Int. Workshop on Numerical Analysis with Applications in Medium Imaging and Computer Visions

December 10-14, 2018 Nanjing, P.R.China

Shing-Tung Yau Center of Southeast University School of Mathematics, Southeast University

Program and Abstracts

Int. Workshop on Numerical Analysis with Applications in

Medium Imaging and Computer Visions 2018

Nanjing, P.R.China December 10-14, 2018

Scientific Committee:

Raymond Chan, The Chinese University of Hong Kong Xianfeng Gu, The State University of New York at Stony Brook Shi-Min Hu, Tsinghua University Ren-Cang Li, University of Texas at Arlington Wen-Wei Lin, National Chiao Tung University Jijun Liu, Southeast University Zuoqiang Shi, Tsinghua University Shing-Tung Yau, Harvard University

Local Organizing Committee:

Jinde Cao, Southeast University Tiexiang Li, Southeast University Jijun Liu, Southeast University Yue Lu, Southeast University Qiao Wang, Southeast University Yinghong Wu, Southeast University

Organized by:

Shing-Tung Yau Center of Southeast University School of Mathematics, Southeast University

Address: No.2, Sipailou, Nanjing, China, 210096 Conference Website: http://sign.digitcampus.cn/index.htm

Sponsored by:

General Information

Registration

There will be a registration desk on Monday (December 10) from 09:00-20:30 in the ground floor of the Lakeview Xuanwu Hotel.

Sessions location

The conference will be held on Ball Room (third floor) for opening ceremony and plenary talks, Jinxiu Room (second floor) for M1(Medium Imaging and Image Processing), Jinjiang Room (ground floor) for M2(Matrix Computations and Optimization), Juxing Room (second floor) for M3(Computer Vision with Applications).

Wireless network

The hotel has a free wireless network, the account password is as follows: Wifi: XuanWu Hotel User: 83358888 Password: 147258

Tea breaks and lunches

Tea breaks will be served outside each conference room, and lunches will be served at the Le Papillion. Please take your meal tickets for lunches.

Buffet dinners

Buffet dinners will be served at Lake-view Revolving Restaurant from 10-13, December. Please take your daily buffet dinner ticket with you.

Conference banquet

The conference banquet will be on Tuesday, December 11 at 18:30 at Ball Room. Please take your conference banquet ticket.

Int. Workshop on Numerical Analysis with Applications in Medium Imaging and Computer Visions 2018

Table of Contents

1	Venue information, map and general schedule	3
2	Invited talks	7
3	Abstract of talks	19
4	About Shing-Tung Yau Center of Southeast University	54
5	Introduction on School of Mathematics, Southeast University	57
6	Author index	61

1 Venue information, map and general schedule

Venue information

With the promotions of efficient computations for novel mathematical models from engineering areas, the interactions between applied math and computational math develop very quickly. This international workshop aims to provide a forum for Chinese mathematicians over the world working on numerical algebra, medium imaging and computer vision with applications. This workshop is the 7th meeting of the ICCM (International Congress of Chinese Mathematician) Consortium on CAM (Computational and Applied Mathematics). The consortium has the mission of enhancing collaboration among Chinese mathematicians working on CAM and enhancing their collaboration with international experts.

Registration: 09:00-20:30, December 10, 2018, Lakeview Xuanwu Hotel Accommodation: Lakeview Xuanwu Hotel, No.193, Central Road, Gulou District, Nanjing Conference Venue: Ball Room, Lakeview Xuanwu Hotel Organizers: Tiexiang Li, Wen-Wei Lin, Jijun Liu, Shing-Tung Yau Sponsors: Shing-Tung Yau Center of Southeast University School of Mathematics, Southeast University

Map to Lakeview Xuanwu Hotel

Taxi:

- 1. Nanjing Lukou Airport to Lakeview Xuanwu Hotel: the taxi fare is about 110 yuan.
- 2. Nanjing Railway Station to Lakeview Xuanwu Hotel: the taxi fare is about 10 yuan.
- 3. Nanjing South Railway Station to Lakeview Xuanwu Hotel: the taxi fare is about 35 yuan.

Public transportation:

1. Nanjing Lukou Airport → Lakeview Xuanwu Hotel

Take Nanjing Metro Line S1 and transfer at Nanjing South Railway Station to Metro Line 1. Then take Metro Line 1 to Xuanwumen Station (Exit 1).

2. Nanjing Railway Station → Lakeview Xuanwu Hotel

Take Nanjing Metro Line 1 to Xuanwumen Station (Exit 1).

Then you can see the hotel when you come out the Xuanwumen Station.

General schedule

	10,Dec.	11,Dec.		12,Dec.	13,Dec.	14,Dec.	
		Opening Ceremony		Chair: Xianfeng Gu	Chair: Ren-Cang Li	Chair: Jijun Liu	
		09:00-09:30		PS3: Jin Cheng	PS6: Jianlin Xia	PS8: Qiang Du	
		Т	king Photograph	09:00-09:50	09:00-09:50	09:00-09:50	
		10	09·30-09·50	PS4: Wenping Wang	PS7: Zhaojun Bai	PS9: Xiaolin Li	
09:00-			0,60 0,60	10:00-10:50	10:00-10:50	10:00-10:50	
12:00		Ch	air: Wen-Wei Lin	Tea Break	Tea Break		
		PS	1: Shing-Tung Yau	10:50-11:10	10:50-11:10		
		DCO	10:00-10:50	Chair: Zuoqiang Shi	Discussion	10:50-11:00	
		PS2:	Michael Kwok-Po Ng	PS5: Tao Ju	11:10-12:00		
12.00			11.00-11.50	11:10-12:00			
12:00-				Lunch			
			Chair:	Chair:	Chair:		
			Zhiyuan Li	Xiaoping Yang	Xiaoqun Zhang		
		MS1	Zhihui Wei	Haixia Liang	Shuai Lu		
			Youwei Wen	Youjun Deng	Shixiang Chen		
			Ganghua Yuan	Min Tao	Daijun Jiang		
			Chair: Weiguo Gao	Chair: Leihong Zhang	Chair: Yimin Wei		
14:00-		MGO	Ninoslav Truhar	Eric King-wah Chu	Wen Li		
15:45	Registration	M52	Musheng Wei	Xin Liang	Jungong Xue		
	(Lobby of		Yangfeng Su	Yuji Nakatsukasa	Yifei Lou		
	the hotel)	MS3	Chair: Ke Chen	Chair: Yue Gao	Chair: Hang Si		
			Chun-Xia Xiao	Shaoping Lu	Hongbo Fu		
			Na Lei	Ying He	Shihong Xia		
			Lin Gao	Jianmin Zheng	Yong-Jin Liu		
15:45- 16:15				Tea Break			
10.10			Chair: Zhihui Wei	Chair: Min Tao	Chair: Shixiang Chen		
		MC1	Zhiyuan Li	Xiaoping Yang	Jingzhi Li		
		MST	Haixia Liu	Tieyong Zeng	Xiaoqun Zhang		
			Rongfang Gong	Chunlin Wu	Suhua Wei		
			Chair: Musheng Wei	Chair: Eric King-wah Chu	Chair: Yifei Lou		
16:15-		MGO	Weiguo Gao	Li Wang	Yimin Wei		
18:00		M52	Yuan Lei	Leihong Zhang	Bing Zheng		
			Limin Li	Bo Yu	zhenchen Guo		
			Chair: Na Lei		Chair: Shihong Xia		
		MS3	Yue Gao		Yanwen Guo		
			Ke Chen		Hang Si		
			Deyu Meng		Haizhao Yang		
18:30- 20:30	Dinner	Banquet		Dinner	Dinner		
21.00		Chinese Applied Mathematicians Board					
21:00-							
22:00 Meeting		Meeting					

2 Invited talks

Plenary talks

Plenary talks are arranged at Ball Room, Lakeview Xuanwu Hotel.

