weyl transformation applied on
A′B′ is characterized by (3.7) with κ = 0. Then we minimize the entanglement entropy3

SAA′ = c

3 log p − q

ϵ
− c

6 log 2(a − q)(b − q)
ϵ(b − a) (4.2)

by adjusting the partition point x = q and found that SAA′ is minimized when

q = 2ab − (a + b)p
a + b − 2p

, (4.3)

hence,

Ep(A : B) = min
|Ψ⟩,A′

SAA′ = c

6 log
(2(p − a)(b − p)

ϵ(b − a)

)
. (4.4)

The authors of [26] studied the path-integral-optimized state |Ψ⟩ in no-island phase.4
This indicates that the Hilbert space of the system factorizes as all the space-like separated

3Note that, in [26] the entanglement entropy is calculated following (2.7) with κ = 0.
4By the time when [26] was published, there was no concept of entanglement islands.
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A BA′B′ B′

p baq

ΣAB

Figure 4. The blue circles are the RT surfaces for AB and AA′. The Weyl transformation (3.7) with
κ = 0 is performed on A′B′. When calculating SAA′ , we should subject a constant term c

6 |ϕ(q)|, which
is exactly the length of the dashed portion. Then SAA′ exactly matches the length of the EWCS ΣAB .

degrees of freedom are independent, and the entanglement entropy for any interval [a, b] can
be defined in a standard way and calculated following the formula (2.7). Nevertheless, it was
pointed out in [2] that, under such a setup there exists negative mutual information in the path-
integral-optimized state |Ψ⟩. Again, let us consider the path-integral-optimized purification
of figure 4 with the partition point settled by (4.3), and assume that the purification is
in the no-island phase. Then we can use the formula (2.7) to calculate the entanglement
entropy for the following intervals,

SA′ = c

3 log a − q

ϵ
+ c

6ϕ(a) + c

6ϕ(q) ,

SB′ = c

3 log b − q

ϵ
+ c

6ϕ(b) + c

6ϕ(q) ,

SA′B′ = c

3 log b − a

ϵ
+ c

6ϕ(a) + c

6ϕ(b) , (4.5)

where, according to (3.7), we have ϕ(a) = ϕ(b) = 0. Also we can perform a straightforward
calculation for the mutual information I(A′ : B′),

I(A′ : B′) = SA′ + SB′ − SA′B′

= c

3 log (a − q)(b − q)
(b − a)ϵ + c

3ϕ(q)

= − c

3 log 2 , (4.6)

where in the last line we used (4.3) and (3.7). As we can see, the mutual information
I(A′ : B′) is negative, which indicates that the path-integral-optimized purification |Ψ⟩ is
not a physical state.

Following our previous discussion on the Weyl transformed CFT2, we turn to the
perspective of taking the path-integral-optimized purification as a state in island phase. From
this perspective, soon we will show that A′B′ is the island region of AB, hence the state of
A′B′ is encoded in AB, which means the degrees of freedom in A′B′ are not independent. This
implies that the strong sub-additivity, which guarantees the positivity for mutual information,
does not apply. So the new perspective straightforwardly solves the above puzzle of negative
mutual information. Of course there are other possibilities5 to avoid the negative mutual
information, which we will not discuss further in this paper.

5One may consider other possibilities to avoid the negative mutual information by modifying the way we
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A B

A′ B′︸︷︷︸ α

ba p

A BA′ B′

p ba

EA

Figure 5. Upper figure: RT surfaces for a sub-interval α in AB. Lower figure: RT surface for A.

Let us give a more detailed comparison between the two perspectives on the path-integral-
optimized purification. For simplicity, we set κ = 0 hence the Weyl transformation matches
with the one used in [26], and the cutoff brane (3.9) coincide with the RT surface of AB

(see the left figure in figure 3). In the island perspective, the RT surfaces for subregions in
AB are allowed to anchor on the cutoff brane, which results in a totally new understanding
on the entanglement structure of this purification and the corresponding geometric dual
on the gravity side.

Firstly, let us consider the configuration depicted by the upper figure in figure 5, On
the gravity side, consider a sub-interval α in AB, the RT surface of α is allowed to anchor
on the cutoff brane (see the blue line), hence has two phases which are represented by the
dashed and solid green lines. When α approaches AB, the solid green line has smaller length
hence is the RT surface, and when we take the limit α → AB, the RT surface vanishes.
This indicates that SAB = 0, hence AB is in a pure state. On the field theory side, one
can apply the island formula and find that, when α → AB we have Is(α) → A′B′, which
is consistent with the RT formula.

compute the entanglement entropy instead of using (2.7) and (3.7). For example, one may consider the physical
degrees of freedom all locate on the boundary interval and the bulk brane, and consider the state/surface
correspondence [40]. In this context, A′ and B′ are sub-regions of the brane and the entanglement entropies
are calculated by bulk geodesics connecting their endpoints, which exactly coincide with A′ and B′ in the case
of figure 4. So we have SA′B′ = SA′ + SB′ , and the mutual information we considered is zero. Nevertheless,
the surface/state correspondence is not a context where we study the configurations with entanglement islands.
Another possible solution is to keep using (4.3) and (3.7) but consider a constant shift for the scalar field, such
that the mutual information (4.6) satisfies I(A′, B′) ≥ 0. This equals to confining the constant term κ in (3.7)
to satisfy κ ≥ log 2. Also the cutoff brane changes, see section A.3 for more discussion on the case of κ ̸= 0.
One shortcoming of this solution is that, the entanglement entropy SAA′ on longer reproduces the EWCS for
the entanglement wedge of WAB due to the shift of a constant, see the discussion section of [2] for details.
Also it is not obvious that this confinement can guarantee the positivity of an arbitrary mutual information.
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Secondly, from the island perspective the EWCS in WAB has a new interpretation. On
the field theory side we should apply the island formula (1.1) to calculate SA,

SA = min ext
A′

S̃AA′

= min
q

c

3 log p − q

ϵ
+ c

6ϕ(q)

= c

6 log 2(p − a)(b − p)
ϵ(b − a) , (4.7)

where A′ = [q, a) and we have plugged in (4.3) in the third equation, which is the solution
of the optimization. This solution of Is(A) coincides with (4.3), which the minimizes SAA′

when calculating the EoP in [26]. It was also pointed out in [2, 41] that, the point x = q

satisfying (4.3) is just the intersection point between the boundary and the geodesic (see the
blue dashed line in figure 4) extended from the EWCS ΣAB. On the gravity side, the RT
surface EA of A is just the geodesic emanating from the partition point x = p and anchored
on the cutoff brane vertically (see the green line in the lower figure of figure 5), which coincide
with the EWCS ΣAB in figure 4. This is consistent with the expectation that, when AB is
in a pure state, the EWCS and its holographic dual quantites (like the EoP, the reflected
entropy [42] and BPE), should coincide with SA.

Thirdly, when we take AB is a sub-region of the interval, ρAB is in a mixed state. We
can also study the EWCS in WAB and its quantum information dual. From the island
perspective, the cutoff brane plays the same role as the KR brane, then both of the RT
surface EAB and the corresponding EWCS ΣAB undergo phase transitions since they are
allowed to anchor on the cutoff brane. See figure 8 for example. On the field theory side, it
was proposed in [41] that the so-called balance partial entanglement entropy (BPE), which is
a partial entanglement entropy (PEE) satisfying certain balance conditions, corresponds to
the EWCS on the gravity side. More interestingly, this correspondence was generalized to
the holographic configurations with entanglement islands [23]. We can calculate the BPE
in island phases following the steps in [23], and check whether the BPE coincide with the
EWCS. This is a highly non-trivial test for our proposal that the path-integral-optimized
state |Ψ⟩ should be understood as in the island phase. Since the analysis of the BPE is
complicated and relatively independent from the main topic of this paper, we put it in the
appendix. Readers who are interested in the BPE and EWCS for the path-integral-optimized
purification can go through the background papers [23, 24, 41] and the appendix in detail.

5 Summary and discussion

In this paper, we considered the special Weyl transformation for a holographic CFT2, which
optimizes the path integral computation for the reduced density matrix of an interval. Under
such Weyl transformations, the cutoff branes are circles in the AdS bulk passing through
the endpoints of the interval at the boundary. When we take the limit that one of the
endpoint goes to infinity hence the interval becomes a half line, the cutoff branes coincide
with the KR branes in the AdS/BCFT configurations where the BCFT has one boundary.
Without taking the above limit, the cutoff brane configurations coincide with a time slice
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of some AdS/BCFT configurations, where the KR brane are also circles passing through
the endpoints on the boundary [22, 35, 36]. Finding more AdS/BCFT configurations that
exactly match with the holographic Weyl transformed CFT we have considered could be
an interesting exploration in the future.

Perhaps it is an even more interesting idea to take the scalar field that characterizes
the Weyl transformation dynamical, with its action just being the Liouville action, whose
equivalence to the action of 3d gravity has been extensively discussed [43–51]. Then the
region under nontrivial Weyl transformation (or the ϕ ̸= 0 region) is naturally coupled to a
gravity with background geometry that solves the Liouville equations and the gravitational
excitation represented by the perturbation of the scalar field. This may give a justification
for our proposal that the island formula applies to the Weyl transformed CFT.

