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1 Introduction

The Higgs branch moduli spaces of 6d N = (1, 0) supersymmetric theories are substantially
more intricate then is apparent from the tensor branch description. To be specific, focus
on the class of n M5 branes on R × C2/ΓG, where ΓG = Zk for G = SU(k) or Dk−2 for
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G = SO(2k). The 6d N = (1,0) theory, denoted by TnG, has generically G × G global
symmetry. This symmetry can be broken to subgroups by the Higgs mechanism, which is
realised by some field that acquires a nilpotent vacuum expectation value (VEV) [1] labelled
by two G-partitions ρL,R. One may denote such theories by TnG(ρL, ρR), with the convention
TnG(ρtrivial, ρtrivial) = TnG. In the dual Type IIA frame [2, 3], this modification of the TnG
theories is achieved by introducing D8 branes that have D6 branes ending on them in a
pattern described by G-partitions ρL,R. In the F-theory frame, nilpotent VEVs correspond
to residues for poles of Hitchin equations living on D7 branes [4], which is referred to as a
special case of T-brane data, see [5, 6]. An advantage of the F-theory approach is that it
allows to study cases without a known Type IIA description, e.g. for example M5 branes on
E-type ALEs-singularities. In [7], RG-flows between 6d N = (1, 0) theories related by such
nilpotent Higgsings have been considered for Type IIA D6-D8-NS5 brane configurations with
or without additional O6 orientifold planes. It has been observed that the case of D-type
singularities can lead to brane systems with negative numbers of D6 branes in between
two adjacent NS5 branes. Since this did not correspond to any conventional scenario, it
has not been pursued further. However, the authors of [8] demonstrated that the Type
IIA configurations with negative charge branes can be used to derive consistent results for
anomaly coefficients, cf. [9]; see also [10] for supergravity duals of such configurations. As a
by-product, the difference of the finite coupling Higgs branch dimensions for theories with
different boundary conditions has been computed to be [8]

dimH H6d (TnG (ρtrivial, ρtrivial)) − dimH H6d (TnG (ρL, ρR)) = dimH OρL
+ dimH OρR

,

(1.1)

with Oρ a nilpotent orbit closure of G, labelled by a partition ρ. The next progress followed
by the computation of the Higgs branch dimension at the origin of the tensor branch [11]

dimH H6d
∞(TnG(ρL, ρR)) = n + dim G − dimH OρL

− dimH OρR
. (1.2)

Nonetheless, besides the jump in dimensions, not much else was known about the infinite
coupling Higgs branches.

Recently, the magnetic quiver technique has been successful in providing a host of
additional insights on the Higgs branches of 6d N = (1, 0) theories [12–17]. For instance, [12]
provides the magnetic quivers for TnG theories at infinite coupling and conjectures a gen-
eralisation to T-brane theories TnG(ρL, ρR). Shortly after, the brane constructions [15, 16]
allowed to systematically derive the magnetic quivers for TnG from brane systems. Besides
the magnetic quiver itself, a host of additional information is accessible. Naturally, the
magnetic quiver for each distinct tensor branch phase comes equipped with a Hilbert series,
called monopole formula [18]. In terms of the 6d Higgs branches, this is a generating
function for the Higgs branch operator spectrum in a given tensor branch phase. In addition,
the phase structure of the Higgs branch is encoded in the phase (Hasse) diagram [19], which
can be deduced from the magnetic quiver itself, from the brane system, or from geometric
reasoning, depending on the circumstances.

The purpose of this note is to convey two points: firstly, brane system with negative
numbers of D6 branes should be taken seriously, because they allow to derive a host of
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consistent results, provide new predictions and new challenges. For instance, hypermultiplets
in spinor representations of SO(n) gauge groups appear as well as the exceptional gauge
group G2. While this data is deduced from F-theory constructions, it nonetheless represents
a useful construction within branes. More to the point, such non-standard matter and
exceptional gauge algebras have previously only been constructed via branes in 5 dimensions,
using the Higgs mechanism [20, 21].

Secondly, the magnetic quiver constructions [15, 16] together with the acceptance of
negative branes allow to derive all the infinite coupling magnetic quivers for the TnG(ρL, ρR)
theories with G of type A or D (provided ρL,R are special partitions, as explained below).
But most importantly, by focusing on a few explicit boundary conditions one is able to
uncover exciting Higgs branch geometries such as nilpotent orbits for the exceptional groups
G2, F4, and E6 (the database and computations for nilpotent orbits of exceptional type [22]
proves to be extremely useful for this purpose). For these nilpotent orbits, there are a
host of tools available now: the brane system, the magnetic quiver techniques, and the
phase diagram. In fact, it is an open problem to find a Coulomb branch quiver realisation
for exceptional nilpotent orbits beyond height 2. The orbits found here are precisely and
excitingly in this missing area.

The main results of this note are as follows:

• In section 4.1 the 21 dimensional closure of the nilpotent orbit of E6 with Bala-Carter
label A2 is realised as an infinite coupling 6d Higgs branch. We provide the explicit
brane realisation, an exact hyper-Kähler quotient, the magnetic quivers, and the
relation to the geometric Satake correspondence.

• In section 4.4 the infinite coupling Higgs branch phase diagram is derived for all 6d
G × Sp(0) quiver theories supported on (−3)(−1) curves.

• In section 5.3.1 the 20 dimensional closure of the nilpotent orbit of F4 is also found to
be an infinite coupling Higgs branch of a 6d theory. We detail the brane system and
magnetic quivers; furthermore, we reconstruct the Higgs branch Hasse diagram using
physical methods: 6d quivers, brane systems, magnetic quivers, and quiver subtraction.

The remainder of the note is organised as follows: the Type IIA brane configurations
dual to M5 branes on A or D-type ALE spaces with non-trivial boundary conditions are
reviewed in section 2. An appetiser in section 3 shows how boundary condition can modify
the Higgs branches into rich and sometimes under-appreciated geometries. Thereafter,
section 4 starts exploring Higgs branches associated to 2 M5 branes on C2/D6, with the left
boundary non-trivial and the right trivial, and ends with C2/D4. Here, a nilpotent orbit of
E6 emerges, which inspires the derivation of the phase diagram for a whole class of theories.
In section 5 further SO(8) boundary conditions are explored by enlarging the number of
M5 branes. Here, a nilpotent orbit of F4 emerges. These cases are naturally fitted into
families of SO(2k) boundary conditions. Subsequently, non-trivial boundaries are allowed
on both sides in sections 6 and 7. Lastly, conclusions are provided in section 8.
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Type IIA x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 × × × × × ×
D8 × × × × × × × × ×

D6, O6 × × × × × × ×
Table 1. Occupation of space-time directions by NS5, D8, D6, and O6 in Type IIA.

A number of appendices complement the main body. Appendix A provides background
information on brane configurations and global symmetries. Appendix B details explicit
examples for M5 branes on an A3 and D6 ALE space, respectively.

Notation. For magnetic quivers, the global symmetry of the Coulomb branch is denoted
by GJ , while the global symmetry algebra deduced from the balanced nodes is gbalance.

2 M5 branes on A and D type singularities — The brane system

M5 branes on A or D-type ALE singularities C2/ΓAD admit dual Type IIA brane configu-
rations. M5 branes become NS5 branes, the C2/Zk singularity is dual to k D6 branes filling
the transverse space, while C2/Dk is dual to k full D6 branes on top of an O6− orientifold
plane. The space-time occupations are summarised in table 1. The stack of D6 branes is
extended to ±∞ along the x6 direction. These semi-infinite 6-branes can be terminated at
finite x6 position on D8 branes without breaking supersymmetry.

2.1 A-type singularity with boundary conditions

Consider n NS5 branes and k D6 branes as in table 1. One may enrich the set-up by
assigning boundary conditions of the D6 ending on D8 brane for very large positive and
negative x6. These boundary conditions can be cast in the form of partitions ρL,R of k.
This input data determines how many D6 branes end on each D8 brane, see below or
table 13 for examples. Assuming that all NS5 branes are well separated, one can read off
the low-energy description in terms of a 6d electric quiver gauge theory [2, 3] which is
labelled by TnSU(k)(ρL, ρR).

In practice, the configuration is defined as follows (see also [2, 23] for a summary):
consider, for instance, n ≥ 6 M5 branes on an C2/Z9 singularity with boundary conditions
ρL = (4, 22, 1) and ρR = (19). For the left boundary, one begins by placing one D8 brane in
the first NS5 brane interval (counting from left), two D8 branes in the second interval, and
one D8 brane in the fourth interval. Likewise, for the right boundary, one places nine D8
branes on the first NS5 brane interval from the right. Next, the D6 branes are added. In
the centre of the configuration, far from the boundaries, the C2/Z9 singularity in M-theory
dualises to 9 D6 branes with NS5 branes intersecting them. The central part of the brane
configuration has vanishing cosmological constant m. Next, consider intervals closer to
the left boundary. Passing any of the D8 branes increases the cosmological constant by
one unit [2, 24]. This change in cosmological constant affects how many D6 branes can
end on the left and right of an NS5 brane. In general, the difference between the number
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#(D6L) of D6s ending on the left and the number #(D6R) of D6s ending on the right is
set by the value m of the cosmological constant at the position of the NS5 brane. In short,
m = ±(#(D6L) − #(D6R)) and the sign is a matter of convention. Hence, the presence
of D8 branes lead to a decrease of D6 branes towards the boundaries. For the example
considered, the brane system and the 6d quiver becomes

⋯
4 7 8 9 9 9 9⋯

9

(2.1)

SU(4) SU(7) SU(8) SU(9) SU(9)
. . .

SU(9) SU(9)

1 2 1 9

−2 −2 −2 −2 −2 −2 −2

(2.2)

Here and in the remainder of this note, NS5 branes are denoted by ⊗, D6 branes are
horizontal solid lines, while D8 branes are vertical solid lines. It is evident, that the changes
induced from ρL are obtainable from partial Higgs mechanism starting from the trivial
partition 19. The 6d theory (2.2) contains the usual quiver notation that encodes the
hypermultiplets and vector multiplets. In addition, each vector multiplet is accompanied
by a tensor multiplet. Below each gauge node, the F-theory curve of self-intersection −n
is indicated.

Magnetic quivers. Following the magnetic quiver construction for this class of theo-
ries [15], it is straightforward to derive the magnetic quivers for each (singular or non-singular)
point on the tensor branch. For instance, in [12, eq. (4.2)] a conjecture for the Higgs branch
of TnSU(k)(ρL, ρR) at infinite gauge coupling has been put forward by using magnetic quivers.
The reader is referred to appendices B.1–B.2 for the exact form of the magnetic quivers
and examples for SU(4).
2.2 D-type singularity with boundary conditions

Starting from a Type IIA set-up with 2n half NS5 branes with 2k half D6 branes on top
of O6− orientifolds, one may assign boundary conditions of the D6 branes ending on the
D8 branes at x6 = ±∞. Both sides can be labelled by D-type partitions ρL,R of 2k. The
low-energy effective theory is labelled by TnSO(2k)(ρL, ρR). As observed in [7, 8], D-type
boundary condition inevitably include brane configurations wherein the number of D6
branes between two half NS5 branes can become negative (the lowest number is −3 D6 on
an O6+ plane). It has been demonstrated in [8] that despite this oddity, the brane systems
can be used to correctly evaluate anomaly coefficients.

To elaborate, the inclusion of D-type partition boundary data in these brane config-
uration proceeds as in the A-type case of section 2.1, except for the further subtlety of
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O6 orientifold planes. As recalled in appendix A.1, the orientifolds carry 6-brane charge.
Thus, the difference between the 6-brane charge on the left and right hand side of an
NS5 brane is given by the value of the cosmological constant. Each time a 8-brane is
passed, the value changes, which enforces varying 6-brane numbers. As O6− and Õ6− have
negative 6-brane charge, there are naturally accompanied by more D6 branes than the
positively charged O6+ and Õ6+ planes. It is not surprising that the negative brane numbers
are only encountered for O6+/Õ6+ planes. To be more specific, recall the algorithmic
construction [8] (see also [25, 26]): denote the left boundary condition as ρL ≡ λ and its
transpose λT = [λ̂1, λ̂2, . . . , λ̂n] with λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂n > 0. The position of the half D8
branes are determined by integers ρi defined as

ρi = λ̂i − λ̂i+1 , i = 1, . . . , n − 1 and ρn = λ̂n . (2.3)

The brane configuration and 6d quiver are given by

r1 r2 r3 r4

ρ1 ρ2 ρ3 ρ4

⋯ Ð→
Sp( r1

2
) SO(r2) Sp( r3

2
) SO(r4)

. . .

SO(ρ1) Sp( ρ2
2

) SO(ρ3) Sp( ρ4
2

)

(2.4)

The numbers rj of half D6 branes are determined by λT and are constrained by the anomaly
cancellation conditions

rj =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
−8 +∑ji=1 λ̂i j = odd ,

∑ji=1 λ̂i j = even ,
with

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r2j−1 = 1

2 (r2j−2 + r2j + ρ2j−1) + 8 ,

r2j = 1
2 (r2j−1 + r2j+1 + ρ2j) − 8 .

(2.5)

It follows that r2j−1 becomes negative or zero if and only if ∑2j−1
i=1 λ̂i ≤ 8. In particular, the

Type IIA brane configuration has non-positive number of D6 branes suspended between
adjacent half NS5 if and only if the largest part of λT is less than or equal to 8. Moreover,
the case of equality, i.e. λ̂1 equals 8, just has a vanishing number of D6; whereas genuine
negative numbers of branes appear once the largest part of λT is strictly less than 8.

Of course, the quiver diagram in (2.4) is only meaningful for non-negative ri; in contrast,
as argued below, the brane configuration is a legitimate starting point for further studies. In
this work, brane configurations with negatively charged branes are used to derive magnetic
quivers for the Higgs branches at infinite coupling, see below and appendix B.4. Nonetheless,
considering these brane systems in their own right leads to the open challenge of deducing
certain matter representations from the brane system.

Classification of negative charge brane configurations. Based on the analysis of [8],
one can simply compile a table with all brane configurations that contain negatively charged
branes. To be specific, consider a C2/Dk singularity with D-type partition ρL = λ for the
left boundary and the trivial partition ρR = (12k) for the right boundary. The possibilities
are classified in terms of λT as shown in table 2.

The prescription of table 2 is applicable for brane configurations in which the D8
branes coming from the left and right boundary conditions do not have to cross each other.
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In other words, one requires a sufficient number of NS5 branes between them. For the
case of overlapping boundary conditions, a detailed analysis has appeared in [9] and some
interesting examples are studied in detail below, see sections 6 and 7.

Brane configuration 6d quiver PartitionT

1

6

2m SO(12)
. . .

O(1)

Sp(m)
(6,6,k,...)
k=0,2,4,6
2m=6−k

1

5

1 2m SO(11)
. . .

O(1)

Sp(m)
(6,5,k,...)
k=1,3,5
2m=5−k

1

5

2 2m SO(10)
. . .

O(2)

Sp(m)
(6,4,k,...)
k=0,2,4
2m=4−k

1
4

3 2m SO(9)
. . .

O(3)

Sp(m)
(6,3,k,...)
k=1,3

2m=3−k

1
4

4

SO(8)
. . .

O(4) (6,2,2,...)

1
3

5

SO(7) Sp(0)
. . .

O(5) (6,1,1,...)

2
4

2

m SO(7) Sp(2)
. . .

O(m)

(43,k...)
m=4−k

2
4

1

2 m SO(7) Sp(1)
. . .

Sp(1) O(m)

(42,2,k...)
m=2−k
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Brane configuration 6d quiver PartitionT

2 3
1

1 m G2 Sp(1)

O(m)

. . .

(4,3,3,k...)
m=3−k

2 3

1 2 m G2 Sp(0)

Sp(1) O(m)

. . .

(4,3,1,k,...)
m=1−k

2 3

2 m SU(3) Sp(0)

O(m)

. . .

(4,2,2,k,...)
m=2−k

2 2 1
3

3 SO(7) Sp(0)
. . .

Sp(1)

Sp(1)

(4,1,1,...)

3 2 1
4

1

m Sp(1) SO(7) Sp(1)
. . .

O(m)

(25,k...)
m=2−k

3 2 1
3

1 Sp(1) G2 Sp(0)
. . .

O(1)

(23,12,...)

3
1 2 2 1

3

1 Sp(1) G2 Sp(0)
. . .

O(1)

(2,12n−2)

Table 2. Brane configurations with negative charge branes. ⊗ denotes NS5 branes, vertical
solid lines denote half D8 branes, horizontal black/red solid lines denote half D6 branes (the
positive/negative charge of the physical D6 is written on top). The colour is black for positive and
red for negative charge. O6 orientifolds are denoted as summarised in appendix A.1. Likewise,
the 6d quiver is provided. Gauge groups are written explicitly below each round node ○. The
hypermultiplet matter content is encoded in the solid lines connecting nodes: black solid lines are
bifundamental half-hypermultiplets, while red solid lines denote bi-spinor representations. The last
column displays the transpose partition λT that labels the distinct cases.

Before proceeding, let us pause and emphasise the status and the logic of table 2.
The 6d quiver theories for any choice of boundary conditions are known from F-theory
constructions. The brane systems with negative numbers are an analytic continuation
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of standard brane constructions. The approach taken in this note is to fit the brane
system with the corresponding 6d quiver gauge theory (plus a suitable number of tensor
multiplets). This is then the starting point for the new directions taken here: the brane
systems enables us to derive a magnetic quiver and to study the Higgs branch moduli spaces
in an unprecedented detail.

Magnetic quivers. In [12, eq. (4.3)] a conjectural description of the Higgs branch at
infinite coupling of TnSO(2k)(ρL, ρR) has been presented as a magnetic quiver. Building on
the magnetic quiver construction [16] for this class of theories, it is now straightforward
to derive these magnetic quivers from the brane configurations. The reader is referred to
appendices B.3–B.4 for the general form of the magnetic quivers and examples for SO(12).

3 Appetiser — Nilpotent 6d Higgs branches

3.1 A nilpotent orbit via boundary conditions

Based on the expositions in section 2, the magnetic quivers for the theories with boundary
conditions can be derived systematically. Now, it is time to demonstrate that interesting
moduli spaces can arise. Consider 3 M5 branes on a C2/Z2 singularity with boundary
conditions ρL = (2), ρR = (12). The 6d quiver theory reads

←→
SU(1) SU(2)

3

−2 −2

(3.1)

i.e. SU(2) gauge theory with effectively 4 fundamental hypermultiplets and 2 tensor multi-
plets. Its Higgs branch (at finite coupling) is captured by the following magnetic quiver

(13) ∶
2 1

1
1

1 ⎧⎪⎪⎪⎨⎪⎪⎪⎩
GJ = SO(8)
dim C = 5

(3.2)

and the bouquet of U(1) nodes is represented by the partition (13). This moduli space is
known to be the minimal nilpotent orbit closure of SO(8), which is fitting for the finite
coupling Higgs branch of SU(2) with 4 fundamentals. As argued in [13–15], the collapse
of −2 curve or, equivalently, taking one gauge coupling in (3.1) to infinity is realised by
discrete gauging. Collapsing a single −2 curve yields an S2 discrete gauging (denoted by
phase (2, 1)), while the collapse of both −2 curves becomes an S3 discrete gauging (denoted
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by phase (3)). The magnetic quivers for these two Higgs branch phases are given by

(2,1) ∶
2 1

1 2

Adj ⎧⎪⎪⎪⎨⎪⎪⎪⎩
GJ = SO(7)
dim C = 5

(3) ∶
2 1

3

Adj ⎧⎪⎪⎪⎨⎪⎪⎪⎩
GJ = G2

dim C = 5

(3.3)

The Coulomb branch of (3) is known to be the (quaternionic) 5-dimensional sub-regular
nilpotent orbit closure of G2 [22]. Its Hasse diagram is displayed in figure 1a. It is crucial
to appreciate the appearance of the G2 global symmetry at the origin of the tensor branch
and not SO(7). For SU(2) gauge theory with a single tensor, the infinite coupling point has
SO(7) global symmetry, because SO(7) is the commutant of S2 inside SO(8). However, for
SU(2) with two tensors, the infinite coupling Higgs branch has G2, as G2 is the commutant
of S3 inside SO(8). Even more is true, the statement extends beyond mere symmetry
considerations. It is known [27] that the next-to-minimal orbit of SO(7) is an S2 quotient of
the minimal orbit of SO(8); likewise, the sub-regular nilpotent orbit of G2 is an S3 quotient
of the minimal orbit of SO(8).

