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Preamble: the SW solution for SQCD
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Preamble: the SW solution for SQCD

The Seiberg-Witten solution
Let us first go back to ‘basics’: [Seiberg, Witten, 1994]
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Preamble: the SW solution for SQCD

4d N = 2 SQCD

We are interested in 4d N = 2 supersymmetric gauge theories. For simplicity, focus on
SQCD with SU(2) gauge group:
I Vector multiplet for gauge group SU(2):

V = (φ,Aµ, λI , λ̄I , DIJ)

Scalar potential includes term V =
∣∣[φ̄, φ]

∣∣2 ≥ 0.
I Nf ‘flavors’: hypermultiplets in the fundamental, 2⊕ 2̄, with masses mi.
I Flavour symmetry algebra gF : so(2Nf ) if mi = 0, ∀i, u(Nf ) if mi = m, and u(1)Nf

with generic masses.
I Asymptotic freedom implies Nf ≤ 4. The theory with Nf = 4 and gF = so(8) is a

4d SCFT with an exactly marginal gauge coupling.
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Preamble: the SW solution for SQCD

4d N = 2 SQCD
I Generic vacuum is on the Coulomb branch:

φ = − i√
2

(
a 0
0 −a

)
, SU(2)→ U(1)

The SW solution gives the exact low-energy effective action for the IR U(1):

S =
∫
d4x Im

(
τ(a)

)
(FµνFµµ + ∂µa∂

µa+ · · · )

I By supersymmetry, the CB metric is determined by an holomorphic function, the
prepotential:

τ = ∂2F
∂a2

I The CB is parameterised by the gauge-invariant parameter:

u = 〈Tr(φ2)〉 ≈ −a2 + · · ·

The CB of 4d N = 2 SQCD is ‘the u-plane’.
The point at infinity, u =∞, is the weak coupling point.
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Preamble: the SW solution for SQCD

The u-plane of SQCD
Electric-magnetic duality of a U(1) vector multiplet:(

aD
a

)
→ M∗

(
aD
a

)
, M∗ ∈ SL(2,Z) ∼=

〈
S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)〉
with SL(2,Z) monodromies of the ‘electromagnetic periods’ (modulo constant shifts if
mi 6= 0). We have:

aD = ∂F
∂a

, τ = ∂aD
∂a

.

For fixed masses, the u-plane has the form:

I paths γv, v = 1, · · · , k, and v =∞.
I γ∞ = −(γ1 + · · ·+ γk)
I If mi generic, k = Nf + 2.
I M∞

∏k

l=1 M∗l = 1 .

We will think of the u-plane as a projective
plane, P1 ∼= {u} with a distinguished point
u =∞.
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Preamble: the SW solution for SQCD

The SW solution

Postulate that τ with Im(τ) ≥ 0 is the modular parameter of an elliptic curve, Eu:

I We then have:

τ = ωD
ωa

= ∂aD
∂a

,

ωD = daD
du

=
∫
γB

ω ,

ωa = da

du
=
∫
γA

ω .

I The SW solution is a specific elliptic fibration over
the CB. The one-parameter family of curves Eu is
usually called ‘the SW curve’.

I The ‘Seiberg-Witten geometry’ is the total space of
the SW fibration over the u-plane.

I It necessarily has singular fibers.
Kodaira classification.
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Preamble: the SW solution for SQCD

The SW solution
I Singularity at infinity determined at weak coupling (1-loop β-function):

I∗4−Nf : M∞ = −T 4−Nf

I Simple singularities in the interior: In singularity (multiplicative fiber):

In : M∗ = Tn

The actual monodromy is conjugate to Tn.
If a single dyon of charge (m, q) becomes massless at u = u∗:

M(m,q)
∗ = B−1TB =

(
1 +mq q2

−m2 1−mq

)
.

I Other possibilities, from the Kodaira classification of singular elliptic fibers:

II : M∗ = (ST )−1 , II∗ : M∗ = ST ,

III : M∗ = S−1 , III∗ : M∗ = S ,

IV : M∗ = (ST )−2 , IV ∗ : M∗ = (ST )2 .

