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1 Introduction

The 3D Quantum Electrodynamics (QED3) has been extensively studied in the past 30 years.
In the low energy limit the theory becomes strongly coupled and provides an interesting
laboratory to study confinement and chiral symmetry breaking. The infrared (IR) phase of
QED3 is determined by the number of fermions charged under the U(1) gauge symmetry.
The pure U(1) gauge theory (Nf = 0) confines [1, 2]. In the large Nf limit QED3 can
be solved using 1/Nf expansion which gives an interacting stable IR fixed point [3]. The
IR phase of QED3 is quite subtle with small Nf : the parity conserved mass of fermions
could be generated dynamically and trigger spontaneously chiral symmetry breaking [4, 5].1

There is a critical flavor number N∗f which separates the conformal phase from chiral
symmetry breaking phase. It is of critical importance to determine N∗f for the applications
of QED3. For instance, Nf = 4 QED3 has been applied to high-temperature cuprate
superconductors [6, 7] and the order of phase transition is determined by N∗f . Various
approaches have been employed to estimate N∗f without a conclusive answer [8–25].

The Nf = 2 QED3 has been proposed to describe the deconfined quantum critical point
(DQCP) [26]. A paradigmatic example of DQCP is the phase transition between Néel and
Valence Bond Solid phases of quantum antiferromagnets on the 2D square lattice. In the

1The chiral invariant but parity violating fermion mass could be generated dynamically as well, however,
it costs more energy comparing with the parity invariant one so is less favored [5].

– 1 –



J
H
E
P
1
1
(
2
0
2
2
)
0
0
5

continuum limit, this phase transition is described by the non-compact CP 1 (NCCP1) model
with O(2)×O(2) or SO(3)×U(1) symmetry, which are conjectured to be dual to the Nf = 2
QED3 itself or coupled with a critical boson, i.e., the QED3-GNY model. The two theories
are further conjectured to be self-dual with O(4)/SO(5) symmetry enhancements and part
of the 3D duality web [27–29], see [30] for a review. This scenario has been carefully studied
using lattice simulations [31–36]. There is promising evidence for symmetry enhancement
while it is not clear whether the phase transition is continuous or weakly first order.

Modern conformal bootstrap [37, 38] provides a powerful nonperturbative approach
to study strongly coupled theories. Bootstrap studies on conformal QED3 and DQCPs
have been conducted in [39–44] which provide strict necessary conditions for the CFT
data, though no clear evidence showing the bounds are saturated by conformal QED3.
In this work, we extend bootstrap studies of the SO(5) symmetric DQCP and conformal
QED3. Our results shed new light for several widely interested problems of these strongly
coupled theories.

2 Bootstrap bounds on SO(5) DQCP

The SO(5) symmetric DQCP has been suggested to be described by either NCCP1 model
or Nf = 2 QED3-GNY model [29]. In NCCP1 model, the SO(5) vector multiplet contains
the half-charged monopole and Néel order parameter; while in Nf = 2 QED3-GNY model,
it consists of a critical boson and the half-charged monopoles. Besides, the leading SO(5)
traceless symmetric (T ) scalar is constructed by the charge 1 monopoles and fermion
bilinears in Nf = 2 QED3-GNY model or quadrilinear of the matter fields in NCCP1 model.
Above recipes of SO(5) representations are helpful to test the emergent SO(5) symmetry
and dualities using lattice simulations [31, 32, 45–47] or perturbative approaches [17, 48–50].
The results provide promising evidence for the emergent SO(5) symmetry and dualities.
Nevertheless, the lattice simulations in [31] observed drifting in the critical indices, indicating
the IR phase is subtle.

In figures 1–2 we show bootstrap bounds with Λ = 31,2 on scaling dimensions of
the lowest singlet (∆Sig) and traceless symmetric scalar (∆T ) in any unitary 3D SO(5)
symmetric CFTs. The bounds are smooth in most of the regions except sharp kinks in the
left-bottom corner corresponding to the critical O(5) vector model [52]. The lowest SO(5)
singlet scalar has to be irrelevant to realize the SO(5) DQCP in lattice simulations without
fine-tuning. Otherwise a relevant singlet scalar can introduce a non-negligible perturbation
to the theory which drives the RG flows away from the fixed point. The presumed SO(5)
symmetric DQCP will be unstable under this perturbation and cannot be directly reached
in the long distance limit. The condition ∆Sig > 3 leads to a lower cut on the SO(5)
vector scaling dimension ∆φ > 0.79. A slightly weaker lower cut on ∆φ has been obtained
independently in [42], see [38] for discussions. In figure 2 we compared our bootstrap bounds
with lattice simulations [31, 32, 45–47] and perturbative results [17, 48–50] on the SO(5)
DQCP, which are summarized in table 1.3 Most of the estimates on ∆φ locate in the range

2In bootstrap computations, Λ is the order of the highest derivative in the linear functional, which
determines the numerical precision [51]. Unless specified explicitly, we will use Λ = 31 throughout this paper.