In our previous works, we have assumed that the cutoff branes induced by the Weyl
transformations that optimize the path integral play the same role as the KR branes, hence
the RT surfaces and the EWCSs can anchor on the brane. Such an assumption also implies
that, the corresponding boundary state of the Weyl transformed CFT is in island phase. This
implication also extends to the path-integral optimized purification for an interval. The new
perspective for the path-integral-optimized purification solves the puzzle of negative mutual
information in this state. We calculated the entanglement entropies for subregions of the
interval using the island formula, and find them coincide with the area of the RT surfaces
that are allowed to anchor on the brane. Furthermore, we calculated the BPE between
two arbitrary non-overlapping subregions of the interval in island phases, and find them
coincide with the area of the EWCS. This gives non-trivial test for our proposal that the
path-integral-optimized purification is a state in island phase.

Our results give a potential new link between the AdS/BCFT correspondence and the
path integral optimization. This is quite important for the simulation of the AdS/BCFT
configurations via the holographic Weyl transformed CFT, since the Weyl transformation is
now determined on the field theory side, rather than adjusted by hand. Our calculations also
provide new evidence for the correspondence between the BPE and the EWCS.

Acknowledgments

The authors thank Hao Geng, Rongxin Miao and Shan-Ming Ruan for helpful discussions.

A The BPE/EWCS correspondence in the path-integral-optimized
purification

In [2, 41], it was proposed that the so-called balance partial entanglement entropy (BPE) is
the quantum information quantity that duals to the EWCS. Furthermore, the concept of BPE
was generalized to the island phases in [23] and its correspondence to the EWCS was also
explicitly checked in the context of AdS/BCFT or the holographic Weyl transformed CFT2
in [23, 24]. See also [52–57] for more discussion on the EWCS and its quantum information
dual in holographic configurations with entanglement islands. In the appendix, we take the
path-integral-optimized purification as a state in island phase, and study the entanglement
wedges WAB for a bipartite subregion AB of the path-integral-optimized interval, with the
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cutoff brane playing the role of the KR brane in the context of AdS/BCFT. On the gravity
side, we classify the phases of the EWCS of WAB and calculate the area of the EWCS in
each phase. On the field theory side, we explicitly calculate the BPE between A and B. As
expected, we find the agreement between the EWCS and the BPE in all the configurations.

A.1 Brief review for the PEE and BPE

For self-consistency, let us first introduce the basic concept of the partial entanglement
entropy (PEE) [58–60]. Some of the texts in this review overlap with section 3 in [24]. The
PEE is a measure of two-body correlation between two non-overlapping regions I(A, B).
Note that, we should not mix between the mutual information I(A, B) and the PEE I(A, B).
So far, the fundamental definition for PEE based on the reduced density matrix is still
not established. In some scenarios of interest, it can be determined by a set of physical
requirements [60, 61], which include all the properties satisfied by the mutual information
and the additional key property of additivity:

1. Additivity: I(A, B ∪ C) = I(A, B) + I(A, C);

2. Permutation symmetry: I(A, B) = I(B, A);

3. Normalization: I(A, Ā) = SA;

4. Positivity: I(A, B) > 0;

5. Upper boundedness:I(A, B) ≤ min{SA, SB};

6. I(A, B) should be Invariant under local unitary transformations inside A or B;

7. Symmetry: for any symmetry transformation T under which T A = A′ and T B = B′,
we have I(A, B) = I(A′, B′).

In the above list, A, B and C denote non-overlapping regions. For vacuum states of CFTs on
a plane, we can determine the formula for PEE up to a coefficient by imposing the above
requirements except the normalization property. Then we can determine the coefficient by
imposing the normalization requirements for spherical regions where the relation between
the geometric cutoff and the UV cutoff can be explored [62].

In this paper, we will use a particular construction for the PEE in generic two-dimensional
theories on a line or a circle.6 This proposal is referred to as the additive linear combination
(ALC) proposal [58, 60, 65], which claims that the PEE in these scenarios can be written as
a linear combination of subset entanglement entropies that satisfy the property of additivity.

• The ALC proposal [58–60]:
Consider a boundary interval A and partition it into three non-overlapping subregions
A = αL ∪ α ∪ αR, where α is some subregion inside A and αL (αR) denotes the regions
left (right) to it. On this configuration, the claim of the ALC proposal is the following:

sA(α) = I(α, Ā) = 1
2 (SαL∪α + Sα∪αR − SαL − SαR) . (A.1)

6See [58, 60, 62–64] for other prescriptions to construct PEE, and [29, 65–67] for applications of the ALC
proposal.
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It is easy to check that, the above construction satisfies all the seven requirements in
general [59, 65].

The concept of PEE [58–60, 65] originates from the study of the entanglement contour [63],
which is defined as a function sA(x) that characterizes the contribution to the entanglement
entropy of A from each site x ∈ A. By definition the entanglement contour function
should satisfy,

SA =
∫

A
sA(x)dσx , (A.2)

where σx is a infinitesimal area element located at the site x. Subsequently, we can also
define the contribution from a subset α in A to SA,

sA(α) =
∫

α
sA(x)dσx . (A.3)

The contribution sA(α) is a measure of the correlation between the subregion α and the
complement Ā of A, which is exactly the two-body correlation we have defined as the PEE,

I(α, Ā) ≡ sA(α) . (A.4)

Following [23], we call the notation on the left hand side of the above equation as the
two-body correlation representation for the PEE, while the notation on the right hand side
is the contribution representation.

The balanced partial entanglement entropy (BPE) is a special PEE that satisfies a set
of balance requirements [41]. In canonical purification, the definition of the BPE coincide
with the reflected entropy [42], and the purification independence of the BPE was explored
in [2]. The BPE was proposed to be dual to the EWCS in holographic theories, and this
proposal has undergone rigorous validation across diverse scenarios including both static [41]
and covariant [68] setups of AdS3/CFT2 with or without gravitational anomalies, and in the
context of AdS/BCFT with entanglement islands [23, 24]. More interestingly, in the context
of 3-dimensional flat holography [69–71], on the field theory side the BPE was calculated
in [2, 72], which matches the EWCS explored in [73].

For a system A ∪ B in a mixed state ρAB, one can introduce an auxiliary system A′B′

to purify AB such that the whole system ABA′B′ is in a pure state |φ⟩ and,

TrA′B′ |φ⟩ ⟨φ| = ρAB. (A.5)

The pure state on ABA′B′ is called a purification of ρAB , which could be highly non-unique.
Let us consider the simple examples described in figure 6, where the balance requirements
are summarized in the following [41]:

Balance requirements.

• When A and B are adjacent, the contribution from sAA1(A) and sBB1(B) should satisfy,

sAA1(A) = sBB1(B), or I(A, BB1) = I(B, AA1). (A.6)

This balance requirement is sufficient to determine the partition point in the purifying
system A1B1, which we call the balance point.
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Figure 6. Here we consider the vacuum state of the holographic CFT2 on a circle which duals
to the global AdS3, and consider two different partitions, where A and B are adjacent and disjoint
respectively. x = q, q1, q2 are balanced points. This figure is extracted from [23].

• When A and B are non-adjacent, we have A′ = A1 ∪ A2 and B′ = B1 ∪ B2, and the
balance requirements become

sAA1A2(A1) = sBB1B2(B1), sAA1A2(A) = sBB1B2(B), (A.7)

or
I(A, B1B2) = I(B, A1A2), I(A1, BB2) = I(B1, AA2), (A.8)

which are sufficient to determine the two partition points of the purifying system
A1B1A2B2. Since SAA1A2 = SBB1B2 , sAA1A2(A2) = sBB1B2(B2) is automatically
satisfied provided the satisfaction of the above requirements.

• Note that, it is possible that the solution to the balance requirements is non-unique.
In such cases, we should choose the solution that minimizes the BPE, which will be
defined soon.

Provided the balanced requirements are satisfied, the BPE is then defined as
adjacent cases : BPE(A, B) = sAA1(A)|balanced = sBB1(B)|balanced

non-adjacent cases : BPE(A, B) = sAA1A2(A)|balanced = sBB1B2(B)|balanced ,

(A.9)

Since we have I(A, B′) = I(A′, B) at the balance point,7 the BPE can also be expressed as

BPE(A, B) = I(A, B) + (I(A, B′) + I(A′, B))|balanced
2 . (A.10)

It is important to note that [2], the summation I(A, B′) +I(A′, B) which we call the crossing
PEE is minimized at the balanced point. This indicates that the BPE can be defined via
an optimization problem. It is also interesting to note that, when A and B are adjacent,
this minimal crossing PEE gives half of the lower bound of Markov gap [41, 74, 75], which
is a universal constant (c/6) log 2.