9 / 56



Preamble: the SW solution for SQCD

The u-plane of massless SQCD

For massless SQCD, we have: [Seiberg, Witten, 1994]

In singularity: n mutually local particles become massless.
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Preamble: the SW solution for SQCD

The symmetry group of 4d N = 2 SQCD

The (global) symmetry group of a theory is, by definition, the group that acts effectively
on gauge-invariant states. In particular, we must quotient by gauge redundancies.

The global symmetry of massless SQCD is easily determined in the UV:

GF = SO(2Nf )/Z2

We also write this as:

Nf 0 1 2 3 4
GF - U(1) (SU(2)/Z2)×(SU(2)/Z2) SU(4)/Z4 Spin(8)/(Z2 × Z2)

The pure SU(2) gauge theory (Nf = 0) has a one-form symmetry:
[Gaiotto, Kapustin, Seiberg, Willett, 2014]

Z [1] = Z2

which acts on Wilson loops in the fundamental (i.e. background quark worldlines):

Z2 : W → −W
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Preamble: the SW solution for SQCD

The symmetry group of 4d N = 2 SQCD

We would like to determine the symmetry directly in the IR.

Let us start with a partial answer:

Claim: The semi-simple part of the flavor symmetry algebra gNA
F = Lie(GF )NA is given

in terms of the Kodaira singularities in the interior:

gNA
F =

k⊕
v=1

gv ,

with:

Fv In I∗m II III IV II∗ III∗ IV ∗

gv su(n) so(8 + 2m) − su(2) su(3) e8 e7 e6

We will soon explain how to determine GF itself, directly from the SW geometry.
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Rational elliptic surfaces and rational sections

Rational elliptic surfaces and rational sections
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Rational elliptic surfaces and rational sections

SW curve and periods: generalities

It is convenient to bring the SW curve into the Weierstrass normal form:

y2 = 4x3 − g2(u,m)x− g3(u,m)

The singular fibers are located along the zeros of the discriminant:

∆(u) = g2(u)3 − 27g3(u)2

For SQCD, this is a polynomial of order Nf + 2. At generic masses, we have Nf + 2
simple roots in u (giving rise to I1 singularities).

Example: For pure SU(2), we have:

g2(u) = 4u2

3 − 4Λ4 , g3(u) = −8u3

27 + 4
3uΛ4 ,

and the discriminant:
∆ = 16Λ8 (u2 − 4Λ4)
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Rational elliptic surfaces and rational sections

SW curve and periods: generalities

Kodaira’s classification of singularities of elliptic fibrations:

g2 ∼ (u− u∗)ord(g2) , g3 ∼ (u− u∗)ord(g3) , ∆ ∼ (u− u∗)ord(∆) .

fiber τ ord(g2) ord(g3) ord(∆) M∗ flavor
Ik i∞ 0 0 k Tk su(k)
I∗k i∞ 2 3 k + 6 −Tk so(2k+8)
I∗0 τ0 ≥ 2 ≥ 3 6 −1 so(8)
II e

2πi
3 ≥ 1 1 2 (ST )−1 -

II∗ e
2πi

3 ≥ 4 5 10 (ST ) e8
III i 1 ≥ 2 3 S−1 su(2)
III∗ i 3 ≥ 5 9 S e7

IV e
2πi

3 ≥ 2 2 4 (ST )−2 su(3)
IV ∗ e

2πi
3 ≥ 3 4 8 (ST )2 e6
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Rational elliptic surfaces and rational sections

SW curve and periods: generalities

We are interested in the ‘physical periods’:

aD =
∫
γB

λSW , a =
∫
γA

λSW .

with the Seiberg-Witten differential such that:

dλSW

du
= ω , ω ≡ dy

x

Thus, we can find the physical periods from the ‘geometric periods’:

ωD =
∫
γB

ω , ωa =
∫
γA

ω .

At any fixed m, they satisfy a standard Picard-Fuchs equation:

∆(u)d
2ω

du2 + P (u)dω
du

+Q(u)ω = 0
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Rational elliptic surfaces and rational sections

SW geometry and rational elliptic surface
The low-energy physics on the CB is determined by the (affine) bundle:

C2 → (SW geom)→ B ∼= {u}

with the fibers given by the periods (aD, a).