3Note the critical indices from the lattice simulation [31] can drift to smaller values, e.g. ∆T ' 0.89585

with larger lattice sizes. The two sets of values in [50] are obtained from Padé and Borel-Padé approximations.
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Figure 1. Upper bounds (Λ = 31) on the scaling dimensions of the SO(N) singlet scalars.
N = 5, 6, 7, 8 from bottom to top. The dot-dashed green line gives a left cut for the SO(5) singlet
bound with a gap assumption ∆Sig > 3.

Refs. [45] [46] [47] [31] [48] [49] [50]

∆φ 0.63015 0.67515 0.644 0.62515 0.63 0.65 0.59/0.65

∆T 1.71650 1.529 1.1120 1.393 1.50 1.58 1.42/1.51

Table 1. CFT data of SO(5) DQCP (=est.err.) estimated from lattice simulations or1/Nf expansions.

(0.6, 0.7), notably smaller than the lower cut ∆φ > 0.79. Therefore if the SO(5) DQCP
is described by a unitary CFT with an SO(5) vector given in table 1, there has to be a
relevant singlet scalar, which necessarily affects the IR phase in the lattice simulations. The
conclusion is that the phase transitions observed in above lattice simulations cannot be
both SO(5) symmetric and continuous.

However, bootstrap bounds in figures 1 and 2 do not exclude possible SO(5) symmetric
CFTs with ∆φ ∈ (0.6, 0.7) and a relevant singlet scalar. This scenario gets more intriguing
considering that in figure 2, part of the lattice and 1/Nf results locate near the upper
bound on ∆T without the gap assumption ∆Sig > 3. Nevertheless, a substantial challenge to
realize such a presumed fixed point in lattice simulations is the fine tuning of the coefficient
of the relevant SO(5) singlet operator. It would be interesting to know whether the data
near SO(5) vector bootstrap bounds corresponds to a truly unitary CFT.
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Figure 2. Dashed blue line: upper bound on the scaling dimension ∆T . Blue shadowed region:
bootstrap allowed region of (∆φ,∆T ) with a gap assumption ∆Sig > 3.

A remarkable observation in figure 1 is that the SO(N) singlet bounds show prominent
kinks with irrelevant singlet scalars for N > 7!4 The kink becomes mild at N = 6 and
disappears at N = 5, while the widely studied SO(5) DQCP is just below the conformal
window of this new family of kinks! Moreover, the kinks disappear accompanied by the
lowest singlet scalar crossing the marginality condition ∆Sig = 3. This is particularly
interesting to study the loss of conformality [8, 10, 11, 53–55] and we will discuss its possible
interpretation later.

3 New family of kinks and QED3

In the large N limit, the new family of kinks shown in figure 3 approach the scaling
dimension of free fermion bilinears ∆φ = 2 from below. If the kinks at finite N correspond
to certain full-fledged CFTs, the underlying theories are expected to be fermionic theories
equipped with gauge interactions. Otherwise, in the non-gauged fermionic theories like
Gross-Neveu-Yukawa model, the fermion bilinears receive positive anomalous dimensions
and approach ∆φ = 2 from above [50, 56], which are opposite to the bootstrap results.
It is tempting to conjecture they are given by the DQCPs with higher symmetries, e.g.
Nf = 4 QED3. More specifically, with large N the kinks show interesting fine structures in
which there seem to be two nearby kinks in the bounds on SO(N) singlet ∆ Sig, and the

4Actually there are extra kinks in the O(N) singlet bootstrap bounds for N = 7, 8, which have scaling
dimensions ∆φ ∼ 0.6, ∆S ∼ 2.5. It would be interesting to understand the underlying theories of these kinks.
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Figure 3. Bounds on ∆Sig (upper set) and ∆T (lower set) from SO(N) vector bootstrap.

∆φ of the two nearby kinks respectively locate in the bottom and top of the jumps in the
bounds on the SO(N) traceless symmetric scalar ∆T , see appendix B for examples and more
discussions.5 A challenge of this conjecture is that for large flavor QED3, the theory does
not have an SO(N) symmetry enhancement in the IR and the fermion bilinears transform
as an SU(Nf ) adjoint instead of SO(N) vector. This puzzle can be resolved by a novel
SO(N2

f − 1) symmetric positive structure in the SU(Nf ) adjoint crossing equations [57, 58].