7Here A′ = A1 (B′ = B1) for adjacent configurations, and A′ = A1A2 (B′ = B1B2) for non-adjacent
configurations.
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A A2 B2 B

Is(A)

︸ ︷︷ ︸Io(A
B)

Is(B)

Figure 7. Ownerless island in a time slice of holographic BCFT with one boundary. Here A2 ∪ B2
admits no island, and Is(AB) covers the whole brane. Nevertheless, the union of Is(A) and Is(B) does
not cover the whole brane, which means there is an ownerless island Io(AB) inside Is(AB) but outside
Is(A) ∪ Is(B).

A.2 PEE and BPE in island phases

As described in the article [1], a system in the island phase can be understood as a self-
encoding system. In other words, the state of certain subsets of the system are totally
encoded in the state of their counterpart subsets of the system. Subsequently, the calculation
of entanglement entropy should also be modified to the island formulas (1.1). Given the
self-encoding property, when we compute the PEE between subregions in island phase, we
should also take the contribution from the corresponding island regions into account. Now
we generalize our construction of the PEE and BPE to configurations with entanglement
islands [23]. Here we just list the basic elements we need to carry out the computations.
One should consult [23] for more details.

Let us start with the region AB and the island regions Is(AB), Is(A) and Is(B). Ac-
cording to [23], the degrees of freedom in Is(AB) is not independent, and contributes to
the entanglement entropy SAB calculated by the island formula. The PEE, for example
sAB(A), should contain the contribution from the island region, and it is clear that we
should assign the contribution from Is(A) to sAB(A) and similarly assign Is(B) to sAB(B).
Nevertheless, there are scenarios with regions included in Is(AB) but outside Is(A) ∪ Is(B),
which should also be assigned to sAB(A) or sAB(B). In other words, when Is(AB) ̸= ∅ and
Is(AB) ⊃ Is(A) ∪ Is(B), we define the ownerless island region to be

Io(AB) = Is(AB)/(Is(A) ∪ Is(B)) . (A.11)

The ownerless island should be further divided into two parts

Io(AB) = Io(A) ∪ Io(B) , (A.12)

which are assigned to sAB(A) and sAB(B) respectively. We will specify the division of Io(AB)
later. All in all, we define the generalized islands

Ir(A) = Is(A) ∪ Io(A), Ir(B) = Is(B) ∪ Io(B) , (A.13)
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and assign them to A and B respectively when calculating the PEEs. The generalized islands
coincide with the so-called reflected entropy islands defined in [52]. The assignment can
be classified into three classes:

• Class 1: When Is(AB)=Is(A)=Is(B)=∅, we have

Ir(A) = Ir(B) = ∅ . (A.14)

• Class 2: When Is(AB)=Is(A) ∪ Is(B) ̸= ∅, we have

Io(A) = Io(B) = Io(AB) = ∅, Ir(A) = Is(A), Ir(B) = Is(B) . (A.15)

• Class 3: When we have non-trivial ownerless island region, then we have (A.13).

Now we turn to the computation of the PEEs for a bipartite system AB with entan-
glement island, and denote C ≡ AB ∪ Is(AB) for convenience. After taking into account
the contributions from the islands, we should have [23],

sAB(A) = I(A ∪ Ir(A), C), sAB(B) = I(B ∪ Ir(B), C), (A.16)

where the island contribution has been taken account. The right contribution comes from
the generalized island rather than the entanglement island. A key step to compute the
PEEs (A.16) is to write the right hand side of (A.16) as a linear combination of the PEEs
that can be written in this form I(γ, γ̄), i.e. a PEE between a region γ and its complement.
For example, using the property of additivity, the PEE (A.16) is just given by

sAB(A) = I(A ∪ Ir(A), C)

= 1
2 [I(AIr(A)BIr(B), C) + I(AIr(A), BIr(B)C) − I(BIr(B), AIr(A)C)]

= 1
2
[
S̃AIr(A)BIr(B) + S̃AIr(A) − S̃BIr(B)

]
,

(A.17)

where we have used Ir(A)Ir(B) = Is(AB), and the notation S̃γ ≡ I(γ, γ̄) which will be
explained soon.

For the configurations shown figure 6, for example the adjacent case in the left figure,
we should calculate sAA1(A) following (A.17). For the non-adjacent case in figure 6 where
A is sandwiched by two regions A1 and A2, we have

sA1AA2(A) = 1
2
[
S̃A1Ir(A1)AIr(A) − S̃A1Ir(A1) + S̃AIr(A)A2Ir(A2) − S̃A2Ir(A2)

]
. (A.18)

We call this formula the generalized ALC formula [23] for island phases, which is just the
ALC formula (A.1) with the replacement Sγ ⇒ S̃γIr(γ) applied to each term. Accordingly,
the balance requirements should also be modified to generalized versions, which are given by

adjacent cases : I(A Ir(A), B1 Ir(B1)) = I(A1 Ir(A1), B Ir(B)). (A.19)
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and

non-adjacent cases :


I(A1Ir(A1), B Ir(B) B2Ir(B2)) = I(B1Ir(B1), A Ir(A) A2Ir(A2)),

I(A Ir(A), B1Ir(B1) B2Ir(B2)) = I(B Ir(B), A1Ir(A1) A2Ir(A2)).
(A.20)

In summary, in island phases the BPE are still defined by (A.9), but we need to use the
generalized versions of the ALC formula and balanced requirements.

Before we compute the BPE, we need to clarify how to compute I(γ, γ̄). In this paper
we need to deal with two types of γ, 1) γ = [−a, b] a connected interval, 2) γ = A ∪ Ir(A) =
[−d,−c] ∪ [a, b] is consists of two disconnected interval, where a, b, c, d > 0. For the above
two cases, there are two corresponding proposals [23] to compute the PEE,

Basic proposal 1 : I(γ, γ̄) = S̃γ = S̃[−a,b], (A.21)
Basic proposal 2 : I(γ, γ̄) = S̃[−d,−c]∪[a,b] = S̃[−c,a] + S̃[−d,b], (A.22)

where, for example, S̃[−a,b] is the two-point function of twist operators inserted at x = −a

and x = b.8 These two-point functions are well defined in the Weyl transformed CFT, and
can be computed by (2.7).

Though the above two basic proposals have not been proved yet, they have produced
highly consistent results between the BPE and the EWCS in various configurations with
entanglement islands [23]. The basic proposal 1 looks like a generalization of the RT formula
in AdS3/CFT2 for single interval. While the basic proposal 2 is a generalization of the
RT formula for two-intervals with connected entanglement wedge. It looks reasonable as
this proposal applies when the region [a, b] admits an island, hence the entanglement wedge
looks more like the connected phase of a two-interval. Note that the basic proposal 2 is not
consistent with the normalization and additive property of the PEE, which may be explained
by a similar phase transition of the PEE flux in AdS3/CFT2

9 [77, 78]. We leave this for future
investigation [79]. In summary, our calculations in this paper only involve linear combinations
of Weyl transformed two-point functions (2.7) of the twist operators.

The remaining problem is the division of the ownerless island region Io(AB) = Io(A) ∪
Io(B), which is indeed determined by the balance requirements. In [23], the authors considered
the AdS/BCFT set-up and its simulation via a holographic Weyl transformed CFT2. They
found that different assignments for the ownerless island region lead to different BPEs,
which exactly correspond to different saddles of the EWCS. Then according to the minimum
requirement, we should choose the assignment that gives us the minimal BPE. It seems that,
the division of the ownerless island depends on the phase structure of the EWCS.

8Such two-point functions are very subtle in the effective theory of AdS/BCFT correspondence or other
doubly holography configurations, since the region [−a, 0] may not be the island region of [0, b]. In other
words, the island formula (1.1) only involves S̃γ where γ = R∪ Is(R) is the union of a region and its island,
and in this case S̃γ = SR. While the γ we deal with usually goes beyond this type, and S̃γ should not be
understood as the entanglement entropy of γ or any other region (see [23] for more discussions).

9This phase transition should originate from the large c limit of the holographic CFT2 [76].
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AB1 B B1A1Ir(A)Ir(B) Ir(B)

Σ
A

B

a1 p b1 bp1aq2 q4q1 q3

Ir(B1)Ir(B1)Ir(A1)

Ir(A1)

Ir(A)
Ir(B)

Figure 8. Two adjacent intervals AB and their complements A1 and B1, featuring entanglement island
regions Ir(A) = [q1, q2], Ir(B) = (−∞, q1] ∪ [q4,∞), Ir(A1) = [q2, q3] and Ir(B1) = [q3, a] ∪ [b, q4]
on the entire KR brane, are configured schematically. Here Ir(B1) indicate disconnected entanglement
island.

A.3 A case study for the path-integral-optimized purification

Here we give a typical example for the study of the EWCS and BPE in the path-integral-
optimized purification of an interval, and assume that the cutoff brane plays the role of the
KR brane and the purification is in island phase. We consider the path integral optimization
for a single interval [a,b], hence the scalar field that characterizes the Weyl transformation is
given by (3.7) with κ = 0, and the cutoff brane (3.9) is just a semi-circle. As a case study,
we consider the setup shown in figure 8, where we considered two adjacent sub-intervals,

A : [a1, p] B : [p, b1] (A.23)

whose size and position are adjusted such that, the RT surface EAB consists of two disconnected
pieces of geodesics anchored on the cutoff brane, and the EWCS ΣAB also anchors on the brane.