Once we geometrize the periods by introducing the SW curve Eu, we have:

E → S → B

We compactify the base by adding the point at infinity:

B ∼= {u} ∼= P1

The SW geometry S is then a rational elliptic surface (RES) with a section.

Note: Any (resolved) RES S̃ can be obtained as a blow up of the projective plane at 9
points, dP9 = Bl9(P2). This is also called ‘half-K3 surface’ by string theorists. A deep
fact is then that:

H2(S̃,Z) ∼= 〈(O), E〉 ⊕ (−E8)

with E8 denoting the E8 lattice, for the 2-cycles with the intersection pairing.
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Rational elliptic surfaces and rational sections

SW geometry and rational elliptic surface
The singular fibers lead to ADE singularities on S, in correspondence with the ADE
‘flavor’ type.
They admit a standard resolution, S̃ → S. (Kodaira-Neron model.)

π−1(U∗,v) = Fv ∼=
mv−1∑
i=0

m̂v,iΘv,i ,

Example: The En family.
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Rational elliptic surfaces and rational sections

The Mordell-Weil group of rational section

Elliptic curves are additive groups:

P1 + P2 = P3

Given an elliptic fibration E → S → P1, there may exist non-trivial rational sections. In
Weierstrass form:

P = (x(u), y(u)) , x(u), y(u) ∈ C(u)

They form a finitely generated abelian group, the Mordell-Weil group:

Φ = MW(S) ∼= Zrk(Φ) ⊕ Zk1 ⊕ · · · ⊕ Zkt .

The number of free generators, rk(Φ) ≥ 0, is called the rank of the MW group.

The trivial element in Φ is the zero section, O = (∞,∞).

Importantly, the MW group can have non-trivial torsion elements, kiPtor = O.
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Rational elliptic surfaces and rational sections

The classification of rational elliptic surfaces

Rational elliptic surfaces S are fully classified. [Persson, 1990; Miranda, 1990]

They are characterised by:
I A set of ‘allowed’ singular fibers, (Fv).
I The MW group Φ.

In fact, in most cases, the set of singular fibers fully determines S.

A basic but powerful global constraint is:∑
v

ord(∆)|U∗v = 12

where the sum includes ‘v =∞’. There is thus a finite set of allowed singularities.
Additional considerations show that these are the following 20:

I1, · · · , I9 , I∗0 , · · · , I∗4 , , II , III , IV , II∗ , III∗ , IV ∗ .

Total number of distinct RES: 289.
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4d SQFTs of rank one, revisited

4d SQFTs of rank one, revisited
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4d SQFTs of rank one, revisited

Fixing the fiber at infinity
The RES perspective, and Persson’s classification, gives us a bird’s-eye view of rank-one
4d N = 2 theories.
The basic idea, generalising [Caorsi, Cecotti, 2018], is that the UV N = 2 SQFT is determined
by the fiber at infinity:

TF∞ ←→ {S | π−1(∞) = F∞} .
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4d SQFTs of rank one, revisited

Fixing the fiber at infinity

Some comments:
I Fixing F∞, the list of distinct RES with such a fiber gives the number of distinct CB

configurations for TF∞ , which we denote by:

S ∼= (F∞, F1, · · · , Fk)

For instance, pure SU(2) has a single CB configuration, S ∼= (I∗4 , I1, I1).
I The above ‘periodic table’ includes the 3 ‘classic AD SCFTs [Argyres, Douglas, 1995] and

the 3 En MN theories [Minahan, Nemeschansky, 1996].
I It does not include the other 4d SCFTs [Argyres, Wittig, 2007; Argyres, Lotito, Lu, Martone, 2016]

with enhanced CB (although, see [Caorsi, Cecotti, 2016]).
I Conjecture (?): the table gives the full list of CB configurations for rank-one 4d
N = 2 SQFTs with a ‘trivial’ CB (i.e. with only a U(1) vector multiplet).

I The top row corresponds to 5d SCFTs on R4 × S1, as we will show.
I If we choose F∞ = I0 (the trivial fiber), we get the E-string on R4 × T 2. There are

therefore 289 distinct CB configurations for that theory.
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4d SQFTs of rank one, revisited

Symmetry group and rational sections

We claimed above that the non-abelian part of the flavour symmetry was captured by the
singular fibers (in the interior), Fv 6=∞.