Moreover, it is instructive to keep track of the Hasse diagram changes for the three
phases [28]

●

0

d4

(13) ∶ ●
●

0

A1

b3

(2,1) ∶ ●
●
●
0

A1

m

g2

(3) ∶
(3.4)

where the change of global symmetry is clearly visible at the bottom transition.

3.2 Hasse diagram for single gauge group factor

Consider the anomaly-free theories supported on a −2 curve. The partial Higgs mechanism
between them gives rise to distinct sets, cf. [30]: (i) the SU(n) theories with 2n flavours, (ii)
a set of SO(n) theories with matter in the vector and spinor representations [31], and (iii)
a set that includes exceptional gauge groups. In figure 2, the Higgs branch Hasse diagram
for each is displayed. Analogously, the Hasse diagrams for the anomaly-free theories on a−3 curve are summarised in figure 3.

For later purposes, briefly recall the conventions for a Higgs branch Hasse diagram [19].
Each leaf is denoted by ●, and whenever two neighbouring leaves are partially ordered, they
are connected by a line. The minimal slice between two partially ordered leaves a, b with
a > b, such that no third leaf c with a > c > b exists, is denoted either by g for the minimal
nilpotent orbit closure of G, or by A, D, E for Kleinian surface singularities C2/ΓADE.
Other minimal transitions may appear and are referenced whenever they appear. Each leaf
is denoted by the corresponding 6d electric theory, whose Higgs branch describes the slice
to the top of the Hasse diagram.
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J
H
E
P
1
1
(
2
0
2
2
)
0
1
0

G2(a1)
Ã1

A1

0

g2

A1

m

(a) G2(a1) Hasse diagram.

A2

3A1

2A1

A1

0

b3

a5

e6

A1

(b) A2 of E6 Hasse diagram.

F4(a3)
C3(a1)

Ã2 +A1

Ã2

B2

A2 + Ã1

A2

A1 + Ã1

Ã1

A1

0

g2

a+2
A1 A1

a+3

f4

A1

A1

m [2A1]+

a+2

c3

m

(c) F4(a3) Hasse diagram.

Figure 1. The Hasse diagrams for three nilpotent orbits of G2, E6, and F4, respectively, following
the conventions of [29]. The orbits are denoted by their Bala-Carter labels. Nilpotent orbits that
are contained in the same special piece are connected by a dotted line. Capital letters denote simple
surface singularities, while lower-case letters stand for closures of minimal nilpotent orbits. The
non-normal variety m is detailed in [29, section 1.8.4.]. These three nilpotent orbits show up as Higgs
branches of 6d N = (1,0) supersymmetric theories. Note also that the special pieces (connected by
dotted lines) have component group S3, S2, and S4, respectively.

4 Search for interesting theories

Considering a D-type singularity, the orthosymplectic magnetic quivers often suffer from
“bad” magnetic gauge nodes which renders them incomputable with the monopole formula.
In this section, the aim is to search for computable magnetic quivers. Interestingly, one of
the Higgs branches encountered in this search is a nilpotent orbit of E6. We provide the
explicit magnetic quiver, brane systems, and Hasse diagrams.

Consider the theory of 2 M5 branes on a C2/D6 singularity with boundary conditions
ρL = (26), ρR = (112). The Type IIA brane configuration leads to the following 6d quiver:

1 6 2

6 12

Ð→
SO(12) Sp(2)

SO(12)

O(1)

Sp(3)

−3 −1

(4.1)

and the presence of an NS5 brane interval with negative brane number signals the quasi Higgs
mechanism which trades the corresponding tensor multiplet for a number of hypermultiplets
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J
H
E
P
1
1
(
2
0
2
2
)
0
1
0

●{1}

●SU(2)+4F

●SU(3)+6F

●SU(4)+8F

●SU(5)+10F

⋮
●SU(n)+2nF

d4

a5

a7

a9

a2n−1

(a)

●{1}

●SU(2)+4F

●SU(3)+6F

●G2+4F

●SO(7)+1V +4S ● ●
●SO(8)+2V +2S+2C

●SO(9)+3V +2S

●SO(10)+4V +2S

●SO(11)+5V +S

●SO(12)+6V + 1
2
S+ 1

2
C

●SO(13)+7V + 1
2
S

d4

a5

c4

c4

c2

c3

c4

c5

c6

c7

(b)

●{1}

●SU(2)+4F

●SU(3)+6F

●G2+4F

●SO(7)+V +4S ● ●
●SO(8)+2V +2S+2C

●SO(9)+3V +2S

●SO(10)+4V +2S

●SO(11)+5V +S

●SO(12)+6V +2 1
2
S(C)

d4

a5

c4

c4

c2

c3

c4

c5

c6

(c)

●{1}

●SU(2)+4F

●SU(3)+6F

●G2+4F

●SO(7)+V +4S ● ●
●SO(8)+2V +2S+2C

●SO(9)+3V +2S

●F4+3F

●E6+4F

●E7+6 1
2
F

d4

a5

c4

c4

c2

c3

c3

?

?

(d)

Figure 2. The Higgs branch Hasse diagrams for the theories defined in a single −2 curve. a contains
the SU(n) type of theories. b details the SO(n) type theories, while c shows the phase diagram for
the family of theories related to SO(12) with 6F + 2 ⋅ 1

2S(C). Lastly, d shows the Hasse diagram for
the families that contain the exceptional theories. Here, F denotes the fundamental, V the vector,
S the spinor, and C the conjugate spinor representation. Each leaf is denoted by the 6d (electric)
theory. The phase diagrams displayed are the finite coupling Higgs branch Hasse diagrams for the
6d theory at the bottom. The diagrams for the other theories are obtained by reduction.

dictated by the gravitational anomaly cancellation [32–34]. Thus, from the original 3 tensors
(4 positions of half NS branes minus an overall position by translation invariance), only 2
remain — consistent with two gauge couplings. The SO(12) theory is anomaly free with 1
half-hypermultiplets in the spinor representation of dimension 32 and 5 hypermultiplets in
the vector representation. The Sp(2) gauge theory has 12 flavours, hence again is anomaly
free. The 6 half D8 branes on the middle interval give rise to an Sp(3) global symmetry,
while the 12 half D8 branes give rise to an SO(12) global symmetry.

One can straight-forwardly Higgs the Sp(2) gauge node away. For instance, Sp(2)→
Sp(1)→ {1} is a transparent Kraft-Procesi transition [35] in the brane configuration

1 6 2

6 12

Ð→ 1 6 1

8 8 2

Ð→ 1 6

10 4 4

(4.2)
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H
E
P
1
1
(
2
0
2
2
)
0
1
0

●SU(3)

●G2+F

●SO(7)+2S ● ●
●SO(8)+V +S+C

●SO(9)+2V +S

●SO(10)+3V +S

●SO(11)+4V + 1
2
S

●SO(12)+5V + 1
2
S(C)

a1

c2

c1

c2

c3

c4

c5

(a)

●SU(3)

●G2+F

●SO(7)+2S ● ●
●SO(8)+V +S+C

●SO(9)+2V +S

●F4+2F

●E6+3F

●E7+5 1
2
F

a1

c2

c1

c2

c2

?

?

(b)

Figure 3. The Higgs branch Hasse diagrams for the theories defined in a single −3 curve. a
details the SO(n) type theories. Lastly, b shows the Hasse diagram for the families that contain
the exceptional theories. Here, F denotes the fundamental, V the vector, S the spinor, and C the
conjugate spinor representation. Again, the phase diagrams displayed are the finite coupling Higgs
branch Hasse diagrams for the 6d theory at the bottom. The diagrams for the other theories are
obtained by reduction.

and note that the rightmost four half D8 branes are fully decoupled. Hence, these are not
kept for the subsequent discussion. Strictly speaking, the resulting theory is defined on the−3 curve coupled to the adjacent −1 curve. Based on the brane system, one can derive the
following infinite coupling magnetic quiver

SO(12) Sp(0)O(1)

Sp(5) O(4)

−3 −1

Ð→
S
p(1)

S
O(4)

S
p(3)

S
O(8)

S
p(5)

S
O(12)

S
p(5)

S
O(8)

S
p(3)

S
O(4)

S
p(1)

S
O(2)

Sp(2)
Λ2

(4.3)

which is not computable via the monopole formula as it has Sp(k) nodes with negative
imbalance, depicted in grey (balanced nodes are depicted in red). Nevertheless, one can
proceed and explore further partial Higgs mechanisms. In terms of the brane system, the
partial Higgsing SO(12)→ SO(11)→ SO(10) cannot be separated into two processes

1 6

10 4

Ð→ 1 5

1 8 5

Ð→ 1 5

2 6 6

(4.4)
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because the last transition is not accompanied by creation or annihilation of physical branes.
This effect has been denoted as collapse in [35], see also [36, figure 8]. Nonetheless, one can
derive an infinite coupling magnetic quiver for the SO(10) theory

SO(10) Sp(0)O(2)

Sp(3) O(6)

−3 −1

Ð→
S
O(2)

S
p(2)

S
O(6)

S
p(4)

S
O(10)

S
p(4)

S
O(6)

S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(2)
Λ2

(4.5)

An encouraging sign is that there are two more balanced nodes and less grey nodes, indicating
that if we proceed with Higgsing, then more nodes will turn balanced, and more importantly
the quiver will become computable using the monopole formula. Similarly, the brane system
only sees the combined transition SO(10)→ SO(9)→ SO(8)

1 5

2 6 6

Ð→ 1 4

3 4 7

Ð→ 1 4

4 2 8

(4.6)

because the last transition is, again, not accompanied by creation or annihilation of physical
branes. The infinite coupling magnetic quiver for the SO(8) theory is obtained as

SO(8) Sp(0)O(4)

Sp(1) O(8)

−3 −1

Ð→
S
O(2)

S
p(1)

S
O(4)

S
p(3)

S
O(8)

S
p(3)

S
O(6)

S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(2)
Λ2

(4.7)

where 4 more nodes become balanced. Nevertheless, the quiver is still not computable.
Next, the transition SO(8)→ SO(7) is visible in the brane system

1 4

4 2 8

Ð→ 1 3

5 9

(4.8)

and the magnetic quiver reads

SO(7) Sp(0)O(5)

O(9)

−3 −1

Ð→
S
O(2)

S
p(1)

S
O(4)

S
p(2)

S
O(8)

S
p(3)

S
O(6)

S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(2)
Λ2

(4.9)
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and we happily hit a quiver with non negative imbalance, hence computable. Lastly, the
brane systems allows a combined transition SO(7)→ G2 → SU(3)

1 3

5 9

Ð→ 2 3

2 1 2 9

Ð→ 2 3

2 2 10

(4.10)

wherein the last two brane systems are indistinguishable in terms of Higgs branch degrees
of freedom. Note also that the leftmost two half D8 branes have decoupled in the brane
configuration of G2 and SU(3). Based on (4.10), one arrives at a proposal for the infinite
coupling magnetic quiver of pure SU(3) on a −3 curve coupled to a −1 curve

SU(3) Sp(0)

O(10)

−3 −1

Ð→
S
O(2)

S
p(2)

S
O(8)

S
p(3)

S
O(6)

S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(2)
Λ2

(4.11)

As there is a single gauge group and the infinite coupling of the Sp(0) involves a small
E8 instanton transition, we expect the moduli space to be the hyper-Kähler quotient of
the closure of the minimal nilpotent orbit of E8 by SU(3). An additional S2 gauging acts
on the Higgs branch when the SU(3) coupling is tuned to infinity. Furthermore, as the
computations below indicate, the resulting moduli space is the closure of the 21 dimensional
nilpotent orbit of E6. This is a remarkable finding, as the studies of this brane system
reveals a Coulomb branch construction for this nilpotent orbit. It is very uncommon to
have Coulomb branch constructions for nilpotent orbits of exceptional type, hence this
study reveals a new exciting result!

We proceed with a detailed discussion of these points.

4.1 SU(3) coupled to Sp(0)
Consider 2 M5 branes on C2/D4 with boundary conditions ρL = (32,12), ρR = (18). The
brane system for SU(3) coupled to Sp(0) at finite coupling is given by

2 3

2 10

←→
SU(3) Sp(0)

O(10)

−3 −1

(4.12)

The SU(3) gauge theory is anomaly-free with zero hypermultiplets, while Sp(0) is anomaly-
free with 16 half-hypermultiplets. Each gauge group comes with one tensor multiplet giving
a total of two.

The brane system naively displays 3 intervals between 4 half NS5 branes. However,
brane intervals with negatively charge branes do not give rise to a tensor multiplet; thus,
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there are only two effective tensor multiplets, i.e. two gauge couplings. The right-most
brane interval is an O6+ plane without D6 branes, which can be thought of as an Sp(0)
gauge theory on a −1 curve. Next, the three left-most half NS5 branes conspire to yield a
single pure SU(3) gauge theory, i.e. the −3 curve. Note that all the 12 half D8 branes are
crucial for the understanding of the system; in particular, for the derivation of the magnetic
quiver and the anomaly cancellation for the Sp(0) gauge group. Further note that the
number of gauge nodes in the magnetic quiver is 9. This is given by 12, the number of half
D8 branes, minus 3 (11 segments and two Sp(0) nodes at each end of the quiver).

Because this coupled system does not have any matter content, one can deduce the
infinite coupling Higgs branch by the following reasoning. The collapse of a −1 curve is
known to yield the small E8 instanton transition [37] — the Higgs branch is a symplectic
singularity (or hyper-Kähler moduli space) Omin

E8 with global E8 symmetry. Since, the
system is still coupled to an SU(3) gauge theory on the −3 curve, the infinite coupling
moduli space of the entire configuration is an SU(3) hyper-Kähler quotient Omin

E8 ///SU(3)
of the minimal nilpotent orbit closure of E8.

However, this is not the end of the story yet. The F-theory perspective suggests that
the collapse of the −1 curve leads to the E8 transition and, simultaneously, reduces the−3 to a −2 curve. The subsequent collapse of the −2 curve leads to the gauging of an S2
permutation group [13]. In the brane configuration, collapsing the −1 and −3 curve means
that the half NS5 branes need to merge pairwise on the orientifold plane. The attached D6
branes can reconnect, and the physical NS5 branes can split and move off the orientifold.
The brane configuration in the phase where both pairs of half NS5 branes are away from
the orientifold plane is given by

(12) ∶ 1 2 4 3 3 2 2 1 1

(4.13)

where the number of physical D6 branes is denoted in each interval. It is apparent that
there are two distinguished phases, the two pairs of NS5 brane are either separated or
coincident. These are denoted by (12) and (2), respectively. As discussed in [13–16], the
difference between both is an S2 action. Making the pairs coincident means the resulting−2 curve is collapsed, which in the brane system becomes

(2) ∶
×2

1 2 4 3 3 2 2 1 1
(4.14)

The two infinite coupling moduli spaces obey a simple relation

H(12)
∞ = Omin

E8 ///SU(3) , H(2)
∞ =H(12)

∞ ///Z2 . (4.15)

For partition (12), the Higgs branch is simply the SU(3) hyper-Kähler quotient; while for
partition (2), the origin of the tensor branch, the Higgs branch is the Z2 quotient thereof.
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Brane systems (4.13) and (4.14) constitute the brane realisation of the geometric Satake
correspondence which we turn to describe in section 4.2.

Hilbert series for the hyper-Kähler quotient. Starting from the Omin
E8 , the HWG is

given by

HWG
O

min
E8

= PE [µ7t
2] ←→ HS

O
min
E8

({xi}8
i=1) (4.16)

and the Hilbert series depends on the E8 fugacities xi. Using branching E8 → SU(3) ×E6,
with E6 fugacities {yi}6

i=1 and SU(3) fugacities {z1,2}, one performs a hyper-Kähler quotient
with respect to SU(3). Denote the Haar measure by dµSU(3)(z1,2) and recall the SU(3)
F-terms HF (z1,2) = PE[−χ[1,1](z1, z2) ⋅ t2] with χ[1,1] the character of the adjoint. The
computation yields

HShK =∫ dµSU(3)(z1,2) HS
O

min
E8

({yi}6
i=1,{z1,2})⋅HF (z1,2) (4.17a)

yi→1= (1+t2)(1−t2)42 ⋅(1+35 t2+708 t4+9121 t6+78994 t8+472618 t10+1998110 t12

+6056837 t14+13296080 t16+21263807 t18+24858218 t20+21263807 t22

+13296080 t24+6056837 t26+1998110 t28+472618 t30+78994 t32+9121 t34

+708 t36+35 t38+t40)
and the first few orders are given by

HShK = 1 + 78t2 + 3158t4 + 86787t6 + 1797641t8 + 29702895t10 +O (t11) , (4.17b)
PL(HShK) = 78t2 + 77t4 − 1379t6 + 1223t8 + 116493t10 +O (t11) . (4.17c)

This hyper-Kähler space has quaternionic dimension 21 and E6/Z3 global symmetry, as
evident from the Hilbert series. Furthermore, it is evident from (4.17c) that this moduli
space is not a nilpotent orbit as there is a second adjoint valued generator at order t4.
In fact, E6 has a nilpotent orbit of the same dimension, denoted as the A2 orbit, see its
corresponding Hasse diagram in figure 1b. It is instructive to compare (4.17a) against the
known unrefined Hilbert series [22, table 12] of this E6 orbit

HS
O

A2
E6

= (1+t2)(1−t2)42 ⋅(1+35 t2+630 t4+7120 t6+54640 t8+294385 t10+1139307 t12

+3216888 t14+6702843 t16+10382781t18+12008160 t20+10382781t22+6702843 t24

+3216888 t26+1139307 t28+294385 t30+54640 t32+7120 t34+630 t36+35 t38+t40)
(4.18a)

where the first few orders in perturbative expansion read

HS
O

A2
E6

= 1 + 78t2 + 3080t4 + 81432t6 + 1613534t8 + 25483029t10 +O (t11) , (4.18b)

PL(HS
O

A2
E6

) = 78t2 − t4 − 650t6 + 3575t8 + 3003t10 +O (t11) . (4.18c)
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Computing the limit of the following ratio

lim
t→1

HShK
HS
O

A2
E6

= 2 (4.19)

suggests that the SU(3) hyper-Kähler quotient is the Z2 cover of the A2 orbit of E6.

SQCD with 27 flavours. Returning to the picture that SU(3) is gauged inside E8
naturally leads to an SU(3) SQCD. Consider the decomposition of the adjoint representation
of E8 to representations of its subgroup SU(3)×E6. We have µ6 + ν1µ5 + ν2µ1 + ν1ν2, where
ν are SU(3) fugacities and µ are E6 fugacities. The adjoint of E6 survives and is the
first contribution to the HWG at order t2. The adjoint of SU(3) gets projected out by
the quotient, and we are left with 27 fundamental hypermultiplets. For getting invariants
from this representation, it is convenient to think about SQCD with 27 flavors with the
embedding of E6 in SU(27) that projects the fundamental to the fundamental. One should
take into account that the “quarks” arise at order t2 which compares with SQCD in which
quarks arise at order t, hence there is a rescaling t→ t2 for representations arising in this
way. The HWG for SQCD is well known [38, 39], and has a PL

µ1µ26t
2 + µ2µ25t

4 + µ3t
3 + µ24t

3 . (4.20)

The first term is the adjoint representation of SU(27) which gives a contribution µ6 + µ1µ5
of E6 at order t4. The baryons and antibaryons both project into the µ3 of E6. Similarly
µ26,25,24 of SU(27) project into µ5,4,3 of E6. Taking into account the rescaling in t and the
projection of these 4 terms we get the expression for the HWG

HWG(12) = PE [µ6t
2 + µ6t

4 + µ1µ5t
4 + 2µ3t

6 + µ2µ4t
8] . (4.21)

Reverting this into an unrefined Hilbert series yields back (4.17a), showing that the HWG
computes the hyper-Kähler quotient. It is important to note that while the derivation of
the HWG is based on heuristic arguments, equation (4.21) is an exact expression for the
moduli space H(12)

∞ = Omin
E8 ///SU(3). The HWG (4.21) also shows that all generators are

invariant under the Z3 centre of E6 such that the global symmetry group of the Higgs
branch H(12)

∞ is E6/Z3.
For 6d gauge theories on a single −2 curve, there exists a finite and infinite coupling

Higgs branch, both being related by an S2 gauging. More precisely, the Hf is the Z2 cover
of H∞. Therefore, (4.21) can be associated to the phase (4.13) of the brane system.