The lengths of the geodesics anchored on the cutoff brane are classified in appendix B.
The cross-section of the entanglement wedge WAB has three saddle points, which anchors
on either of the two disconnected pieces of the RT surface, or the cutoff brane, and the
EWCS is the saddle point with minimal area. In the case shown in figure 8, the EWCS
anchors on the cutoff brane.

Firstly, we check the self-consistency of the simulation by calculating the entanglement
entropy on both sides of holography. In the gravity side, SAB is calculated by the RT formula,
which is the area of the two pieces of geodesic anchored on the brane described as

SAB = c

6 log
[2(a1 − a)(b − a2)

(b − a)ϵ

]
+ c

6 log
[2(b1 − a)(b − b2)

(b − a)ϵ

]
(A.24)

On the field theory side, we calculate SAB by island formula and denoting the island region
as Is(AB) = (−∞, q2] ∪ [q4,∞). Then, following (A.22) we have

SAB = min
Is(AB)

S̃Is(AB)AB = min
Is(AB)

(
S̃[q2,a1] + S̃[b1,q4]

)
= c

6 log
[2(a1 − a)(b − a2)

(b − a)ϵ

]
+ c

6 log
[2(b1 − a)(b − b2)

(b − a)ϵ

]
(A.25)
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which coincide with the RT formula. In the second equation we have plugged in the saddle
points for q1 and q4 expressed as

q2 = 2ab − (a + b)a1
a + b − 2a1

, q4 = 2ab − (a + b)b1
a + b − 2b1

. (A.26)

As was shown in figure 8, these saddles are just the intersecting points between the boundary
and the extended RT surface.

Then we check the correspondence between the EWCS and the BPE. On the gravity side,
the area of the EWCS as shown in figure 8 for this case can be easily calculated as follows

Area[ΣAB]
4G

= c

6 log
[2(p − a)(b − p)

(b − a)ϵ

]
. (A.27)

Prior to calculating the BPE for this phase, we should give an assignment for the island
regions, Is(AB) = Ir(A) ∪ Ir(B), where

Ir(A) = [q1, q2] , Ir(B) = (−∞, q1] ∪ [q4,∞) (A.28)

where x = q1 is the partition point of Is(AB), which will be determined by the balance
requirements (A.19). Now we calculate the PEE on both sides of (A.19), which are given by

I(AIr(A), BIr(B)B1Ir(B1)) = 1
2
(
S̃AIr(A)A1Ir(A1) + S̃AIr(A) − S̃A1Ir(A1)

)
= 1

2(S̃[q1,q3]∪[p1,p] + S̃[q1,q2]∪[a1,p] − S̃[q2,q3]∪[p1,a1])

= 1
2(S̃[q1,p] + S̃[q3,p1] + S̃[q1,p] + S̃[q2,a1] − S̃[q2,a1] − S̃[q3,p1])

= c

6 log
[

(p − q1)2

ϵ2

]
+ c

6ϕ[q1] , (A.29)

I(BIr(B), AIr(A)A1Ir(A1)) = 1
2
(
S̃BIr(B)B1Ir(B1) + S̃BIr(B) − S̃B1Ir(B1)

)
= 1

2(S̃(−∞,q1]∪[q3,p1]∪[p,∞) + S̃(−∞,q1]∪[p,b1]∪[q4,∞) − S̃[q3,p1]∪[b1,q4])

= 1
2(S̃[q1,p] + S̃[q3,p1] + S̃[q1,p] + S̃[b1,q4] − S̃[q3,p1] − S̃[b1,q4])

= c

6 log
[

(p − q1)2

ϵ2

]
+ c

6ϕ[q1] , (A.30)

where the scalar field is given by (3.7). Interestingly for this configuration, the balanced
condition is satisfied trivially. However, we need to further impose the implicit minimal
requirement which settles q1 to be

q1 = 2ab − (a + b)p
a + b − 2p

. (A.31)

Again, this point is also the intersection between the boundary and the extended EWCS
ΣAB. Finally, we obtain the BPE for this phase as follows

BPE = I(AIr(A), BIr(B)B1Ir(B1))|balanced = c

6 log
[2(p − a)(b − p)

(b − a)ϵ

]
, (A.32)

– 21 –



J
H
E
P
0
7
(
2
0
2
4
)
0
6
9

AB1 B B1A1Ir(A)Ir(B) Ir(B)

E
W

a1 p b1 bp1aq2 q4q1 q3

Ir(B1)Ir(B1)Ir(A1)

Ir(A1)

Ir(A)
Ir(B)

Figure 9. Two adjacent intervals AB and their complements A1 and B1, featuring entanglement island
regions Ir(A) = [q1, q2], Ir(B) = (−∞, q1] ∪ [q4,∞), Ir(A1) = [q2, q3] and Ir(B1) = [q3, a] ∪ [b, q4]
on the entire KR brane, are configured schematically. Here Ir(B1) indicate disconnected entanglement
island.

where we have plugged in (3.7) and (A.31) in the above equation. As expected, the BPE (A.32)
precisely match with the area of the EWCS (A.27).

Then we consider the scenarios where κ ̸= 0 in (3.7), such that the cutoff brane is
described by (3.9), which is no longer a semi-circle (see figure 9). The size, position and the
partition of AB are adjusted such that, the RT surface EAB and the EWCS ΣAB all anchor
on the cutoff brane. The lengths of the geodesics anchored on the cutoff brane are classified
in appendix B. On the gravity side, the area of the EWCS can be easily calculated as follows

Area[ΣAB]
4G

= c

6 log
[2(p − a)(b − p)(cosh(κ) + sinh(κ))

(b − a)ϵ

]
= c

6 log
[2(p − a)(b − p)

(b − a)ϵ

]
+ c

6κ . (A.33)

Then we turn to the calculation for the BPE on the field theory side. Firstly we give an
assignment for the island regions, Is(AB) = Ir(A) ∪ Ir(B), where

Ir(A) = [q1, q2] , Ir(B) = (−∞, q1] ∪ [q4,∞) (A.34)

where x = q1 is the partition point of Is(AB), which will be determined by the balance
requirements (A.19). Now we calculate the PEE on both sides of (A.19), which have the
same expression as (A.29) and (A.30), with the only difference that, the κ in the scalar
field (3.7) is non-zero. Again the balanced condition is satisfied trivially and the implicit
minimal requirement which settles q1 to be

q1 = 2ab − (a + b)p
a + b − 2p

. (A.35)

Finally, we may obtain the BPE for this phase as follows

BPE = I(AIr(A), BIr(B)B1Ir(B1))|balanced = c

6 log
[2(p − a)(b − p)

(b − a)ϵ

]
+ c

6k , (A.36)

where we have plugged in (3.7) and (A.35) in the above equation. As expected, the BPE
expressed in (A.36) precisely match with the area of the EWCS given by (A.33).
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A BA′B′ B′

l2

l 1

l ′1

l′2

x1 x′
2

x2x′
1

q′

C C ′

Figure 10. Schematics shows the purification of the adjacent intervals A = [x1, x′
2] and B = [x′

2, x2]
located in the vacuum CFT2. The geodesics lengths homologous to the intervals A∪A′ and A∪B are
depicted as l′1 + l′2 (black) and l1 + l2 (blue) respectively and the intersection point of the corresponding
geodesics is labelled as q′.

y

ρ2 ρ1

C C ′

q′

θθ′

Figure 11. Euclidean triangle is considered in the x-z plane where ρ1 and ρ2 are the distances
from the point q′ and the center of the RT surfaces associated with the intervals A ∪ B and A′ ∪ A

respectively. The point y is the distance between the corresponding centers.