We also claim that each generator of Φfree = Φ/Φtor gives rise to a U(1) flavor
symmetry.

The full flavour symmetry algebra is then:

gF =
rk(Φ)⊕
s=1

u(1)s ⊕
k⊕
v=1

gv ,

One can also show that:
rank(gF ) = 8− rank(g∞) .

Example: SU(2), Nf = 1. The massless CB configuration is S ∼= (I∗3 , 3I1). In that case,
one indeed finds Φ ∼= Z, in agreement with gF = u(1).
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4d SQFTs of rank one, revisited

Symmetry group and rational sections

The global form of flavour group can be determined by analysing the full MW group.
For simplicity, assume that rk(Φ) = 0, so that GF is semi-simple:

Φ = Φtor = Zk1 ⊕ · · · ⊕ Zkt

Let G̃F denote the simply-connected group such that gF = Lie(GF ).

Define the subgroup of Φtor of ‘interior-narrow sections’:

Z [1] =
{
P ∈ Φtor

∣∣ (P ) intersects Θv,0 for all Fv 6=∞
}
,

and denote by F the cokernel of the inclusion map Z [1] → Φtor:

0→ Z [1] → Φtor → F → 0 .

Then, we claim that:
I GF = G̃F /F is the flavour symmetry group.
I Z [1] is the one-form symmetry group.
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4d SQFTs of rank one, revisited

Symmetry group and rational sections

The proof of the above statements goes through local mirror symmetry and borrows
arguments from the F-theory literature. [Aspinwall, 1998; Mayrhofer, Morrison, Till, Weigand, 2014; Cvetic,

Lin, 2017; Monnier, Moore, Park, 2017]. We will not go through it today.

A complementary way to understand the result is by taking the CB configuration of TF∞
with generic masses, so that we have the explicit symmetry breaking pattern:

GF → U(1)rank(GF )

These U(1)’s are generated by sections in Φfree. Furthermore, there is a natural lattice,
the (narrow) Mordell-Weil lattice of S, which was computed for any S. [Shioda, 1990] Using
these mathematical results, we can confirm the above claims in a case-by-case basis.
(The narrow MWL is the weight lattice of GF .)
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4d SQFTs of rank one, revisited

Symmetry group and rational sections

Example: SQCD. For massless SQCD, one finds:

Nf 0 1 2 3 4
S (I∗4 , 2I1) (I∗3 , 3I1) (I∗2 , 2I2) (I∗1 , I4, I1) (I∗0 , I∗0 )
Φ Z2 Z Z2

2 Z4 Z2
2

This matches the results expected from the UV:
I Nf = 0: we have Φtor = Z [1] = Z2, in agreement with known results.
I Nf = 2: we have Φtor = F and GF = SU(2)× SU(2))/(Z2 × Z2).
I Nf = 3: we have Φtor = F and GF = SU(4)/Z4.
I Nf = 4: we have Φtor = F and GF = Spin(8)/(Z2 × Z2).
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4d SQFTs of rank one, revisited

Symmetry group and rational sections

The general result can also be applied to non-Lagrangian theories. We have the following
interesting RES: [Miranda, Persson, 1986]

I S = (II, II∗), with Φ = 0.
• If F∞ = II∗, we have the AD point H0 with trivial flavour group.
• If F∞ = II, we have the E8 MN SCFT, with GF = E8.

I S = (III, III∗), with Φ = Z2.
• If F∞ = III∗, we have the AD point H1 with flavour group GF = SO(3).
• If F∞ = III, we have the E7 MN SCFT, with GF = E7/Z2.

I S = (IV, IV ∗), with Φ = Z3.
• If F∞ = IV ∗, we have the AD point H2 with flavour group GF = PSU(3).
• If F∞ = IV , we have the E6 MN SCFT, with GF = E6/Z3.