To deduce HWG(2) from HWG(12), one employs the following Z2 action

1(1 − µ6t4) → 1(1 + µ6t4) 1(1 − µ3t6)2 → 1(1 − µ3t6) (1 + µ3t6) . (4.22)

To motivate this, the discrete gauging that translates finite to infinite coupling of SU(n)
theories with 2n flavours acts in two ways [13, eq. (2.4) and (2.29)]: first, there are two
baryonic invariants, which are permuted by S2. Thus, one µ3 → +µ3 and the other µ3 → −µ3.
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phase quantity

(2) H = 1 + 78 t2 + 3080 t4 + 81432 t6 +O(t7)
HSZ = 1 + 46t2 + 1608 t4 + 41208 t6 +O(t7)

HSZ+ 1
2
= 32t2 + 1472 t4 + 40224 t6 +O(t7)

PL = 78 t2 − t4 − 650t6 +O(t7)
(12) H = 1 + 78 t2 + 3158 t4 + 86787 t6 +O(t7)

HSZ = 1 + 46t2 + 1654 t4 + 43971 t6 +O(t7)
HSZ+ 1

2
= 32t2 + 1504 t4 + 42816 t6 +O(t7)

PL = 78 t2 + 77t4 − 1379t6 +O(t7)
Table 3. Perturbative Hilbert series for the different phases (4.25) and (4.24).

Second, the Z2 acts on the U(1) part of the global symmetry. The analogue here is the
second adjoint µ6 at order t4. After gauging the Z2 the HWG is

HWG(2) = PE [µ6t
2 + µ1µ5t

4 + µ3t
6 + µ2µ4t

8 + µ2
6t

8 + µ3µ6t
10 + µ2

3t
12 − µ2

3µ
2
6t

20]
(4.23)

and deriving the unrefined Hilbert series returns (4.17b). Again, this confirms the alternative
SU(3) ×Z2 hyper-Kähler quotient.

Magnetic quivers. Starting from configuration (4.13), the magnetic quiver reads

(12) ∶
S
O(2)

S
p(2)

S
O(8)

S
p(3)

S
O(6)

S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(1) Sp(1) ⎧⎪⎪⎨⎪⎪⎩
dim C = 21 ,
gbalance = so(10) , (4.24)

and the monopole formula is evaluated as in table 3. One recognises that 78 = dim E6
and 45 = dim so(10). In other words, the integer lattice contribution is consistent with
an so(10) × u(1) global symmetry, which is a maximal subalgebra of e6. Whereas the
full Hilbert series is consistent with an E6/Z3 global symmetry group. The perturbative
expansion agrees with (4.17b), i.e. the quiver (4.24) realises the Z2 cover of the A2 orbit
closure of E6 as an orthosymplectic quiver. The same space has a known unitary magnetic
quiver via the geometric Satake correspondence, which is discussed below.

Similarly, for the phase (4.13) of the brane system, the magnetic quiver is

(2) ∶
S
O(2)

S
p(2)

S
O(8)

S
p(3)

S
O(6)

S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(2)
Λ2 ⎧⎪⎪⎨⎪⎪⎩

dim C = 21 ,
gbalance = so(10) , (4.25)
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and the monopole formula is summarised in table 3. Again this has an E6/Z3 global
symmetry and the perturbative expansion agrees with (4.18). Excitingly, (4.25) is the first
quiver realisation of the E6 orbit closure with Bala-Carter label A2.

4.2 Relation to geometric Satake

As discussed above H(12)
∞ = Omin

E8 ///SU(3) is the Z2 cover of the E6 nilpotent orbit [000002]
(Bala-Carter label A2). Following the work on geometric Satake and small representations [40,
41], this nilpotent orbit is a top member of a special (Reeder) piece in the Hasse diagram
for the nilpotent cone of E6, whereas the non special member in this piece is the nilpotent
orbit [001000]. Setting these labels of the orbit to be flavour data of an E6 quiver, and
requiring all gauge nodes to be balanced, we get [42]

2 4 6 4 2

3 1

(4.26)

By construction, the Coulomb branch of this quiver is a slice in the affine Grassmanian of
E6 [43] and its HWG is given by (4.21). Furthermore, by the geometric Satake correspon-
dence, this moduli space is the Z2 cover of the closure of the special nilpotent orbit in the
special piece, namely the orbit [000002]. The Hasse diagram for the A2 orbit is recalled
in figure 1b. Note that the quiver (4.26) allows to recover the Hasse diagram via quiver
subtraction [44], see (4.27). First, one identifies a d4 transition. After rebalancing, an a5
transition becomes apparent, which leaves an affine E6 Dynkin quiver. Hence, the final
transition is an e6. Lastly, the first transition splits into A1 and b3 due to the discrete Z2.
Therefore, the collapse of a −2 curve affects the Hasse diagram as follows [19]

●

●
●
0

d4

a5

e6

Z2Ð→

●
●
●
●
0

b3

a5

e6

A1

(4.27)

hyper-Kähler quotient and quiver subtraction. As a side remark, which is not
related to the geometric Satake correspondence, it is an observation that the quiver (4.26)
can also be obtained by subtraction: the starting point is the affine E8 Dynkin quiver as
this has Omin

E8 as Coulomb branch. To realise the SU(3) hyper-Kähler quotient, one takes
the quiver (1) − (2) − (3) − (2) − (1) and aligns it with the E8 Dynkin diagram such that
the remaining set of balanced nodes after subtraction is the desired E6 Dynkin diagram,
see figure 4. After rebalancing the quiver, one obtains (4.26).
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1 2 3 4 5 6 4 2

3

−
1 2 3 2 1

=
2 4 6 4 2

3
1

Figure 4. Quiver subtraction from the affine E8 Dynkin quiver, with Coulomb branch Omin
E8

, which
results in the quiver (4.26).

4.3 SO(7) with 2 spinors coupled to Sp(0)
Consider 2 M5 branes on C2/D4 with boundary conditions ρL = (3,15), ρR = (18). The
brane system for the SO(7) gauge theory with 2 hypermultiplets in the spinor representation
and coupled to an Sp(0) reads

1 3

5 9

←→
SO(7) Sp(0)O(5)

O(9)

−3 −1

(4.28)

The field theory is well-defined as Sp(0) perceives 16 half-hypermultiplets and SO(7) is
anomaly-free with 32 half-hypermultiplets, as the spinor representation is 8 dimensional.
Each gauge group is accompanied by a tensor multiplet, cancelling potential gauge anomalies.

The brane system has three intervals between 4 half NS5 branes. However, the interval
with negatively charged D6 branes does not contribute a tensor multiplet, as this tensor
has already been traded for a number of hypermultiplets. Hence, there are only two tensor
multiplets. The SO(7) and Sp(0) gauge groups are a simple consequence of D6 brane on top
of O6 planes, see appendix A.1. Moreover, one notes that all D8 branes are necessary for
anomaly cancellation. It is not known how to deduce the matter transforming in the spinor
representation from the brane configuration; instead, the results of table 2 provide guidance.

By analogous reasoning as in section 4.1, the brane system admits two infinite coupling
Higgs branch phases. Once the pairs of half NS5 brane have left the orientifold, they can
either be separated or coincident, denoted by (12) and (2) respectively. The (12) phase
is associated with the collapse of the (−1) curve. Hence, the appearance of a small E8
instanton. Since the theory has an SO(7) gauge symmetry, the non-abelian global symmetry
of the infinite coupling Higgs branches receive a contribution from the commutant of SO(7)
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inside E8, which is SO(9). In addition, the finite coupling Higgs branch global symmetry
Sp(2) ≅ SO(5) is still present at infinite coupling too. However, due to the presence of
the non-trivial matter content, the infinite coupling Higgs branch is not simply a SO(7)
hyper-Kähler quotient of Omin

E8 .
The (2) phase, the origin of the tensor branch, is reached after collapsing the remaining

curve. Due to the collapse of the −1 curve, the −3 curve becomes a −2 curve, whose collapse
is known to lead to an S2 discrete gauging. Thus, the relation H(2)

∞ =H(12)
∞ ///Z2 holds, but

now H(12)
∞ is not a simple space.

Magnetic quivers. The magnetic quiver for the phase with separated pairs of NS5
branes reads

(12) ∶
S
O(2)

S
p(1)

S
O(4)

S
p(2)

S
O(8)

S
p(3)

S
O(6)

S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(1) Sp(1) ⎧⎪⎪⎨⎪⎪⎩
dim C = 24 ,
gbalance = so(9)⊕ so(5) , (4.29)

and one straightforwardly evaluates the monopole formula as summarised in table 4. The
computed dimension of the global symmetry is consistent with so(9) ⊕ so(5), which has
dimension 46 = 36 + 10. The PL reveals that the moduli space is rather complex. The
generators transform in the adjoint representations at order t2, and in the SO(9) × SO(5)
bispinor representation at orders t3, t4, and t5. While the adjoints are invariant under the
centre symmetries, the bispinor is invariant under the diagonal Z2 centre symmetry. This
suggests that the symmetry group is (Spin(9) × Spin(5))/Zdiag

2 .
The magnetic quiver for the Higgs branch phase at the origin of the tensor

branch becomes

(2) ∶
S
O(2)

S
p(1)

S
O(4)

S
p(2)

S
O(8)

S
p(3)

S
O(6)

S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(2)
Λ2 ⎧⎪⎪⎨⎪⎪⎩

dim C = 24 ,
gbalance = so(9)⊕ so(5) , (4.30)

and the Hilbert series is provided in table 4. Again, the t2 coefficient is reflecting the
so(9) ⊕ so(5) global symmetry. The so(9) factor is an infinite coupling enhancement,
while the sp(2) factor is the finite coupling flavour symmetry. The symmetry group is(Spin(9) × Spin(5))/Zdiag

2 .

4.4 Hasse diagram

Even though we point out above that many models do not have a computable magnetic
quiver, we are still able to provide a guess for the Higgs branch phase diagram. Based
on the observations of this section, one can conjecture the Hasse diagram for a theory of
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phase quantity

(2) H = 1 + 46 t2 + 64 t3 + 1135 t4 + 2944 t5 + 21631 t6 + 71744 t7 +O(t8)
HSZ = 1 + 46 t2 + 1135 t4 + 21631 t6 +O(t8)

HSZ+ 1
2
= 64 t3 + 2944 t5 + 71744 t7 +O(t8)

PL = 46 t2 + 64 t3 + 54 t4 − 229 t6 − 896 t7 +O(t8)
(12) H = 1 + 46 t2 + 64 t3 + 1145 t4 + 3008 t5 + 22271 t6 + 75200 t7 +O(t8)

HSZ = 1 + 46 t2 + 1145 t4 + 22271 t6 +O(t8)
HSZ+ 1

2
= 64 t3 + 3008 t5 + 75200 t7 +O(t8)

PL = 46 t2 + 64 t3 + 64 t4 + 64 t5 − 49 t6 − 1024 t7 +O(t8)
Table 4. Perturbative Hilbert series for the different phases (4.29) and (4.30).

the form

G Sp(0)

O(m)F

−3 −1

, (4.31)

where F encodes the total global symmetry (possibly containing different factors from
hypermultiplets in various representations). To obtain the phase diagram, recall that there
are two possible transitions: (i) If G is not the minimal SU(3) theory, then one can higgs
the G gauge theory according to the Hasse diagram of the −3 curve, see figure 3. (ii) One
could decide to collapse the −1 curve, which leaves behind a −2 curves with the same gauge
group G, but some modified matter content. The Hasse diagram for this theory is detailed
in figure 2. Thus, all that is left to do is to specify the transition of the collapsing −1 curve
coupled to a G gauge theory on the −3 curve. The symmetry of this transition is simply
the commutant H = CE8(G) of G inside E8, as observed in sections 4.1 and 4.3. Further
intuition is gained by inspecting the (infinite coupling) Higgs branch dimensions on a −2
curve and the (−3)(−1) curve, see table 5. As a result, the transition can be identified
with h = Omin

H — the minimal nilpotent orbit closure of the commutant H. The full Hasse
diagram of (4.31) is a combination of the Hasse diagram of the G gauge theory on the −2
and −3 curves, where the transitions in between are of type h = Omin

H . Figures 5 and 6
display the infinite coupling phase diagrams.

Following the transitions in (4.4) and (4.6), transitions from D-type to B-type gauge
groups are often not visible in the brane system, despite the clear field theory description.
In view of table 5, theories with G = SO(2k + 1) (k = 3,4,5) have a B-type commutant
H = CE8(G) = SO(15 − 2k). The corresponding b7−k is generically deducible in the brane
setting. Likewise, the brane system (4.10) for G2 is not distinguishable from the SU(3)

– 23 –



J
H
E
P
1
1
(
2
0
2
2
)
0
1
0

−2 curve (−3)(−1) curves transition
G matter dim H∞ G matter dim H∞ ∆dim H∞ CE8(G) Omin

H

SU(3) 6F 10 SU(3) — 21 11 E6 e6

G2 4F 14 G2 F 22 8 F4 f4

SO(7) 1F + 4S 18 SO(7) 2S 24 6 SO(9) b4

SO(8) 2F + 2S + 2C 20 SO(8) F + S +C 25 5 SO(8) d4

SO(9) 3F + 2S 23 SO(9) 2F + S 27 4 SO(7) b3

SO(10) 4F + 2S 27 SO(10) 3F + 1S 30 3 SO(6) d3

SO(11) 5F + S 32 SO(11) 4F + 1
2S 34 2 SO(5) b2

SO(12) 6F + 2 ⋅ 1
2S 38 SO(12) 5F + 1

2S 39 1 SO(4) d2

F4 3F 26 F4 2F 29 3 G2 g2

E6 4F 30 E6 3F 32 2 SU(3) a2

E7 6 ⋅ 1
2F 35 E7 5 ⋅ 1

2F 36 1 SU(2) a1

Table 5. Higgs branch dimension and commutant CE8(G). The anomaly-free matter content for
the SO(n) gauge groups can be taken from [31]. Note that dimH∞ for the (−3)(−1) curves crucially
depends on the −1 curve, due to the small E8 instanton transition.

phase. Then the non-simply laced f4 transition is also not visible from the branes. The
observation is that transitions that are not visible in the brane system are consistent with
non-simply laced algebras.

5 Multiple M5s on C2/Dk with one non-trivial boundary condition

The case of 2 M5 branes in section 4 has already revealed exciting Higgs branch geometries
related to the theories on a −3 curve. However, one is limited to certain boundary conditions
that can be realised by the number of brane intervals. In this section, further boundary
conditions are explored by increasing the number of M5 branes. We start with the minimal
D4 singularity and proceed to higher Dk.

5.1 (k − 1) M5s with ρL = (2k − 3,3), ρR = (12k)
5.1.1 3 M5s on D4 singularity: Sp(1) ×G2 coupled to Sp(0)
Consider 3 M5 branes on a C2/D4 singularity with boundary conditions ρL = (5, 3), ρR = (18),
for which the brane system and 6d quiver become

3 2 1 3

1 1+8

←→
Sp(1) G2 Sp(0)

O(1) O(9)

−2 −3 −1

(5.1)
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●39 ●38

●34

SU(2)

4

●29

SU(3)

6

●25

G2

Sp(4)

●21 ● ●
SO(7)Sp(4)

Sp(1)

●19

SO(8)Sp(2) Sp(2)

Sp(2)

●16

SO(9)Sp(2)

Sp(3)

●12

SO(10)U(2)

Sp(4)

●7

SO(11)O(2)

Sp(5)

●1

SO(12)O(2)

Sp(6)

● 18

SU(3) Sp(0)

O(10)

● 17

G2 Sp(0)

Sp(1) O(9)

●
SO(7) Sp(0)Sp(2)

O(9)
● ● 15

● 14

SO(8) Sp(0)

Sp(1)

Sp(1)

Sp(1) O(8)

● 12

SO(9) Sp(0)O(3)

Sp(2) O(7)

● 9

SO(10) Sp(0)U(1)

Sp(3) O(6)

● 5

SO(11) Sp(0)O(1)

Sp(4) O(5)

● 0

SO(12) Sp(0)O(1)

Sp(5) O(4)

A1

b3

a5

c4

c4

c2

c3

c4

c5

c6

a1

c2

c1

c2

c3

c4

c5

e6

f4

b4

d4

b3

d3

b2

d2

Figure 5. Infinite coupling Higgs branch Hasse diagram for the SO(n) × Sp(0)-type theories. The
leaves are denoted by the slice to the top, i.e. the leaves are denoted by the 6d (electric) theory.
More precisely, this is the Hasse diagram for the infinite coupling Higgs branch of the SO(12)×Sp(0)
theory. The phase diagrams for the other theories are simply obtained by suitable reduction.
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●36 ●35

●31

SU(2)

4

●26

SU(3)

6

●22

G2

Sp(4)

●18 ● ●
SO(7)Sp(4)

Sp(1)

●16

SO(8)Sp(2) Sp(2)

Sp(2)

●13

SO(9)Sp(2)

Sp(3)

●10 F4 + 3F

●6 E6 + 4F

●1 E7 + 6⋅ 1
2
F

● 15

SU(3) Sp(0)

O(10)

● 14

G2 Sp(0)

Sp(1) O(9)

●
SO(7) Sp(0)Sp(2)

O(9)
● ● 12

● 11

SO(8) Sp(0)

Sp(1)

Sp(1)

Sp(1) O(8)

● 9

SO(9) Sp(0)O(3)

Sp(2) O(7)

● 7F4 + 2F

● 4E6 + 3F

● 0E7 + 6⋅ 1
2
F

A1

b3

a5

c4

c4

c2

c3

c3

?

?

a1

c2

c1

c2

c2

?

?

e6

f4

b4

d4

b3

g2

a2

a1

Figure 6. Infinite coupling Higgs branch Hasse diagram for the set of G × Sp(0) theories including
exceptional factors G = F4,E6,E7. Again, the leaves are denoted by the 6d (electric) theory.
Concretely, this is the Hasse diagram for the infinite coupling Higgs branch of the E7 theory with
six 1

2F . The phase diagrams for the other theories are simply obtained by suitable reduction.
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To begin with, the field theory is anomaly-free, because Sp(1) = SU(2) has 8 half-
hypermultiplets, G2 has one fundamental flavour, and Sp(0) perceives 16 half-hypermultiplets.
Each gauge group is accompanied by one tensor multiplet, in total three.

The brane system contains 5 brane intervals between six half NS5 brane, two of which
have negatively charged branes. Consequently, the tensor multiplets of those intervals
are traded for a certain number of hypermultiplets, dictated by the gravitational anomaly
cancellation condition. The remaining three dynamical tensor multiplets are associated to
the intervals with positive or vanishing D6 brane number. The gauge algebras and matter
content are identified by using table 2.

The infinite coupling phases are reached as before. The half NS5 branes lift pairwise
off the orientifold. This first step is understood as collapse of the −1 curve, signalling a
small E8 instanton. Thereafter, the three pairs of half NS5 admit distinct phases, labelled
by partitions of 3: all pairs are pairwise separated (13), two pairs are coincident and the
third is separated (2,1), and all three pairs are coincident (3).

The (13) phase is directly reached after the collapse of the −1 curve, which simultaneously
reduces the remaining curves from (−2)(−3) to (−2)(−2). Again, vanishing −2 curves results
in discrete gauging: one collapse yields an S2 gauging of (13) to (2, 1), and collapsing both
curves yields an S3 gauging of (13) to (3).

While the finite coupling Higgs branch of (5.1) is a point, the infinite coupling Higgs
branches are non-trivial and are expected to exhibit an exceptional F4 global symmetry.
This is because the small instanton transition of the −1 curve is coupled to a G2 gauge
theory and the commutant of G2 inside E8 is F4. The discrete gauging transitions of the−2 curves do not affect this global symmetry.