B Geodesic length from geometrical analysis

In this section, we give a generic way to derive the lengths for geodesic chords anchored
on the boundary and terminated in the bulk, which we frequently encounter in this paper.
Let us consider two adjacent intervals A = [x1, x′

2] and B = [x′
2, x2] located in the vacuum

CFT2 which constitutes a pure state with the intervals A′ = [x′
1, x1] and B′ = [x2, x′

1], see
figure 10. When the RT surface of A′A and AB are normal to each other, we can explicitly
derive the lengths for the geodesic chords l1, l2, l′1 and l′2 in figure 10. To obtain the location
of the point q′ as indicated in figure 10, we consider a Euclidean triangle in the x-z plane and
utilize trivial Euclidean identities. Consequently, the coordinate of the point q′ are described
as x = ρ2 cos(θ′) and z = ρ2 sin(θ′) or ρ1 sin(θ) using the parameters in figure 11. We can
also re-express the coordinates ρ1, ρ2 and y in terms of the interval endpoints and applying
cosine law in the triangle results in following relations,

ρ1 = x2 − x1
2 , ρ2 = x′

2 − x′
1

2 , y = x1 + x2 − x′
1 − x′

2
2 ,

cos θ = ρ2
1 + y2 − ρ2

2
2ρ1y

, cos θ′ = ρ2
2 + y2 − ρ2

1
2ρ2y

. (B.1)

Note that, the two semi-circles depicted in figure 10 are normal to each other and therefore
we can determine a constraint equation between the endpoint of the intervals x1, x2, x′

1 and
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x′
2 by utilizing right angle triangle identity ρ2

1 + ρ2
2 = y2 as follows

−2x′
1x′

2 + x2(x′
1 + x′

2) + x1(x′
1 + x′

2 − 2x2) = 0 . (B.2)

Furthermore, we establish a framework to compute the geodesic length l′1, then we further
generalize this analysis to other geodesic segments. In this context, the geodesics equation
for the segment l′1 is described by (x − C)2 + (z − ϵ)2 = (ρ2)2, where C is the center for the
semi-circle l′1 + l′2. Now we utilize the geodesic length formula in pure AdS3 geometry at
constant time slice and integrate over the bulk coordinate z with limits involving endpoints
of the geodesic segment l′1 as

Ll′1
=
∫ ρ2 sin(θ′)

ϵ
dz

√
1 + dx

dz

2

z

= 1
2 log

ρ2 −
√

ρ2
2 − z2

ρ2 +
√

ρ2
2 − z2

 ∣∣∣∣∣
ρ2 sin(θ′)

ϵ

= 1
2 log

[
1 − cos θ′

1 + cos θ′
4ρ2

2
ϵ2

]
. (B.3)

Note that similar analysis can also be followed for the length of the geodesic segments l1, l2,
and l′2. For each of the geodesic length segments shown in figure 10, the holographic proposal
of the entanglement entropy discussed in [9] may be used to determine the holographic
entanglement entropy from the (B.3) in a following way

Ll1 = 1
2 log

[
(x1 − x′

1)(x1 − x′
2)(x2 − x1)2

(x′
1 − x2)(x2 − x′

2)ϵ2

]
, (B.4)

Ll2 = 1
2 log

[
(x2 − x′

1)(x2 − x′
2)(x2 − x1)2

(x′
1 − x1)(x1 − x′

2)ϵ2

]
, (B.5)

Ll′1
= 1

2 log
[

(x2 − x′
2)(x1 − x′

2)(x′
2 − x′

1)2

(x′
1 − x1)(x2 − x′

1)ϵ2

]
, (B.6)

Ll′2
= 1

2 log
[

(x1 − x′
1)(x′

1 − x2)(x′
2 − x′

1)2

(x2 − x′
2)(x1 − x′

2)ϵ2

]
. (B.7)

In the above equations, we have written the lengths for the geodesic chords in terms of the
coordinates {x′

1, x′
2, x1, x2} of the boundary endpoints, which satisfy (B.2). In this paper,

we utilize the expression of the corresponding geodesic segments to compute the lengths for
the EWCS and other geodesic chords in various scenarios.

C The BPE/EWCS correspondence for adjacent AB with entanglement
islands

Here we consider the configuration of two adjacent intervals A = [a1, p] and B = [p, b1] where
AB admits an island region. Again there are three possible assignments for the island regions:

1. A2a: Ir(A) = Ir(A1) = ∅, Ir(B) = (−∞, q1] ∪ [q2,∞), Ir(B1) = [q1, a] ∪ [b, q2],
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AB1 B B1A1Ir(B) Ir(B)

E
W

Ir(B)

a1 p b1 bp1aq1 q2

Ir(B1)Ir(B1)

Figure 12. Schematics shows the configuration of two adjacent intervals considered in Weyl CFT2
where the intervals B and B1 admit entanglement island region on the KR brane.

2. A2b: Ir(A) = [q1, q2], Ir(B) = (−∞, q1] ∪ [q4,∞), Ir(A1) = [q2, q3], Ir(B1) =
[q3, a] ∪ [b, q4],

3. A2c: Ir(B) = Ir(B1) = ∅, Ir(A) = (−∞, q1] ∪ [q2,∞), Ir(A1) = [q1, a] ∪ [b, q2]

In the phase-A2a, the interval AA1 do not admit an island as shown in figure 12. The
phase-A2c is symmetric to the phase-A2a. In the phase-A2b, both AA1 and BB1 admit an
island, and the analysis is given in the main text.

Phase-A2a and phase-A2c. We now discuss the computation of the EWCS in the scenario
depicted in figure 12. Here we have divided the complement of the adjacent intervals A ∪ B

into A1 ∪ B1 with partition point p1. Utilizing the constraint (B.2) for the RT surfaces
homologous to the intervals [q1, a1] and [p1, p], we can obtain location of the point p1 as

p1 = 2q1a1 − p(q1 + a1)
q1 + a1 − 2p

. (C.1)

In this scenario, the EWCS may be directly obtained from the length of the geodesic segment
described in appendix B as follows

EW = Area[EWCS]
4G

= c

6 log
[2(p − a1)(p − q1)

(a1 − q1)ϵ

]
,

(C.2)

Note that the value of q1 can also be obtained in terms of the points a, a1 and b by using
the constraint relation in (B.2) as

q1 = 2ab − (a + b)a1
a + b − 2a1

. (C.3)

Now we carry out the BPE analysis for this phase, where the island assignment Ir(B1) =
[q1, a]∪ [b, q2] and Ir(B) = (−∞, q1]∪ [q2,∞) is shown in figure 12. In this phase, the balance
requirement is given by

I(A, BIr(B)B1Ir(B1)) = I(BIr(B), AA1) . (C.4)
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We now utilize the generalized ALC proposal to compute PEEs mentioned in the above
balance requirement,

I(A, BIr(B)B1Ir(B1)) = 1
2
(
S̃AA1 + S̃A − S̃A1

)
= 1

2(S̃[p1,p] + S̃[a1,p] − S̃[p1,a1])

= c

6 log
[(p − p1)(p − a1)

(a1 − p1)ϵ

]
, (C.5)

I(BIr(B), AA1) = 1
2
(
S̃BIr(B)B1Ir(B1) + S̃BIr(B) − S̃B1Ir(B1)

)
= 1

2(S̃(−∞,p1]∪[p,∞) + S̃(−∞,q1]∪[p,b1]∪[q2,∞) − S̃[q1,p1]∪[b1,q2])

= 1
2(S̃[p1,p] + S̃[q1,p] + S̃[b1,q2] − S̃[q1,p1] − S̃[b1,q2])

= c

6 log
[(p − p1)(p − q1)

(p1 − q1)ϵ

]
. (C.6)

Solving the balance requirement (C.4) we get the partition point p1, which is same as (C.1).
Finally, we can obtain the BPE using (C.5) and (C.1),

BPE = I(A, BIr(B)B1Ir(B1))|balanced = c

6 log
[2(p − a1)(p − q1)

(a1 − q1)ϵ

]
, (C.7)

which coincide with the EWCS (C.2).
The discussion for the phase-A2c is similar.

D The BPE/EWCS correspondence for non-adjacent intervals

D.1 Disjoint AB with no island

We first investigate the simplest case of two disjoint intervals A = [a1, a2] and B = [b1, b2] with
no island region. Here the complement of AB is described by intervals A1∪B1 and A2∪B2 with
partition points located in Weyl CFT2. In this case, we observe that A1 ∪B1 may incorporate
an entanglement island region, which can be classified into two distinct phases given by

1. D1a: Ir(AB) = ∅, Ir(B1) = (−∞, a] ∪ [b,∞),

2. D1b: Ir(AB) = ∅, Ir(A1) = [q1, q2], Ir(B1) = (−∞, q1] ∪ [q2, a] ∪ [b,∞).

In the initial phase-D1a, Ir(B1) spans entire entanglement island region. However, the other
phases-D1a incorporates the entanglement island region Ir(A1) and Ir(B1) for A1 ∪ B1. In
both of the above phases, the entanglement wedge of AB is connected indicated from the
RT surface homologous to AB.

Phase-D1a. To proceed, we need to determine the location of EWCS endpoints situated on
the RT surfaces homologous to the intervals [a1, b2] and [a2, b1]. These two endpoints may be
obtained by constructing Euclidean triangles as discussed in appendix B for the RT surfaces
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homologous to the intervals [p1, p2] and [a1, b2] for y2 subsequently [p1, p2] and [a2, b1] for y1.
Therefore the location of these endpoints in terms of boundary coordinates are given by

y1 =
√

a2 − p1
√

p1 − b1
√

a2 − p2
√

b1 − p2
p1 + p2 − a2 − b1

,

y2 =
√

a1 − p1
√

a1 − p2
√

p1 − b2
√

b2 − p2
p1 + p2 − a1 − b2

.

(D.1)

The geodesic length connecting the above bulk points can be computed using the following
length formula

L =
∫ y2

y1
dz

√
1 + dx

dz

2

z

= 1
2 log

[
(p2 − p1)/2 −

√
((p2 − p1)/2)2 − z2

(p2 − p1)/2 +
√

((p2 − p1)/2)2 − z2

] ∣∣∣∣∣
y2

y1

.

