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Entanglement Entropy

• The entanglement entropy (EE) is

SEE ≡ −TrA(ρA ln ρA), (1)

where

ρA ≡ TrBρAB (2)

is the reduced density matrix of the region A, obtained by the

partial trace operation TrB acting on the density matrix of the

region AB, ρAB .
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n-sheet Manifold

SEE = − ∂

∂n
TrAρ

n
A|n=1. (3)

We only need to calculate TrAρ
n
A, differentiate it with respect to n,

and finally take the limit n→ 1. This is the procedure of the

replica trick.
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Path-Integral Formalism

We first take A to be the single interval at tE = 0 in the flat

Euclidean coordinates (tE , x).

The ground state wave functional is

Ψ
(
φ0(x)

)
=

∫ φ(tE=0,x)=φ0(x)

tE=−∞
Dφ e−S(φ), (4)

where φ(tE , x) denotes the field. The value of the field at the

boundary φ0 depends on the spatial coordinate x . The density

matrix ρAB is given by two copies of the wavefunctional

(ρ)φ0φ′0
= Ψ(φ0)Ψ̄(φ′0). (5)

The complex conjugate one Ψ̄ can be obtained by path-integrating

from tE =∞ to tE = 0.
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To obtain the reduced density matrix of the region A, we need to

integrate out φ0 on the region B with the condition

φ0(x) = φ′0(x).

(ρA)φ+φ−

= (Z1)−1

∫ tE=∞

tE=−∞
Dφ e−S(φ)

∏
x∈A

×δ
(
φ(0+, x)− φ+(x)

)
· δ
(
φ(0−, x)− φ−(x)

)
, (6)

where Z1 is the partition function.
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To compute the TrAρ
n
A, we first prepare n copies of the reduced

density matrix of the region A

(ρA)φ1+φ1−(ρA)φ2+φ2− · · · (ρA)φn+φn− (7)

with the boundary condition

φj−(x) = φ(j+1)+(x), j = 1, 2, · · · , n, (8)

where φ(n+1)+(x) ≡ φ1+, then integrating out φj+ for each j , and

then we take the trace.

The path-integral representation of the

TrAρ
n
A is:

TrAρ
n
A = (Z1)−n

∫
(tE ,x)∈Rn

Dφ e−S(φ) ≡ Zn

Zn
1

, (9)

where Rn is the n-sheet manifold, and the Zn is the n-sheet

partition function.
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Minimum Surface

• Although we have the n-sheet method to avoid the conical

singularity, the computation in quantum field theory is still

hard.

• The holographic method used the minimum surface in the

AdSd to obtain the EE in the CFTd−1.

• The computation of the minimum surface is easier than the

computation of the n-sheet method. Hence the holographic

method gives a simple way to observe the exact solution in

the EE.
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AdS3

The spacetime interval
(
ds2

3

)
of the AdS3 metric (gµν) is given by:

ds2
3 ≡ gµνdx

µdxν = − 1

Λ

dt2 + dx2 + dz2

z2
, (10)

where Λ < 0 is the cosmological constant and the spacetime indices

are labeled by µ and ν. The AdS3 induced metric (hµν) is given by:

ds2
3b = hµνdx

µdxν = − 1

Λ

1

z2

[
1 +

(
dz

dx

)2]
dx2 (11)

by fixing time t as a constant. Hence the area of the surface is

given by

AAdS3 =

√
− 1

Λ

∫
dx

1

z

√
1 +

(
dz

dx

)2

. (12)
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The minimum area satisfies the relation:

d

dx

δAAdS3

δz ′
=

δAAdS3

δz
,

d

dx

[ dz
dx

z

1√
1 +

(
dz
dx

)2

]
= − 1

z2

√
1 +

(
dz

dx

)2

, (13)

where z ′ ≡ dz/dx . One solution is:

z(x) =
√
L2 − x2,

dz

dx
= −x

z
. (14)

Hence the minimum area is given by:

AAdS3 =

√
− 1

Λ

∫ L−δ

−L+δ
dx

1

z

√
1 +

(
dz

dx

)2

=

√
− 1

Λ
ln

2L− δ
δ

, (15)

in which we set L� δ > 0.
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• The δ is the cut-off in the x-direction.