Tuesday, December 11

Chair: Wen-Wei Lin Tuesday, December 11, 10:00-11:50

Computational quasi-conformal geometry with applications Shing-Tung Yau, *Harvard University* Tuesday, December 11, 10:00-10:50

Robust tensor completion and its applications Michael Kwok-Po Ng, *The Hong Kong Baptist University* Tuesday, December 11, 11:00-11:50

Wednesday, December 12

<u>Chair: Xianfeng Gu</u> Wednesday, December 12, 09:00-10:50

Quantitative estimate for the solutions of Helmholtz equations on the analytic surface Jin Cheng, *Fudan University* Wednesday, December 12, 09:00-09:50

AI-enabled digital orthodontics Wenping Wang, *Hong Kong University* Wednesday, December 12, 10:00-10:50

<u>Chair: Zuoqiang Shi</u> Wednesday, December 12, 11:10-12:00

Computing and regularizing medial axes in 3D Tao Ju, *Washington Univ. St. Louis* Wednesday, December 12, 11:10-12:00 Plenary talks are arranged at Ball Room, Lakeview Xuanwu Hotel.

Thursday, December 13

Chair: Ren-Cang Li Thursday, December 13, 09:00-10:50

Fast Hermitian eigenvalue decompositions and applications Jianlin Xia, *Purdue University* Thursday, December 13, 09:00-09:50

Nonlinear eigenvalue problems: recent advances and challenges Zhaojun Bai, *University of California, Davis* Thursday, December 13, 10:00-10:50

Friday, December 14

<u>Chair: Jijun Liu</u> Friday, December 14, 09:00-10:50

Nonlocal models and their applications Qiang Du, *Columbia University* Friday, December 14, 09:00-09:50

Front tracking method at its best--applications in fluid structure interactions

Xiaolin Li, *Stony Brook University* Friday, December 14, 10:00-10:50

Minisymposium talks

Minisymposium 1 (Medium Imaging and Image Processing) Talks are arranged at Jinxiu Room, Lakeview Xuanwu Hotel.

Tuesday, December 11

Chair: Zhiyuan Li Tuesday, December 11, 14:00-15:45

Tensor based hyperspectral image fusion and compressed sensing Zhihui Wei, *Nanjing University of Science and Technology* Tuesday, December 11, 14:00-14:35

Using generalized cross validation to select regularization parameter for total variation regularization problems Youwei Wen, *Hunan Normal University* Tuesday, December 11, 14:35-15:10

Inverse problems for some stochastic PDEs Ganghua Yuan, *Northeast Normal University*

Tuesday, December 11, 15:10-15:45

Chair: Zhihui Wei Tuesday, December 11, 16:15-18:00

Inversion for orders of fractional derivatives of diffusion equation Zhiyuan Li, *Shandong University of Technology* Tuesday, December 11, 16:15-16:50

Scattering transform and sparse Linear classifiers for art authentication Haixia Liu, *Huazhong University of Science and Technology* Tuesday, December 11, 16:50-17:25

Bioluminescence tomography: models and reconstruction Rongfang Gong, *Nanjing University of Aeronautics and Astronautics* Tuesday, December 11, 17:25-18:00 Minisymposium 1 (Medium Imaging and Image Processing)

Talks are arranged at Jinxiu Room, Lakeview Xuanwu Hotel.

Wednesday, December 12

Chair: Xiaoping Yang Wednesday, December 12, 14:00-15:45

Truncated fractional-order total variation model for image restoration Haixia Liang, *Xian Jiaotung Liverpool University* Wednesday, December 12, 14:00-14:35

Generalized polarization tensors for inhomogeneous medium and cloaking Youjun Deng, *Central South University* Wednesday, December 12, 14:35-15:10

On Glowinski's open question on the alternating direction method of multipliers Min Tao, *Nanjing University* Wednesday, December 12, 15:10-15:45

Chair: Min Tao Wednesday, December 12, 16:15-18:00

Region inhomogeneity active contours

Xiaoping Yang, *Nanjing University* Wednesday, December 12, 16:15-16:50

Image recovery: from classical approach to deep learning

Tieyong Zeng, *Chinese University of Hong Kong* Wednesday, December 12, 16:50-17:25

On nonconvex regularized models for image restoration problems

Chunlin Wu, *Nankai University* Wednesday, December 12, 17:25-18:00 Minisymposium 1 (Medium Imaging and Image Processing)

Talks are arranged at Jinxiu Room, Lakeview Xuanwu Hotel.

Thursday, December 13

Chair: Xiaoqun Zhang Thursday, December 13, 14:00-15:45

Increasing stability in the inverse source problem with attenuation and many frequencies Shuai Lu, *Fudan University* Thursday, December 13, 14:00-14:35

Proximal gradient method for manifold optimization

Shixiang Chen, *The Chinese University of Hong Kong* Thursday, December 13, 14:35-15:10

Convergence analysis of LMM and DDMs for a parabolic inverse Robin problem Daijun Jiang, *Central China Normal University* Thursday, December 13, 15:10-15:45

Chair: Shixiang Chen Thursday, December 13, 16:15-18:00

Shape derivatives -new perspective and applications to scattering

Jingzhi Li, Southern University of Science and Technology Thursday, December 13, 16:15-16:50

Bi-modality joint reconstruction via variational models

Xiaoqun Zhang, *Shanghai Jiao Tong University* Thursday, December 13, 16:50-17:25

The Inverse problem approach for X-ray radiograph tomography

Suhua Wei, Institute of Applied Physics and Computational Mathematics, CAS Thursday, December 13, 17:25-18:00

Minisymposium talks

Minisymposium 2 (Matrix Computations and Optimization)

Talks are arranged at Jinjiang Room, Lakeview Xuanwu Hotel.

Tuesday, December 11

Chair: Weiguo Gao Tuesday, December 11, 14:00-15:45

Qn eigenvector-dependent nonlinear eigenvalue problem from perspective of relative perturbation theory Ninoslav Truhar, *University of Osijek*

Tuesday, December 11, 14:00-14:35

Quaternion matrix computations

Musheng Wei, *Shanghai Normal University* Tuesday, December 11, 14:35-15:10

Number of 2D eigenvalues

Yangfeng Su, *Fudan University* Tuesday, December 11, 15:10-15:45

Chair: Musheng Wei Tuesday, December 11, 16:15-18:00

Jacobi-like algorithm for Bethe-Salpeter eigenvalue problem Weiguo Gao, *Fudan University* Tuesday, December 11, 16:15-16:50

The ascend algorithm for solving generalized symmetric eigenvalue complementarity problem

Yuan Lei, *Hunan University* Tuesday, December 11, 16:50-17:25

Nonlinear eigenvalue problem in domain adaptation

Limin Li, *Xi'an Jiaotong University* Tuesday, December 11, 17:25-18:00 Minisymposium 2 (Matrix Computations and Optimization)

Talks are arranged at Jinjiang Room, Lakeview Xuanwu Hotel.

Wednesday, December 12

Chair: Leihong Zhang Wednesday, December 12, 14:00-15:45

Inheritance properties of Krylov subspace methods for algebraic Riccati equations

Eric King-Wah Chu, *Monash University* Wednesday, December 12, 14:00-14:35

Nearly optimal stochastic approximation for online principal subspace estimation Xin Liang, *Tsinghua University*

Wednesday, December 12, 14:35-15:10

Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems Yuji Nakatsukasa, University of Oxford

Wednesday, December 12, 15:10-15:45

Chair: Eric King-Wah Chu

Wednesday, December 12, 16:15-18:00

Probabilistic dimensionality reduction via structure learning Li Wang, *University of Texas at Arlington* Wednesday, December 12, 16:15-16:50

The generalized Lanczos trust-region method

Leihong Zhang, *Shanghai University of Finance and Economics* Wednesday, December 12, 16:50-17:25

PSBCM-ALH algorithm for large-scale SVM

Bo Yu, *Dalian University of Technology* Wednesday, December 12, 17:25-18:00 Minisymposium 2 (Matrix Computations and Optimization)

Talks are arranged at Jinjiang Room, Lakeview Xuanwu Hotel.