Magnetic quiver. The magnetic quivers for the phases (13) and (3) are given by

(13) ∶
S
p(1)

S
O(8)

S
p(3)

S
O(6)

S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(1) Sp(1)
Sp(1) ⎧⎪⎪⎨⎪⎪⎩

dim C = 20 ,
gbalance = so(9) , (5.2)

(3) ∶
S
p(1)

S
O(8)

S
p(3)

S
O(6)

S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(3)
Λ2 ⎧⎪⎪⎨⎪⎪⎩

dim C = 20 ,
gbalance = so(9) . (5.3)

To understand these Coulomb branches, one notices that the phase (13) has been evaluated
in [45]. The Hilbert series is given by

HS(5.2)=1+52 t2+1455 t4+28834 t6+449122 t8+5793780 t10+63853945 t12+613989328 t14

+5232181818 t16+40010832518 t18+277431116267 t20+O(t22) , (5.4a)

PL(5.2)=52 t2+77 t4+26 t6−2394 t8−5442 t10+O(t12) , (5.4b)

which displays a global F4 symmetry. The Coulomb branch is the S4 cover of the closure of
the 20-dimensional nilpotent orbit of F4 with Bala-Carter label F4(a3), see also figure 1c.
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Explicitly,

H(13)
∞ = C (5.2) and OF4(a3) = C (5.2)///S4 . (5.5)

From this, the phase (3) is easily understood. The difference between (5.2) and (5.3) is
an S3 quotient [14]. Because S3 is a normal subgroup of S4 with quotient group Z4, the
moduli space satisfies

H(3)
∞ = C (5.3) = C (5.2)///S3 and OF4(a3) = C (5.3)///Z4 . (5.6)

Since the F4 commutes with the permutation groups, the Coulomb branch of (5.3) is also
expected to have a global symmetry F4. Note that the subset of balanced nodes in (5.2)
and (5.3) makes an so(9) manifest and so(9) ⊂ f4 is a maximal subalgebra. The phase (2, 1)
can be analysed by the same reasoning, starting from an S2 quotient of (5.2).

Further confirmation is obtained by computing the monopole formula for (5.3), which
results in

H(5.3) = 1 + 52t2 + 1403t4 + 26078t6 +O (t7) , (5.7a)

HSZ = 1 + 36t2 + 811t4 + 13902t6 +O (t7) , (5.7b)

HS
Z+1

2
= 16t2 + 592t4 + 12176t6 +O (t7) , (5.7c)

PL(5.3) = 52t2 + 25t4 − 26t6 +O (t7) . (5.7d)

The integer lattice Hilbert series HSZ seems to have an so(9) global symmetry with dimension
36. While it is clear from (5.7d) that the infinite coupling Higgs branch moduli space
of (5.1) is not a nilpotent orbit of F4, we encounter a close cousin in section 5.3.1 that is in
fact the closure of the nilpotent orbit F4(a3).
5.1.2 (k − 1) M5s on Dk singularity

The above case admits a simple generalisation: consider k − 1 ≥ 3 M5 branes on a C2/Dk

singularity with boundary conditions ρL = (2k − 3,3), ρR = (12k). The 6d quiver is now
given by

Sp(1) G2 Sp(0) SO(9) Sp(1)
. . .

SO(2k−1)Sp(k−4)

O(1) O(1)

SO(2k)
−2 −3 −1 −4 −1 −4 −1

(5.8)

which has non-abelian SO(2k + 1) flavour symmetry. The infinite coupling Higgs phases
are conceptually similar to the discussion above. However, in the generic case there is no
expectation on symmetry enhancement at the conformal fixed point. This is because the
Sp(0) node is coupled to a G2 and SO(9), which reduces the E8 global symmetry to at
most a discrete subgroup. Likewise, the −1 curve at the right-hand side is coupled to a −4
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curve which supports a minimal so(8) gauge algebra. Thus, the global symmetry factor is
not exceptional.

The Higgs branch at the conformal fixed point is described by the following mag-
netic quiver:

S
p(1)

S
O(2k)

S
p(k−

1)
S
O(2k−

2)

. . .
S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(k−1)
Λ2 ⎧⎪⎪⎨⎪⎪⎩

dim C = k(k + 1) ,
gbalance = so(2k + 1) . (5.9)

In contrast to the minimal case k = 4, the generic case is not expected to have an exotic
global symmetry. The symmetry group is Spin(2k + 1).

From the magnetic quiver in conjunction with the monopole formula, this can be
understood as follows: the integer lattice contribution gives rise to the global symmetry
so(2k + 1), visible at order t2. The first contribution for the half-integer lattice is the spinor
representation for so(2k + 1) at order t∆. One observes, see for instance [45, table 3], that
∆ = 1

2(k − 4)2 + 5
2(k − 4) + 2 such that only the spinor of so(9) has the suitable R-charge to

contribute to the global symmetry. This leads to the enhancement SO(9)→ F4, while in all
higher k > 4 cases, the R-charge of the spinor representation is too high.

5.2 (k − 1) M5s with ρL = (2k − 3,13), ρR = (12k)
5.2.1 3 M5s on D4 singularity: Sp(1) × SO(7) coupled to Sp(0)
In similar spirit, consider 3 M5 branes on a C2/D4 singularity with boundary conditions
ρL = (5,13), ρR = (18). The brane system and the 6d quiver are

2 2 1 3

3 1+8

←→
Sp(1) SO(7) Sp(0)

Sp(1) O(9)

−2 −3 −1

(5.10)

and most of the discussion of section 5.1.1 is straightforwardly applied here. For instance,
the field theory is well-defined and there are only three tensor multiplets. The differences is
the non-abelian flavour symmetry: an Sp(1) for the bi-spinor hypermultiplet of SO(7). At
infinite coupling, one expects an enhancement of the global symmetry by the commutant
CE8(SO(7)) of SO(7) inside E8, which is SO(9).
Magnetic quiver. The infinite coupling magnetic quiver is readily derived to be

S
O(2)

S
p(1)

S
O(8)

S
p(3)

S
O(6)

S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(3)
Λ2 ⎧⎪⎪⎨⎪⎪⎩

dim C = 21 ,
gbalance = so(9)⊕ so(3) . (5.11)
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The expected global symmetry has a classical factor of sp(1) ≅ so(3). The remainder
is expected as infinite coupling contribution. Note that the so(9) could simply be the
commutant of the so(7) gauge algebra on the −3 curve inside E8. Further verification is
obtained via the monopole formula

H = 1 + 39t2 + 32t3 + 789t4 + 1248t5 + 11536t6 +O (t7) , (5.12a)

HSZ = 1 + 39t2 + 789t4 + 11536t6 +O (t7) , (5.12b)

HS
Z+1

2
= 32t3 + 1248t5 +O (t7) , (5.12c)

PL = 39t2 + 32t3 + 9t4 − 3t6 +O (t7) . (5.12d)

The global symmetry dimension is consistent with the symmetry obtained from the bal-
anced nodes, i.e. so(9) ⊕ so(3) with dimension 36 + 3 = 39. The global symmetry is(SU(2) × Spin(9)) /Z2 with Z2 the diagonal combination of the Z2 centre symmetries of
SO(9) and SU(2). To see this, one identifies the generators from the PL (5.12d): order
t2 transforms in the adjoint representations of SU(2) × SO(9), order t4 transforms in the
SU(2)× SO(9) bispinor representation, while order t4 transforms in the SO(9) vector repre-
sentation. The adjoint and vector representations are invariant under the centre symmetries,
whereas the bispinor is only invariant under the diagonal combination.

5.2.2 (k − 1) M5s on Dk singularity

Again, one recognises a pattern. Consider k − 1 ≥ 3 M5 branes on a C2/Dk singularity with
boundary conditions ρL = (2k − 3,13), ρR = (12k), i.e.

Sp(1) SO(7) Sp(0) SO(9) Sp(1)
. . .

SO(2k−1)Sp(k−4)

Sp(1) O(1)

SO(2k)
−2 −3 −1 −4 −1 −4 −1

(5.13)

and the associated infinite coupling magnetic quiver becomes

S
O(2)

S
p(1)

S
O(2k)

S
p(k−

1)
S
O(2k−

2)

. . .
S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(k−1)
Λ2 ⎧⎪⎪⎨⎪⎪⎩

dim C = k(k + 1) + 1 ,
gbalance = so(2k + 1)⊕ so(3) . (5.14)

The symmetry group is (SU(2)× Spin(2k + 1))/Z2 with Z2 the diagonal combination of the
two centre symmetries.
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5.3 k M5s with ρL = (2k − 1,1), ρR = (12k)
5.3.1 4 M5s on D4 singularity: Sp(1) ×G2 coupled to Sp(0)
Consider 4 M5 branes on a C2/D4 singularity with boundary conditions ρL = (7, 1), ρR = (18).
The brane configuration and the 6d quiver are given by

3 1 2 2 1 3

1 1+8

←→
Sp(1) G2 Sp(0)

O(1) O(9)

−2 −2 −3 −1
(5.15)

and one first verifies that the field theory is anomaly-free: Sp(1) ≅ SU(2) has 8 half-
hypermultiplets, G2 has one fundamental, and Sp(0) has 16 half-hypermultiplets. Also,
each gauge group factor as accompanied by one tensor multiplet. Moreover, there is one
additional tensor.

The brane configuration contains 7 brane intervals between 8 half NS5 branes. However,
three negative brane intervals reduce the number of tensor multiplets to 4 by converting
3 tensor into a certain number of hypermultiplets. Again, the gauge groups and matter
content are not obvious from the brane system, but are taken from table 2.

One notes that the gauge theory data is identical to (5.1), but here there exists an
additional tensor multiplet, reminiscent of the situation in section 3.

The infinite coupling Higgs branch phases are addressed as above. The NS5 pairs join
pairwise along the O6 plane and can lift off. This corresponds to the collapsing −1 curve,
which is accompanied by the small E8 instanton. Since the −1 is coupled to a G2 gauge
theory, one expects a global symmetry of F4, which is the commutant of G2 inside E8.
Again, there are several infinite coupling phases labelled by partitions of 4, since there are
4 pairs of NS5 branes which can coincide in the pattern of a given partition. The transition
between (14) and any other transition is realised by discrete Sd gauging. As by now familiar,
this can be understood in terms of curves, because the collapse of the −1 curve leaves behind
three −2 curves.

Magnetic quiver. The Higgs branch at the conformal fixed point is captured by the
magnetic quiver of partition (4), which reads

S
O(8)

S
p(3)

S
O(6)

S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(4)
Λ2 ⎧⎪⎪⎨⎪⎪⎩

dim C = 20 ,
gbalance = so(9) . (5.16)

The set of balanced nodes suggest at least an so(9) global symmetry. However, recall
that the commutant G2 ⊂ E8 is F4, with so(9) ⊂ f4 being a maximal subalgebra. Such a
symmetry group was observed in [45, table 3], where the quiver is an S4 cover of (5.16), i.e.
the phase (14). The Higgs branch H∞, at the origin of the tensor branch, that is captured
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by (5.16) is identified with the closure of the nilpotent orbit of F4 of dimension 20. The
unrefined Hilbert series [22] is known to be

H= (1+t2)(1−t2)40 ⋅(1+10t2+56t4+230t6+745t8+1946t10+4112t12+7028t14+9692t16 (5.17a)

+10782t18+10782t20+9692t22+7028t24+4112t26+1946t28+745t30+230t32

+56t34+10t36+t38)
and perturbative expansion yields

H = 1 + 52t2 + 1377t4 + 24752t6 + 338951t8 +O (t9) , PL = 52t2 − t4 − 726t8 +O (t9) .
(5.17b)

The expectations on the moduli space can be verified on the level of Hilbert series by
evaluating the monopole formula for (5.16). One finds

H = 1 + 52t2 + 1377t4 + 24752t6 +O (t7) , (5.18a)

HSZ = 1 + 36t2 + 801t4 + 13296t6 +O (t7) , (5.18b)

HS
Z+1

2
= 16t2 + 576t4 + 11456t6 +O (t7) , (5.18c)

PL = 52t2 − t4 +O (t7) , (5.18d)

and the expected F4 symmetry is consistent with the dimension 52 term at order t2. Again,
the integer lattice displays the so(9) maximal subalgebra. The result agrees with (5.17)
at the given order of expansion. The identification of the moduli space as the closure of
the nilpotent orbit F4(a3) of F4 allows us to compute the Hasse diagram for this theory,
see figure 1c.

Hasse diagram. The identification of the infinite coupling Higgs branch with an F4 orbit
leads to the intriguing question whether this can be understood from 6d theory and its
magnetic quiver.

To begin with, recall that the theory in (5.15) cannot be higgsed any further. The only
possible transition is the collapse of the −1 curves, through which a single tensor multiplet
is converted into a number of hypermultiplets. The G2 gauge theory on the −3 becomes a
G2 theory on a −2 curve, i.e.

Sp(1) G2 Sp(0)

O(1) O(9)

−2 −2 −3 −1

Ð→
Sp(1) G2

O(1) Sp(3)

−2 −2 −2

≅
SU(1) SU(2) G2

Sp(3)

−2 −2 −2

(5.19)

and as argued above in section 4.4, this is an f4 transition. The resulting 6d quiver theory
is defined on a chain of three −2 curves, and the Sp(3) flavour indicates a clear partial
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Higgs mechanism for G2 → SU(3). In detail,

SU(1) SU(2) G2

Sp(3)

−2 −2 −2

Ð→
SU(1) SU(2) SU(3)

4

−2 −2 −2

(5.20)

which is a c3 transition. More to the point, the resulting theory is equivalently realised by
4 M5 branes on an C2/Z4 singularity with boundary conditions ρL = (4), ρR = (14), see
table 13. The infinite coupling magnetic quiver is given by

3 2 1

4

Adj ⎧⎪⎪⎨⎪⎪⎩
dim C = 9 ,
gbalance = su(4) . (5.21)

The next step is the partial Higgs mechanism for the fundamental flavours on the SU(3)
gauge group

SU(1) SU(2) SU(3)

4

−2 −2 −2

Ð→
SU(1) SU(2) SU(2)

1 2

−2 −2 −2

(5.22)

which is a a3 transition. The infinite coupling magnetic quiver for the SU(2)×SU(2) theory
with 3 tensor multiplets is given by:

2 1

4

Adj ⎧⎪⎪⎨⎪⎪⎩
dim C = 6 ,
gbalance = su(2)⊕ su(2) . (5.23)

Since this quiver is small enough, one can attempt a direct evaluation of the Hasse diagram
via quiver subtraction. The result is displayed in figure 7. It follows that composing this
phase diagram with a sequence of a3, c3, and f4 transitions at the bottom yields the F4
Hasse diagram of figure 1c. The only deviation occurs for the expected [2A1] transition,
which here only appears as single A1. By using a combination of techniques — 6d quiver
theories, brane systems, magnetic quivers, and quiver subtraction — we reconstructed the
Hasse diagram of a rather non-trivial nilpotent orbit of F4.

– 33 –



J
H
E
P
1
1
(
2
0
2
2
)
0
1
0

●
2 1

4

Adj

●
2 1

2

1

Adj

●
2 1

1

1

●
1 1

●
2 1

1

1

●
2 1

1

●
1 1

●
1

A1

m

g2

A1

A1

a2

m

A1 A1

Figure 7. Hasse diagram for the infinite coupling magnetic quiver of the 6d SU(2) × SU(2) quiver
theory (5.22) with 3 tensor multiplets obtained via quiver subtraction. In some quivers, certain notes
are grouped together by a green line, called “decoration” in [28]. For those magnetic quivers, the
evaluation of the monopole formula is not clear; however, quiver subtraction together with decoration
does allow to provide a guess for the Hasse diagram. The guess is consistent with figure 1c, up to
the [2A1] transition, which here only appears as A1.

5.3.2 k M5s on Dk singularity

The setup can be generalised to beyond the minimal D-type singularity. Consider k ≥ 4 M5
branes on a C2/Dk singularity with boundary conditions ρL = (2k − 1,1), ρR = (12k). The
brane configuration is a simple generalisation of (5.15) and the 6d quiver theory reads

Sp(1) G2 Sp(0) SO(9) Sp(1) SO(11)
. . .

Sp(k−4)

O(1) SO(2k + 1)

−2 −3 −1 −4 −1 −4 −1−2

(5.24)

which can be analysed in the same fashion as above. Most importantly, the finite coupling
non-abelian global symmetry so(2k + 1) is not expected to enhance at infinite coupling.
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The magnetic quiver for the Higgs branch at the conformal fixed point is readily
evaluated to be

S
O(2k)

S
p(k −

1)
S
O(2k −

2)

. . .
S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(k)
Λ2 ⎧⎪⎪⎨⎪⎪⎩

dim C = k(k + 1) ,
gbalance = so(2k + 1) , (5.25)

and the global symmetry is so(2k+1) as indicated by the balanced set of notes, see also1 [45,
table 3]. The symmetry group is Spin(2k + 1). As in section 5.2.1, the integer lattice gives
rise to generator in the adjoint of SO(2k + 1) at order t2, while the half-integer lattice
contributes a generator in the spinor representation of SO(2k + 1) at order t∆. Crucially,
∆ = 2 only for k = 4, leading to the enhancement SO(9)→ F4.

6 Combining boundary conditions

The brane systems considered above always have a trivial boundary condition on one side,
and a non-trivial boundary condition on the other side. In this section we continue the
exploration to non-trivial boundaries conditions on both sides.

6.1 Two SU(3) coupled to Sp(0)
In section 4.1, the boundary conditions for 2 M5 branes on C2/D4 are ρL = (32, 12), ρR = (18).
One can go ahead and assign identical non-trivial boundary conditions to both sides of 3
M5 branes on C2/D4, i.e. ρL = ρR = (32, 12). The brane configuration and 6d quiver become

2 3 3 2

2 4 2

←→
SU(3) Sp(0) SU(3)

O(4)

−3 −1 −3

(6.1)

The infinite coupling Higgs branches can be discussed by the same reasoning as above.
Lifting the half NS5 brane pairwise off the O6 leads to the collapse of the −1 curve. The
associated nilpotent orbit closure Omin

E8 is now coupled to two SU(3) gauge groups. This
suggests that the resulting global symmetry is the commutant of SU(3) × SU(3) inside E8,
which is again a SU(3) × SU(3). Thereafter, the infinite coupling phases are labelled by
partitions of 3, indicating how many pairs of NS5 branes are coincident.

1Note that the quivers appearing in [45, table 3] are in a work titled “hyper-Kähler implosions”, but they
are a failed attempt to describe the hyper-Kähler implosion of the nilpotent cone of so(2k + 1). Thus, (5.25)
is not related to the implosion of a maximal orbit closure. Instead these quivers turn out to have a natural
physical interpretation as magnetic quivers for brane systems of the type (5.15), which describe Higgs
branches of 6d theories.
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hyper-Kähler quotient. The infinite coupling Higgs branch phase follows the same
reasoning as in section 4.1. The collapse of the −1 curves leads to the small E8 transitions,
but the theory is still coupled to two SU(3) gauge theories. Because these have no matter,
the Higgs branch is simply a SU(3) × SU(3) hyper-Kähler quotient of the closure of the
minimal nilpotent orbit of E8, i.e.

H(13)
∞ = Omin

E8 /// (SU(3) × SU(3)) . (6.2)

The Hilbert series is evaluated in two steps: the first SU(3) hyper-Kähler quotient has been
computed in (4.17a). The resulting moduli space has E6 global symmetry, and one embeds
the second SU(3) into any one of the three SU(3) subgroups for the maximal subalgebra
su(3) × su(3) × su(3) of E6. A direct computation results in

HSA2×A2
hK (6.3a)

=∫ dµSU(3)(x1,2)∫ dµSU(3)(z1,2) HS
O

min
E8

({yi}4
i=1,{x1,2},{z1,2})⋅HF (z1,2)⋅HF (x1,2)

(4.17a)= ∫ dµSU(3)(x1,2) HShK({yi}4
i=1,{x1,2})⋅HF (x1,2)

yi→1= 1(1−t2)10 (1−t4)13 (1−t6)3

⋅(1+6t2+104t4+700t6+5084t8+25706t10+115525t12

+417585t14+1307923t16+3463261t18+7987946t20+15943916t22+27958179t24

+42969861t26+58390228t28+70007697t30+74452240t32+70007697t34

+58390228t36+42969861t38+27958179t40+15943916t42+7987946t44

+3463261t46+1307923t48+417585t50+115525t52+25706t54+5084t56

+700t58+104t60+6t62+t64)
and a perturbative evaluations yields

HSA2×A2
hK = 1 + 16t2 + 232t4 + 2501t6 + 22825t8 + 176140t10 + 1183373t12 +O (t13) ,

(6.3b)
PL (HSA2×A2

hK ) = 16t2 + 96t4 + 149t6 − 1147t8 − 8412t10 + 10774t12 +O (t13) . (6.3c)

The coefficient at order t2 reflects the su(3)⊕ su(3) global symmetry algebra. Based on the
PL, the centre of each SU(3) acts trivial on the generators such that the global symmetry
group is (SU(3) × SU(3))/(Z3 ×Z3) = PSU(3) ×PSU(3).