• By using z(x) =
√
L2 − x2, we obtain the cut-off in the

z-direction

ε ≡
√
L2 − (L− δ)2 =

√
2δL− δ2. (16)

• We choose the solution

δ = L−
√
L2 − ε2. (17)

• Hence the minimum area is given by:

AAdS3 =

√
− 1

Λ
ln

2L− δ
δ

=

√
− 1

Λ
ln

L +
√
L2 − ε2

L−
√
L2 − ε2

. (18)
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The holographic EE for the AdS3 metric is obtained from that:

AAdS3

4G3
=

1

4
√
−ΛG3

ln
L +
√
L2 − ε2

L−
√
L2 − ε2

=
ccft2

6
ln

L +
√
L2 − ε2

L−
√
L2 − ε2

=
ccft2

6
ln

4L2

ε2
+ · · · =

ccft2

3
ln

2L

ε
+ · · ·

=
ccft2

3
ln

L

ε
+ · · · ,

(19)

where G3 is the three-dimensional gravitational constant, and the

center charge of CFT2 is defined by

ccft2 ≡
3

2
√
−ΛG3

(20)
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Action

The action of the SL(2) Chern-Simons gravity theory is given by

SG

=
k

2π

∫
d3x εtrθTr

(
AtFrθ −

1

2

(
Ar∂tAθ − Aθ∂tAr

))
− k

2π

∫
d3x εtrθTr

(
Āt F̄rθ −

1

2

(
Ār∂tĀθ − Āθ∂tĀr

))
− k

4π

∫
dtdθ Tr(A2

θ)

− k

4π

∫
dtdθ Tr(Ā2

θ), (21)

in which we assume that the boundary conditions of the gauge

fields A and Ā are: A− ≡ At − Aθ = 0 and Ā+ = At + Aθ = 0.

The variable k is defined by l/(4G3), where 1/l2 ≡ −Λ.
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The gauge fields are defined by the vielbein eµ and spin connection

ωµ:

Aµ ≡ Aa
µJa ≡ Ja

(
1

l
eaµ + ωa

µ

)
, Āν ≡ Āa

ν J̄a ≡ J̄a

(
1

l
eaν − ωa

ν

)
,(22)

in which the Lie algebra indices are labeled by a, and the indices

are raised or lowered by η ≡ diag(−1, 1, 1). This bulk terms in this

theory are equivalent to the Chern-Simons theory up to a boundary

term. The measure in this gravitation theory is
∫
DADĀ.
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Boundary Theory

When we take the solution (Frθ = 0) into the action, and use the

asymptotic boundary condition: g−1
SL(2)∂θgSL(2)|r→∞ = Aθ|r→∞ and

ḡ−1
SL(2)∂θḡSL(2)|r→∞ = Āθ|r→∞. We use the SL(2) transformations:

gSL(2) =

(
1 0

F 1

)(
λ 0

0 1
λ

)(
1 Ψ

0 1

)
,

ḡSL(2) =

(
1 −F̄
0 1

)(
1
λ̄

0

0 λ̄

)(
1 0

−Ψ̄ 1

)
(23)

to obtain the boundary conditions: λ2∂θF = 2r ,

∂2
θF/∂θF = −4rΨ, λ̄2∂θF̄ = 2r , and ∂2

θ F̄/∂θF̄ = −4rΨ̄.
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Finally, we obtain the boundary theory, two-dimensional

Schwarzian theory

SG

=
k

2π

∫
dtdθ

(
3

2

(∂−∂θF )(∂2
θF )

(∂θF )2
−
∂−∂

2
θF

∂θF

)
− k

2π

∫
dtdθ

(
3

2

(∂+∂θF̄ )(∂2
θ F̄ )

(∂θF̄ )2
−
∂+∂

2
θ F̄

∂θF̄

)
, (24)

where

x+ ≡ t + θ, x− ≡ t − θ, (25)

∂+ =
1

2
∂t +

1

2
∂θ, ∂− =

1

2
∂t −

1

2
∂θ. (26)

The measure is
∫
dFdF̄

(
1/(∂θF∂θF̄ )

)
.
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Boundary Effective Action on the Sphere Manifold

The bulk Euclidean AdS3 metric can be asymptotically written as

ds2
3a = r2ds2

s +
dr2

r2
, (27)

where

ds2
s = dψ2 + sin2 ψdθ2, 0 ≤ ψ < π, 0 ≤ θ < 2π. (28)

The ds2
s is the spacetime interval for the sphere with a unit radius.
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The asymptotic behavior of the gauge fields are:

A =

(
dr
2r 0

rE+ −dr
2r

)
, Ā =

(
−dr

2r −rE−

0 dr
2r

)
, (29)

where

E+ ≡ E θ + E t , E− ≡ E θ − E t . (30)

The E± is the boundary zweibein. Then we can find the below

boundary condition by

λ =

√
2rE+

θ

∂θF
, Ψ = − 1

4rE+
θ

∂2
θF

∂θF
,

λ̄ =

√
2rE−θ
∂θF̄

, Ψ̄ = − 1

4rE−θ

∂2
θ F̄

∂θF̄
. (31)
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For the sphere manifold, we have

Eψ = dψ, E θ = sinψdθ. (32)

Because we did the Wick rotation (t = −iψ), we use the following

coordinates:

x+ = −iψ + θ, x− = −iψ − θ,

ψ =
i

2
(x+ + x−), θ =

x+ − x−

2
. (33)

The θ-component of the boundary zweibein is defined by the E±θ .