Thursday, December 13

Chair: Yimin Wei Thursday, December 13, 14:00-15:45

The uniqueness of multilinear PageRank vectors Wen Li, *South China Normal University* Thursday, December 13, 14:00-14:35

Computing exponentials of essentially nonnegative matrices entrywise to high relative accuracy Jungong Xue, *Fudan University*

Thursday, December 13, 14:35-15:10

Nonconvex approaches in data science

Yifei Lou, University of Texas Dallas Thursday, December 13, 15:10-15:45

Chair: Yifei Lou

Thursday, December 13, 16:15-18:00

Randomized algorithms for large-scale total least squares problems

Yimin Wei, *Fudan University* Thursday, December 13, 16:15-16:50

Structured condition numbers for the Tikhonov regularization of discrete ill-posed problems Bing Zheng, Lanzhou University

Thursday, December 13, 16:50-17:25

Doubling algorithm for the discretized Bethe-Salpeter eigenvalue problem

Zhenchen Guo, *Nanjing University* Thursday, December 13, 17:25-18:00

Minisymposium talks

Minisymposium 3 (Computer Vision with Applications) Talks are arranged at Juxing Room, Lakeview Xuanwu Hotel.

Tuesday, December 11

<u>Chair: Ke Chen</u> Tuesday, December 11, 14:00-15:45

Image Illumination editing and processing Chun-Xia Xiao, *Wuhan University* Tuesday, December 11, 14:00-14:35

Feature preserving hexahedral meshing Na Lei, *Dalian University of Technology* Tuesday, December 11, 14:35-15:10

Automatic unpaired shape deformation transfer

Lin Gao, Institute of Computing Technology, Chinese Academy of Sciences Tuesday, December 11, 15:10-15:45

<u>Chair: Na Lei</u> Tuesday, December 11, 16:15-18:00

Learning on hypergraph: method and applications Yue Gao, *Tsinghua University*

Tuesday, December 11, 16:15-16:50

On some more robust image selective segmentation models

Ke Chen, University of Liverpool, United Kingdom Tuesday, December 11, 16:50-17:25

Signal recovery through noise/loss modeling

Deyu Meng, *Xi'an Jiaotong University* Tuesday, December 11, 17:25-18:00 Minisymposium 3 (Computer Vision with Applications)

Talks are arranged at Juxing Room, Lakeview Xuanwu Hotel.

Wednesday, December 12

Chair: Yue Gao Wednesday, December 12, 14:00-15:45

Intelligent processing and display of future 3D video Shaoping Lu, *Nankai University* Wednesday, December 12, 14:00-14:35

Fast construction of discrete geodesic graph

Ying He, *Nanyang Technological University* Wednesday, December 12, 14:35-15:10

Estimating geometry and illumination from multi-view images

Jianmin Zheng, *Nanyang Technological University* Wednesday, December 12, 15:10-15:45

Chair: Ming Yan

Wednesday, December 12, 16:15-18:00

TBA

Laurent Younes, *The Johns Hopkins University* Wednesday, December 12, 16:15-16:50

TBA

Giuseppe Patane, *The Johns Hopkins University* Wednesday, December 12, 16:50-17:25

Signal and image recovery from saturated measurements

Ming Yan, *Michigan State University* Wednesday, December 12, 17:25-18:00 Minisymposium 3 (Computer Vision with Applications)

Talks are arranged at Juxing Room, Lakeview Xuanwu Hotel.

Thursday, December 13

Chair: Hang Si Thursday, December 13, 14:00-15:45

Data-driven sketch interpretation Hongbo Fu, *City University of Hong Kong* Thursday, December 13, 14:00-14:35

Reconstruction of 3D human body pose

Shihong Xia, Institute of Computing Technology, Chinese Academy of Sciences Thursday, December 13, 14:35-15:10

Geodesic voronoi diagrams and intrinsic delaunay triangulation Yong-Jin Liu, *Tsinghua University* Thursday, December 13, 15:10-15:45

<u>Chair: Shihong Xia</u> Thursday, December 13, 16:15-18:00

Data-driven indoor scene 3D modeling and simulation

Yanwen Guo, *Nanjing University* Thursday, December 13, 16:15-16:50

Advances in unstructured mesh generation and adaptation

Hang Si, *Weierstrass Institute for Applied Analysis and Stochastics* Thursday, December 13, 16:50-17:25

Atomic scale crystal analysis: methodology and discovery

Haizhao Yang, *National University of Singapore* Thursday, December 13, 17:25-18:00

3 Abstract of talks

Plenary talks

Tuesday, December 11

Computational quasi-conformal geometry with applications		
SPEAKER:	Shing-Tung Yau, Harvard University	
SCHEDULED:	Tuesday, December 11, 10:00-10:50	
DETAILS:	Plenary talk	
ABSTRACT:		

Robust tensor completion and its applications

SPEAKER:	Michael Kwok-Po Ng, The Hong Kong Baptist University
SCHEDULED:	Tuesday, December 11, 11:00-11:50
DETAILS:	Plenary talk
ABSTRACT:	In this talk, we report the results of robust tensor completion using tubal
	singular value decomposition, and its applications. Several applications and
	theoretical results are discussed. Numerical examples are also presented for
	demonstration.

Quantitative estimate for the solutions of Helmholtz equations on the analytic surface

SPEAKER:	Jin Cheng, Fudan University
SCHEDULED:	Wednesday, December 12, 09:00-09:50
DETAILS:	Plenary talk
ABSTRACT:	Unique continuation means that the solution of the partial differential equations
	on the small domain can determine the solution on the large connected domain.
	It is one of the fundamental properties in the theory of partial differential
	equations. In study of the inverse problems for partial differential equations,
	unique continuation plays a key role. In this talk, we will present our recent
	results on the quality estimation for the solution of Helmholtz equation on the
	analytic surface. The conditional stability estimates are proved based on the
	analyticity of the Green functions. These kind conditional stability estimates
	indicate the convergence rate of the regularized solutions in the numerical
	algorithms. This is the joint work with Yu CHEN(Fudan), Faouzi
	Triki(Grenoble, Frnace)

SPEAKER:	Wenping Wang, Hong Kong University
SCHEDULED:	Wednesday, December 12, 10:00-10:50
DETAILS:	Plenary talk
ABSTRACT:	With the elevated awareness of dental health and improved standard of living,
	there is an increasing need for orthodontic treatment. Indeed, misaligned teeth
	(e.g. overjet and crowding) are a prevalent health issue, since they compromise
	masticatory function (i.e. chewing) and cause aesthetic concerns.
	However, traditional orthodontic treatment is costly, inefficient and of varied
	quality because the treatment process entails tedious manual operation and the
	treatment outcome heavily depends on the skills of individual orthodontists.
	All this calls for advances in digital orthodontics to make orthodontic treatment
	more efficient, more affordable and more accessible. Several imaging and
	computational technologies are already applied in digital orthodontics, ranging
	from image acquisition, tooth segmentation, visualization, CAD/CAM and 3D
	fabrication of customized appliances. In this talk I will focus on how AI can be
	applied to facilitate various tasks in orthodontics. Specifically, several novel
	machine learning methods will be presented for solving the following key
	problems: (1) detection of cephalometric landmark for diagnosis; (2)
	segmentation of teeth in 2D intra-oral scans and 3D cone-beam CT images; 3)
	determination of the optimal tooth setup to define the treatment goal for a
	patient; and (4) generation of tooth motion from the initial pre-treatment
	arrangement to the target setup for treatment simulation.