3.1 A novel algebraic relation in the crossing equations

We bootstrap the SU(Nf ) (Nf > 4) adjoint fermion bilinear Oad in QED3. Its four-point
crossing equations are given by the matrix [59, 60]

Mad ≡
(
~V +

1 , ~V +
Ad,

~V −Ad,
~V −
TĀ
, ~V +

AĀ
, ~V +

T T̄

)
(3.1)

=



0 0 0 −F F F

0 2F
Nf

0 0 − F
Nf−2

F
Nf+2

0 −F −F F
Nf

F
Nf−2

F
Nf+2

F −16F
Nf

0 0 2N2
fF

(Nf−1)(Nf−2)
2N2

fF

(Nf+1)(Nf+2)

H −4H
Nf

0 −H − Nf (Nf−3)H
(Nf−1)(Nf−2) −

Nf (Nf+3)H
(Nf+1)(Nf+2)

0 H −H H
Nf

(Nf−3)H
Nf−2 − (Nf+3)H

Nf+2


,

5We will show that the first one of the two nearby kinks in the O(N2
f − 1) vector bootstrap bound has

∆φ close to the SU(Nf ) adjoint fermion bilinear scaling dimension in QED3. This kink has ∆T near the
bottom of the jump in the bound on ∆T and it will be the main focus of this work. It will also be interesting
to study the underlying theories of the another adjacent kink, which may relate to other gauge theories like
QED3-GN model with more subtleties to clarify.
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where F/H = v∆Oadg∆,`(u, v)∓u∆Oadg∆,`(v, u) and g∆,` is the conformal block function [61,
62]. The vector ~V ±π denotes contributions of operators in the π representation of SU(Nf )
with even/odd spins. Surprisingly,Mad is related to the SO(N) vector crossing equations

MSO(N) ≡
(
~V +

Sig,
~V +
T ,

~V −A

)
=


0 F −F
F

(
1− 2

N

)
F F

H −
(
1 + 2

N

)
H −H

 (3.2)

through a linear transformation [57, 58]

Tad =


1 2

(
N4
f−2N2

f+2
)

N4
f
−N2

f
−2

2Nf
N2
f
−2 0 0 0

−1 −8N4
f+16N2

f+4
−N4

f
+N2

f
+2 − 2Nf

N2
f
−2 1 0 0

0 0 0 0 1 2Nf
N2
f
−2

 , (3.3)

which mapsMad toMSO(N) with N = N2
f − 1:

Tad · Mad =
(
~V +

Sig, x1~V
+
T , x2~V

−
A , x3~V

−
A , x4~V

+
T , x5~V

+
T

)
, (3.4)

associated with positive xi and the branching rules

SO(N2
f − 1) SU(Nf )

Sig ←→ 1 , (3.5)
T ←→ Ad+ ⊕AĀ⊕ T T̄ , (3.6)
A ←→ Ad− ⊕ TĀ . (3.7)

The algebraic relation (3.4), when combined with the bootstrap algorithm, leads to the
SU(Nf ) adjoint and SO(N2

f − 1) vector bootstrap bound coincidences [58]. It also allows
to construct an SO(N2

f − 1) symmetric four-point correlator deformed from the four-point
correlator of Oad, which satisfies the SO(N) vector crossing equations [58]. Now the question
is if the new kinks are related to deformations of conformal QED3 caused by the algebraic
relation (3.4)? The solution to this problem requires precise CFT data and knowledge of
the four-point correlator of Oad, which are beyond our current scope. In this work, we verify
the conjectured relation by disentangling the QED3 bootstrap results from the algebraic
relation (3.4): if we break the SO(N2

f − 1) symmetry in the SU(Nf ) adjoint bootstrap setup,
will the bootstrap bounds converge to conformal QED3? The answer could tell us that
besides the algebraic relation (3.4), is it conformal QED3 or other ingredient involved in
the bootstrap bounds.

3.2 SU(Nf) adjoint fermion bilinear bootstrap and QED3 spectrum

The QED3 spectrum breaks the SO(N2
f − 1) symmetry (3.5)–(3.7) from two aspects. Firstly,

in (3.7) the SO(N2
f − 1) symmetry conserved current is decomposed into conserved currents

– 6 –
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Figure 4. Bounds on ∆4 and ∆T from SU(20) adjoint and SO(399) vector bootstrap. In the left-top
window, the orange line gives the singlet upper bound obtained from SO(399) vector bootstrap with
two kinks near ∆φ = 1.90 and 1.94.

in both Ad− and TĀ sectors, while in QED3 the leading spin 1 operator in TĀ sector has
scaling dimension 5±O(1/Nf ). Secondly, in the three SU(Nf ) sectors branched from the
SO(N2

f − 1) T sector (3.6), the leading scalars in QED3 are the four-fermion operators,
whose scaling dimensions violate the SO(N2

f −1) symmetry at the subleading order [63, 64]:

(∆Ad,∆AĀ,∆T T̄ ) '
(

4− 185
3π2Nf

, 4− 64
π2Nf

, 4 + 64
3π2Nf

)
. (3.8)

We introduce gap assumptions inspired by above QED3 spectrum in our bootstrap setup.
Specifically, we require the lowest scalars in (3.6) satisfy:

∆ >

(
∆4 −

185
3π2Nf

,∆4 −
64

π2Nf
,∆4 + 64

3π2Nf

)
(3.9)

and bootstrap the upper bound on ∆4. In the physical spectrum of QED3 with large Nf ,
we have ∆4 ' 4. We will introduce different gaps ∆∗1 in the TĀ sector.