The infinite coupling Higgs branch, phase (3), is the S3 quotient of (6.2).
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phase quantity

(3) H = 1 + 16t2 + 200t4 + 1864t6 + 14629t8 + 98284t10 + 582712t12 +O (t13)
HSZ = 1 + 8t2 + 104t4 + 928t6 + 7349t8 + 49108t10 + 291552t12 +O (t13)

HSZ+ 1
2
= 8t2 + 96t4 + 936t6 + 7280t8 + 49176t10 + 291160t12 +O (t13)

PL = 16t2 + 64t4 + 24t6 − 415t8 − 884t10 + 4428t12 +O (t13)
(2,1) H = 1 + 16t2 + 216t4 + 2182t6 + 18667t8 + 136080t10 + 869924t12 +O (t13)

HSZ = 1 + 8t2 + 112t4 + 1086t6 + 9371t8 + 67992t10 + 435188t12 +O (t13)
HSZ+ 1

2
= 8t2 + 104t4 + 1096t6 + 9296t8 + 68088t10 + 434736t12 +O (t13)

PL = 16t2 + 80t4 + 86t6 − 705t8 − 3840t10 + 6103t12 +O (t13)
(13) H = 1 + 16t2 + 232t4 + 2501t6 + 22825t8 + 176140t10 + 1183373t12 +O (t13)

HSZ = 1 + 8t2 + 120t4 + 1245t6 + 11449t8 + 88012t10 + 591909t12 +O (t13)
HSZ+ 1

2
= 8t2 + 112t4 + 1256t6 + 11376t8 + 88128t10 + 591464t12 +O (t13)

PL = 16t2 + 96t4 + 149t6 − 1147t8 − 8412t10 + 10774t12 +O (t13)
Table 6. Perturbative Hilbert series for the different phases of (6.4) and (6.5).

Magnetic quiver. To exemplify, the Higgs branches in the phases (13) and (3) are
captured by the following magnetic quivers

(13) ∶
S
O(2)

S
p(2)

S
O(8)

S
p(2)

S
O(2)

Sp(1) Sp(1)
Sp(1) ⎧⎪⎪⎨⎪⎪⎩

dim C = 13 ,
gbalance = so(4) , (6.4)

(3) ∶
S
O(2)

S
p(2)

S
O(8)

S
p(2)

S
O(2)

Sp(3)
Λ2 ⎧⎪⎪⎨⎪⎪⎩

dim C = 13 ,
gbalance = so(4) . (6.5)

The subset of balanced nodes suggests that the global symmetry is at least so(4). A
more refined analysis is provided evaluating the monopole formula as in table 6. One
finds that the t2 coefficient indeed confirms a global symmetry of dimension 16, consistent
with su(3) ⊕ su(3). Moreover, the monopole formula for (6.4) agrees precisely with the
SU(3)×SU(3) hyper-Kähler quotient (6.3) of Omin

E8 , with global symmetry PSU(3)×PSU(3).
Thus (6.4) is a new quiver realisation for such a non-trivial quotient.
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6.2 SU(3) and SO(7) coupled to Sp(0)
For 3 M5 branes on C2/D4 with boundary conditions ρL = (3,15) and ρR = (32,12), the
brane configuration and 6d quiver become

1 3 3 2

5 3 2

←→
SO(7) Sp(0) SU(3)O(5)

O(3)

−3 −1 −3

(6.6)

The finite coupling Higgs branch has a SO(5) ≅ Sp(2) global symmetry from the hypermul-
tiplets transforming in the spinor of SO(7). The infinite coupling Higgs branch is expected
to exhibit further enhancement. Since there is an E8 instanton coupled to SO(7) and
SU(3), one looks at the commutant of su(3)⊕ so(7) ⊂ e8. Briefly, the commutant so(7) ⊂ e8
is so(9). Then so(9) ⊃ su(4) ⊕ su(2), such that su(4) ⊃ su(3) ⊕ u(1); hence, one might
argue that the commutant su(3) ⊂ so(9) is su(2)⊕ u(1). In total, the expected symmetry
is sp(2)⊕ su(2)⊕ u(1). Next, compare this to the magnetic quiver analysis. The magnetic
quiver at the conformal fixed point is given by

S
O(2)

S
p(1)

S
O(4)

S
p(2)

S
O(8)

S
p(2)

S
O(2)

Sp(3)
Λ2 ⎧⎪⎪⎨⎪⎪⎩

dim C = 16 ,
gbalance = so(5)⊕ so(3) , (6.7)

and the subset of balanced nodes suggest at least a sp(2) ⊕ su(2) ≅ so(5) ⊕ so(3) global
symmetry. A more robust verification is given by perturbatively evaluating monopole
formula are summarised in table 7. The order of the t2 coefficient is consistent with a
sp(2)⊕ su(2)⊕ u(1) symmetry, which has dimension 10 + 3 + 1 = 14.

6.3 Two SO(7) coupled to Sp(0)
For 3 M5 branes on C2/D4 with boundary conditions ρL = ρR = (3, 15), the brane configura-
tion and 6d quiver become

1 3 3 1

5 2 5

←→
SO(7) Sp(0) SO(7)O(5) O(5)

O(2)

−3 −1 −3

(6.8)

The 6d quiver has two flavour symmetry factors of so(5) ≅ sp(2). Moving towards infinite
coupling, the enhancement of the Higgs branch symmetry is expected to arise from the
commutant of so(7)⊕ so(7) ⊂ e8. Using that the commutant of so(7) ⊂ e8 is so(9) and that
the commutant of so(7) ⊂ so(9) is so(2), one expects an additional u(1) factor.

– 38 –



J
H
E
P
1
1
(
2
0
2
2
)
0
1
0

phase quantity

(3) H = 1 + 14t2 + 16t3 + 135t4 + 272t5 + 1147t6 +O (t7)
HSZ = 1 + 14t2 + 135t4 + 1147t6 +O (t7)

HSZ+ 1
2
= 16t3 + 272t5 +O (t7)

PL = 14t2 + 16t3 + 30t4 + 48t5 + 31t6 +O (t7)
(2,1) H = 1 + 14t2 + 16t3 + 139t4 + 288t5 + 1231t6 +O (t7)

HSZ = 1 + 14t2 + 139t4 + 1231t6 +O (t7)
HSZ+ 1

2
= 16t3 + 288t5 +O (t7)

PL = 14t2 + 16t3 + 34t4 + 64t5 + 59t6 +O (t7)
(13) H = 1 + 14t2 + 16t3 + 143t4 + 304t5 + 1315t6 +O (t7)

HSZ = 1 + 14t2 + 143t4 + 1315t6 +O (t7)
HSZ+ 1

2
= 16t3 + 304t5 +O (t7)

PL = 14t2 + 16t3 + 38t4 + 80t5 + 87t6 +O (t7)
Table 7. Perturbative Hilbert series for the different phases of (6.7).

The magnetic quiver for the Higgs branch at the conformal fix point reads

S
O(2)

S
p(1)

S
O(4)

S
p(2)

S
O(8)

S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(3)
Λ2 ⎧⎪⎪⎨⎪⎪⎩

dim C = 19 ,
gbalance = so(5)⊕ so(5)⊕ so(2) , (6.9)

and the balanced subset nodes does indicate an so(5) ⊕ so(5) ⊕ so(2) Coulomb branch
symmetry. Upon evaluating the monopole formula, as summarised in table 8, one finds a t2
coefficient of 21. This is consistent with expected global symmetry of dimension 10 + 10 + 1.

7 Boundary conditions for theories on -2 curve

Above, boundary conditions have either involved one trivial and one non-trivial partition,
or two non-trivial partitions. In all of these cases, the 6d quiver contained an Sp(0) node.
In this section, exemplary cases for boundary conditions without an Sp(0) node in the 6d
quiver are considered. The identification of the 6d quiver theory follows from the results
of [9] rather than table 2.
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(3) H = 1 + 21t2 + 288t4 + 3071t6 +O (t7)
HSZ = 1 + 21t2 + 256t4 + 2335t6 +O (t7)

HSZ+ 1
2
= 32t4 + 736t6 +O (t7)

PL = 21t2 + 57t4 + 103t6 +O (t7)
(2,1) H = 1 + 21t2 + 291t4 + 3179t6 +O (t7)

HSZ = 1 + 21t2 + 259t4 + 2411t6 +O (t7)
HSZ+ 1

2
= 32t4 + 768t6 +O (t7)

PL = 21t2 + 60t4 + 148t6 +O (t7)
(13) H = 1 + 21t2 + 294t4 + 3287t6 +O (t7)

HSZ = 1 + 21t2 + 262t4 + 2487t6 +O (t7)
HSZ+ 1

2
= 32t4 + 800t6 +O (t7)

PL = 21t2 + 63t4 + 193t6 +O (t7)
Table 8. Perturbative Hilbert series for the different phases of (6.9).

7.1 SU(4) with 8 fundamentals

For 2 M5 branes on C2/D4 with boundary conditions ρL = ρR = (3, 15), the brane configura-
tion and 6d quiver become

1 3 1

6 6

←→
SO(6)

SU(8)

−2

≅
SU(4)

SU(8)

−2

(7.1)

and the 6 half D8 branes on each side are understood as 5+ 1, i.e. 5 D8 originating from the
15 part of one partition and the remaining brane comes from the part 3 of the other partition.
Using the intuition gained, the brane system can be understood as follows: each red brane
interval contributes 16 hypermultiplets in a bispinor representation of SO(6) × SO(6). The
6 D8 flavour branes give rise to an SO(6) global symmetry, while the brane interval with
3 D6 branes leads to an SO(6) gauge group. As the SO(6) spinor is 4-dimensional, the
bispinor leads to 16 hypermultiplets. Combining two of such bispinors, and since the spinor
is a complex representation, we get an SU(8) global symmetry rather than SO(12).

The brane system contains two intervals with negative brane number, for which one
does not have a tensor multiplet. Thus, one tensor multiplet remains, which sets the gauge
coupling of the SU(4) theory. The system has only two phases: either the two NS5 pairs
are off the O6 plane and separated or they are coincident.

– 40 –



J
H
E
P
1
1
(
2
0
2
2
)
0
1
0

The finite coupling Higgs branch has global symmetries SU(8)×U(1), where the abelian
factor is due to the anomalous baryon number. At infinite coupling, only the SU(8) Higgs
branch isometry remains. The Higgs branch at finite coupling, phase (12), and infinite
coupling, phase (2), are captured by the following magnetic quivers

(12) ∶
S
O(2)

S
p(1)

S
O(4)

S
p(2)

S
O(6)

S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(1) Sp(1) ⎧⎪⎪⎨⎪⎪⎩
dim C = 17 ,
gbalance = so(6)2 ⊕ so(2)2 ,

(7.2a)

(2) ∶
S
O(2)

S
p(1)

S
O(4)

S
p(2)

S
O(6)

S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(2)
Λ2 ⎧⎪⎪⎨⎪⎪⎩

dim C = 17 ,
gbalance = so(6)⊕ so(6) , (7.2b)

which are related by an S2 discrete gauging [14]. The monopole formula for (7.2a) and (7.2b)
has been evaluated in [46, appendix C.1] and shown to be consistent with an SU(8) global
symmetry. Moreover, the balanced set of nodes in phase (12) display an so(6)2⊕so(2)2 global
symmetry, which can be understood as maximal subalgebra so(6)2⊕ so(2) ≅ su(4)2⊕u(1) ⊂
su(8) of the non-abelian global symmetry and the anomalous U(1) baryon symmetry. The
balanced set of nodes in the infinite coupling phase (2) only displays the non-abelian factor
so(6)2; nonetheless, the su(8) symmetry is manifest in the monopole formula.

The electric theory can also be realised by 2 M5 branes on a C2/Z4 singularity with
trivial boundary conditions [13, 15]. The magnetic quiver simply reads

(12) ∶
1 2 3 4 3 2 1

11 ⎧⎪⎪⎨⎪⎪⎩
dim C = 17 ,
gbalance = su(8)⊕ u(1) , (7.3a)

(2) ∶
1 2 3 4 3 2 1

2

Adj ⎧⎪⎪⎨⎪⎪⎩
dim C = 17 ,
gbalance = su(8) . (7.3b)

Recall that the finite coupling and infinite coupling HWG [13] are given by

HWG(12) = PE [ 3∑
i=1
µiµ8−it

2i + t2 + 2µ4t
4] , (7.4a)

HWG(2) = PE [ 4∑
i=1
µiµ8−it

2i + µ4t
4 + t4 + µ4t

6 − µ2
4t

12] , (7.4b)

with µi SU(8) highest weight fugacities. Converting the HWG into Hilbert series shows
agreement with the monopole formula of (7.2) and (7.3). The HWG shows that all generators
are invariant under a Z4 subgroup of the Z8 centre symmetry, such that the symmetry
group is SU(8)/Z4. All powers of t are even, implying that the R-symmetry is SO(3)R
rather than SU(2)R.
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The finite and infinite coupling Hasse diagram can be derived to read

●

●
●
0

d4

a5

a7

(12) ∶
Z2Ð→

●
●
●
●
0

b3

a5

a7

A1(2) ∶

(7.5)

and again, the difference is simply given by a S2 gauging.

7.2 SU(2) with 4 fundamentals

For 2 M5 branes on C2/D4 with boundary conditions ρL = (32,12) ρR = (3,15), the brane
configuration and 6d quiver become

2 2 1

3 7

←→
SU(2)

SO(7)

−2

≅
SU(2)

SO(8)

−2

(7.6)

The intuitive understanding of the brane system is as follows: the left-most brane interval
with 2 negatively charged branes modifies the naive SO(5) gauge group in the adjacent
brane interval into an SU(2). The right-most brane interval has 1 negative brane, this
leads to bi-spinor matter of the SU(2) with the SO(7) flavour symmetry from the 7 half D8
branes. As the brane system has two intervals with negative branes such that there is only
one tensor multiplet. The SU(2) theory is anomaly-free with 8 half-hypermultiplets. As in
the case above, there are only two phases, indicated by whether the pairs of NS5 branes are
away from the O6 and separated or coincident. The magnetic quivers for the finite coupling
and infinite coupling Higgs branch are given by

(12) ∶
S
O(2)

S
p(1)

S
O(6)

S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(1) Sp(1) ⎧⎪⎪⎨⎪⎪⎩
dim C = 13 ,
gbalance = so(6)⊕ so(3)⊕ so(2)2 ,

(7.7)

(2) ∶
S
O(2)

S
p(1)

S
O(6)

S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(2)
Λ2 ⎧⎪⎪⎨⎪⎪⎩

dim C = 13 ,
gbalance = so(6)⊕ so(3) , (7.8)

and the monopole formula is evaluated as summarised in table 9. The PL shows in both
phases the appearance of 16 complex free moduli, which come with a global symmetry of
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Sp(8). One can simply remove this contribution and obtain the Hilbert series H̃ for the
interacting part.

The finite coupling Higgs branch of SU(2) for 4 fundamentals is the closure of the
minimal nilpotent orbit of SO(8). Its unrefined Hilbert series [47, table 15] reads

H
O

min
SO(8)

= (1 + t2) (1 + 17t2 + 48t4 + 17t6 + t8)
(1 − t2)10 (7.9)

and the perturbative expansion and PL agree with the results for H̃(7.7) in table 9. Likewise,
the infinite coupling Higgs branch is known to be the closure of the next-to-minimal nilpotent
orbit of SO(7). Hence, one may compare H̃(7.8) against the known unrefined Hilbert
series [47, table 10]

H
O

n−t−min
SO(7)

= (1 + t2) (1 + 10t2 + 20t4 + 10t6 + t8)
(1 − t2)10 (7.10)

and finds that perturbative expansion and PL agree with the results for H̃(7.8), see table 9.
Alternatively, the exact HWG for finite and infinite coupling are known [13]

HWG(12) = PE [µ2t
2] and HWG(2) = PE [ν2t

2 + ν2
1 t

4] (7.11)

where µi and νi denote SO(8) and SO(7) highest weight fugacities, respectively. The
symmetry group is Spin(8)/(Z2 × Z2) in phase (12) and Spin(7)/Z2 for (2). The Higgs
branch Hasse diagram for both phases is readily available

●

0

d4

(12) ∶ Z2Ð→
●
●
0

b3

A1(2) ∶
(7.12)

Observe that the orthosymplectic magnetic quivers (7.7) and (7.8) have Coulomb branch
dimension 13, but after removing the 8 quaternionic free moduli, the dimension reduces
to 5, as appropriate for SU(2) SQCD. The appearance of these 8 moduli has also been
observed in [9, table 2].

7.3 SU(4) × SU(2) quiver
For 3 M5 branes on C2/D4 with boundary conditions ρL = (3,15) ρR = (5,13), the brane
configuration and 6d quiver become

1 3 1 2 2

6 1 3

←→
SU(4) SU(2)

6

−2 −2

(7.13)
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(2) H(7.8) = 1+ 16t+ 157t2 + 1152t3 + 6927t4 + 35760t5 + 163335t6 + 673728t7 + 2547854t8 +
O (t9)

HSZ = 1 + 157t2 + 6927t4 + 163335t6 + 2547854t8 +O (t9)
HSZ+ 1

2
= 16t + 1152t3 + 35760t5 + 673728t7 +O (t9)

PL = 16t + 21t2 − 36t4 + 140t6 − 784t8 +O (t9)
H̃(7.8) = (1 − t)16 ⋅H(7.8) = 1 + 21t2 + 195t4 + 1155t6 + 5096t8 +O (t9)
PL(H̃) = 21t2 − 36t4 + 140t6 − 784t8 +O (t9)

(12) H(7.7) = 1+ 16t+ 164t2 + 1264t3 + 7984t4 + 43152t5 + 205517t6 + 880256t7 + 3443224t8 +
O (t9)

HSZ = 1 + 164t2 + 7984t4 + 205517t6 + 3443224t8 +O (t9)
HSZ+ 1

2
= 16t + 1264t3 + 43152t5 + 880256t7 +O (t9)

PL = 16t + 28t2 − 106t4 + 833t6 − 8400t8 +O (t9)
H̃(7.7) = (1 − t)16 ⋅H(7.7) = 1 + 28t2 + 300t4 + 1925t6 + 8918t8 +O (t9)
PL(H̃) = 28t2 − 106t4 + 833t6 − 8400t8 +O (t9)
Table 9. Perturbative Hilbert series for the different phases (7.7) and (7.8).

The Higgs branch at finite coupling (phase (13)) and at the fixed point (phase (3)) are
captured by the following magnetic quivers

(13) ∶
S
O(2)

S
p(1)

S
O(4)

S
p(2)

S
O(6)

S
p(1)

S
O(2)

Sp(1) Sp(1)
Sp(1) ⎧⎪⎪⎨⎪⎪⎩

dim C = 14 ,
gbalance = so(6)⊕ so(3)⊕ so(2)3 ,

(7.14)

(3) ∶
S
O(2)

S
p(1)

S
O(4)

S
p(2)

S
O(6)

S
p(1)

S
O(2)

Sp(3)
Λ2 ⎧⎪⎪⎨⎪⎪⎩

dim C = 14 ,
gbalance = so(6)⊕ so(3) . (7.15)

Table 10 summarises the perturbative monopole formula. One observes that phase (3) is
compatible with an SU(6) global symmetry, while the finite coupling phase has SU(6)×U(1)3

moduli space isometry.
The electric theory can also be realised by 3 M5 branes on a C2/Z4 singularity with

non-trivial boundary conditions, cf. table 13. The magnetic quiver simply reads

(13) ∶
1 2 3 4 2

1
1

1 ⎧⎪⎪⎨⎪⎪⎩
dim C = 14 ,
gbalance = su(6)⊕ u(1)2 ,

(7.16)
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(3) H(7.15) = 1 + 35t2 + 660t4 + 8743t6 + 90244t8 +O (t9)
HSZ = 1 + 19t2 + 340t4 + 4391t6 + 45220t8 +O (t9)

HSZ+ 1
2
= 16t2 + 320t4 + 4352t6 + 45024t8 +O (t9)

PL = 35t2 + 30t4 − 77t6 − 241t8 +O (t9)
(13) H(7.14) = 1 + 37t2 + 792t4 + 12180t6 + 145838t8 +O (t9)

HSZ = 1 + 21t2 + 408t4 + 6116t6 + 73022t8 +O (t9)
HSZ+ 1

2
= 16t2 + 384t4 + 6064t6 + 72816t8 +O (t9)

PL = 37t2 + 89t4 − 252t6 − 2800t8 +O (t9)
Table 10. Perturbative Hilbert series for the different phases (7.14) and (7.15).