AI-enabled digital orthodontics

Wednesday, December 12

Computing and	a regularizing meulai axes in 5D
SPEAKER:	Tao Ju, Washington Univ. St. Louis
SCHEDULED:	Wednesday, December 12, 11:10-12:00
DETAILS:	Plenary talk
ABSTRACT:	Medial axis is a classical concept in computational geometry and has been the
	basis of most of today's skeletal shape descriptors. In this talk, I will present our
	recent work in tackling two roadblocks in using medial axes for 3D shape
	analysis: the difficulty in approximating the medial axes of general 3D shapes,
	and the sensitivity of the medial axes to noise. First, I will describe a novel
	sampling-based approximation algorithm for 3D medial axes that is
	theoretically sound, numerically robust, and simple to implement. Second, I
	will present a novel significance measure over the 3D medial axes that can
	effectively highlight parts of the medial axis that lie in prominent plate-like and
	tube-like shape parts. This measure is then used to guide the production of a
	family of skeletons that are descriptive and robust to noise. Finally, I will
	briefly discuss some applications of skeletons in biomedicine.

Computing and regularizing medial axes in 3D

Thursday, December 13

Fast Hermitian	reigenvalue decompositions and applications
SPEAKER:	Jianlin Xia, Purdue University
SCHEDULED:	Thursday, December 13, 09:00-09:50
DETAILS:	Plenary talk
ABSTRACT:	We show how to quickly and accurately compute the eigenvalue
	decompositions for a class of Hermitian matrices which include banded
	matrices, Toeplitz matrices, discretized matrices, many sparse matrices, etc.
	The eigendecomposition is computed in a divide-and-conquer procedure
	accelerated by a sequence of fast structured algorithms. The intermediate
	computations are assembled into dense structured matrix-vector multiplications
	that can be performed quickly. For some cases, it only takes nearly
	\$O(n)\$ complexity to compute all the eigenvalues and all the eigenvectors,
	where \$n\$ is the matrix size. We prove the existence of eigenvector matrices
	that have various types of structures. We also show how to control the accuracy.
	The fast eigenvalue decomposition method can be used to accelerate many
	other important computations, especially the solution of some challenging
	PDEs. This is joint work with James Vogel.

Fast Hermitian eigenvalue decompositions and applications

Nonl	inear	eigenva	lue pr	oblems:	recent	advances	and	challenges	

SPEAKER:	Zhaojun Bai, University of California, Davis
SCHEDULED:	Thursday, December 13, 10:00-10:50
DETAILS:	Plenary talk
ABSTRACT:	Nonlinear eigenvalue problems (NEPs) arise in electronic structure calculations
	and robust data clustering among many others. The NEPs pose intriguing
	challenges in analysis and computation and are a much less explored topic
	compared to linear eigenvalue problems. From a linear algebra point of view, I
	will start this talk with some recent advances in analysis and computation of
	NEPs and applications. Then I will discuss a number of challenges and open
	problems.

Friday, December 14

Noniocal moue	is and then applications
SPEAKER:	Qiang Du, Columbia University
SCHEDULED:	Friday, December 14, 09:00-09:50
DETAILS:	Plenary talk
ABSTRACT:	As the world gets increasingly connected, nonlocal interactions and nonlocal
	modeling start to receive more attention. This lecture presents first an overview
	of nonlocal models, their mathematics, computation, and application. We
	sample our recent attempts in the development of a systematic mathematical
	framework for nonlocal models. Various applications are considered including
	mechanics, diffusion and deep learning. We also draw connections with
	traditional local continuum models, discrete and fractional models and other
	relevant mathematical subjects.

Nonlocal models and their applications

Front tracking method at its best--applications in fluid structure interactions

SPEAKER:	Xiaolin Li, Stony Brook University
SCHEDULED:	Friday, December 14, 10:00-10:50
DETAILS:	Plenary talk
ABSTRACT:	Front tracking is a Lagrangian interface tracking method, it is more challenging
	than the Eulerian level set method. But there are problems that this method is
	uniquely superior to the Eulerian method. In this talk, we will introduce a
	mesoscale dual-stress spring-mass model based on the Rayleigh-Ritz analysis to
	mimic the fabric surface as an elastic membrane in numerical computation. This
	model is coupled with the incompressible or compressible fluid solver through
	the impulse method. We will discuss how to build such system on the front
	tracking computational platform using its data structure and functionalities, and
	apply this platform to the simulations of parachute deceleration devices and the
	airbag system. In addition, we discuss the renovation of the front tracking
	method to enhance its robustness, conservativeness, and the order of accuracy
	in computing geometric variables and handling of topological bifurcations. We
	will discuss these new algorithms in other applications including fluid interface
	instabilities and phase transition problems.

Minisymposium talks

Minisymposium 1 (Medium Imaging and Image Processing)

Talks are arranged at Jinxiu Room, Lakeview Xuanwu Hotel.

Tuesday, December 11

Tensor based hyperspectral image fusion and compressed sensing	
SPEAKER:	Zhihui Wei, Nanjing University of Science and Technology
SCHEDULED:	Tuesday, December 11, 14:00-14:35
DETAILS:	Minisymposium talk 1
ABSTRACT:	

Using generalized cross validation to select regularization parameter for total variation regularization problems

SPEAKER:	Youwei Wen, Hunan Normal University
SCHEDULED:	Tuesday, December 11, 14:35-15:10
DETAILS:	Minisymposium talk 1
ABSTRACT:	The regularization approach is used widely in image restoration problems. The
	visual quality of the restored image depends highly on the regularization
	parameter. In this paper, we develop an automatic way to choose a good
	regularization parameter for total variation (TV) image restoration problems. It
	is based on the generalized cross validation (GCV) approach and hence no
	knowledge of noise variance is required. Due to the lack of the closed-form
	solution of the TV regularization problem, difficulty arises in finding the
	minimizer of the GCV function directly. We reformulate the TV regularization
	problem as a minimax problem and then apply a first-order primal-dual method
	to solve it. The primal subproblem is rearranged so that it becomes a special
	Tikhonov regularization problem for which the minimizer of the GCV function
	is readily computable. Hence we can determine the best regularization
	parameter in each iteration of the primal-dual method. The regularization
	parameter for the original TV regularization problem is then obtained by an
	averaging scheme. In essence, our method needs only to solve the TV
	regulation problem twice: {one to determine the regularization parameter and
	one to restore the image with that parameter.} Numerical results show that our
	method gives near optimal parameter, and excellent performance when
	compared with other state-of-the-art adaptive image restoration algorithms.

myerse proble	ins for some stochastic i DEs
SPEAKER:	Ganghua Yuan, Northeast Normal University
SCHEDULED:	Tuesday, December 11, 15:10-15:45
DETAILS:	Minisymposium talk 1
ABSTRACT:	In this talk, I would like to present some results on uniqueness and stability for
	inverse problems for some stochastic or random partial differential equations
	such as parabolic equations, Euler-Bernoulli equations and wave equations.

Inverse problems for some stochastic PDEs

|--|

SPEAKER:	Zhiyuan Li, Shandong University of Technology
SCHEDULED	Tuesday, December 11, 16:15-16:50
DETAILS:	Minisymposium talk 1
ABSTRACT:	In this talk, we investigate the following initial boundary value problem
	$\left(-\frac{u}{2} \right)$

$$\begin{array}{ll} \mathsf{D}_t^{(\mu)} u - \Delta u = f & \text{ in } \Omega \times (0,T) \\ u = u_0 & \text{ in } \Omega \times \{0\} \\ u = g & \text{ on } \partial \Omega \times (0,T) \end{array}$$

where Ω is an open bounded domain in \mathbb{R}^d with a smooth boundary $\partial \Omega$, and $\mathsf{D}_t^{(\mu)}$

denotes a distributed order fractional derivative defined by

$$D_t^{(\mu)}\varphi(t) = \int_0^1 \partial_t^\alpha \varphi(t)\mu(\alpha)d\alpha,$$

where the weight function μ is non-negative and continuous, and $\partial \alpha$ is the Caputo derivative. Compared with the classical diffusion model, the Caputo derivative is inherently nonlocal in time with a history dependence, which makes the fractional diffusion equation as an efficient model for describing the non-Markovian diffusion processes in various fields, such as porous media, polymer materials, laser cooling, and environmental engineering. However, when considering fractional diffusion equation as model equation in a range of problems in analyzing anomalous diffusion in complex systems, some important para.