In figure 4 we show the bootstrap results for Nf = 20 QED3, for which the 1/Nf

expansions at subleading order are expected to be close to the physical spectrum. Note

– 7 –
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Nf 10 20 30 50 100 150 200

∆4 4.083 4.038 4.024 4.017 4.005 4.004 4.001

Table 2. Linear extrapolations of the upper bounds on ∆4 (' 4 in QED3 with large Nf ) with ∆Oad

fixed at the 1/Nf results. The upper bounds are not sensitive to the gap ∆∗1 and we fix it at ∆∗1 = 4
in the computations.

before the jump the bound on ∆4 has been shifted slightly from the SO(202 − 1) vector
bootstrap bound (orange line) due to the SO(202 − 1) symmetry breaking gaps in (3.9), in
contrast, such a shift disappears on the top of the jump and changes the direction after
the jump. Interestingly, by introducing gaps ∆∗1 = 3.5, 4.0, or 4.5 in the TĀ`=1 sector,
the upper bounds on ∆4 are almost the same, indicating the upper bound on ∆4 is not
sensitive to the specific value of gap ∆∗1! Moreover, the gaps ∆∗1 = 4.5, 4.8, 5.0 generate
sharp jumps in the bounds on ∆4! With a gap ∆∗1 = 5.0 the large Nf predictions on QED3
(red dot) are excluded while the gap ∆∗1 = 4.8 generates a jump near the physical value
∆4 = 4. Coefficient of the 1/Nf term in ∆∗1 = 5±O(1/Nf ) is not known yet but our results
suggest the subleading order correction should be negative! Using linear extrapolation of
the upper bounds on ∆4 with a gap ∆∗1 = 4, it gives an optimal upper bound ∆4 ' 4.038
near ∆Oad ' 1.891, remarkably close to the physical value ∆4 = 4! The small discrepancy
could be explained by higher order corrections to the CFT data in (3.8).6 More discussions
on the bootstrap bounds are provided in appendix C.

In table 2 we show more comparisons between perturbative results and linear extrap-
olations of bounds on ∆4.7 Agreements between the two methods get more impressive
with increasing Nf .

3.3 Lower bounds on cJ and cT in SU(Nf) adjoint fermion bilinear bootstrap

The results in figure 4 suggest that the upper bound (blue line) on ∆4 with gap assumptions
breaking SO(202−1) symmetry converges to the 1/Nf perturbative results of Nf = 20 QED3
in the large Λ limit. This provides promising evidence for that conformal QED3 may provide
a nearly extremal solution to the bootstrap bound with non-SO(202 − 1) symmetric gap
assumptions, up to uncertainties from linear extrapolations. A widely concerned question
in the fermion bilinear bootstrap is that the bootstrap implementations cannot distinguish
theories with different gauge groups, e.g., QED3 and QCD3. For instance, the SU(Nf )
adjoint fermion bilinears Oad appear both in QED3 and QCD3, and their scaling dimensions
are the same at leading order with possibly different higher order corrections. In general
the low lying gauge invariant operators constructed from matter fields are similar in these
theories and it may be hard to distinguish QED3 from Yang-Mill gauge theories with the
same flavor symmetry.

6The subleading order corrections in (3.8) are at the order O(10−1). One may expect the next-to-
subleading order corrections at the order O(10−2), comparable to the discrepancy. Note the results may
also be affected by the systematical errors from linear extrapolation.

7Bootstrap results with Λ = 19, 21, . . . , 35 used in the linear extrapolations are provided in an attached
Mathematica file. We used binary search to compute upper bounds on ∆4 with numerical precision 10−5.
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A significant difference between QED3 and QCD3 appears in the central charges. In
QCD3, the fermions and gauge fields also carry color indices. These Yang-Mills theories
contain larger degree of freedoms than the Abelian gauge theories. Such difference can be
reflected in the central charges, which measure the degree of freedoms of the theories. In
this subsection, we will study bootstrap bounds on the SU(20) conserved current central
charge cJ and stress tensor central charge cT with ∆4 fixed near its upper bounds in figure 4.
The bootstrap bounds on central charges can provide substantial information on whether
the bootstrap bounds are related to the QED3 or QCD3.