All these flavour groups are centerless. For the MN theories, this determination
reproduces recent results [Bhardwaj, 2021]. The H1 flavour group was determined in [Buican,

Jiang, 2021], and the H2 flavour group is a new result.
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4d SQFTs of rank one, revisited

Systematic analysis of CB configurations
Using the Persson classification and some direct computations, we can map out the full
set of CB configurations of a given SQFT T∞, in principle.
Example: SU(2), Nf = 3. There are 13 allowed configurations:
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4d SQFTs of rank one, revisited

Modularity of the u-plane

For any 4d N = 2 SQFT with mass parameters m, we have an ‘extended CB’ where m
are viewed as VEVs for background vector multiplets.

There are many ‘special loci’ on the extended Coulomb branch which have modular
properties. More precisely, it can happen that, at some fixed values of the masses, the
u-plane is a modular curve:

B ∼= H/Γ , Γ ⊂ SL(2,Z)

for some particular modular subgroup Γ. When this happens, the map:

u : H/Γ→ B : τ 7→ u(τ)

is an isomorphism. The Γ-invariant function u(τ) is called the Hauptmodul (or principal
modular function) of Γ.

When the CB is modular, the singularities are in one-to-one correspondence with cusps
and elliptic points of Γ. This simplifies the analysis of e.g. the monodromy group.

Note: even when the CB is not modular, it is advantageous to work on the τ -plane.
See [Aspman, Furrer, Manschot, 2000, 2021] for recent discussions.
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4d SQFTs of rank one, revisited

Modular curves for SQCD

Massless SQCD with Nf 6= 1 is modular: [Seiberg, Witten, 1994; Nahm, 1996]

Note: Massless Nf = 1 is not modular.
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4d SQFTs of rank one, revisited

Modular curves for SQCD
Example: pure SU(2). Modular curve for Γ0(4). Two cusps of width 1.

u(τ) = 1
8

(
q−

1
4 + 20q

1
4 − 62q

3
4 + 216q

5
4 − 641q

7
4 + 1636q

9
4 +O

(
q

11
4

))
.

Associated monodromies:
Mu=1 = STS−1 , Mu=−1 = (T 2S)T (T 2S)−1 , M∞ = PT 4 .
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4d SQFTs of rank one, revisited

Modular curves for SQCD
Another example: SU(2), Nf = 1.

Two configurations: massless one is not modular. The other is modular for Γ = Γ0(3):

u(τ) = −
5
3
−

1
9

(
η
(
τ
3

)
η(τ)

)12

,

Note the AD points H0 as an elliptic point: [Argyres, Plesser, Seiberg, Witten, 1995]
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The U -plane of the En 5d SCFTs

The U -plane of the En 5d SCFTs
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The U -plane of the En 5d SCFTs

Geometric engineering in IIA and M-theory
Consider a Type IIA string theory on R4 × X̃, with X a Calabi-Yau manifold. The
low-energy theory is a 4d N = 2 supergravity theory. If X is non-compact, we have a 4d
N = 2 QFT in the infrared. [Katz, Klemm, Vafa, 1996]

Plot twist: the low-energy QFT associated to X̃ itself is ‘secretly’ five-dimensional. [Witten,

1995; Nekrasov, 1996]. Indeed, we may consider M-theory on R5 × X̃. If we take a smooth X̃
which is a crepant resolution of a canonical singularity X:

X̃→ X

we are on the Coulomb branch of a 5d SCFT T 5d
X .

We then have:

T 5d
X on R4 × S1 ↔ M-theory on R4 × S1 ×X

↔ IIA string theory on R4 ×X

This gives us a 4d N = 2 supersymmetric Kaluza-Klein (KK) field theory:

DS1T 5d
X on R4 ∼= T 5d

X on R4 × S1
β
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The U -plane of the En 5d SCFTs

Geometric engineering in IIA and M-theory

Let us focus on the simplest example, of rank one: [Morrison, Seiberg, 1996]

X̃ = Tot(K → S) , S = F0 or dPn (n ≤ 8)

Singularity X: blow-down the zero section S, which is a Fano surface.

Intersection form H2(S,Z)×H2(S,Z)→ Z can be written as:(
9− n 0

0 −AEnIJ

)
, I, J = 1, · · · , n , 9− n = deg(S) = K · K

⇒ M2-brane particles on CB form representations of En = en algebra.