SPEAKER:	Haixia Liu, Huazhong University of Science and Technology
SCHEDULED:	Tuesday, December 11, 16:50-17:25
DETAILS:	Minisymposium talk 1
ABSTRACT:	Art authentication is an important problem both in art history and art collection.
	Recently, the scattering transform was proposed as a signal-processing tool
	aimed at providing a theoretical understanding of deep neural networks and
	state-of-the-art performance in image classification. In this talk, we use a
	cascade of wavelet filters and nonlinear (modulus) operations to build
	translation-invariant and deformation-stable representations. Here we explore
	the performance of this tool for art authentication purposes. We analyze two
	databases of art > objects (postimpressionist paintings and Renaissance
	drawings) with the goal of determining which of them where created by van
	Gogh and Raphael, respectively. Our results show that these tools provide
	excellent performance, superior to state-of-the-art results. Further, we suggest
	the benefits of using sparse classifiers in combination with deep networks.

Scattering transform and sparse Linear classifiers for art authentication

D! . 1	4 1		
Biomminescence	comogranny	: models and	reconstruction
Diolammescence	comogi apir , a		i compti action

SPEAKER:	Rongfang Gong, Nanjing University of Aeronautics and Astronautics
SCHEDULED:	Tuesday, December 11, 17:25-18:00
DETAILS:	Minisymposium talk 1
ABSTRACT:	In this talk, we consider inverse source problems arising in bioluminescence
	tomography (BLT). A brief introduction of the background of the BLT is given.
	Then some mathematical models and the related reconstruction frameworks are
	addressed. A new time-dependent model is proposed motivated by the solution
	uniqueness, based on which some regularization frameworks are given.

Minisymposium 1 (Medium Imaging and Image Processing)

Talks are arranged at Jinxiu Room, Lakeview Xuanwu Hotel.

Wednesday, December 12

Truncated fractional-order total variation model for image restoration	
SPEAKER:	Haixia Liang, Xian Jiaotung Liverpool University
SCHEDULED:	Wednesday, December 12, 14:00-14:35
DETAILS:	Minisymposium talk 1
ABSTRACT:	In this talk, I will report the works that we have done on the truncated
	fractional-order variation models for image restoration.

Generalized polarization tensors for inhomogeneous medium and cloaking

SPEAKER:	Youjun Deng, Central South University
SCHEDULED:	Wednesday, December 12, 14:35-15:10
DETAILS:	Minisymposium talk 1
ABSTRACT:	In this talk, we shall introduce the notion of Generalized Polarization
	Tensors(GPTs) for inhomogeneous medium, which was previously defined for
	homogeneous medium. We shall also present some properties of the GPTs and
	then show its applications in super resolution imaging and cloaking.

multipliers	
SPEAKER:	Min Tao, Nanjing University
SCHEDULED:	Wednesday, December 12, 15:10-15:45
DETAILS:	Minisymposium talk 1
ABSTRACT:	The alternating direction method of multipliers was proposed by Glowinski and
	Marrocco in 1974; and it has been widely used in a broad spectrum of areas,
	especially in some sparsity-driven application domains. In 1982, Fortin and
	Glowinski suggested to enlarge the range of the dual step size for updating the
	multiplier from 1 to the open interval of zero to the golden ratio; and this
	strategy immediately accelerates the convergence of alternating direction
	method of multipliers for most of its applications. Meanwhile, Glowinski raised
	the question of whether or not the range can be further enlarged to the open
	interval of zero to 2; this question remains open with nearly no progress in the
	past decades. In this paper, we answer this question affirmatively for the case
	where both the functions in the objective function are quadratic. Thus,
	Glowinski's open question is partially answered. We further establish the global
	linear convergence of the alternating direction method of multipliers with this
	enlarged step size range for the quadratic programming under a tight condition.

On Glowinski's open question on the alternating direction method of multipliers

Region inhomogeneity active contours

SPEAKER:	Xiaoping Yang, Nanjing University
SCHEDULED:	Wednesday, December 12, 16:15-16:50
DETAILS:	Minisymposium talk 1
ABSTRACT:	In In this talk, unlike some of the existing algorithms that use local region
	descriptors to reduce or correct the intensity inhomogeneity, we present a
	framework which can make use of it to help to accomplish segmentation tasks.
	Our main argument is to quantify intensity inhomogeneity and convert it to be a
	useful feature to improve the segmentation results. We formulate a level set
	segmentation framework based on the quantification of intensity
	inhomogeneity.

mage recovery. from classical approach to deep learning		
SPEAKER:	Tieyong Zeng, Chinese University of Hong Kong	
SCHEDULED:	Wednesday, December 12, 16:50-17:25	
DETAILS:	Minisymposium talk 1	
ABSTRACT:	We will present some recent progress on image recovery including the classical	
	approach and deep learning method.	
	approach and deep learning method.	

Image recovery: from classical approach to deep learning

On nonconvex regularized models for image restoration problems

SPEAKER:	Chunlin Wu, Nankai University	
SCHEDULED:	Wednesday, December 12, 17:25-18:00	
DETAILS:	Minisymposium talk 1	
ABSTRACT:	Variational methods with regularization techniques have become an important	
	kind of methods image restoration. The convex total variation (TV)	
	regularization, although achieved great successes, suffers from a contrast	
	reduction effect. Recently nonconvex regularization techniques become	
	popular. In this talk, I will mainly present two parts. The first one is a	
	motivation of using nonconvex regularizations and a general truncated	
regularization framework. The second is a lower bound theory for nonco		
	regularized models, which shows the good edge recovery property.	

Minisymposium 1 (Medium Imaging and Image Processing)

Talks are arranged at Jinxiu Room, Lakeview Xuanwu Hotel.

Thursday, December 13

Increasing stability in the inverse source problem with attenuation and many frequencies

v 1		
SPEAKER:	Shuai Lu, Fudan University	
SCHEDULED:	Thursday, December 13, 14:00-14:35	
DETAILS:	Minisymposium talk 1	
ABSTRACT:	We study the interior inverse source problem for the Helmholtz equation from	
	boundary Cauchy data of multiple wave numbers. The main goal of this paper	
	is to understand the dependence of increasing stability on the attenuation, both	
	analytically and numerically. To implement it we use the Fourier transform	
	with respect to the wave numbers, explicit bounds for analytic continuation, and	
	observability bounds for the wave equation. In particular, by using Carleman	
	estimates for the wave equation we trace the dependence of exact observability	
	bounds on the constant damping. Numerical examples in 3 spatial dimension	
	support the theoretical results. It is a joint work with Prof. Victor Isakov	
	(Wichita State University).	