(D.2)

Note that, the aforementioned length formula is minimal since, in determining the EWCS
endpoints, we took into consideration that the RT surface homologous to [p1, p2] is perpen-
dicular to the RT surfaces homologous to [a1, b2] and [a2, b1]. In this context, the EWCS in
the phase can be obtained by utilizing (D.2) and (D.1) as follows

EW = L
4G

= c

12 log
[(a2 − p1) (a1 − p2) (p1 − b1) (b2 − p2)

(a1 − p1) (a2 − p2) (p1 − b2) (b1 − p2)

]
.

(D.3)

where p1 and p2 are given as follow through solving (B.2) for the RT surfaces homologous
to [p1, p2] and [a1, b2], and the RT surfaces homologous to [p1, p2] and [a2, b1].

p1 = a1b2 − a2b1 −
√

(a1 − a2) (b1 − b2) (a1 − b1) (a2 − b2)
a1 − a2 − b1 + b2

,

p2 = a1b2 − a2b1 +
√

(a1 − a2) (b1 − b2) (a1 − b1) (a2 − b2)
a1 − a2 − b1 + b2

.

(D.4)

We now compute the BPE. As indicated in figure 13, where Ir(B1) = (−∞, a] ∪ [b,∞)
occupies the whole island region. We need to determine the corresponding partition point
via the balance requirement. In this context, the balance requirements are given by the
following two equations

I(A, BB1Ir(B1)B2) = I(B, A1A2A) ,

I(A1, BB1Ir(B1)B2) = I(B1Ir(B1), A1A2A) .
(D.5)
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A A2B1 B2 B B1A1

E
W

Ir(B1)

a1 p2 b2 bp1a a2 b1

y1

y2

Ir(B1)Ir(B1)

Figure 13. The diagram depicts phases-D1a of two disjoint intervals A = [a1, a2] and B = [b1, b2]
which are sandwiched by A2 ∪ B2 = [a2, b1] with an entanglement island region spanned by Ir(B1) =
(−∞, a] ∪ [b,∞) on the full KR brane.

The above PEEs can be computed using the generalized ALC proposal as follows

I(A, BB1Ir(B1)B2) = 1
2(S̃AA1 + S̃AA2 − S̃A1 − S̃A2)

= 1
2
(
S̃[p1,a2] + S̃[a1,p2] − S̃[p1,a1] − S̃[a2,p2]

)
= c

6 log
[(a2 − p1)(p2 − a1)

(a1 − p1)(p2 − a2)

]
, (D.6)

I(B, A1A2A) = 1
2(S̃BB1Ir(B1) + S̃BB2 − S̃B1Ir(B1) − S̃B2)

= 1
2
(
S̃(−∞,p1]∪[b1,∞) + S̃[p2,b2] − S̃(−∞,p1]∪[b2,∞) − S̃[p2,b1]

)
= 1

2
(
S̃[p1,b1] + S̃[p2,b2] − S̃[p1,b2] − S̃[p2,b1]

)
= c

6 log
[(b1 − p1)(b2 − p2)

(b2 − p1)(b1 − p2)

]
, (D.7)

and

I(A1, BB1Ir(B1)B2) = 1
2(S̃AA1A2 + S̃A1 − S̃AA2)

= 1
2
(
S̃[p1,p2] + S̃[p1,a1] − S̃[a1,p2]

)
= c

6 log
[(p2 − p1)(a1 − p1)

(p2 − a1)ϵ

]
, (D.8)

I(B1Ir(B1), A1A2A) = 1
2(S̃BB1Ir(B1)B2 + S̃B1Ir(B1) − S̃BB2)

= 1
2
(
S̃(−∞,p1]∪[p2,∞) + S̃(−∞,p1]∪[b2,∞) − S̃[p2,b2]

)
= 1

2
(
S̃[p1,p2] + S̃[p1,b2] − S̃[p2,b2]

)
= c

6 log
[(b2 − p1)(p2 − p1)

(b2 − p2)ϵ

]
. (D.9)

From the balance requirement (D.5), we can compute the partition points p1 and p2, which are
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the same as (D.4). The BPE for this phase-D1a may be obtained utilizing (D.4) and (D.6) as

BPE=I(A,BB1Ir(B1)B2)|balanced (D.10)

= c

6 log
[

b2(a2+b1)+a1(a2+b1−2b2)−2a2b1+2
√

(a1−a2)(b1−b2)(a1−b1)(a2−b2)
(a2−b1)(a1−b2)

]
.

Note that the above result of BPE can be exactly matched with the EWCS (D.3).

Phase-D1b. In this phase-D1b, we follow similar analysis provided in the earlier phase-D1a
to compute the EWCS. Consequently, we proceed to obtain the endpoints of the EWCS
which are given by y1 and y2 as indicated in figure 14,

y1 =
√

a1 − q1
√

a1 − p2
√

q1 − b2
√

b2 − p2
q1 + p2 − a1 − b2

,

y2 =
√

a2 − q1
√

a2 − p2
√

q1 − b1
√

b1 − p2
q1 + p2 − a2 − b1

,

(D.11)

where we used Euclidean triangle construction as discussed in appendix B for the RT surfaces
homologous to the intervals [q1, p2], [a1, b2] and [q1, p2], [a2, b1] for calculating the y2 and
y1 respectively. The minimal length at a constant time slice associated to these endpoints
is given by

L =
∫ y2

y1
dz

√
1 + dx

dz

2

z

= 1
2 log

[
(p2 − q1)/2 −

√
((p2 − q1)/2)2 − z2

(p2 − q1)/2 +
√

((p2 − q1)/2)2 − z2

] ∣∣∣∣∣
y2

y1

.

(D.12)

Utilizing (D.11) and (D.12), we may the compute the EWCS for this phase as follows

EW = L
4G

= c

12 log
[(a2 − q1) (a1 − p2) (q1 − b1) (b2 − p2)

(a1 − q1) (a2 − p2) (q1 − b2) (b1 − p2)

]
.

(D.13)

where q1 and p2 are given by:

q1 = a1b2 − a2b1 −
√

(a1 − a2) (b1 − b2) (a1 − b1) (a2 − b2)
a1 − a2 − b1 + b2

,

p2 = a1b2 − a2b1 +
√

(a1 − a2) (b1 − b2) (a1 − b1) (a2 − b2)
a1 − a2 − b1 + b2

.

(D.14)

Note that q1 can also be written in terms of the points a2, b1 and p2 using the constraint
condition in (B.2) for the RT surfaces homologous to [q1, p2] and [a2, b1] as

q1 = 2a2b1 − p2 (a2 + b1)
a2 + b1 − 2p2

. (D.15)
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A A2B1 B2 B B1A1

E
W

a1 p2 b2 bp1a a2 b1

Ir(B1)Ir(B1)Ir(B1) Ir(A1)

Ir(A1)

Ir(B1)

q2q1

y1

y2

Figure 14. Schematics shows the configuration of two disjoint intervals AB with entanglement island
regions Ir(A1) = [q1, q2] and Ir(B1) = (−∞, q1] ∪ [q2, a] ∪ [b,∞) where the partition points of A2 ∪ B2
and A1 ∪ B1 are labeled as p2 and p1 respectively.

In this phase-D1b, the computation of BPE involves entanglement island regions Ir(A1) =
[q1, q2] and Ir(B1) = (−∞, q1] ∪ [q2, a] ∪ [b,∞) shown in figure 14. We now calculate the
location of partition points p1 and p2 from balance requirements

I(A, BB1Ir(B1)B2) = I(B, A1Ir(A1)A2A) ,

I(A1Ir(A1), BB1Ir(B1)B2) = I(B1Ir(B1), A1Ir(A1)A2A) .
(D.16)

The above PEEs may be computed using the generalized ALC proposal as follows

I(A, BB1Ir(B1)B2) = 1
2(S̃AA1Ir(A1) + S̃AA2 − S̃A1Ir(A1) − S̃A2)

= 1
2
(
S̃[q1,q2]∪[p1,a2] + S̃[a1,p2] − S̃[q1,q2]∪[p1,a1] − S̃[a2,p2]

)
= 1

2
(
S̃[q1,a2] + S̃[q2,p1] + S̃[a1,p2] − S̃[q1,a1] − S̃[q2,p1] − S̃[a2,p2]

)
= c

6 log
[(a2 − q1) (p2 − a1)

(a1 − q1) (p2 − a2)

]
, (D.17)

I(B, A1Ir(A1)A2A) = 1
2(S̃BB1Ir(B1) + S̃BB2 − S̃B1Ir(B1) − S̃B2)

= 1
2
(
S̃(−∞,q1]∪[q2,p1]∪[b1,∞) + S̃[p2,b2] − S̃(−∞,q1]∪[q2,p1]∪[b2,∞) − S̃[p2,b1]

)
= 1

2
(
S̃[q1,b1] + S̃[q2,p1] + S̃[p2,b2] − S̃[q1,b2] − S̃[q2,p1] − S̃[p2,b1]