Therefore, we have E+
θ = E−θ = sinψ. The boundary gauge-field in

the Lorentzian manifold satisfies the conditions:

E+
θ At − E+

t Aθ = 0, E−θ Āt − E−t Āθ = 0. (34)
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Therefore, the AdS3 gravitation action with the sphere asymptotic

boundary condition is

SGS

=
k

2π

∫
d3x εtrθTr

(
AtFrθ −

1

2

(
Ar∂tAθ − Aθ∂tAr

))
− k

2π

∫
d3x εtrθTr

(
Āt F̄rθ −

1

2

(
Ār∂tĀθ − Āθ∂tĀr

))
+

k

4π

∫
dtdθ Tr

(
E+
t

E+
θ

A2
θ

)
− k

4π

∫
dtdθ Tr

(
E−t
E−θ

Ā2
θ

)
. (35)
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Then we use the conditions λ2∂θF = 2E+
θ r and λ̄2∂θF̄ = 2E−θ r to

obtain the boundary effective action on the sphere manifold

SGS =
k

π

∫
dtdθ

(
(∂θλ)(D−λ)

λ2
− (∂θλ̄)(D+λ̄)

λ̄2

)
, (36)

where

D+ ≡
1

2
∂t +

1

2

E−t
E−θ

∂θ, D− ≡
1

2
∂t +

1

2

E+
t

E+
θ

∂θ. (37)
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From the field redefinition:

F ≡ F

E+
θ

, F̄ ≡ F̄

E−θ
. (38)

the gravitation action on the sphere manifold becomes:

SGS

=
k

4π

∫
dtdθ

(
(∂2
θF)(D−∂θF)

(∂θF)2
−

(∂2
θ F̄)(D+∂θF̄)

(∂θF̄)2

)
=

k

4π

∫
dtdθ

[
(∂2
θφ)(D−∂θφ)

(∂θφ)2
− (∂θφ)(D−φ)

]
− k

4π

∫
dtdθ

[
(∂2
θ φ̄)(D+∂θφ̄)

(∂θφ̄)2
− (∂θφ̄)(D+φ̄)

]
, (39)

in which we used

F ≡ tan

(
φ

2

)
, F̄ ≡ tan

(
φ̄

2

)
. (40)
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When we take the scale transformation on the the boundary

zweibein, this theory is invariant. Therefore, we can use the

conformal transformation to compute the EE as in the CFT.
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EE for One-Interval

We first perform the coordinate transformation to get

ds2
s = sech2(y)(dy2 + dθ2), in which we used sech y = sinψ. In

the n-sheet manifold, the range of the θ is 0 < θ ≤ 2πn. The

periodicity of this theory with respect to the θ is 2πn. When we do

the computation, we need to regularize the range of the

y -direction. The range of the y -direction is

− ln(L/ε) < y ≤ ln(L/ε). The periodicity of this theory with

respect to the y is 4 ln(L/ε) because we assume the Dirichlet

boundary condition in the y -direction. The L is the length of an

interval, and ε is the cut-off on the ending point of the interval.
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Finally, we identify the sphere from the torus to determine the

complex structure τ on the sphere. The coordinates of torus

z ≡ (θ + iy)/n satisfy the identification: z ∼ z + 2π and

z ∼ z + 2πτ . The boundary condition of the fields, φ and φ̄ is

given by

φ(y/n, θ/n + 2π) = φ(y/n, θ/n) + 2π,

φ
(
y/n + 2π · Im(τ), θ/n + 2π · Re(τ)

)
= φ(y/n, θ/n),

φ̄(y/n, θ/n + 2π) = φ̄(y/n, θ/n) + 2π,

φ̄
(
y/n + 2π · Im(τ), θ/n + 2π · Re(τ)

)
= φ̄(y/n, θ/n). (41)

Therefore, we can quickly find that the complex structure on the

sphere is

τ =
2i

nπ
ln

L

ε
. (42)
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When we take this complex structure, we can obtain the periodicity

4 ln(L/ε). The fields on the sphere can be expanded from the way:

φ =
θ

n
+ ε(y , θ), φ̄ =

θ

n
+ ε̄(y , θ), (43)

where

ε(y , θ) ≡
∑
j ,k

εj ,ke
i j
n
θ− k

τ
y , ε∗j ,k ≡ ε−j ,−k ,

ε̄(y , θ) ≡
∑
j ,k

ε̄j ,ke
i j
n
θ− k

τ
y , ε̄∗j ,k ≡ ε̄−j ,−k . (44)