Note: We may also consider dP9 (a RES.) The theory is then secretly six-dimensional.
That is the E-string theory (a 6d N = (1, 0) SCFT) on R4 × T 2.
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The U -plane of the En 5d SCFTs

En theories from del Pezzos

These SCFTs are all related by RG flows triggered by massive deformations:

dP8 dP7 dP6 dP5

dP4 dP3

u(1)

dP2

u(1)

dP1

F0 P2
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The U -plane of the En 5d SCFTs

The 5d gauge theory limit
I These 10 rank-one SCFTs were first discovered by Seiberg as UV fixed points of 5d
N = 1 gauge theories. [Seiberg, 1996]

I Recall that 5d gauge theories are IR-free effective theories. The perturbative
gauge-theory description is valid for RG scales:

µ� m0 ≡
1
g2

5d

I T 5d
En admits a mass deformation to a 5d N = 1 gauge theory in the IR:

E � m0 = 1
g2

5d
: 5d N = 1 SU(2) with Nf = n−1 fundamentals.

This mass deformation breaks the flavor algebra as:

En → so(2Nf )⊕ u(1)

α1 α2 α4 α5
· · ·

αn

α3

→
α2 α4 α5

· · ·
αn

α3
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The U -plane of the En 5d SCFTs

The U -plane of DS1T 5d
X

As a first approximation, we can then think of our En theories as 5d SU(2) gauge
theories. The low-energy U(1) scalar is:

a = i(ϕ+ iA5) , e2πiA5 ≡ e
∫
S1 A

and the gauge-invariant order parameter is:

U = 〈W 〉 = e2πia + e−2πia + · · ·

Here W is a supersymmetric Wilson line in 5d, wrapped along the S1.

Similarly, the complexified mass parameters are flavor Wilson lines:

MI = e2πiµI = e−βmI+iϑI
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The U -plane of the En 5d SCFTs

The U -plane of DS1T 5d
X

At fixed MI , the Coulomb branch is one-dimensional, with local coordinate U ∈ C.
This is the U-plane.

As in ‘ordinary’ 4d N = 2 theories, the low-energy physics is fully determined by some
Seiberg-Witten geometry. The En curves were derived in [Ganor, Morrison, Seiberg, 1996; Eguchi,

Sakai, 2002].
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The U -plane of the En 5d SCFTs

The U -plane from local mirror symmetry

The SW solution is essentially local mirror symmetry: [Katz, Mayr, Vafa, 1996]

CB of DS1T 5d
X ←→ IIA string theory on R4 × X̃

←→ IIB string theory on R4 × Ŷ

We have the local mirror symmetry between smooth threefolds:

X̃ ↔ Ŷ , D(X̃) ↔ Fuk(Ŷ)

In particular:
I U,MI are complex structure parameters of Ŷ.
I a, µI are Kähler parameters of X̃.
I The exact expression:

a(U) = 1
2πi log 1

U
+
∑
k

ckU
k

is the mirror map.
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The U -plane of the En 5d SCFTs

The fiber at infinity
Consider the En theory. One can determine the large volume monodromy from the
semi-classical periods.

Let us give a more "5d QFT" derivation: Take a limit where the 5d SU(2), Nf = n− 1
gauge-theory description is valid. At one-loop, the prepotential of the theory on R4 × S1

reads: [Nekrasov, 1998]

F = µ0a
2 + 2

(2πi)3 Li3
(
e4πia)− 1

(2πi)3

n−1∑
a=1

∑
±

Li3
(
e2πi(±a+µa))

and aD = ∂F
∂a

. The large volume monodromy is:

aD → aD + (9− n)a+ µ0 −
n−1∑
a=1

µa , a→ a+ 1

We thus have:

M∞ = T 9−n =
(

1 9−n
0 1

)
This determines the fiber at infinity, F∞ = I9−n, as anticipated.
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The U -plane of the En 5d SCFTs

Rational elliptic surfaces and generic masses:

The Ik fiber has monodromy conjugate to T k. The bulk I1 corresponds to a single BPS
particle becoming massless:

M (m,q)
∗ = B−1TB =

(
1 +mq q2

−m2 1−mq

)
.
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The U -plane of the En 5d SCFTs