)
= c

6 log
[(b1 − q1) (b2 − p2)

(b2 − q1) (b1 − p2)

]
, (D.18)
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and

I(A1Ir(A1),BB1Ir(B1)B2) = 1
2(S̃AA1Ir(A1)A2 + S̃A1Ir(A1)− S̃AA2)

= 1
2
(
S̃[q1,q2]∪[p1,p2] + S̃[q1,q2]∪[p1,a1]− S̃[a1,p2]

)
= 1

2
(
S̃[q1,p2] + S̃[q2,p1] + S̃[q1,a1] + S̃[q2,p1]− S̃[a1,p2]

)
= c

6 log
[

(p1−q2)2(p2−q1)(a1−q1)
ϵ3(p2−a1)

]
+ c

6ϕ(q1)+ c

6ϕ(q2) , (D.19)

I(B1Ir(B1),A1Ir(A1)A2A) = 1
2(S̃BB1Ir(B1)B2 + S̃B1Ir(B1)− S̃BB2)

= 1
2
(
S̃(−∞,q1]∪[q2,p1]∪[p2,∞) + S̃(−∞,q1]∪[q2,p1]∪[b2,∞]− S̃[p2,b2]

)
= 1

2
(
S̃[q1,p2] + S̃[q2,p1] + S̃[q1,b2] + S̃[q2,p1]− S̃[p2,b2]

)
= c

6 log
[

(p1−q2)2(p2−q1)(b2−q1)
ϵ3(b2−p2)

]
+ c

6ϕ(q1)+ c

6ϕ(q2) . (D.20)

From the balance requirement (D.16), the partition points q1 and p2 are the same as (D.14).
Finally, we may obtain BPE for this phase as follows

BPE=I(A,BB1Ir(B1)B2)|balanced (D.21)

= c

6 log
[

b2(a2+b1)+a1(a2+b1−2b2)−2a2b1+2
√

(a1−a2)(b1−b2)(a1−b1)(a2−b2)
(a2−b1)(a1−b2)

]
.

The above result of BPE exactly matches with the EWCS in (D.13) using the value of
partition point p2 and q1 given in (D.15) and (D.14).

D.2 Disjoint AB admits island

In this subsection, we consider the configuration of two disjoint intervals A = [a1, a2]
and B = [b1, b2] where AB admits entanglement island region. We study the following
assignments for the island region,

1. D2a: Ir(AA1A2) = ∅, Ir(B1) = [q1, a] ∪ [b, q2], Ir(B) = (−∞, q1] ∪ [q2,∞) ,

2. D2b: Ir(A) = [q1, q2], Ir(B) = (−∞, q1] ∪ [q4,∞), Ir(A1) = [q2, q3], Ir(B1) =
[q3, a] ∪ [b, q4] ,

3. D2c: Ir(A) = [q2, q3], Ir(B) = [q5, q6], Ir(A1) = [q3, q4], Ir(B1) = [q4, a] ∪
[b, q5], Ir(A2) = [q1, q2], Ir(B2) = (−∞, q1] ∪ [q6,∞) .

The intervals A, A1 and A2 does not receive any contributions from the island region in the
phase-D2a as shown in figure 15. The last phase-D2c involves all entanglement island regions
for the all the intervals A, B, A1, B1, A2 and B2. However in this phase, the entanglement
wedge gets disconnected consequently the EWCS and BPE become zero.
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A A2B1 BB2 B1A1Ir(B) Ir(B)

EW

Ir(B)

a1 a2 p2 b2 bb1p1aq1 q2

y1
y2

Ir(B1)Ir(B1)

Figure 15. The diagram shows the configuration of AB considered in Weyl CFT2 where the intervals
B and B1 admit entanglement island regions Ir(B1) = [q1, a1] ∪ [b, q2] and Ir(B) = (−∞, q1] ∪ [q2,∞).

Phase-D2a. We use the same approach as in phase-D1a to calculate the EWCS in this
phase. Correspondingly the endpoints y1 and y2 of the EWCS as shown in figure 15, are
thus obtained as

y1 =
√

a2 − p1
√

a2 − p2
√

p1 − b1
√

b1 − p2
p1 + p2 − a2 − b1

,

y2 =
√

a1 − p1
√

a1 − p2
√

p1 − q1
√

q1 − p2
p1 + p2 − a1 − q1

.

(D.22)

At a constant time slice, the minimal length between the endpoints y1 and y2 located on the
RT surfaces homologous to [q1, a1] and [a2, b1] can be computed as follows

L =
∫ y2

y1
dz

√
1 + dx

dz

2

z

= 1
2 log

[
(p2 − p1)/2 −

√
((p2 − p1)/2)2 − z2

(p2 − p1)/2 +
√

((p2 − p1)/2)2 − z2

] ∣∣∣∣∣
y2

y1

.

(D.23)

Finally in this phase, the EWCS can be determined utilizing (D.22) and (D.23) in the
following proposal of the EWCS in AdS3 geometries

EW = L
4G

= c

12 log
[(a2 − p1) (a1 − p2) (p1 − b1) (q1 − p2)

(a1 − p1) (a2 − p2) (b1 − p2) (p1 − q1)

]
.

(D.24)

where p1 and p2 are given by:

p1 = a1q1 − a2b1 −
√

(a1 − a2) (b1 − q1) (a1 − b1) (a2 − q1)
a1 − a2 − b1 + q1

,

p2 = a1q1 − a2b1 +
√

(a1 − a2) (b1 − q1) (a1 − b1) (a2 − q1)
a1 − a2 − b1 + q1

.

(D.25)

We now compute the BPE in figure 15. Consequently, the balance requirements are
given by

I(A, BIr(B)B1Ir(B1)B2) = I(BIr(B), A1A2A) ,

I(A1, BIr(B)B1Ir(B1)B2) = I(B1Ir(B1), A1A2A) .
(D.26)
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Utilizing the generalized ALC proposal, the above PEEs may be described as follows

I(A,BIr(B)B1Ir(B1)B2)= 1
2(S̃AA1 +S̃AA2−S̃A1−S̃A2)

= 1
2
(
S̃[p1,a2]+S̃[a1,p2]−S̃[p1,a1]−S̃[a2,p2]

)
= c

6 log
[(a2−p1)(p2−a1)

(a1−p1)(p2−a2)

]
, (D.27)

I(BIr(B),A1A2A)= 1
2(S̃BIr(B)B1Ir(B1)+S̃BIr(B)B2−S̃B1Ir(B1)−S̃B2)

= 1
2
(
S̃(−∞,p1]∪[b1,∞)+S̃(−∞,q1]∪[p2,b2]∪[q2,∞)−S̃[q1,p1]∪[b2,q2]−S̃[p2,b1]

)
= 1

2
(
S̃[p1,b1]+S̃[q1,p2]+S̃[b2,q2]−S̃[q1,p1]−S̃[b2,q2]−S̃[p2,b1]

)
= c

6 log
[(b1−p1)(p2−q1)

(b1−p2)(p1−q1)

]
, (D.28)

and

I(A1, BIr(B)B1Ir(B1)B2) = 1
2(S̃AA1A2 + S̃A1 − S̃AA2)

= 1
2
(
S̃[p1,p2] + S̃[p1,a1] − S̃[a1,p2]

)
= c

6 log
[(p2 − p1) (a1 − p1)

ϵ (p2 − a1)

]
, (D.29)

I(B1Ir(B1), A1A2A) = 1
2(S̃BIr(B)B1Ir(B1)B2 + S̃B1Ir(B1) − S̃BIr(B)B2)

= 1
2
(
S̃(−∞,p1]∪[p2,∞) + S̃[q1,p1]∪[b2,q2] − S̃(−∞,q1]∪[p2,b2]∪[q2,∞)

)
= 1

2
(
S̃[p1,p2] + S̃[q1,p1] + S̃[b2,q2] − S̃[q1,p2] − S̃[b2,q2]

)
= c

6 log
[(p2 − p1) (p1 − q1)

ϵ (p2 − q1)

]
. (D.30)

Utilizing the balance requirements in (D.26), we get the solutions of p1 and p2 that are
the same as (D.25). Finally we obtain the BPE for this phase-D2 satisfying the balance
conditions as follows

BPE=I(A,BIr(B)B1Ir(B1)B2)|balanced (D.31)

= c

6 log
[

q1(a2+b1)+a1(a2+b1−2q1)−2a2b1+2
√

(a1−a2)(a1−b1)(a2−q1)(b1−q1)
(a2−b1)(a1−q1)

]
.

(D.32)

The above result of BPE exactly coincide with the EWCS by putting the value of p2 in (D.24).