Proximal gradient method for manifold optimization

SPEAKER:	Shixiang Chen, The Chinese University of Hong Kong	
SCHEDULED:	Thursday, December 13, 14:35-15:10	
DETAILS:	Minisymposium talk 1	
ABSTRACT:	This paper considers manifold optimization problems with nonsmooth and	
	nonconvex objective function. Existing methods for solving this kind of	
	problems can be classified into two classes. Algorithms in the first class rely on	
	information of the subgradients of the objective function, which leads to slow	
	convergence rate. Algorithms in the second class are based on operator-splitting	
	techniques, but they usually lack rigorous convergence guarantees. In this	
	paper, we propose a retraction-based proximal gradient method for solving this	
	class of problems. We prove that the proposed method globally converges to a	
	stationary point. Iteration complexity for obtaining an \$\epsilon\$-stationary	
	solution is also analyzed. Numerical results on solving sparse PCA and	
	compressed modes problems are reported to demonstrate the advantages of the	
	proposed method.	

problem		
SPEAKER:	Daijun Jiang, Central China Normal University	
SCHEDULED:	Thursday, December 13, 15:10-15:45	
DETAILS:	Minisymposium talk 1	
ABSTRACT:	We study the Levenberg-Marquardt method (LMM) and domain decomposition	
	methods (DDMs) for solving the highly nonlinear and ill-posed inverse problem	
	of identifying the Robin coefficients in a parabolic system. The LMM	
	transforms the Tikhonov regularized nonlinear non-convex minimizations into	
	convex minimizations. And the quadratic convergence of the L-M method is	
	rigorously established for the nonlinear parabolic inverse problems for the first	
	time, under a simple novel adaptive strategy for selecting regularization	
	parameters during the L-M iteration. Then the DDMs are used to solve the	
	convex minimizations. The methods are completely local and the local	
	minimizers have explicit expressions within the subdomains. Numerical	
	experiments are presented to show the accuracy and efficiency of the methods,	
	in particular, the convergence seems nearly optimal in the sense that the	
	iteration number of the methods is independent on the mesh size. (This is a joint	
	work with Profs. Jun Zou and Hui Feng.)	

Convergence analysis of LMM and DDMs for a parabolic inverse Robin problem

Shape derivatives -new perspective and applications to scattering

SPEAKER:	Jingzhi Li, Southern University of Science and Technology	
SCHEDULED:	Thursday, December 13, 16:15-16:50	
DETAILS:	Minisymposium talk 1	
ABSTRACT:	This talk studies the "derivative" of solutions of second-order boundary value	
	problems and of output functionals based on them with respect to the shape of	
	the domain. A rigorous approach relies on encoding shape variation by means	
	of deformation vector fields, which will supply the directions for taking shape	
	derivatives. These derivatives and methods to compute them numerically are	
	key tools for studying shape sensitivity, performing gradient based shape	
	optimization, and small-variation shape uncertainty quantification. A unifying	
	view of second-order elliptic boundary value problems recasts them in the	
	language of differential forms (exterior calculus). Fittingly, the shape	
	deformation through vector fields matches the concept of Lie derivative in	
	exterior calculus. This paves the way for a unified treatment of shape	
	differentiation in the framework of exterior calculus. Applications in scattering	
	problems reveals the extraordinary power of the machinery.	

Di mouanty jo		
SPEAKER:	Xiaoqun Zhang, Shanghai Jiao Tong University	
SCHEDULED:	Thursday, December 13, 16:50-17:25	
DETAILS:	Minisymposium talk 1	
ABSTRACT:	Recent technical advances lead to the coupling of multi-modality for joint	
	image reconstruction, information fusion and analysis. For instance, PET-MRI	
	scanners enable to acquire functional and anatomical data simultaneously. For	
	the joint reconstruction problem, the goal is to improve the reconstruction	
	quality of one modality by utilizing complementary information from the other	
	modality. We considered two variational approaches for PET-MRI joint	
	reconstruction. The first model relies on a joint regularization term based on an	
	adaptively estimated common edge and weighted total variation. The common	
	edge is designed to be flexible for taking into account of small misalignment of	
	edge sets of two modal image. The second model is based on the joint sparsity	
	of tight frame coefficients.	
	A non-convex balanced approach is adopted to take the different sparsity	
	patterns of PET-MRI images into account. A proximal alternating minimization	
	algorithm is applied to solve both nonconvex and nonsmooth model and the	
	global convergence can be stablished. The numerical experiments show that the	
	our proposed models achieve better performance over the existing PET-MRI	
	joint reconstruction models.	

Bi-modality joint reconstruction via variational models

The Inverse problem approach for X-ray radiograph tomography

SPEAKER:	Suhua Wei, Institute of Applied Physics and Computational Mathematics, CAS	
SCHEDULED:	Thursday, December 13, 17:25-18:00	
DETAILS:	Minisymposium talk 1	
ABSTRACT:	X-ray is an excellent tool to pear into the interior of an object. Image	
	reconstruction means to inverse the object physical parameters from x-ray	
	radiographs. This is an inverse problem. In this talk, the illposedness of the	
	inverse problem will be analyzed and the mathematical model will be given	
	based on variational method. The mathematical model deals with Abel	
	transform inversion and the determination of the indirectly measuring data.	
	Two terms of regularizers are introduced in our model. Numerical tests show	
	the efficiency of the proposed model.	

Minisymposium talks

Minisymposium 2 (Matrix Computations and Optimization)

Talks are arranged at Jinjiang Room, Lakeview Xuanwu Hotel.

Tuesday, December 11

of relative pert	urbation theory
SPEAKER:	Ninoslav Truhar, University of Osijek
SCHEDULED:	Tuesday, December 11, 14:00-14:35
DETAILS:	Minisymposium talk 2
ABSTRACT:	We consider the eigenvector-dependent nonlinear eigenvalue problem (NEPv)
	$H(V)V = V \Lambda$, where $H(V) \in Cn \times n$ is an Hermitian matrix-valued function
	of V \in Cn×k with or- thonormal columns, i.e., V HV = Ik , k ≤ n (usually
	k< <n). and="" conditions="" existence="" for="" on="" present="" th="" the="" the<="" uniqueness="" we=""></n).>
	solvability of NEPv using the well-known results of the relative perturbation
	theory. Our results are motiveted by the results on NEPv presented in Y.
	Cai, LH. Zhang, Z. Bai, and RC. Li, on an eigenvector-dependent nonlinear
	eigenval- ue problem, accepted for publication in SIAM Journal on Matrix
	Analysis and Applications (SIMAX) (2018), where among the other results one
	can find conditions for existence and uniqueness for the solvability of an NEPv.
	These results are based on well-known standard perturbation theory for
	Hermitian matrices. The differences between so called standard perturbation
	theory approach, and our new (relative perturbation theory) approach have been
	illustrated in several numerical examples.

Qn eigenvector-dependent nonlinear eigenvalue problem from perspective of relative perturbation theory

Quater mon m		
SPEAKER:	Musheng Wei, Shanghai Normal University	
SCHEDULED:	Tuesday, December 11, 14:35-15:10	
DETAILS:	Minisymposium talk 2	
ABSTRACT:	In this talk we describe state-of-the-art real structure-preserving	
	algorithms for quaternion matrix computations, especially the LU, the	
	Cholesky, the QR and the singular value decomposition of quaternion	
	matrices, direct and iterative methods for solving quaternion linear system,	
	generalized least squares problems, and quaternion right eigenvalue	
	problems. Formulas of the methods are derived, and numerical codes are	
	provided which utilize advantages of real structure-preserving of quaternion	
	matrices and high-level performance of vector pipelining arithmetic operations,	
	using Matlab software. These algorithms are very efficient and stable.	

Quaternion matrix computations

Number of 2D eigenvalues

SPEAKER:	Yangfeng Su, Fudan University	
SCHEDULED:	Tuesday, December 11, 15:10-15:45	
DETAILS:	Minisymposium talk 2	
ABSTRACT:	In this talk, we talk about how many 2D eigenvalues a 2D EVP has. We will	
	first prove the existance of 2D eigenvalues. Generally there exist complex 2D	
	eigenvalues which are not interested. Then we will prove that there are only	
	finite number of non-trivial 2D eigenvalues. In this sense, 2D eigenvalue	
	problems are well defined.	