The central charges cJ and cT in QED3 have been computed using 1/Nf perturbative
method to subleading order [11]

cJ = cJ0

(
1 + 0.1429

Nf
+O

(
1
N2
f

))
, (3.10)

cT = cT0

(
1 + 0.7193

Nf
+O

(
1
N2
f

))
, (3.11)

where cJ0 and cT0 are the central charges from Nf flavors of two-component free fermions.
In contrast, the central charges in QCD3 with an SU(Nc) gauge symmetry are given by [11]

cJ = NccJ0

(
1 + 0.1429

Nf

N2
c−1
Nc

+O

(
1
N2
f

))
, (3.12)

cT = NccT0

(
1 + 0.7193

Nf

N2
c−1
Nc

+O

(
1
N2
f

))
, (3.13)

which are nearly Nc times larger than those in QED3. Therefore the central charges cJ
and cT can be employed to provide a quantitative check for the Abelian gauge theories.
We will compare the above perturbative results on cJ and cT central charges with the
bootstrap bounds.

In figure 5 we show lower bounds on cJ and cT with ∆4 fixed near its upper bounds
(blue and green lines in figure 4). On the bound of cJ without a gap in the TĀ sector, there
is a sharp jump near ∆Oad = 1.94, corresponding to the jump in the bound on ∆4, given by
the green line in figure 4. In this work, we will be particularly interested in the bounds
near the physical spectrum of QED3 (3.8): ∆4 ' 4, which intercepts the ∆4 upper bound
(blue line) in figure 4 at ∆Oad ∼ 1.836. The scaling dimension ∆Oad ∼ 1.836 with ∆4 = 4
is obtained at Λ = 31, which is lower than the 1/Nf perturbative result ∆Oad ∼ 1.891.
Using linear extrapolations, the two estimates become reasonably close with each other
in the large Λ limit, as shown in figure 4 and table 2. Remarkably, near ∆4 = 4, lower
bounds on cJ and cT given by the red dots in figure 5 are quite close to the large Nf

perturbative results (3.10). Note that both cJ and cT change drastically with ∆Oad , it
is highly non-trivial that bounds on cJ and cT get close to their physical value just near
∆4 = 4. As we have discussed before, cJ and cT in Yang-Mills gauge theories, like QCD3
have cJ and cT about Nc times larger than the bounds in figure 5. Therefore the underlying
theory near the bounds on cJ and cT at ∆4 = 4 should be QED3 or analogous 3D Abelian
gauge theories instead of Yang-Mills gauge theories.

Another interesting question is why do the bootstrap results relate to QED3 instead of
QED3 with Chern-Simons coupling? Both of the two theories are Abelian gauge theories

– 9 –



J
H
E
P
1
1
(
2
0
2
2
)
0
0
5

Gap 4.0 in TA

No gap in TA

cJ from 1/Nf

cJ at Δ4=4

1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00
0

1

2

3

4

5

Δad

c
J
/c
J0

Gap 4.0 in TA

No gap in TA

cT from 1/Nf

cT at Δ4=4

1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00
0.0

0.5

1.0

1.5

2.0

2.5

Δad

c
T
/c
T
0

Figure 5. Lower bounds on central charges cJ (left panel) and cT (right panel) near the upper
bounds on ∆4 with/without a gap ∆∗1 = 4 in figure 4. The central charges are given with the
normalization in which cJ = cT = 1 for Nf = 20 two-component free fermions. The sharp pike in
the cJ lower bound without TĀ gap (green line in the left panel) can be affected by our sample
points near the jump in ∆4 bound in figure 4. Clearly there is a jump in cJ bound near ∆Oad = 1.94,
but the shape of the bound right to the jump may change notably if our sample points get more
close to the boundary.

and are expected to have close central charges. As a result one cannot distinguish them
using central charges. This question can be well answered due to two reasons. First, with
Chern-Simons coupling the theory breaks Parity symmetry, therefore the lowest scalar in
the Ad+ sector is the SU(Nf ) adjoint fermion bilinear operator, which has scaling dimension
∆Oad , significantly lower than the lowest parity even SU(Nf ) adjoint scalar, therefore the
QED3-Chern-Simons theory locates in the region well below the bootstrap bounds. Second,
for the Nf flavor QED3 with a Chern-Simons coupling at level k, the SU(Nf ) adjoint
fermion bilinear scalar has modified scaling dimension [65]:

∆Oad = 2− 64
3π2(1 + λ2)Nf

, (3.14)

where λ = 8k/πNf . The scaling dimension of the SU(Nf ) adjoint fermion bilinear scalar
increases with larger k. Therefore the QED3-Chern-Simons theory with k > 0 locate in the
region right to the QED3 theory with k = 0.

3.4 Comments on the fermion bilinear bootstrap results

The results provide strong evidence for the question we want to address: the SU(Nf ) adjoint
bootstrap bounds, after resolving the SO(N2

f − 1) symmetry enhancement, are close to be
saturated by conformal QED3! This supports the conjectured relation between the new
kinks and conformal QED3, though details in this relation are not yet clarified.