Phase-D2b. As depicted in figure 16, the computation of the bulk EWCS involves endpoints
y2 and y1 where y2 is located on the KR brane. Here y1 is situated on the RT surface
homologous to the interval [a2, b1]. Note that the minimal length between the corresponding
endpoints can be calculated using the following length formula in the AdS3 geometry at
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AB1 B1A1 A2 B2 BIr(A)Ir(B) Ir(B)

E
W

a1 a2 p2 b1 b2 bp1aq2 q4q3q1

y1

y2

Ir(B1)Ir(B1)Ir(A1)

Ir(A1)

Ir(A)
Ir(B)

Figure 16. The BPE for this configuration receives contribution from entanglement island of A and
B and other island regions are described as Ir(A1) = [q2, q3] and Ir(B1) = [q3, a] ∪ [b, q4]. Here the B1
has disconnected entanglement island region.

a constant time slice as

L =
∫ y2

y1
dz

√
1 + dx

dz

2

z

= 1
2 log

[
(p2 − q1)/2 −

√
((p2 − q1)/2)2 − z2

(p2 − q1)/2 +
√

((p2 − q1)/2)2 − z2

] ∣∣∣∣∣
y2

y1

,

(D.33)

where the endpoints of the EWCS y1 and y2 are given by

y1 =
√

a2 − q1
√

a2 − p2
√

q1 − b1
√

b1 − p2
q1 + p2 − a2 − b1

,

y2 =
√

a − q1
√

a − p2
√

q1 − b
√

b − p2
q1 + p2 − a − b

.

(D.34)

Utilizing (D.34) and (D.33), we may compute the EWCS for this phase as follows

EW = L
4G

= c

12 log
[(a2 − q1) (a − p2) (q1 − b1) (b − p2)

(a − q1) (a2 − p2) (q1 − b) (b1 − p2)

]
.

(D.35)

where q1 and p2 are given by:

q1 = 2a2b1 − a2p2 − b1p2
a2 + b1 − 2p2

,

p2 = ab − a2b1 +
√

(a − a2) (b − b1) (a2 − b) (b1 − a)
a − a2 + b − b1

.

(D.36)

We now computate the BPE in figure 16. The balance requirements are given by,

I(AIr(A), BIr(B)B1Ir(B1)B2) = I(BIr(B), AIr(A)A1Ir(A1)A2) ,

I(A1Ir(A1), BIr(B)B1Ir(B1)B2) = I(B1Ir(B1), AIr(A)A1Ir(A1)A2) .
(D.37)
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Above PEEs in the balance conditions can be computed by using generalized ALC proposal
as follows

I(AIr(A),BIr(B)B1Ir(B1)B2)

= 1
2(S̃AIr(A)A1Ir(A1) + S̃AIr(A)A2 − S̃A1Ir(A1) − S̃A2)

= 1
2
(
S̃[p1,a2]∪[q1,q3] + S̃[a1,p2]∪[q1,q2] − S̃[p1,a1]∪[q2,q3] − S̃[a2,p2]

)
= 1

2
(
S̃[q1,a2] + S̃[q3,p1] + S̃[q2,a1] + S̃[q1,p2] − S̃[q3,p1] − S̃[q2,a1] − S̃[a2,p2]

)
= c

6 log
[(a2 − q1) (p2 − q1)

ϵ (p2 − a2)

]
+ c

6ϕ(q1) , (D.38)

I(BIr(B),AIr(A)A1Ir(A1)A2)

= 1
2(S̃BIr(B)B1Ir(B1) + S̃BIr(B)B2 − S̃B1Ir(B1) − S̃B2)

= 1
2
(
S̃(−∞,q1]∪[q3,p1]∪[b1,∞) + S̃(−∞,q1)∪[p2,b2]∪[q4,∞) − S̃[b2,q4]∪[q3,p1] − S̃[p2,b1]

)
= 1

2
(
S̃[q1,b1] + S̃[q3,p1] + S̃[b2,q4] + S̃[q1,p2] − S̃[q3,p1] − S̃[b2,q4] − S̃[p2,b1]

)
= c

6 log
[(b1 − q1) (p2 − q1)

ϵ(b1 − p2)

]
+ c

6ϕ(q1) , (D.39)

and

I(A1Ir(A1),BIr(B)B1Ir(B1)B2)

= 1
2(S̃AIr(A)A1Ir(A1)A2 + S̃A1Ir(A1) − S̃AIr(A)A2)

= 1
2
(
S̃[p2,p1]∪[q1,q3] + S̃[p1,a1]∪[q2,q3] − S̃[a1,p2]∪[q1q2]

)
= 1

2
(
S̃[q1,p2] + S̃[q3,p1] + S̃[q2,a1] + S̃[q3,p1] − S̃[q2,a1] − S̃[q1,p2]

)
= c

6 log
[

(p1 − q3)2

ϵ2

]
+ c

6ϕ(q3) , (D.40)

I(B1Ir(B1),AIr(A)A1Ir(A1)A2)

= 1
2(S̃BIr(B)B1Ir(B1)B2 + S̃B1Ir(B1) − S̃BIr(B)B2)

= 1
2
(
S̃(−∞,q1]∪[q3,p1]∪[p2,∞) + S̃[b2,q4]∪[q3,p1] − S̃(−∞,q1]∪[p2,b2]∪[,q4,∞)

)
= 1

2
(
S̃[q1,p2] + S̃[q3,p1] + S̃[b2,q4] + S̃[q3,p1] − S̃[b2,q4] − S̃[q1,p2]

)
= c

6 log
[

(p1 − q3)2

ϵ2

]
+ c

6ϕ(q3) . (D.41)

As we can observe from the second balance constraint from above which are trivially satisfied.
We may obtain q1 from the first balance condition and it reduces in terms of the partition
point p2. Therefore, we need to minimize the BPE for this phase over the partition point
p2 and it provides following value of q1 and p2, which are the same as (D.36). The BPE
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AB1 B1A1 A2 B2 BIr(A)Ir(B2) Ir(B) Ir(B2)
a1 a2 p2 b1 b2 bp1aq3 q5q4q1 q6q2

Ir(B1)Ir(B1)Ir(A1)

Ir(A1)

Ir(A)

Ir(A2)

Ir(B)

Ir(B2)

Ir(A2)

Figure 17. The figure illustrates entanglement islands regions for all the intervals located in
Weyl CFT2 indicated as Ir(A) = [q2, q3], Ir(B) = [q5, q6], Ir(A1) = [q3, q4], Ir(B1) = [q4, a] ∪ [b, q5],
Ir(A2) = [q1, q2] and Ir(B2) = (−∞, q1] ∪ [q6,∞).

for this phase is given by

BPE=I(AIr(A),BIr(B)B1Ir(B1)B2)|balanced (D.42)

= c

6 log
[ (a−b)(a2−b1)(a2−p2)(b1−p2)

(p2(a2+b1)+a(a2+b1−2p2)−2a2b1)2(a2(b−2b1+p2)+b1p2+b(b1−2p2))

]
.

(D.43)

The above result of BPE exactly coincide with the EWCS in (D.35) by putting the value of q1.

Phase-D2c. As displayed in figure 17, the intervals A2 and B2 also admit entanglement
islands. In this context, the entanglement wedge in this phase become disconnected implying
the EWCS to be vanished, which indicates a zero BPE. In this phase the balance requirements
are described as follows

I(AIr(A), BIr(B)B1Ir(B1)B2Ir(B2)) = I(BIr(B), A1Ir(A1)A2Ir(A2)AIr(A)) ,

I(A1Ir(A1), BIr(B)B1Ir(B1)B2Ir(B2)) = I(B1Ir(B1), A1Ir(A1)A2Ir(A2)AIr(A)) .
(D.44)

Where

I(AIr(A), BIr(B)B1Ir(B1)B2Ir(B2))

= 1
2(S̃AIr(A)A1Ir(A1) + S̃AIr(A)A2Ir(A2) − S̃A1Ir(A1) − S̃A2Ir(A2))

= 1
2
(
S̃[q2,q4]∪[p1,a2] + S̃[q1,q3]∪[a1,p2] − S̃[q3,q4]∪[p1,a1] − S̃[q1,q2]∪[p2,a2]

)
= 1

2
(
S̃[q4,p1] + S̃[q2,a2] + S̃[q3,a1] + S̃[q1,p2] − S̃[q4,p1] − S̃[q3,a1] − S̃[q2,a2] − S̃[q1,p2]

)
= 0 , (D.45)

I(BIr(B), A1Ir(A1)A2Ir(A2)AIr(A))

= 1
2(S̃BIr(B)B1Ir(B1) + S̃BIr(B)B2Ir(B2) − S̃B1Ir(B1) − S̃B2Ir(B2))

= 1
2
(
S̃[q4,p1]∪[b1,q6] + S̃(−∞,q1]∪[p2,b2]∪[q5,∞) − S̃[b2,q5]∪[q4,p1] − S̃(−∞,q1]∪[p2,b1]∪(q6,∞]

)
= 1

2
(
S̃[b1q6] + S̃[q4,p1] + S̃[b2,q5] + S̃[q1,p2] − S̃[b2,q5] − S̃[q4,p1] − S̃[b1,q6] − S̃[q1,p2]

)
= 0 . (D.46)
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It is obvious that the balanced requirements (D.44) are satisfied and the BPE for this
phase is just zero.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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