	Jacobi-like algorithm	for Bethe-Salpeter	eigenvalue problem
--	-----------------------	--------------------	--------------------

SPEAKER:	Weiguo Gao, Fudan University
SCHEDULED:	Tuesday, December 11, 16:15-16:50
DETAILS:	Minisymposium talk 2
ABSTRACT:	In this talk, we investigate the Bethe-Salpeter eigenvalue problems and propose
	a Jacobi-like algorithm. The eigen-structure is preserved during the iterations.
	Global convergence of the new algorithm is given and numerical examples
	demonstrate the fast convergence. This is a joint-work with Meiyue Shao and
	Chenming Yang.

comprementarity providen	
SPEAKER:	Yuan Lei, Hunan University
SCHEDULED:	Tuesday, December 11, 16:50-17:25
DETAILS:	Minisymposium talk 2
ABSTRACT:	The Generalized Eigenvalue Complementarity Problem (GEiCP) appears in the
	study of static equilibrium states of finite dimensional mechanical systems with
	unilateral frictional contact. The GEiCP with real symmetric matrices is
	equivalent to finding an equilibrium solution of a differentiable optimization
	problem in a compact set, and an ascend algorithm for finding the equilibrium
	solution is presented in this talk. In this algorithm, the optimal step size can be
	determined in each step by choosing suitable ascend direction, and some
	numerical examples show the effectiveness of this algorithm.

The ascend algorithm for solving generalized symmetric eigenvalue complementarity problem

Nonlinear eigenvalue problem in domain adaptation

SPEAKER:	Limin Li, Xi'an Jiaotong University
SCHEDULED:	Tuesday, December 11, 17:25-18:00
DETAILS:	Minisymposium talk 2
ABSTRACT:	Transferring knowledge from a source domain to a target domain by domain
	adaptation has been an interesting and challenging problem in many machine
	learning applications. The key problem is how to match the data distributions of
	the two heterogeneous domains in a proper way such that they can be treated
	indifferently for learning. We propose a covariance matching approach
	DACoM for semi-supervised domain adaptation. The DACoM embeds the
	original samples into a common latent space linearly such that the covariance
	mismatch of the two mapped distributions is minimized. The KKT conditions
	of DACoM optimization model are given as a nonlinear eigenvalue equation.
	We show that the KKT conditions could at least ensure local optimality. An
	efficient eigen-updating algorithm is then given for solving the nonlinear
	eigenvalue problem, whose convergence is guaranteed conditionally. Numerical
	experiments on simulation datasets and real-world applications are given to
	comprehensively demonstrate the effectiveness and efficiency of the proposed
	approach. The experiments show that our method outperforms other existing
	methods for both homogeneous and heterogeneous domain adaptation.

Minisymposium 2 (Matrix computations and optimization)

Talks are arranged at Jinjiang Room, Lakeview Xuanwu Hotel.

Wednesday, December 12

Inheritance properties of Krylov subspace methods for algebraic Riccati equations

1	
SPEAKER:	Eric King-Wah Chu, Monash University
SCHEDULED:	Wednesday, December 12, 14:00-14:35
DETAILS:	Minisymposium talk 2
ABSTRACT:	We consider the numerical solution of large-scale algebraic Riccati equations
	by Krylov subspace methods. We show that the solvability of the projected
	algebraic Riccati equation need not be assumed but can be inherited. This study
	of inheritance properties is the first of its kind. We conduct our study via the
	stabilizability and detectability of the control system, the stability of the
	associated Hamiltonian matrix and perturbation in terms of residuals. Special
	attention is paid to the stabilizing and positive semi-definite properties of
	approximate solutions. Illustrative numerical examples are presented.

Nearly optimal stochastic approximation for online principal subspace estimation

SPEAKER:	Xin Liang, Tsinghua University
SCHEDULED:	Wednesday, December 12, 14:35-15:10
DETAILS:	Minisymposium talk 2
ABSTRACT:	Processing streaming data as they arrive is often necessary for high dimensional
	data analysis. In this talk, we analyze the convergence of a subspace online
	PCA iteration. Under the sub-Gaussian assumption, we obtain the finite-sample
	error bound that closely matches the minimax information lower bound by Vu
	and Lei [Ann. Statist. 41:6(2013), 2905-2947]. The case for the most significant
	principal component only, was solved by Li, Wang, Liu, and Zhang [Math.
	Program., Ser. B, DOI 10.1007/s10107-017-1182-z], but a straightforward
	extension of their proofs, however, does not seem to work for the subspace
	case. People may see matrix analysis plays an important role in generalizing
	results for one-dimensional case to those for multi-dimensional case.

Joienis
Yuji Nakatsukasa, University of Oxford
Wednesday, December 12, 15:10-15:45
Minisymposium talk 2
Sylvester's law of inertia states that the number of positive, negative and zero
eigenvalues of Hermitian matrices is preserved under congruence
transformations. The same is true of generalized Hermitian definite eigenvalue
problems, in which the two matrices are allowed to undergo different
congruence transformations, but not for the indefinite case. In this work we
investigate the possible change in inertia under congruence for generalized
Hermitian indefinite eigenproblems, and derive sharp bounds that show the
inertia of the two individual matrices often still provides useful information
about the eigenvalues of the pencil, especially when one of the matrices is
almost definite. A prominent application of the original Sylvester's law is in
finding the number of eigenvalues in an interval. Our results can be used for
estimating the number of real eigenvalues in an interval for generalized
indefinite and nonlinear eigenvalue problems.

Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems

I I ODUDINSHE U	mensionancy reduction via structure rearning
SPEAKER:	Li Wang, University of Texas at Arlington
SCHEDULED:	Wednesday, December 12, 16:15-16:50
DETAILS:	Minisymposium talk 2
ABSTRACT:	We propose an alternative probabilistic dimensionality reduction framework
	that can naturally integrate the generative model and the locality information of
	data. Based on this framework, we present a new model, which is able to learn a
	set of embedding points in a low- dimensional space by retaining the inherent
	structure from high-dimensional data. The objective function of this new model
	can be equivalently interpreted as two coupled learning problems, i.e., structure
	learning and the learning of projection matrix. Inspired by this interesting
	interpretation, we propose another model, which finds a set of embedding
	points that can directly form an explicit graph structure. We proved that the
	model by learning explicit graphs generalizes the reversed graph embedding
	method, but leads to a natural interpretation from Bayesian perspective. This
	can greatly facilitate data visualization and scientific discovery in downstream
	analysis.

Probabilistic dimensionality reduction via structure learning

The generalized Lanezos trast region method	
SPEAKER:	Leihong Zhang, Shanghai University of Finance and Economics
SCHEDULED:	Wednesday, December 12, 16:50-17:25
DETAILS:	Minisymposium talk 2
ABSTRACT:	The so-called Trust-Region Subproblem gets its name in the trust-region
	method in optimization and also plays a vital role in various other applications.
	In this talk, we will present the convergence of the Generalized Lanczos Trust-
	Region (GLTR) method proposed by [Gould, Lucidi, Roma and Toint, SIOPT,
	9:504-525 (1999)] to reveal its convergence behavior in theory, and then
	propose new stopping criteria that can be integrated into GLTR for better
	numerical performance of the trust-region solver TRU in the Fortran routine
	GLTR in the library GALAHAD.

The generalized Lanczos trust-region method

PSBCM-ALH algorithm for large-scale SVM

SPEAKER:	Bo Yu, Dalian University of Technology
SCHEDULED:	Wednesday, December 12, 17:25-18:00
DETAILS:	Minisymposium talk 2
ABSTRACT:	

Minisymposium 2 (Matrix Computations and Optimization)

Talks are arranged at Jinjiang Room, Lakeview Xuanwu Hotel.

Thursday, December 13

The uniqueness of multilinear PageRank vectors	
SPEAKER:	Wen Li, South China Normal University
SCHEDULED:	Thursday, December 13, 14:00-14:35
DETAILS:	Minisymposium talk 2
ABSTRACT:	The uniqueness of multilinear PageRank vectors is discussed, and the new
	uniqueness condition is given. The new results are better than the existing one.
	Numerical examples are given to demonstrate the new theoretical results.