The massless curves

Consider now MI = 1. One finds:

E8 : II∗ ⊕ I1 Φ = 0
E7 : III∗ ⊕ I1 Φ = Z2

E6 : IV ∗ ⊕ I1 Φ = Z3

E5 : I∗1 ⊕ I1 Φ = Z4

E4 : I5 ⊕ I1 ⊕ I1 Φ = Z5

E3 : I3 ⊕ I2 ⊕ I1 Φ = Z6

E2 : I2 ⊕ I1 ⊕ I1 ⊕ I1 Φ = Z
E1 : I2 ⊕ I1 ⊕ I1 Φ = Z2

Ẽ1 : I1 ⊕ I1 ⊕ I1 ⊕ I1 Φ = Z
E0 : I1 ⊕ I1 ⊕ I1 Φ = Z3

in agreement with old ‘classic’ results. [Ganor, Morrison, Seiberg, 1996]

� This reproduce the En flavor symmetry, including abelian factors.
� The 4d LEEFT is IR free for n < 6
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The U -plane of the En 5d SCFTs

MW group and global symmetry

The general prescription for the global symmetry works here too. We find:

GF = En/Z(En)

for the massless theories with semi-simple symmetry group.
I This agrees with the 5d result of [Apruzzi, Bhardwaj, Oh, Schafer-Nameki, 2021], which found GF

centerless using directly the M-theory geometry.
I The fiber F∞ = I8 does not determine the SQFT uniquely.

Two distinct choices for Z [1], either Z2 or trivial. This gives E1 or Ẽ1.
I The case E1 is special, with Φ = Z4 and Z [1] = Z2, with:

Z2 → Z4 → F = Z2

so that GF = SO(3).
I All other theories have Z [1] = 0, and thus Φtor = F .
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The U -plane of the En 5d SCFTs

RG flows to 4d

Two types of flows:
I “zooming in”:

Here we just decouple the KK
scale.

I “geometric engineering
limit”:
We decouple the KK scale and
the instanton particles.
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The U -plane of the En 5d SCFTs

Modularity of the U -plane
In many interesting special limits, the U-plane is a modular curve:

B ∼= H/Γ , Γ ⊂ SL(2,Z)

This means, in particular, that the mirror map is a modular function:

a = a(U) ↔ U = U(τ)

Example: the massless curves:

E7 : III∗ ⊕ I1 : Γ0(2)
E6 : IV ∗ ⊕ I1 : Γ0(3)
E5 : I∗1 ⊕ I1 : Γ0(4)
E4 : I5 ⊕ I1 ⊕ I1 : Γ1(5)
E3 : I3 ⊕ I2 ⊕ I1 : Γ0(6)
E1 : I2 ⊕ I1 ⊕ I1 : Γ0(8)
E0 : I1 ⊕ I1 ⊕ I1 : Γ0(9)

The massless E8, E2 and Ẽ1 are not modular.
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The U -plane of the En 5d SCFTs

Example: the massless E1 theory
This is “5d pure SU(2)0 at infinite coupling.”

The CB of the massless is a modular curve for the congruence subgroup Γ0(8):

F TF T 2F T 3F T 4F T 5F T 6F T 7F

SF T 2SF T 4SF
T 2ST

Singularities and monodromies:
M(−2) = STS−1 , M(0) = (T 2S)T 2(T 2S)−1 , M(−2) = (T 4S)T (T 4S)−1 .

I At U = −2, the monopole (1, 0) is massless, aD → 0. “Conifold point.”
I At U = 0, two dyons (−1, 2) are massless.
I At U = 2, the dyon (1,−4) is massless.

48 / 56



5d BPS quivers

5d BPS quivers
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5d BPS quivers

BPS quivers of 4d KK theories
Given any 4d N = 2 field theory T , are hard question is to compute the BPS spectrum
Su at u ∈ B.

In principle, one can proceed in two steps:
I Identify the BPS category T BPS

T of T .
I Identify the stable objects in T BPS

T .
In physics language, it’s a F-term/D-term dichotomy.

For our 5d theories on a circle,
T = DS1T 5d

X

the BPS states are D0/D2/D4 bound states in IIA.