Let us go back to the observation in figure 1 that the kinks disappear with the lowest
singlet scalar crossing marginality condition. According to the proposed relation between the
new kinks and conformal QED3, disappearance of the kinks relates to loss of conformality
in QED3, indicating a critical flavor number slightly above 2: N∗f ∈ (2, 4). In consequence,
the DQCPs related to Nf = 2 QED3 or QED3-GNY model may violate unitarity by a
small complex factor, which explains the quasi-conformal behavior observed in lattice
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simulations [55, 66]. The marginally irrelevant scalar near N∗f can be nicely interpreted by
the merger and annihilation mechanism for the loss of conformality in QED3 [54, 55]. In
this scenario, the lowest singlet scalar becomes relevant below N∗f which generates an RG
flow dissolving the IR fixed points. A critical prediction of this mechanism is the singlet
scalar approaching marginality condition ∆Sig = 3 from above near N∗f , which is surprisingly
consistent with the behavior of kinks in figure 1.

4 Discussions

In this work we have bootstrapped the SO(5) symmetric DQCP and our results suggest the
phase transitions observed in previous lattice simulations cannot be both SO(5) symmetric
and continuous. Moreover, we discovered a new family of kinks in the SO(N) vector
bootstrap bounds with N > 6, while the SO(5) DQCP is just slightly below the window.
These kinks show interesting fine structures which require more bootstrap data for a
clear understanding. We observed bound coincidences between the SU(Nf ) adjoint and
SO(N2

f − 1) vector bootstrap and explained that this is caused by an algebraic relation
between the two crossing equations. We have shown that for general large Nf s, with
gaps breaking SO(N2

f − 1) symmetry the SU(Nf ) adjoint bootstrap bounds converge to
conformal QED3. Our results support the merger and annihilation mechanism for the loss
of conformality in QED3, and indicate a critical flavor number of QED3: N∗f ∈ (2, 4).

Our results are illuminating for the widely interested project on solving conformal
QED3 with bootstrap. On the one hand, our results indicate the CFT landscape is not
tameless–after introducing suitable SO(N) symmetry breaking gaps the bootstrap bounds
indeed get close to the conformal QED3. On the other hand, our results also clarified that
to numerically solve conformal QED3 with bootstrap, a crucial challenge is to resolve the
SO(N) symmetry enhancement in the crossing equations and reproduce proper spectrum of
QED3, for which certain substantially new ingredients are needed in conformal bootstrap.
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A Relation between the SU(Nf) adjoint and SO(N2
f −1) vector bootstrap

In this section we show more details on the algebraic relation between crossing equations of
the SU(Nf ) adjoint and SO(N2

f − 1) vector scalars. We will follow the methods developed
in [57, 58] which were motivated by the new family of kinks discovered in this work.
Combined with the bootstrap algorithm, this algebraic structure can explain the SO(N2

f −1)
symmetry enhancement in the SU(Nf ) adjoint bootstrap bounds. It is also crucial in
decoding the underlying theories of the new family of kinks, which were conjectured to be
conformal QED3 in this work.

Let us consider the four-point correlator of an SU(Nf ) (Nf > 4) adjoint scalar Oad

〈Oad(x1)Oad(x2)Oad(x3)Oad(x4)〉. (A.1)

There are six representations appearing in its conformal partial wave expansions, corre-
sponding to the OPE

Oad ×Oad → 1+ ⊕Ad+ ⊕Ad− ⊕AĀ+ ⊕
(
TĀ+AT̄

)−
⊕ T T̄+, (A.2)

where the 1 and Ad denote the singlet and adjoint representations of SU(Nf ). A/T (Ā/T̄ )
denote representations with anti-symmetric/symmetric fundamental (anti-fundamental)
indices of SU(Nf ). Moreover, operator Oad is real, so are the operators in its OPE, therefore
only the real combination of representation TĀ and its complex conjugation AT̄ can appear
in (A.2). We use TĀ to denote this sector for simplicity. The superscripts in R± denote
even/odd spin selection rules in the representation R.

Crossing equations of the four-point correlator (A.1) have been obtained in previous
bootstrap studies [59, 60], which can be written in a compact form∑
O∈`+

λ2
O
~V +

1 +
∑
O∈`+

λ2
O
~V +

Ad +
∑
O∈`−

λ2
O
~V −Ad +

∑
O∈`−

λ2
O
~V −
TĀ

+
∑
O∈`+

λ2
O
~V +
AĀ

+
∑
O∈`+

λ2
O
~V +
T T̄

= 0 .