Because this theory has the SL(2) redundancy, the variables has

the constraints:

εj ,k = 0, ε̄j ,k = 0 when j = −1, 0, 1. (45)
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To compute the partition function on the sphere, we need to do

the Wick rotation t = −iψ. Now we consider the expansion from

the ε(y , θ) and ε̄(y , θ) to obtain the one-loop effect. Therefore, we

obtain the Rényi entropy

Sn =
(c + 26)(n + 1)

6n
ln

L

ε
(46)

and the entanglement entropy is

SEE =
c + 26

3
ln

L

ε
. (47)
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Wilson Line

The EE in the two-dimensional Schwarzian theory gives the

non-conformal deformation from the quantum correction. Here we

want to obtain a bulk description of the EE. Since the Wilson lines

W (P,Q) ≡ Tr

[
P exp

(∫ P

Q
Ā

)
P exp

(∫ P

Q
A

)]
, (48)

can provide the EE in the CFT2, we begin from this operator to

study. The P denotes the path ordering, P and Q are the

two-ending points of the Wilson lines at a time slice. Here the

trace operation acts on the representation, which has the Casimir

(c2)
√

2c2 = c(1/n − 1)/6.
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We extend the Wilson line to the following form

WR(C )

=

∫
DUDPDλ

× exp

[ ∫
C
ds

(
Tr(PU−1DsU) + λ(s)

(
Tr(P2)− c2

))]
,

(49)

where U is an SL(2) element, P is its conjugate momentum, and

the covariant derivative is defined as that:

DsU ≡
d

ds
U + AsU + UĀs , As ≡ Aµ

dxµ

ds
. (50)
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The equations of motion are

i
k

2π
Fµ1µ2 = −

∫
ds

dxµ3

ds
εµ1µ2µ3δ

3
(
x − x(s)

)
UPU−1,

i
k

2π
F̄µ1µ2 =

∫
ds

dxµ3

ds
εµ1µ2µ3δ

3
(
x − x(s)

)
P. (51)
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The solution can be expressed as that:

A = L−1aL + LdL−1, L = exp(−ρL0) exp(−L1z),

Ā = −R−1aR − R−1dR, R = exp(−L−1z̄) exp(−ρL0),

(52)

where the gauge fields are given as that:

a =

√
c2

2

1

k

(
dz

z
− dz̄

z̄

)
L0, (53)
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The SL(2) algebra is defined by that:

[Lm, Ln] = (n −m)Lm+n, m, n = 0,±1, (54)

Tr(L2
0) =

1

2
, Tr(L−1L1) = −1, (55)

and the traces of other bilinears vanish. Here we choose

z = r exp(iθ). Then the spacetime interval is

ds2
3 = dρ2 + exp(2ρ)(dr2 + n2r2dθ2). (56)

With the r = exp(t) and a scale transformation, the n-sheet

cylinder appears at the boundary (ρ→∞). This solution

corresponds to

U = 1, P =
√

2c2L0 (57)

with the curve

ρ(s) = s, z(s) = 0. (58)
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Reference of the Solution

• M. Ammon, A. Castro and N. Iqbal, “Wilson Lines and

Entanglement Entropy in Higher Spin Gravity,” JHEP 1310,

110 (2013) doi:10.1007/JHEP10(2013)110 [arXiv:1306.4338

[hep-th]].
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• Hence we find that including the Wilson line gives the n-sheet

cylinder at the boundary.

• Since we should choose the smooth fluctuation, we still obtain

the two-dimensional Schwarzian theory by integrating out the

time-component gauge fields. The n-sheet geometry can be

used in the smooth region ρ 6= 0. Hence computing the

Wilson line WR in the Chern-Simons gravity theory is

equivalent to computing the Zn/Z
n
1 in the two-dimensional

Schwarzian theory.

• In other words, the entanglement entropy is

SEE = − lim
n→1

1

1− n
ln〈WR〉, (59)

where 〈WR〉 is the expectation value of the Wilson line.
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• When we take the classical solution into the Wilson line, the

EE gives the CFT2 result. This implies that the Wilson line

can be seen as the geodesic line at the on-shell level. The

equivalence between the Wilson line and the EE is exact, not

only restricted to the one-loop order. Hence the Wilson line

can be seen as the suitable operator for the quantum

deformation of the minimum surface.



Holographic Entanglement Entropy AdS3 Chern-Simons Gravity Theory EE in the Boundary Theory Conclusion

• We compute the EE at the one-loop order in the boundary

theory. This gives the non-CFT effect from the one-loop

correction.

• We show that the Wilson line is the suitable operator for

doing the quantum deformation of the minimum surface. This

result shows the AdS/non-CFT correspondence in the EE and

also the interesting proposal, “Minimum Surface=EE”.
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