(3) ∶
1 2 3 4 2

3

Adj ⎧⎪⎪⎨⎪⎪⎩
dim C = 14 ,
gbalance = su(6) , (7.17)

and a straightforward computation shows that the Coulomb branch Hilbert series of the
unitary magnetic quiver (7.16) and (7.17) agrees with (7.14) and (7.15), respectively. The
PL for (7.17) shows a generator at t2 in the adjoint representation of SU(6) and a generator
in the second anti-symmetric representation (plus conjugate) at t4. Both generators are
invariant under a Z2 subgroup of the Z6 centre; thus, suggesting a SU(6)/Z2 global symmetry.

The information on the moduli space can be encoded in the Hasse diagram (see also [19])

●

● ● ● ● ●
●
●
0

d4

d4

d4

d4

d4

A1
A1

A1
A1

A1

a3

a5

(13) ∶

S3Ð→

●
●
●

● ● ●
●
●
0

A1

m

g2 g2

A1 A1

a3

a5

b3

A1

(3) ∶

(7.18)

and note that the infinite coupling transitions only modify the top of the diagram. This
confirms that the non-abelian Higgs branch isometry does not change between the phases.

– 45 –



J
H
E
P
1
1
(
2
0
2
2
)
0
1
0

7.4 SU(3) × SU(2) quiver
For 3 M5 branes on C2/D4 with boundary conditions ρL = (3,15) ρR = (5,3), the brane
configuration and 6d quiver become

1 3 1 2 3

6 2

←→
SU(3) SU(2)

4 1

−2 −2

(7.19)

The magnetic quivers for the finite and infinite coupling Higgs branch are given by

(13) ∶
S
O(2)

S
p(1)

S
O(4)

S
p(2)

S
O(6)

S
p(1)

Sp(1) Sp(1)
Sp(1) ⎧⎪⎪⎨⎪⎪⎩

dim C = 13 ,
gbalance = so(6)⊕ so(2)4 ,

(7.20)

(3) ∶
S
O(2)

S
p(1)

S
O(4)

S
p(2)

S
O(6)

S
p(1)

Sp(3)
Λ2 ⎧⎪⎪⎨⎪⎪⎩

dim C = 13 ,
gbalance = so(6)⊕ so(2) . (7.21)

The monopole formula results are summarised in table 11. The PL shows 8 complex
free moduli, which can be removed to study the interacting part. For phase (13), the t2
coefficient is compatible with the dimension of the su(4) × u(1)3 symmetry. For phase (3),
the t2 coefficient is consistent with the su(4) × u(1) symmetry.

The electric theory admits a realisation via 3 M5 branes on a C2/Z3 singularity with
non-trivial boundary conditions. The corresponding magnetic quivers are given by

(13) ∶
1 2 3 1

1
1

1 ⎧⎪⎪⎨⎪⎪⎩
dim C = 9
gbalance = su(4)⊕ u(1)3

(7.22)

(3) ∶
1 2 3 1

3

Adj ⎧⎪⎪⎨⎪⎪⎩
dim C = 9
gbalance = su(4)⊕ u(1) (7.23)

and it is straightforward to verify that the perturbative monopole formula for (7.22)
and (7.23) agree with the results for H̃(7.20) and H̃(7.21), respectively. Note also, that
the Coulomb branch dimensions of the orthosymplectic quivers are 13, while the unitary
magnetic quivers have Coulomb branch of dimension 9. The difference are precisely the 4
quaternionic free moduli encountered in table 11. The number of free moduli has also been
observed in [9, table 2].

Note that the Coulomb branch of (7.22) is the hyper-Kähler implosion of the nilpotent
cone of su(4) [48], which here finds a natural realisation in brane systems.
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(3) H(7.21) = 1 + 8t + 52t2 + 264t3 + 1182t4 + 4720t5 + 17321t6 + 58984t7 + 188673t8 +O (t9)
HSZ = 1 + 52t2 + 1182t4 + 17321t6 + 188673t8 +O (t9)

HSZ+ 1
2
= 8t + 264t3 + 4720t5 + 58984t7 +O (t9)

PL = 8t + 16t2 + 16t3 + 12t4 − 8t5 − 51t6 − 72t7 +O (t9)
H̃(7.21) = (1−t)8 ⋅H(7.21) = 1+16t2+16t3+148t4+248t5+1093t6+2168t7+6818t8+O (t9)
PL(H̃) = 16t2 + 16t3 + 12t4 − 8t5 − 51t6 − 72t7 +O (t9)

(13) H(7.20) = 1 + 8t + 54t2 + 296t3 + 1440t4 + 6296t5 + 25257t6 + 93840t7 + 325958t8 +O (t9)
HSZ = 1 + 54t2 + 1440t4 + 25257t6 + 325958t8 +O (t9)

HSZ+ 1
2
= 8t + 296t3 + 6296t5 + 93840t7 +O (t9)

PL = 8t + 18t2 + 32t3 + 35t4 − 32t5 − 305t6 − 672t7 − 59t8 +O (t9)
H̃(7.20) = (1−t)8⋅H(7.20) = 1+18t2+32t3+206t4+544t5+1993t6+5344t7+15531t8+O (t9)
PL(H̃) = 18t2 + 32t3 + 35t4 − 32t5 − 305t6 − 672t7 − 59t8 +O (t9)

Table 11. Perturbative Hilbert series for the different phases (7.20) and (7.21).

The Higgs branch Hasse diagram is given by (see also [19])
●

● ● ● ● ●
●
0

d4

d4

d4

d4

d4

A1
A1

A1
A1

A1

a3

(13) ∶

S3Ð→

●
●
●

● ● ●
●
0

A1

m

g2 g2

A1 A1

a3

b3

A1

(3) ∶

(7.24)

and one observes that it is a subdiagram of (7.18). This follows simply because SU(4)×SU(2)
can be Higgsed to SU(3) × SU(2).
7.5 SU(2) × SU(2) quiver
For 3 M5 branes on C2/D4 with boundary conditions ρL = (32,12), ρR = (5,13), the brane
configuration and 6d quiver become

2 2 1 2 2

3 2 3

←→
SU(2) SU(2)

2 2

−2 −2

(7.25)
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(3) H(7.27) = 1+ 8t+ 45t2 + 208t3 + 831t4 + 2968t5 + 9692t6 + 29344t7 + 83267t8 + 223288t9 +
569535t10 + 1389120t11 + 3254165t12 +O (t13)

HSZ = 1 + 45t2 + 831t4 + 9692t6 + 83267t8 + 569535t10 + 3254165t12 +O (t13)
HSZ+ 1

2
= 8t + 208t3 + 2968t5 + 29344t7 + 223288t9 + 1389120t11 +O (t13)

PL = 8t+9t2+16t3+4t4−16t5−39t6−8t7+100t8+176t9−54t10−768t11−1059t12+
O (t13)

H̃(7.27) = (1 − t)8 ⋅ H(7.27) = 1 + 9t2 + 16t3 + 49t4 + 128t5 + 298t6 + 632t7 +
1402t8 + 2728t9 + 5324t10 + 9944t11 + 17946t12 +O (t13)

PL(H̃) = 9t2+16t3+4t4−16t5−39t6−8t7+100t8+176t9−54t10−768t11−1059t12+O (t13)
(13) H(7.26) = 1+8t+51t2+272t3+1242t4+5024t5+18361t6+61480t7+190857t8+554464t9+

1518870t10 + 3948304t11 + 9791797t12 +O (t13)
HSZ = 1 + 51t2 + 1242t4 + 18361t6 + 190857t8 + 1518870t10 + 9791797t12 +O (t13)

HSZ+ 1
2
= 8t + 272t3 + 5024t5 + 61480t7 + 554464t9 + 3948304t11 +O (t13)

PL = 8t + 15t2 + 32t3 − 4t4 − 128t5 − 285t6 + 320t7 + 2719t8 + 3520t9 − 14048t10 −
61440t11 − 20985t12 +O (t13)

H̃(7.26) = (1 − t)8 ⋅H(7.26) = 1 + 15t2 + 32t3 + 116t4 + 352t5 + 863t6 + 2112t7 +
4854t8 + 10176t9 + 20851t10 + 40736t11 + 76009t12 +O (t13)

PL(H̃) = 15t2+32t3−4t4−128t5−285t6+320t7+2719t8+3520t9−14048t10−61440t11−
20985t12 +O (t13)

Table 12. Perturbative Hilbert series for the different phases of (7.26) and (7.27).

The finite coupling Higgs branch is expected to have SO(4)×SU(2)×SO(4) ≅ SU(2)5 global
symmetry, while the infinite coupling Higgs branch admits an SU(2)3 isometry.

(13) ∶
S
O(2)

S
p(1)

S
O(6)

S
p(1)

S
O(2)

Sp(1) Sp(1)
Sp(1) ⎧⎪⎪⎨⎪⎪⎩

dim C = 10
gbalance = so(3)2 ⊕ so(2)3

(7.26)

(3) ∶
S
O(2)

S
p(1)

S
O(6)

S
p(1)

S
O(2)

Sp(3)
Λ2 ⎧⎪⎪⎨⎪⎪⎩

dim C = 10
gbalance = so(3)⊕ so(3) (7.27)

The perturbatively evaluated monopole formula is summarised in table 12. Again, the PL
indicates 8 complex free moduli, which are acted on by an Sp(4) symmetry. After removing
those, the Coulomb branch Hilbert series of the interacting part is denoted by H̃. The finite
coupling phase (13) displays a dimension 15 global symmetry, consistent with the SU(2)5

expectation. Likewise, the infinite coupling phase (3) has a global symmetry of dimension
9, which reflects the expected SU(2)3 symmetry.
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The same theory admits a realisation via 3 M5 branes on a C2/Z2 singularity. The
corresponding magnetic quivers are given by [13, 15]

(13) ∶
1 2 1

1
1

1 ⎧⎪⎪⎨⎪⎪⎩
dim C = 6
gbalance = su(2)5

(7.28)

(3) ∶
1 2 1

3

Adj ⎧⎪⎪⎨⎪⎪⎩
dim C = 6
gbalance = su(2)3

(7.29)

A straightforward computation confirms that the monopole formula of (7.28) and (7.29)
agrees with H̃(7.26) and H̃(7.27), respectively. In fact, the exact HWG for (7.28) is known
to be [49]

HWG(13) = PE
⎡⎢⎢⎢⎢⎣(

3∑
i=1
ν2
i + µ2

1 + µ2
2) t2 + µ1µ2

3∏
i=1
νi (t3 + t5) + t4 − (µ1µ2

3∏
i=1
νi)2

t10
⎤⎥⎥⎥⎥⎦ (7.30)

where νi with i = 1, 2, 3 denotes the SU(2)i highest weight fugacities for the three balanced
U(1) nodes on top in (7.28). The remaining µ1,2 are the SU(2) highest weight fugacities
for the left and right balanced U(1). The reason for the 2 + 3 split lies in the nature of the
U(1) nodes: three originate from NS5 branes, while the other two from D6.

Again, the Coulomb branch dimension of the unitary magnetic quivers is 6, while
the dimension of the orthosymplectic quivers is 10. The difference is accounted by the
4 quaternionic free moduli observed in table 12. This is consistent with the findings
of [9, table 2].

The Hasse diagram of the 6d SU(2) × SU(2) theory is given by (see also [19])
●

● ● ● ● ●
0

d4

d4

d4

d4

d4

A1
A1

A1
A1

A1

(13) ∶

S3Ð→

●
●
●

● ● ●
0

A1

m

g2 g2

A1 A1

b3

A1

(3) ∶

(7.31)

which is a subdiagram of (7.24).

8 Conclusion

Despite numerous studies on 6d N = (1, 0) theories, their Higgs branches are far from being
fully understood. In this note, further advances have been made to work out selected cases
in detail.
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Starting from n M5 branes on the minimal D-type singularity C2/D4, non-trivial Higgs
branches can be accessed by trading tensor multiplets, corresponding to Sp(0) gauge factors,
for a number of hypermultiplets. The simplest and cleanest configuration is that of an SU(3)
super Yang-Mills theory coupled to an Sp(0) factor. As argued in section 4, the infinite
coupling Higgs branch has two phases, related by discrete gauging. More fundamentally,
the infinite coupling Higgs moduli are obtained by an SU(3) hyper-Kähler quotient of the
minimal nilpotent orbit closure of E8 — the result is a nilpotent orbit closure of E6 (or
a Z2 cover thereof). We confirm this conclusion with a number of different reasonings.
The magnetic quiver derived is in fact a novel construction of this moduli space and,
simultaneously, represents a physical construction thereof. Once the Sp(0) factor is coupled
to a larger gauge group, which admits charged hypermultiplets, the Higgs branch description
becomes more intricate. Nonetheless, the magnetic quiver allows for an analysis.

Another class of intriguing Higgs moduli spaces arises from coupling the “clusters” of(−2)(−3) or (−2)(−2)(−3) curves to an Sp(0) factor. The minimal configurations support
an SU(2)×G2 product gauge group. Again, the physical intuition indicates that the infinite
coupling Higgs branches exhibit an F4 global symmetry. But in fact more is true, H∞ of the
SU(2)×G2×Sp(0) theory on (−2)(−2)(−3)(−1) curves is the 20 dimensional nilpotent orbit
closure of F4. Based on a combination of techniques — brane systems, 6d quivers, magnetic
quivers, and quiver subtraction — we derived the infinite coupling Higgs branch phase
diagram and found agreement with the known F4(a3) Hasse diagram from the mathematics
literature. The SU(2) × G2 × Sp(0) theory on (−2)(−3)(−1) curves is related to the F4
nilpotent orbit by an S3 discrete symmetry.

Lastly, by picking non-trivial boundary conditions on both sides we find interesting Higgs
branches of 6d theories. There are two scenarios to distinguish: the boundary conditions
may overlap, but there is at least one Sp(0) factor remaining, or the boundary conditions
overlap without an Sp(0) part. The first scenario has been exemplified in section 6, and
the infinite coupling Higgs branches are still related to Omin

E8 by gauging various subgroups
of E8. For the minimal SU(3) × Sp(0) × SU(3) quiver theory, the infinite coupling Higgs
branches are precisely given by the SU(3) × SU(3) hyper-Kähler quotient of Omin

E8 (or a
further S2 or S3 quotient thereof). However, for non-minimal gauge groups the moduli
spaces are rather intricate such that one has to rely on the magnetic quivers for an explicit
description. The second scenario has been addressed in section 7. The collapse of all (−1)
curves leads to theories purely defined on (−2) curves. Here, two interesting phenomena
occur. Firstly, those 6d theories have an alternative unitary magnetic quiver construction,
which allows to independently verify the predictions obtained from the orthosymplectic
quivers. Secondly, some of these brane configurations are known to produce a mismatch
in the anomaly polynomial, compared to the expectation for the effective 6d theory. In
terms of the magnetic quivers, we observe that the Coulomb branches contain a free sector.
Upon removing these moduli, the Hilbert series agrees with the results of the unitary
magnetic quivers.

Outlook. As noted in [8, 9], negative branes extend the brane system construction and
give rise to new effective theories. In this note, we have reiterated and expanded this
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reasoning by demonstrating that a host of physical properties can be extracted from such
brane systems and reveal interesting Higgs branch geometries. It is however an open
challenge to derive the identifications of table 2 purely from the brane system.

On a different note, the magnetic quiver approach is currently limited to special
partitions of SO(2n), for the same reasons as in the 3d N = 4 case. Even for special
partitions, some Tρ[SO(2n)] tails contain “bad” Sp(k) nodes, which renders the models
incomputable by means of the monopole formula. One might try to extend monopole
formula techniques to accommodate for such cases, as proposed in [50].

It has been argued [51] that a given theory labelled by two very even partitions of
SO(4k) may in fact give rise to two distinct theories that differ in their Higgs branch
spectrum. While these partitions are special, their Tρ[SO(4k)] tails suffer from bad nodes.
Hence, magnetic quivers are not yet sensitive to this question, but it would be interesting
to remedy this circumstance.
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A Background material

A.1 Brane creation and annihilation

Following [52], in a system of Dp-D(p+2)-NS5 branes, Dp brane creation or annihilation
happens whenever a NS5 passes through an D(p+2). In the presence of Op planes, which
carry non-trivial brane charge, a NS5 brane can pass through an D(p+2) with or without
creation of an additional Dp brane. To begin with, recall [53–55]

• An Op± becomes an Op∓ when passing through a half NS5; likewise, Õp± turns
into Õp∓.

• An Op± becomes an Õp± when passing through a half D(p+2), and vice versa.
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According to [36, 54], the charges of the Op planes (in unites of the physical Dp branes) are
given by

charge (Op±) = ±2p−5 , charge (Õp−) = 1
2
− 2p−5 , charge (Õp+) = 2p−5 . (A.1)

Following the conventions of [56], the different orientifolds are denoted by:

O6− & 2n ⋅ 1
2
D6 ∶ n , Õ6− & 2n ⋅ 1

2
D6 ∶ n , (A.2)

O6+ & 2n ⋅ 1
2
D6 ∶ n , Õ6+ & 2n ⋅ 1

2
D6 ∶ n , (A.3)

i.e. O6− empty line, Õ6− solid line, O6+ dotted line, Õ6+ dashed line.
Next, there are four scenarios for brane creation and annihilation. These follow from

preservation of the linking number before and after the transition. The linking numbers
lNS5 for half NS5 or lD(p+2) for half D(p+2) are defined as [52]

lNS5 = 1
2
(RD(p+2) −LD(p+2)) + (LDp −RDp) , (A.4a)

lD(p+2) = 1
2
(RNS5 −LNS5 ) + (LDp −RDp) , (A.4b)

where LX , RX denote the total number of branes of type X to the left or right, respectively.
Note that the Op planes contribute to LDp and RDp according to (A.1); naturally, half NS5
or half D(p+2) branes contribute with charge 1

2 to the numbers L and R, respectively. It
then follows that

+̃ −̃ − ↔ +̃ + −
(A.5a)

+ − −̃ ↔ + +̃ −̃
(A.5b)

− + +̃ ↔ − −̃ +̃
(A.5c)

−̃ +̃ + ↔ −̃ − +
(A.5d)

by requiring that all linking numbers (A.4) remain constant.

– 52 –



J
H
E
P
1
1
(
2
0
2
2
)
0
1
0

A.2 Global symmetry for orthosymplectic quiver

Following [56], there are conditions upon which orthogonal and symplectic gauge nodes in
a 3d N = 4 gauge theory have positive balance, zero balance, or negative balance. Gauge
nodes with zero balance, also called balanced gauge nodes, are expected to have monopole
operators of spin 1 under the R-charge that lead to symmetry enhancement.

An SO(k) (or O(k)) gauge theory coupled to fundamental hypermultiplets with
USp(2n) flavour symmetry is called

positively balanced if n > k − 1 , and balanced if n = k − 1 . (A.6)

Analogously, an USp(2l) = Sp(l) gauge theory coupled to fundamental hypermultiplets
with O(2n) flavour symmetry is called

positively balanced if n > 2l + 1 , and balanced if n = 2l + 1 . (A.7)

Considering an orthosymplectic quiver, i.e. a linear quiver with alternating orthogonal and
symplectic gauge nodes, a chain of p balanced nodes gives rise to the following enhanced
Coulomb branch symmetry:

• An SO(p + 1) symmetry, if there are no SO(2) (or O(2)) gauge nodes at the ends.
• An SO(p + 2) symmetry, if there is an SO(2) (or O(2)) gauge node at one of the two

ends.
• An SO(p + 3) symmetry, if there is an SO(2) (or O(2)) gauge node at each end.

A.3 Notation

The magnetic quivers in this work are composed of unitary gauge nodes U(n), special
orthogonal gauge nodes SO(k), and symplectic gauge nodes Sp(l). The magnetic lattices
and dressing factors have been detailed in [18]. For unframed orthosymplectic magnetic
quivers with product gauge group G = ∏I SO(2ni) ×∏J Sp(kj), there exists a trivially
acting Zdiag

2 ⊂ G. As discussed in [46], this Zdiag
2 has to be removed from the gauge group.