(A.3)
Here the vector ~V ±R corresponds to the SU(Nf ) representation R with even/odd spins.
Explicit form of each vector can be summarized in the matrix Mad (3.1), which can be
converted into the SO(N2

f − 1) vector crossing equations MSO(N2
f
−1) (3.2) through the

transformation Tad (3.3). Specifically, the action Tad · Mad (3.4) are given by

Tad ·Mad =


0 x1F −x2F −x3F x4F x5F

F x1F

(
1− 2

N2
f
−1F

)
x2F x3F x4F

(
1− 2

N2
f
−1

)
F x5F

(
1− 2

N2
f
−1

)
H −x1H

(
1+ 2

N2
f
−1

)
H −x2H −x3H −x4

(
1+ 2

N2
f
−1

)
H −x5

(
1+ 2

N2
f
−1

)
H


=
(
~V +

Sig, x1~V
+
T , x2~V

−
A , x3~V

−
A , x4~V

+
T , x5~V

+
T

)
, (A.4)

with positive coefficients ~x

~x=

 2
(
N4
f−5N2

f +4
)

Nf

(
N4
f−N2

f−2
) , 2Nf

N2
f−2

, 1− 2
N2
f−2

,
(Nf−3)N2

f (Nf+1)(
N2
f−2

)(
N2
f +1

) ,
(Nf−1)N2

f (Nf+3)(
N2
f−2

)(
N2
f +1

)
 .

(A.5)
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The right part of (A.4) is just the SO(N2
f − 1) vector crossing equations MSO(N2

f
−1)

associated with the SO(N2
f − 1) → SU(Nf ) branching rules given by (3.5)–(3.7). The

algebraic relation (A.4) connects the SU(Nf ) adjoint bootstrap problem with the SO(N2
f −1)

vector bootstrap problem in the following way.
Assume we have obtained linear functionals ~α ≡ (α1, α2, α3) for the SO(N2

f − 1) vector
bootstrap, i.e.,

~α · MSO(N2
f
−1) = ~α ·

(
~V +

Sig,
~V +
T ,

~V −A

)
=
(
α+

Sig, α
+
T , α

−
A

)
� 01×3 , ∀∆ > ∆∗Sig/T/A,` ,

(A.6)
then the linear functionals ~α could be used to construct linear functionals for the SU(Nf )
adjoint bootstrap. Specifically, the action of the linear functionals ~β = ~α · (Tad) on the
SU(Nf ) adjoint bootstrap equations is

~β · Mad = (~α ·Tad) · Mad = ~α ·
(
~V +

Sig, x1~V
+
T , x2~V

−
A , x3~V

−
A , x4~V

+
T , x5~V

+
T

)
(A.7)

=
(
α+

Sig, x1α
+
T , x2α

−
A, x3α

−
A, x4α

+
T , x5α

+
T

)
, ∀∆ > ∆∗Ri,` . (A.8)

As long as the gap assumptions ∆∗Ri,` in (A.8) is consistent with the gap assumptions
in (A.6), the linear functional actions in (A.8) also satisfy the positive conditions. This
leads to a conclusion that any linear functionals that can be used to exclude the CFT
data in SO(N2

f − 1) vector bootstrap can also be used to exclude the CFT data in SU(Nf )
adjoint bootstrap. Also any SO(N2

f − 1) symmetric solutions to the crossing equations
can be decomposed into the solutions of the SU(Nf ) adjoint crossing equations. Therefore
the bootstrap allowed regions of the two different bootstrap setup are actually exactly the
same! The bootstrap bound coincidence was firstly observed between the singlet bounds
in the SU(N) fundamental and SO(2N) vector bootstrap [67]. The SU(Nf ) adjoint and
SO(N2

f − 1) vector bootstrap bound coincidence studied in this work has also been noticed
in [68]. If one adopts different gap assumptions explicitly breaking the SO(N2

f−1)→ SU(Nf )
branching rules (3.5)–(3.7), then bootstrap results from the two different implementations
will show differences.

In summary, the SU(Nf ) adjoint crossing equations have the same positivity structure
as the SO(N2

f − 1) vector crossing equations. To bootstrap the non-SO(N) symmetric
theories like conformal QED3, it is necessary to introduce gaps in the bootstrap equations
which break the SO(N2

f−1) symmetry explicitly. In this work, we introduce gap assumptions
consistent with QED3 spectrum and compare the bootstrap bounds with 1/Nf perturbative
results of conformal QED3.

For the linear extrapolations in table 2, we have computed ∆4 upper bounds to the
numerical precision 10−5 with ∆Oad fixed at the large Nf perturbative result [69]

∆Oad = 2− 64
3π2Nf

+ 256
(
28− 3π2)

9π4N2
f

. (A.9)

The data is provided in an attached Mathematica file.
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Figure 6. Bound (Λ = 31) on the scaling dimension of the lowest SO(42 − 1) singlet scalar.

B Two adjacent kinks in the SO(N) singlet bound?