The BPS category of the KK theory is the derived category of coherent sheaves on the
resolved singularity X̃:

T BPS
D
S1T 5d

X
= Db(cohX̃)

Π-stables branes are the stables objects that give us the BPS spectrum. [Douglas, Fiol,

Romelsberger, 2000]. They are (essentially) counted by the DT invariants of X̃. (See [Duan, Ghim,

Yi, 2020] for an important caveat.)
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5d BPS quivers

BPS quivers of 4d KK theories
There often exists a quiver description of the BPS states. [Alim, Cecotti, Cordova, Espahbodi, Rastogi,

Vafa, 2011]

Let AQ be the Jacobian algebra of (Q,W ). We then have:
I T BPS

T = D(AQ-mod).
I The BPS states are given by (quantising the moduli spaces of) the θ-stable

representations.

For the KK theories of interest, we call this the the 5d BPS quiver. In the physics
literature, it is best known as the fractional-brane quiver of the canonical singularity X (if
X admits a crepant resolution), and as non-commutative crepand resolution (NCCR) of
X in the maths literature. One expects:

Db(cohX̃) ∼= D(AQ-mod)

Various techniques exists to extract the quiver (and superpotential) (Q,W ) from the
B-model on X̃ – see e.g. [CC, Del Zotto, 2019].

Here, we would like to directly derive Q from the type IIB mirror – i.e. from the SW
geometry.

51 / 56



5d BPS quivers

5d BPS quivers from the U -plane: simple prescription

We focus again on rank-one theories.

Basic idea: consider a CB configuration with only Ik singularities at u∗,i.
Then, motivated by the IIB and F-theory picture, we:
I conjecture that the BPS spectrum consists of charges (m, q) that are generated by

the dyons γi = (mi, qi) that become massless at u∗,i;
I to each Ik, we associate k quiver nodes;
I the number of arrows between nodes, (i)→ (j), is given by the Dirac pairing:

nij = 〈γi, γj〉 = det
(
mi qi
mj qj

)

Comments:

I This pedestrian method does not gives us W .
I In simple cases, we can prove that this quiver description exists by computing the

central charges Zγ near the origin of the CB.
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5d BPS quivers

Example: the massless E1 theory

Consider the E1 theory. Recall that we have the light dyons:

(1, 0) , (−1, 2)× 2 , (1,−4) .

This gives the quiver:

Eγ1=(1,0) Eγ2=(−1,2)

Eγ3=(−1,2) Eγ4=(1,−4)

Indeed, the E1 geometry is the well-known local F0 ∼= P1 × P1, and the quiver above is a
known ‘toric’ quiver for this geometry. It is valid at U = 0 on the massless CB.
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5d BPS quivers

Modular curves and quiver points
In practise, we use modularity to identify the light dyons. We can classify all modular CB
configurations for any of the rank-one theories.

For instance, for DS1E8 and restricting to congruence subgroups (for simplicity):
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5d BPS quivers

Modular curves and quiver points

One can then identify the light particles and, in favourable cases, the 5d BPS quiver.

Example: The DS1E8 CB configuration S = (I1, I6, I3, I2), with:

S : I6 : 6(1, 0) , I2 : 2(−3, 1) , I3 : 3(2,−1) ,

This is a correct 3-blocks quiver for dP8, which can be obtained from B-branes [Wijnholt,

2002; Karpov, Nogin, 1997]. Here, we derived it from the mirror.

Note: By removing γ1, we get a BPS quiver for the 4d E8 MN theory.
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Conclusions

Summary and outlook

Summary:
� We revisited a general approach to rank-one 4d N = 2 SQFT in terms of rational
elliptic surfaces.
� We pointed out that the Persson classification of RES gives classification of CB
configurations.
� We determined the flavour symmetry group directly from the SW geometry.
� We discussed the Coulomb branch physics of 5d SCFTs on R4 × S1.
� We studied global properties of the U -plane, such as modularity.

Outlook:
� We initiated a study of quiver points on the U -plane. More systematic analysis
needed.
� These elementary considerations are fundamental to a better understanding of
partition functions of 5d SCFTs on five-manifolds. Work in progress.
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