Thus, the magnetic lattice of G/Zdiag
2 is (⊕I ZnI ⊕⊕J ZkJ )∪(⊕I(Z + 1

2)nI ⊕⊕J(Z + 1
2)kJ ).

B Examples

B.1 Magnetic quivers for A-type boundary conditions

Recall a few preliminaries: Denote the A-type ADHM quiver for n SU(k) instantons
on C2 by

Y A
n,k = U(n)

SU(k)

Adj

(B.1)

Here, the conventions of [26] are used for the 3d N = 4 T σρ [SU(k)] theories.
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Statement 1 (A-type). The magnetic quiver for the infinite gauge coupling phase of
TnSU(k)(ρL, ρR) is given by

QρL,ρR
= (TρL

[SU(k)] × Y A
n,k × TρR

[SU(k)]) ///SU(k) (B.2a)

=
a1 a2

. . .
aℓ k bℓ′

. . .

b2 b1

n

Adj

(B.2b)

and the integers {ai}i=1`, {bj}`′j=1 are determined by the partitions ρL, ρR, respectively. See
e.g. [26]. Then the equality of moduli spaces

H6d
∞ (TnSU(k)(ρL, ρR)) = C3d (QρL,ρR

) (B.2c)

holds. The Higgs branch dimension at infinite coupling is

dimH H6d
∞ (TnSU(k)(ρL, ρR)) = dimH C3d (QρL,ρR

) (B.3)

= n + dim SU(k) − dimH OρL
− dimH OρR= n + rk SU(k) + dimHSN ,ρL
+ dimHSN ,ρR

.

Here, SN ,ρ denotes the intersection of the transverse slice to the orbit Oρ with the
nilpotent cone N . Recalling the Coulomb branches C (Tρ[SU(k)]) = SN ,ρ, the dimension
formula is straightforward. Statement 1 can immediately be generalised to describe all
phases of the TnSU(k)(ρL, ρR) theories via using the discrete gauging proposal [13] and
its manifestation on the Coulomb branches of magnetic quivers [14, 57]. Appendix B.2
exemplifies the SU(4) case.

B.2 Examples: SU(4)
Starting from the M-theory setting n M5 branes on C2/Z4, the corresponding Type IIA
description has the advantage that boundary conditions of D6 on D8 branes can be
introduced additionally. Focusing on SU(4) examples, one considers the boundary conditions
displayed in table 13.

For the A-type case, the magnetic quiver is available for finite as well as infinite coupling.
The transition between both phases is realised via discrete gauging [13]. The magnetic
quivers are related via an operation on the bouquet of n U(1)-nodes, see [14, 57]. Hence,
table 13 only details the infinite coupling magnetic quiver.

B.3 Magnetic quivers for D-type boundary conditions

A few preliminaries are required: Partitions of classical Lie algebras other than su(n) require
a more careful treatment. In particular, a map that takes a partition of g to a partition of
the GNO-dual ĝ is necessary, see for instance [35, Sec. 6]. Generically, for classical g the
Barbasch-Vogan map acts as

dBV ∶ {partitions
of g }→ {special partitions

of ĝ } (B.4)
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data branes system 6d electric theory magnetic quiver

ρL=(14)
ρR=(14)

4 ⋯
S
U(4)

S
U(4)

S
U(4)

S
U(4)

4

. . .
S
U(4)

S
U(4)

4

1 2 3 4 3 2 1

U(n)
Adj

ρL=(2,12)
ρR=(14)

4 ⋯
S
U(3)

S
U(4)

S
U(4)

S
U(4)

2 1

. . .
S
U(4)

S
U(4)

4

1 2 4 3 2 1

U(n)
Adj

ρL=(22)
ρR=(14) ⋯ 4 ⋯

S
U(2)

S
U(4)

S
U(4)

S
U(4)

2

. . .
S
U(4)

S
U(4)

4

2 4 3 2 1

U(n)
Adj

ρL=(3,1)
ρR=(14) ⋯ 4 ⋯

S
U(2)

S
U(3)

S
U(4)

S
U(4)

1 1

. . .
S
U(4)

S
U(4)

4

1 4 3 2 1

U(n)
Adj

ρL=(4)
ρR=(14)

4 ⋯
S
U(2)

S
U(3)

S
U(4)

1 1

. . .
S
U(4)

S
U(4)

4

4 3 2 1

U(n)
Adj

Table 13. Magnetic quivers for infinite coupling Higgs branch for n M5 branes on an A3 singularity
C2/Z4 with boundary conditions ρL,R. In the magnetic quiver, the contribution from ρL is coloured
in black, while contributions from ρR and 2k is coloured in blue. As summarised in appendix A.2,
the global symmetry on the Coulomb branch can be deduced from the balanced nodes, which are
indicated by a red filling.

Fortunately, for (GNO) self-dual algebras like su(n) and so(2n), the Barbasch-Vogan map
reduces to the Lusztig-Spaltenstein map defined via

dLS(ρ) = ⎧⎪⎪⎨⎪⎪⎩
ρT , g = su(n)
(ρT )D , g = so(2n) , (B.5)

where (⋅)T denotes transposition and (⋅)D D-collapse. Partitions are called special if
d2

LS(ρ) = ρ. Hence, all A-type partitions are special, but there exist D-type partitions that
are non-special.

The D-type ADHM quiver for n SO(2k) instantons on C2 is denoted by

Y D
n,2k = USp(2n)

SO(2k)

Λ2

(B.6)

Here, the conventions of [26] are used for 3d N = 4 T σρ [SO(2k)] theories, with ρ, σ two
special D-type partitions of 2k. It is enough to restrict to Tρ[SO(2k)] ≡ T (12k)

ρ [SO(2k)].
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The precise statement becomes

Statement 2 (D-type). Let ρL,R be two special D-type partitions of 2k. The magnetic
quiver for the infinite gauge coupling phase of TnSO(2k)(ρL, ρR) is

QρL,ρR
= (TρL

[SO(2k)] × Y D
n,2k × TρR

[SO(2k)]) ///(SO(2k)/Z2) (B.7a)

=
SO(a1) USp(a2)

. . .
USp(aℓ) SO(2k) USp(bℓ′ )

. . .
USp(b2) SO(b1)

USp(2n)
Λ2

(B.7b)

and the integers {ai}i=1`, {bj}`′j=1 are determined by the partitions ρL, ρR, respectively. See
e.g. [26]. Then the equality of moduli spaces

H6d
∞ (TnSO(2k)(ρL, ρR)) = C3d(QρL,ρR

) (B.7c)

holds. The Higgs branch dimension at infinite coupling is

dimH H6d
∞ (TnSO(2k)(ρL,ρR))=dimH C3d(QρL,ρR

) (B.8)

=n+dim SO(2k)−dimH OρL
−dimH OρR=n+rk SO(2k)+dimHSN ,ρL
+dimHSN ,ρR

.

Again, SN ,ρ denotes the intersection of the transverse slice to the orbit Oρ with the
nilpotent cone N . Recalling that C (Tρ[SO(2k)]) = SN ,ρ, the dimension formula sums over
the dimensions of the legs plus the rank of the central node. The discrete quotient analysis
of [14] allows to extend Statement 2 to further phases of TnSO(2k)(ρL, ρR). In Appendix B.4,
examples for SO(12) are discussed in detail.

B.4 Examples: SO(12)
By symmetry of the brane configuration one may consider, say, only the left-hand-side and
work out the effects of the boundary conditions corresponding to ρL without worrying about
the right-hand-side. In order words, vary the left-hand-side partition ρ ≡ ρL while keeping
the right-hand-side partition trivial ρR = (112). In the following examples, the magnetic
quiver at the infinite coupling point is displayed by using the results of [16].

Non-special partitions: following for instance [7], one can consider all D-type partitions
as legitimate boundary conditions. The electric quiver can be deduced by the results of [8].
However, the magnetic quiver reproduces the correct Higgs branch only for special partitions.
Nevertheless, one can still work out the magnetic quiver to any non-special partition and
emphasis the short-comings.

• SO(12) has the following non-special partitions:

(3,22,15) , (3,24,1) , (5,22,13) , (7,22,1) (B.9)
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• Since non-special means d2
LS(ρ) ≠ ρ, one computes the d2

LS action to be

d2
LS (3,22,15) = (32,16) , d2

LS (3,24,1) = (32,22,12) , (B.10a)

d2
LS (5,22,13) = (5,3,14) , d2

LS (7,22,1) = (7,3,12) . (B.10b)

• Similar to the remark around [35, eq. (6.2)] for 3d N = 4 theories, it is known that
the Type IIB D3-D5-NS5 brane construction for non-special partitions does not yield
the desired moduli spaces. In more detail, the brane construction for a non-special
partitions yields the world-volume theory labelled by d2

LS(ρ) instead.

Therefore, the expectation for a magnetic quiver associated to boundary conditions of a
non-special partition ρ is that it is identical to d2

LS(ρ), which is not the correct moduli space.

Notation. In the magnetic quiver, the contribution from ρL is coloured in black, while
contributions from ρR and 2k is coloured in blue. As summarised in appendix A.2, the
global symmetry on the Coulomb branch can be deduced from the balanced nodes, which
are indicated by a red filling. Gauge nodes which are bad are indicated by a grey filling.

B.4.1 Partition (112)
This case is covered in [16]. The Brane configuration and 6d electric theory read

2 6 2 ⋯
12

Ð→
Sp(2) SO(12) Sp(2) SO(12)

. . .

SO(12)

−1 −4 −1 −4

+ 2n−4 nodes
Sp(2)/SO(12)

(B.11)

compute the Higgs branch dimension

dim(Hf) = 38 , dim(H∞) = n + 66 = dim(Hf) + 29 + (n − 1) . (B.12)

The finite coupling magnetic quiver is given by

S
O(2)

S
p(1)

S
O(4)

S
p(2)

S
O(5)

S
p(2)

S
O(5)

S
p(2)

S
O(5)

S
p(2)

S
O(5)

O(1)

S
p(2)

S
O(5)

. . .
S
p(2)

S
O(4)

S
p(1)

S
O(2)

O(1)Sp(n − 1) ⎧⎪⎪⎨⎪⎪⎩
GJ =SO(12)×SO(12)
dim C =38=dim(Hf) .

(B.13)

Infinite coupling. Moving the 12 D8 passed the left most half NS5 brane, accounting
for brane creating as summarised in appendix A.1, one arrives at

1 1 ⋯ 5 5 6 2 6 2 ⋯

12 half D8

(B.14)
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and the magnetic quiver at the CFT fixed point is

S
O(2)

S
p(1)

S
O(4)

S
p(2)

S
O(6)

S
p(3)

S
O(8)

S
p(4)

S
O(10)

S
p(5)

S
O(12)

S
p(5)

S
O(10)

. . .
S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(n)
Λ2 ⎧⎪⎪⎨⎪⎪⎩

GJ =SO(12)×SO(12)
dim C =n+66=dim H∞

(B.15)

Transitions. The difference between finite coupling (B.13) and the CFT fixed point (B.15)
is one E8 transition and (n − 1) D4 transitions, see [16].

B.4.2 Partition (22,18)
The brane configuration and 6d electric theory read

1 6 2 ⋯
8 2

Ð→
Sp(1) SO(12) Sp(2) SO(12)

. . .

SO(8) Sp(1)

−1 −4 −1 −4

+ 2n−4 nodes
Sp(2)/SO(12)

(B.16)
One computes the Higgs branch dimension to be

dim(Hf) = 29 , dim(H∞) = n + 57 = dim(Hf) + 29 + (n − 1) . (B.17)

The finite coupling magnetic quiver is given by

S
O(2)

S
p(1)

S
O(3)

S
p(1)

S
O(3)

S
p(1)

S
O(3)

S
p(2)

S
O(5)

O(1)

S
p(2)

S
O(5)

. . .
S
p(2)

S
O(4)

S
p(1)

S
O(2)

O(1)Sp(n − 1) ⎧⎪⎪⎨⎪⎪⎩
GJ = SO(8) × SO(12)
dim C = 29 = dim(Hf)

(B.18)

Infinite coupling. Moving the 10 D8 passed the two left most half NS5 branes, accounting
for brane creating as summarised in appendix A.1, one arrives at

1 1 2 2 3 3 4 5 6 2 6 2 ⋯

10 half D8

(B.19)
and the magnetic quiver becomes

S
O(2)

S
p(1)

S
O(4)

S
p(2)

S
O(6)

S
p(3)

S
O(8)

S
p(5)

S
O(12)

S
p(5)

S
O(10)

. . .
S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(n)
Λ2 ⎧⎪⎪⎨⎪⎪⎩

GJ = SO(8) × SO(12)
dim C = n + 57 = dim H∞

(B.20)
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Transitions. The difference between (B.20) and (B.18) are one E8 transition and n − 1
D4 transitions. For instance, (B.20) before the n−1 D4 transitions (and subsequent discrete
gauging) is a magnetic quiver of the form

S
O(2)

S
p(1)

S
O(4)

S
p(2)

S
O(6)

S
p(3)

S
O(8)

S
p(5)

S
O(12)

S
p(5)

S
O(10)

. . .
S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(1) Sp(n−1)

(B.21)

from which a quiver subtraction of the E8 quiver leads to (B.18).

B.4.3 Partition (3,19)
The brane configuration and the 6d electric theory read

1 5 2 6 ⋯
9 1

Ð→
Sp(1) SO(11) Sp(2) SO(12)

. . .

SO(9) O(1)

−1 −4 −1 −4

+ 2n−4 nodes
Sp(2)/SO(12)

(B.22)
One computes the Higgs branch dimension

dim(Hf) = 28 , dim(H∞) = n + 56 = dim(Hf) + 29 + (n − 1) . (B.23)

The finite coupling magnetic quiver is given by

S
O(2)

S
p(1)

S
O(3)

S
p(1)

S
O(3)

S
p(1)

S
O(3)

S
p(1)

S
O(5)

O(1)

S
p(2)

S
O(5)

. . .
S
p(2)

S
O(4)

S
p(1)

S
O(2)

O(1)Sp(n − 1) ⎧⎪⎪⎨⎪⎪⎩
GJ = SO(9) × SO(12)
dim C = 28 = dim(Hf)

(B.24)
Infinite coupling. Moving the 10 D8 passed the three left most half NS5 branes, ac-
counting for brane creating as summarised in appendix A.1, one arrives at

1 1 2 2 3 3 4 4 6 2 6 2 ⋯

10 half D8

(B.25)
and the magnetic quiver becomes
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dim C = n + 56 = dim(H∞)

(B.26)
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Transitions. The difference between (B.26) and (B.24) is given by one E8 transition and(n − 1) D4 transitions. This is straightforwardly verified by quiver subtraction, analogously
to (B.21).

B.4.4 Partition (24,14)
The brane configuration and 6d electric theory read

0 6 2 ⋯
4 4

Ð→
Sp(0) SO(12) Sp(2) SO(12)

. . .

SO(4) Sp(2)

−1 −4 −1 −4

+ 2n−4 nodes
Sp(2)/SO(12) (B.27)

compute Higgs branch dimension

dim(Hf) = 24 , dim(H∞) = n + 52 = dim(Hf) + 29 + (n − 1) . (B.28)

The finite coupling magnetic quiver is given by
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dim C = 24 = dim(Hf) (B.29)

Infinite Coupling. Moving the 8 D8 passed the two left most half NS5 branes, accounting
for brane creating as summarised in appendix A.1, one arrives at

1 1 2 3 4 5 6 2 6 2 ⋯

8 half D8

(B.30)

and the magnetic quiver becomes
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(B.31)

Transitions. The difference between (B.31) and (B.29) is given by one E8 transition and(n − 1) D4 transitions. This is straightforwardly verified by quiver subtraction, analogously
to (B.21).
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B.4.5 Partition (3,22,15)
Brane configuration

0 5 2 6 ⋯
5 2 1

Ð→
Sp(0) SO(11) Sp(2) SO(12)

. . .

SO(5) Sp(1) O(1)

−1 −4 −1 −4

+ 2n−4 nodes
Sp(2)/SO(12)

(B.32)

compute Higgs branch dimension

dim(Hf) = 22 , dim(H∞) = n + 50 = dim(Hf) + 29 + (n − 1) . (B.33)

The finite coupling magnetic quiver is given by
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GJ = SO(2) × SO(12)
dim C = 21 = dim(Hf) − 1

(B.34)

which is one less than the classical Higgs branch. Note that (B.34) is the same as the
finite coupling magnetic quiver (B.47) for partition (32,16), because (3,22,15) is a non-
special partition.

Infinite Coupling. Moving the 8 D8 passed the three left most half NS5 branes, ac-
counting for brane creating as summarised in appendix A.1, one arrives at

1 1 2 2 3 4 6 2 6 2 ⋯

8 half D8

(B.35)

and the magnetic quiver becomes

S
O(2)

S
p(1)

S
O(4)

S
p(2)

S
O(6)

S
p(4)

S
O(12)

S
p(5)

S
O(10)

. . .
S
p(2)

S
O(4)

S
p(1)

S
O(2)

Sp(n)
Λ2

{dimC = n + 49 = dimH∞ − 1 (B.36)

However, (3,22,15) is a non-special partition and one can see that the resulting magnetic
quiver is identical to the one of (32, 16), because of (B.10). Therefore, the magnetic quiver
will not capture the Higgs branch correctly, as for instance seen by inspecting the dimension
and global symmetry.
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B.4.6 Partition (26)
The brane configuration and 6d theory are

1 6 2 6 ⋯
6

Ð→
SO(12) Sp(2) SO(12)

. . .
O(1)

Sp(3)

−3 −1 −4

+ 2n−4 nodes
Sp(2)/SO(12)

(B.37)

compute Higgs branch dimension

dim(Hf) = 32 , dim(H∞) = n + 51 = dim(Hf) + (n − 2) + 21 . (B.38)

using [31, eq. (9)] and dim(spinSO(12)) = 32. The difference in dimension is consistent with
the fact that there are n − 2 curves of self-intersection −4, giving rise to 1-dimensional
D4 transitions. Also, there is one −3 curves, which contributes 21 new hypermultiplets
after collapse.

Infinite coupling. Moving the 6 D8 passed the two left most half NS5 branes, accounting
for brane creating as summarised in appendix A.1, one arrives at

1 2 3 4 5 6 2 6 2 ⋯

6 half D8

(B.39)

and the magnetic quiver becomes
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(B.40)

B.4.7 Partition (3,24,1)
The brane configuration and the 6d theory are

1 5 2 6 ⋯
1 4 1

Ð→
SO(11) Sp(2) SO(12)

. . .
O(1)

Sp(2) O(1)

−3 −1 −4

+ 2n−4 nodes
Sp(2)/SO(12)

(B.41)
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compute Higgs branch dimension

dim(Hf) = 29 , dim(H∞) = n + 48 = dim(Hf) + (n − 2) + 21 , (B.42)

using [31, eq. (9)] and dim(spinSO(11)) = 32. Again, the difference in dimension stems from(n−2) −4 curves, each with a D4 transition, and one −3 curves, with 21 new hypermultiplets.

Infinite coupling. Moving the 6 D8 passed the three left most half NS5 branes, account-
ing for brane creating as summarised in appendix A.1, one arrives at

1 2 3 4 6 2 6 2 ⋯

6 half D8

(B.43)

and the magnetic quiver becomes
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{dimC = n + 46 = dimH∞ − 2 (B.44)

However, (3,24,1) is a non-special partition and one can see that the resulting magnetic
quiver is identical to the one of (32,22,12), because of (B.10). Therefore, the magnetic
quiver will not capture the Higgs branch correctly, as for instance seen by inspecting the
dimension and global symmetry.

B.4.8 Partition (32,16)
The brane configuration and the 6d theory read

5 2 6 ⋯
6 2

Ð→
Sp(0) SO(10) Sp(2) SO(12)

. . .

SO(6) O(2)

−1 −4 −1 −4

+ 2n−4 nodes
Sp(2)/SO(12)

(B.45)

compute Higgs branch dimension

dim(Hf) = 21 , dim(H∞) = n + 49 = dimHf + 29 + (n + 1) . (B.46)

The finite coupling magnetic quiver is given by
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dim C = 21 = dim(Hf) . (B.47)
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Infinite coupling. Moving the 8 D8 passed the three left most half NS5 branes, account-
ing for brane creating as summarised in appendix A.1, one arrives at

1 1 2 2 3 4 6 2 6 2 ⋯

8 half D8

(B.48)

and the magnetic quiver becomes
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dim C = n + 49 = dim H∞

(B.49)

Transitions. The difference between (B.49) and (B.47) is given by one E8 transition and(n − 1) D4 transitions. This is straightforwardly verified by quiver subtraction, analogously
to (B.21).