In this section we study fine structures of the new family of kinks in the bounds on SO(N)
singlet scalars. As shown in the zoomed in subplot in figure 4, the new family of kinks in the
SO(N) singlet bounds may have fine structures with two nearby kinks for large Ns. Such
fine structure is not shown or indistinguishable in the singlet bounds with small Ns, see e.g.
figure 1. In the SO(202 − 1) singlet bound shown in figure 4, there is a prominent first kink
near ∆φ ∼ 1.9, followed by another mild kink near ∆φ ∈ (1.94, 1.95). Comparing with the
jump in the bound on the scaling dimension of the lowest O(202 − 1) traceless symmetric
scalar ∆T , we notice that the second kink in the singlet bound has scaling dimension ∆φ

close to the top of the jump, while ∆φ of the first kink, which is close to Nf = 20 QED3
relates to the bottom of the jump.

In figure 6 we provide another example for the kink in the SO(15) singlet bound. The
SO(15) vector bootstrap bounds on the singlet and traceless symmetric scalars have been
shown in figure 3 (purple lines). Figure 6 shows the zoomed in singlet bound near the kink.
Comparing with kinks with small Ns in figure 1, the kink(s) in figure 6 spread in a notable
region with two transitions. In the bound on ∆T , N = 15 is not large enough to form a
sharp jump, while the range of ∆φ of the singlet kink(s) in figure 6 is close to the kink in
the bound on ∆T .

C More discussions on the gap ∆∗
1 in the spin 1 T Ā sector

In figure 4 we have shown that with gaps ∆∗1 = 4.5, 4.8, or 5.0 on the spin 1 operators in
TĀ sector, bootstrap bounds on ∆4 can form sharp jumps whose positions depend on the
specific values of ∆∗1. In this section we provide more discussions on the bootstrap results.
We reproduce bootstrap bounds on ∆4 in figure 7 for convenience.
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Figure 7. Bounds on ∆4 with different gap assumptions ∆∗1 on the lowest spin 1 operator in the
TĀ sector.

The lowest spin 1 operator in TĀ sector has scaling dimension 5±1/Nf . The subleading
order correction is not known yet. The physical gap ∆∗1 could be slightly above or below
5 for Nf = 20, depending on the sign of the subleading order correction. An interesting
observation in figure 7 is that with a gap ∆∗1 = 5, the large Nf predictions on QED3
(∆Oad ,∆4) ' (1.891, 4.0) are excluded! Note ∆Oad ' 1.891 is given by 1/Nf perturbative
result at the order 1/N2

f , which is expected to be well close to the physical spectrum.
∆4 ' 4 is given by large Nf expansions on the scaling dimensions of the four-fermion
operators (3.8), which can be shifted by higher order corrections while it is unlikely to
be lowered into the bootstrap allowed region in figure 7: ∆4 < 3 at ∆Oad = 1.891. We
expect the 1/Nf predictions on QED3 are excluded due to the gap assumption ∆∗1 = 5. The
physical gap ∆∗1 should be smaller than 5 and the subleading order correction is negative.

Moreover, with a gap ∆∗1 = 4.8 the top of the jump is close to the physical value ∆4 = 4.
Near the jump we have ∆Oad ' 1.84, smaller than the large Nf prediction ∆Oad ' 1.89. As
shown in the linear extrapolation of bound on ∆4, the large Λ extrapolation will help to
reduce the discrepancy. It is interesting to compare with subleading order corrections on
the four-fermion scalars (3.8). For Nf = 20 QED3 the formulas in (3.8) give anomalous
dimensions ∆(1)

R : (
∆(1)

Ad,∆
(1)
AĀ
,∆(1)

T T̄

)
' (−0.31,−0.32, 0.11), (C.1)

close to the “anomalous dimension” −0.2 given by the gap ∆∗1 = 4.8. A critical question is
when the gap ∆∗1 is close to the physical spectrum of the lowest spin 1 operator in TĀ, will
the top of the jump in the bound on ∆4 get close to QED3? It is also interesting to isolate
QED3 solutions near the jumps using single correlator bootstrap [70]. We will provide a
more comprehensive study for this problem in the near future.

It is quite encouraging that with a suitable gap in TĀ sector, bootstrap bound can form
a sharp jump close to the physical spectrum. On the other hand, our results disclose a subtle
challenge to solve conformal QED3 using conformal bootstrap. The bootstrap bounds, in
particular the kinks depend on gaps imposed in the bootstrap equations. Therefore one has
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to resort to the results from large Nf expansions or other approaches to obtain bootstrap
bounds relevant to QED3. Reliable information on QED3 is not available for physically
interested theories with small Nf and our hope is to solve QED3 without specific information
of the theory. It is important to find new ingredients to resolve the gap-dependence problem
for future bootstrap studies.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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