B.4.9 Partition (32,22,12)
The brane configuration and the 6d electric theory read

1 5 2 6 ⋯
2 2 2

Ð→
SO(10) Sp(2) SO(12)

. . .
U(1)

Sp(1) O(2)

−3 −1 −4

+ 2n−4 nodes
Sp(2)/SO(12)

(B.50)

compute Higgs branch dimension

dim(Hf) = 27 , dim(H∞) = n + 46 = dim(Hf) + (n − 2) + 21 , (B.51)

using [31, eq. (9)] and dim(SpinSO(10)) = 16. The difference in dimension can be traced
back to (n − 2) −4 curves, each with a D4 transition, and one −3 curves, with 21 new
hypermultiplets.

Infinite coupling. Moving the 6 D8 passed the three left most half NS5 branes, account-
ing for brane creating as summarised in appendix A.1, one arrives at

1 2 3 4 6 2 6 2 ⋯

6 half D8

(B.52)
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and the magnetic quiver becomes
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dim C = n + 46 = dim H∞

(B.53)

B.4.10 Partition (5,17)
The brane configuration and the 6d electric theory read

4 1 5 2 6 ⋯
7 1

(B.54)

Ð→
Sp(0) SO(9) Sp(1) SO(11) Sp(2) SO(12)

. . .

SO(7) O(1)

−1 −4 −1 −4 −1 −4

+ 2n−6 nodes
Sp(2)/SO(12)

compute Higgs branch dimension

dim(Hf) = 20 , dim(H∞) = n + 48 = dim(Hf) + 29 + (n − 1) . (B.55)

The finite coupling magnetic quiver is given by
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dim C = 20 = dim(Hf) (B.56)

Infinite coupling. Moving the 8 D8 passed the three left most half NS5 branes, account-
ing for brane creating as summarised in appendix A.1, one arrives at

1 1 2 2 3 3 6 2 6 2 ⋯

8 half D8

(B.57)

and the magnetic quiver becomes
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dim C = n + 48 = dim H∞

(B.58)
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Transitions. The difference between (B.58) and (B.56) is given by one E8 transition and(n − 1) D4 transitions. This is straightforwardly verified by quiver subtraction, analogously
to (B.21).

B.4.11 Partition (33,13)
The brane configuration and the 6d electric theory read

1 4 2 6 ⋯
3 3

Ð→
SO(9) Sp(2) SO(12)

. . .
Sp(1)

O(3)

−3 −1 −4

+ 2n−4 nodes
Sp(2)/SO(12)

(B.59)

compute Higgs branch dimension

dim(Hf) = 26 , dim(H∞) = n + 45 = dim(Hf) + (n − 2) + 21 , (B.60)

using [31, eq. (9)] and dim(SpinSO(9)) = 16. Again, the increase in Higgs branch dimension
is due to n − 2 D4 transitions plus one collapse of a −3 curve.

Infinite coupling. Moving the 6 D8 passed the three left most half NS5 branes, account-
ing for brane creating as summarised in appendix A.1, one arrives at

1 1 3 4 6 2 6 2 ⋯

6 half D8

(B.61)

and the magnetic quiver becomes
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dim C = n + 45 = dim H∞

(B.62)

B.4.12 Partition (34)
The brane configuration and the 6d electric theory read

2 4 2 6 ⋯
4

Ð→
SO(7) Sp(2) SO(12)

. . .

SO(4)

−3 −1 −4

+ 2n−4 nodes
Sp(2)/SO(12) (B.63)
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compute Higgs branch dimension

dim(Hf) = 25 , dim(H∞) = n + 44 = dim(Hf) + (n − 2) + 21 , (B.64)

using that SO(7) can only be Higgsed to SU(3). Also [31, above eq. (9)] and dim(SpinSO(7)) =
8 has been used. The by now familiar difference of (n−2)+21 is due to (n−2) D4 transitions
and 21 new hypermultiplets from a single −3 curve.

Infinite coupling. Moving the 4 D8 passed the three left most half NS5 branes, account-
ing for brane creating as summarised in appendix A.1, one arrives at

1 3 4 6 2 6 2 ⋯

4 half D8

(B.65)

and the magnetic quiver becomes
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(B.66)

B.4.13 Partition (5,22,13)
The brane configuration and 6d electric theory read

1 4 1 5 2 6 ⋯
3 2 1

(B.67)

Ð→
SO(9) Sp(1) SO(11) Sp(2) SO(12)

. . .
Sp(1)

Sp(1) O(1)

−3 −1 −4

+ 2n−6 nodes
Sp(2)/SO(12)

compute Higgs branch dimension

dim(Hf) = 25 , dim(H∞) = n + 44 = dim(Hf) + (n + 19) , (B.68)

using [31, eq. (9)] and dim(SpinSO(9)) = 16. The jump in Higgs branch dimensions follows
from the (n − 2) −4 curves and a single −3 curve.
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Infinite coupling. Moving the 6 D8 passed the six left most half NS5 branes, accounting
for brane creating as summarised in appendix A.1, one arrives at

1 1 2 3 6 2 6 2 ⋯

4 half D8

(B.69)

and the magnetic quiver becomes
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{dim C = n + 43 = dim H∞ − 1 (B.70)

However, (5,22,13) is a non-special partition and one can see that the resulting magnetic
quiver is identical to the one of (5, 3, 14), because of (B.10). Therefore, the magnetic quiver
will not capture the Higgs branch correctly, as for instance seen by inspecting the dimension
and global symmetry.

B.4.14 Partition (42,14)
The brane configuration and the 6d electric quiver read

1 4 1 6 2 6 ⋯
4 2

(B.71)

Ð→
SO(8) Sp(1) SO(12) Sp(2) SO(12)

. . .
Sp(1)

Sp(1) Sp(1)

−3 −1 −4

+ 2n−6 nodes
Sp(2)/SO(12)

compute Higgs branch dimension

dim(Hf) = 25 , dim(H∞) = n + 44 = dim(Hf) + (n − 2) + 21 , (B.72)

using [31, eq. (9)] and dim(SpinSO(8)) = 8. As above, the (n − 2) + 21 new dimensions are
accounted for by the (n − 2) D4 transitions and 21 new hypermultiplets from the single−3 curve.
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Infinite coupling. Moving the 6 D8 passed the four left most half NS5 branes, accounting
for brane creating as summarised in appendix A.1, one arrives at

1 1 2 4 6 2 6 2 ⋯

6 half D8

(B.73)

and the magnetic quiver becomes
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dim C = n + 44 = dim H∞ .

(B.74)

B.4.15 Partition (42,22)
The brane configuration and the 6d electric theory read

2 4 1 6 2 6 ⋯
2 2

(B.75)

Ð→
SO(7) Sp(1) SO(12) Sp(2) SO(12)

. . .

Sp(1) Sp(1)

−3 −1 −4

+ 2n−6 nodes
Sp(2)/SO(12)

compute Higgs branch dimension

dim(Hf) = 24 , dim(H∞) = n + 43 = dim(Hf) + (n − 2) + 21 , (B.76)

assuming that SO(7) can only be Higgsed to SU(3). Also, [31, above eq. (9)] and
dim(SpinSO(7)) = 8 has been used. The increase in dimension follows from the same
logic as above.

Infinite coupling. Moving the 4 D8 passed the four left most half NS5 branes, accounting
for brane creating as summarised in appendix A.1, one arrives at

1 2 4 6 2 6 2 ⋯

4 half D8

(B.77)
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and the magnetic quiver becomes
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(B.78)

B.4.16 Partition (42,3,1)
The brane configuration and the 6d electric theory read

2 3 1 6 2 6 ⋯
1 1 2

(B.79)

Ð→
G2 Sp(1) SO(12) Sp(2) SO(12)

. . .

O(1) Sp(1)

−3 −1 −4

+ 2n−6 nodes
Sp(2)/SO(12)

compute Higgs branch dimension

dim(Hf) = 23 , dim(H∞) = n + 42 = dim(Hf) + (n − 2) + 21 , (B.80)

using that G2 can only be Higgsed to SU(3). The jump in Higgs branch dimension is clear.

Infinite coupling. Moving the 4 D8 passed the four left most half NS5 branes, accounting
for brane creating as summarised in appendix A.1, one arrives at

2 4 6 2 6 2 ⋯

4 half D8

(B.81)

and the magnetic quiver becomes
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(B.82)
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B.4.17 Partition (5,3,14)
The brane configuration and the 6d electric theory read

1 4 1 5 2 6 ⋯
4 1 1

(B.83)

→
SO(8) Sp(1) SO(11) Sp(2) SO(12)

. . .
Sp(1)

Sp(1) O(1) O(1)

−3 −1 −4

+ 2n−6 nodes
Sp(2)/SO(12)

compute Higgs branch dimension

dim(Hf) = 24 , dim(H∞) = n + 43 = dim(Hf) + (n − 2) + 21 , (B.84)

using [31, eq. (9)] and dim(SpinSO(8)) = 8. Again, the jump in dimensions is easily
accounted for.

Infinite coupling. Moving the 6 D8 passed the five left most half NS5 branes, accounting
for brane creating as summarised in appendix A.1, one arrives at

1 1 2 3 6 2 6 2 ⋯

6 half D8

(B.85)

and the magnetic quiver becomes
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(B.86)

B.4.18 Partition (5,3,22)
The brane configuration and the 6d electric theory read

2 4 1 5 2 6 ⋯
2 1 1

(B.87)

Ð→
SO(7) Sp(1) SO(11) Sp(2) SO(12)

. . .

Sp(1) O(1) O(1)

−3 −1 −4 −1 −4

+ 2n−6 nodes
Sp(2)/SO(12) (B.88)
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compute Higgs branch dimension

dim(Hf) = 23 , dim(H∞) = n + 42 = dim(Hf) + (n − 2) + 21 , (B.89)

using [31, above eq. (9)] as well as dim(SpinSO(7)) = 8, and recalling that SO(7) can only
be Higgsed to SU(3).
Infinite coupling. Moving the 4 D8 passed the five left most half NS5 branes, accounting
for brane creating as summarised in appendix A.1, one arrives at

1 2 3 6 2 6 2 ⋯

4 half D8

(B.90)

and the magnetic quiver becomes

S
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. . .
S
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S
O(4)
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p(1)

S
O(2)

Sp(n)
Λ2 ⎧⎪⎪⎨⎪⎪⎩

GJ = SO(12)
dim C = n + 42 = dim H∞ .

(B.91)

B.4.19 Partition (5,32,1)
The brane configuration and the 6d electric theory read

2 3 1 5 2 6 ⋯
1 2 1

(B.92)

Ð→
G2 Sp(1) SO(11) Sp(2) SO(12)

. . .

O(2) O(1)

−3 −1 −4 −1 −4

+ 2n−6 nodes
Sp(2)/SO(12)

compute Higgs branch dimension

dim(Hf) = 22 , dim(H∞) = n + 41 = dim(Hf) + (n − 2) + 21 .

assuming that G2 can only be Higgsed to SU(3).
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Infinite coupling. Moving the 4 D8 passed the five left most half NS5 branes, accounting
for brane creating as summarised in appendix A.1, one arrives at

2 3 6 2 6 2 ⋯

4 half D8

(B.93)

and the magnetic quiver becomes
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S
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S
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GJ = SO(2) × SO(12)
dim C = n + 41 = dim H∞ .

(B.94)

B.4.20 Partition (52,12)
The brane configuration and the electric theory read

2 3 5 2 6 ⋯
2 2

(B.95)

Ð→
SU(3) Sp(0) SO(10) Sp(2) SO(12)

. . .

O(2)

−3 −1 −4 −1 −4

+ 2n−6 nodes
Sp(2)/SO(12)

compute Higgs branch dimension

dim(Hf) = 21 , dim(H∞) = n + 40 = dim(Hf) + (n − 2) + 21 , (B.96)

assuming that SU(3) cannot be Higgsed any further.

Infinite coupling. Moving the 4 D8 passed the five left most half NS5 branes, accounting
for brane creating as summarised in appendix A.1, one arrives at

1 3 6 2 6 2 ⋯

4 half D8

(B.97)
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and the magnetic quiver becomes

S
O(2)

S
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O(12)

S
p(5)
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S
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S
O(4)

S
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S
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Sp(n)
Λ2 ⎧⎪⎪⎨⎪⎪⎩

GJ = SO(2) × SO(12)
dim C = n + 40 = dim H∞ .

(B.98)

B.4.21 Partition (62)
The brane configuration and the 6d electric theory read

3 2 1 4 1 6 ⋯
2

(B.99)

Ð→
Sp(1) SO(7) Sp(1) SO(12) Sp(2) SO(12)

. . .

Sp(1)

−2 −3 −1 −4 −1 −4

+ 2n−8 nodes
Sp(2)/SO(12)

compute Higgs branch dimension

dim(Hf) = 21 , dim(H∞) = n + 39 = dim(Hf) + (n − 3) + 21 , (B.100)

using that SO(7) can only be Higgsed to SU(3). The increase in Higgs branch dimension
can be accounted for as follows: there are n − 3 −4 curves, each with a 1-dimensional D4
transition, plus a single −3 curves, which yields 21 additional degrees of freedom.

Infinite coupling. Moving the 2 D8 passed the six left most half NS5 branes, accounting
for brane creating as summarised in appendix A.1, one arrives at

3 6 2 6 2 ⋯

2 half D8

(B.101)

and the magnetic quiver becomes
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GJ = SO(12)
dim C = n + 39 = dim H∞ .

(B.102)

– 74 –



J
H
E
P
1
1
(
2
0
2
2
)
0
1
0

B.4.22 Partition (7,15)
The brane configuration and 6d theory are

1 3 4 1 5 2 6 ⋯
5 1

(B.103)

Ð→
SO(7) Sp(0) SO(9) Sp(1) SO(11) Sp(2) SO(12)

. . .

Sp(2) O(1)

−3 −1 −4 −1 −4 −1 −4

+ 2n−8 nodes
Sp(2)/SO(12)

compute Higgs branch dimension

dim(Hf) = 23 , dim(H∞) = n + 42 = dim(Hf) + n + 19 , (B.104)

using that SO(7) can only be Higgsed to SU(3) and using [31, above eq. (9)].

Infinite coupling. Moving the 6 D8 passed the seven left most half NS5 branes, account-
ing for brane creating as summarised in appendix A.1, one arrives at

1 1 2 2 6 2 6 2 ⋯

6 half D8

(B.105)

and the magnetic quiver becomes
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GJ = SO(5) × SO(12)
dim C = n + 42 = dim H∞ .

(B.106)

B.4.23 Partition (7,22,1)
The brane configuration and the 6d theory are

2 3 4 1 5 2 6 ⋯
1 2 1

(B.107)

Ð→
G2 Sp(0) SO(9) Sp(1) SO(11) Sp(2) SO(12)

. . .

Sp(1) O(1)

−3 −1 −4 −1 −4 −1 −4

+ 2n−8 nodes
Sp(2)/SO(12)
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compute Higgs branch dimension

dim(Hf) = 21 , dim(H∞) = n + 40 = dim(Hf) + n + 19 , (B.108)

using that G2 can only be Higgsed to SU(3).
Infinite coupling. Moving the 4 D8 passed the seven left most half NS5 branes, account-
ing for brane creating as summarised in appendix A.1, one arrives at

1 2 6 2 6 2 ⋯

4 half D8

(B.109)

and the magnetic quiver becomes
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Λ2

{dimC = n + 39 = dimH∞ − 1 (B.110)

However, (7,22,1) is a non-special partition and one can see that the resulting magnetic
quiver is identical to the one of (7, 3, 12), because of (B.10). Therefore, the magnetic quiver
will not capture the Higgs branch correctly, as for instance seen by inspecting the dimension
and global symmetry.

B.4.24 Partition (7,3,12)
The brane configuration and the electric theory are

2 3 4 1 5 2 6 ⋯
2 1 1

(B.111)

Ð→
SU(3) Sp(0) SO(9) Sp(1) SO(11) Sp(2) SO(12)

. . .

O(1) O(1)

−3 −1 −4 −1 −4 −1 −4

+ 2n−8 nodes
Sp(2)/SO(12)

compute Higgs branch dimension

dim(Hf) = 20 , dim(H∞) = n + 39 = dim(Hf) + n + 19 , (B.112)

using that SU(3) cannot be Higgsed further.
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Infinite coupling. Moving the 4 D8 passed the seven left most half NS5 branes, account-
ing for brane creating as summarised in appendix A.1, one arrives at

1 2 6 2 6 2 ⋯

4 half D8

(B.113)

and the magnetic quiver becomes
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GJ = SO(12)
dim C = n + 39 = dim H∞ .

(B.114)

B.4.25 Partition (7,5)
The brane configuration and the 6d theory are given by

3 2 1 4 1 5 2 6 ⋯
1 1

(B.115)

Ð→
Sp(1) SO(7) Sp(1) SO(11) Sp(2) SO(12)

. . .

O(1) O(1)

−2 −3 −1 −4 −1 −4

+ 2n−8 nodes
Sp(2)/SO(12)

compute Higgs branch dimension

dim(Hf) = 20 , dim(H∞) = n + 38 = dim(Hf) + n + 18 , (B.116)

using that SO(7) cannot be Higgsed further and using [31, above eq. (9)].

Infinite coupling. Moving the 2 D8 passed the seven left most half NS5 branes, account-
ing for brane creating as summarised in appendix A.1, one arrives at

2 6 2 6 2 ⋯

2 half D8

(B.117)
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and the magnetic quiver becomes
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GJ = SO(12)
dimC = n + 38 = dimH∞

(B.118)

B.4.26 Partition (9,13)
The brane configuration and the electric theory are given by

2 2 1 3 4 1 5 2 6 ⋯
3 1

(B.119)

Ð→
Sp(1) SO(7) Sp(0) SO(9) Sp(1) SO(11) Sp(2) SO(12)

. . .

Sp(1) O(1)

−2 −3 −1 −4 −1 −4 −1 −4

+ 2n−10 nodes
Sp(2)/SO(12)

compute Higgs branch dimension

dim(Hf) = 20 , dim(H∞) = n + 38 = dim(Hf) + n + 18 , (B.120)

using that SO(7) can only be Higgsed to SU(3) and [31, above eq. (9)].

Infinite coupling. Moving the 4 D8 passed the nine left most half NS5 branes, accounting
for brane creating as summarised in appendix A.1, one arrives at

1 1 6 2 6 2 ⋯

4 half D8

(B.121)

and the magnetic quiver becomes
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(B.122)
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B.4.27 Partition (9,3)
The brane configuration and the 6d theory are given by

3 2 1 3 4 1 5 2 6 2 6 ⋯
1 1

(B.123)

Ð→
Sp(1) G2 Sp(0) SO(9) Sp(1) SO(11) Sp(2) SO(12)

. . .

O(1) O(1)

−2 −3 −1 −4 −1 −4 −1 −4

+ 2n−10 nodes
Sp(2)/SO(12)

compute Higgs branch dimension

dim(Hf) = 19 , dim(H∞) = n + 37 = dim(Hf) + n + 18 , (B.124)

using that G2 can only be Higgsed to SU(3).
Infinite coupling. Moving the 2 D8 passed the left most half NS5 branes, accounting
for brane creating as summarised in appendix A.1, one arrives at

1 6 2 6 2 ⋯

2 half D8

(B.125)

and the magnetic quiver becomes
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dim C = n + 37 = dim H∞ .

(B.126)

B.4.28 Partition (11,1)
The brane configuration and the electric theory read

3 1 2 2 1 3 4 1 5 2 6 ⋯
1 1

(B.127)

Ð→
Sp(1) G2 Sp(0) SO(9) Sp(1) SO(11) Sp(2) SO(12)

. . .

O(1) O(1)

−2 −3 −1 −4 −1 −4−2

+ 2n−12 nodes
Sp(2)/SO(12)
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compute Higgs branch dimension

dim(Hf) = 19 , dim(H∞) = n + 36 = dim(Hf) + n + 17 , (B.128)

using that G2 can only be Higgsed to SU(3).
Infinite coupling. Moving the 2 D8 passed the left most half NS5 branes, accounting
for brane creating as summarised in appendix A.1, one arrives at

6 2 6 2 ⋯

2 half D8

(B.129)

and the magnetic quiver becomes
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(B.130)
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