Computing exponentials of essentially nonnegative matrices entrywise to high relative accuracy

SPEAKER:	Jungong Xue, Fudan University
SCHEDULED:	Thursday, December 13, 14:35-15:10
DETAILS:	Minisymposium talk 2
ABSTRACT:	A real square matrix is said to be essentially non-negative if all of its off-
	diagonal entries are non-negative. It has recently been shown that the
	exponential of an essentially non-negative matrix is determined entrywise to
	high relative accuracy by its entries up to a condition number intrinsic to the
	exponential function (Numer. Math. 110 (2008), 393-403). Thus the smaller
	entries of the exponential may be computed to the same relative accuracy as the
	bigger entries. This talk presents algorithms to compute exponentials of
	essentially non-negative matrices entrywise to high relative accuracy.

Tonconvex app	proaches in data science
SPEAKER:	Yifei Lou, University of Texas Dallas
SCHEDULED:	Thursday, December 13, 15:10-15:45
DETAILS:	Minisymposium talk 2
ABSTRACT:	Although "big data" is ubiquitous in data science, one often faces challenges of
	"small data", as the amount of data that can be taken or transmitted is limited
	by technical or economic constraints. To retrieve useful information from the
	insufficient amount of data, additional assumptions on the signal of interest are
	required, e.g. sparsity (having only a few non-zero elements). Conventional
	methods favor incoherent systems, in which any two measurements are as little
	correlated as possible. In reality, however, many problems are coherent. I will
	present a nonconvex approach that works particularly well in the coherent
	regime. I will also address computational aspects in the nonconvex
	optimization. Various numerical experiments have demonstrated advantages of
	the proposed method over the state-of-the-art. Applications, ranging from
	super-resolution to low-rank approximation, will be discussed.

Nonconvex approaches in data science

Randomized algorithms for large-scale total least squares problems

SPEAKER:	Yimin Wei, Fudan University
SCHEDULED:	Thursday, December 13, 16:15-16:50
DETAILS:	Minisymposium talk 2
ABSTRACT:	Motivated by the recently popular probabilistic methods for low-rank
	approximations and randomized algorithms for the least squares problems, we
	develop randomized algorithms for the total least squares problem with a single
	right-hand side. We present the Nyström method for the medium-sized
	problems. For the large-scale and ill-conditioned cases, we introduce the
	randomized truncated total least squares with the known or estimated rank as
	the regularization parameter. We analyze the accuracy of the algorithm
	randomized truncated total least squares and perform numerical experiments to
	demonstrate the efficiency of our randomized algorithms. The randomized
	algorithms can greatly reduce the computational time and still maintain good
	accuracy with very high probability.

r • • • r • • • •	
SPEAKER:	Bing Zheng, Lanzhou University
SCHEDULED:	Thursday, December 13, 16:50-17:25
DETAILS:	Minisymposium talk 2
ABSTRACT:	In this talk, we first recall the accurate solution of the structured consistent and
	inconsistent linear system and then describe a method for the acurrate solution
	to the structured total least squares problem.

Structured condition numbers for the Tikhonov regularization of discrete ill-posed problems

Doubling algorithm for the discretized Bethe-Salpeter eigenvalue problem

SPEAKER:	Zhenchen Guo, Nanjing University
SCHEDULED:	Thursday, December 13, 17:25-18:00
DETAILS:	Minisymposium talk 2
ABSTRACT:	The discretized Bethe-Salpeter eigenvalue problem arises in the Green's
	function evaluation in many body physics and quantum chemistry.
	Discretization leads to a matrix eigenvalue problem for $H \in C^{^{1}} $
	\times 2n}\$ with a Hamiltonian-like structure. After an appropriate
	transformation of \$H\$ to a standard symplectic form, the structure-preserving
	doubling algorithm, originally for algebraic Riccati equations, is extended for
	the discretized Bethe-Salpeter eigenvalue problem. Potential breakdowns of the
	algorithm, due to the ill condition or singularity of certain matrices, can be
	avoided with a double-Cayley transform or a three-recursion remedy. A
	detailed convergence analysis is conducted for the proposed algorithm,
	especially on the benign effects of the double-Cayley transform. Numerical
	results are presented to demonstrate the efficiency and the structure-preserving
	nature of the algorithm.

Minisymposium talks

Minisymposium 3 (Computer Vision with Applications)

Talks are arranged at Juxing Room, Lakeview Xuanwu Hotel.

Tuesday, December 11

mage mannie	the cutting and processing
SPEAKER:	Chun-Xia Xiao, Wuhan University
SCHEDULED:	Tuesday, December 11, 14:00-14:35
DETAILS:	Minisymposium talk 3
ABSTRACT:	Image is generated by the interaction between the object materials and
	illumination, illumination understanding and editing is the fundamental of
	image editing and processing, and is also a popular research areas in computer
	vision, computer graphics, and image processing. This talk first presents the
	theory, methodology, key techniques, and application areas of illumination
	editing and processing, then will give four works, including underexposed
	video enhancement, illumination decomposition, shadow removal and editing,
	and image relighting. Finally, this talk will discuss the potential research
	problems in this field.
Feature preser	ving hexahedral meshing
SPEAKER:	Na Lei, Dalian University of Technology
SCHEDULED:	Tuesday, December 11, 14:35-15:10
DETAILS:	Minisymposium talk 3
ABSTRACT:	Regular hexahedral meshing is crucial for high performance computation
	purposes. This work introduces a novel method for global regular hexahedral
	meshing, which preserves major sharp feature curves. The method is based on
	surface and volume foliations, which can be obtained by the metric graph
	valued harmonic maps. The feature curve preservation can be achieved by
	adding various types of constraints for the harmonic maps. The experimental
	results show the efficiency and efficacy of the proposed method.

Image Illumination editing and processing

SPEAKER:	Lin Gao, Institute of Computing Technology, Chinese Academy of Sciences
SCHEDULED:	Tuesday, December 11, 15:10-15:45
DETAILS:	Minisymposium talk 3
ABSTRACT:	Transferring deformation from a source shape to a target shape is a very useful
	technique in computer graphics. State-of-the-art deformation transfer methods
	require either point-wise correspondences between source and target shapes, or
	pairs of deformed source and target shapes with corresponding deformations.
	However, in most cases, such correspondences are not available and cannot be
	reliably established using an automatic algorithm. Therefore, substantial user
	effort is needed to label the correspondences or to obtain and specify such
	shape sets. In this work, we propose a novel approach to automatic deformation
	transfer between two unpaired shape sets without correspondences. 3D
	deformation is represented in a high dimensional space. To obtain a more
	compact and effective representation, two convolutional variational
	autoencoders are learned to encode source and target shapes to their latent
	spaces. We exploit a Generative Adversarial Network (GAN) to map deformed
	source shapes to deformed target shapes, both in the latent spaces, which
	ensures the obtained shapes from the mapping are indistinguishable from the
	target shapes. This is still an under-constrained problem, so we further utilize a
	reverse mapping from target shapes to source shapes and incorporate cycle
	consistency loss, i.e. applying both mappings should reverse to the input shape.
	This VAE-Cycle GAN (VC-GAN) architecture is used to build a reliable
	mapping between shape spaces. Finally, a similarity constraint is employed to
	ensure the mapping is consistent with visual similarity, achieved by learning a
	similarity neural network that takes the embedding vectors from the source and
	target latent spaces and predicts the lightfield distance between the
	corresponding shapes. Experimental results show that our fully automatic
	method is able to obtain high-quality deformation transfer results with unpaired
	data sets, comparable or better than existing methods where strict
	correspondences are required.

Automatic unpaired shape deformation transfer

 •	P8up
SPEAKER:	Yue Gao, Tsinghua University
SCHEDULED:	Tuesday, December 11, 16:15-16:50
DETAILS:	Minisymposium talk 3
ABSTRACT:	Hypergraph is a general graph structure and has been widely applied in data
	classification, image segmentation and retrieval due to its superior performance
	on high-order correlation modelling. In recent years, extensive research efforts
	have been dedicated to hypergraph based learning methods. In this presentation,
	we will first introduce the hypergraph construction methods, considering both
	single modality and multi-modality scenarios. After that, we will present the
	learning methods on hypergraph structure, from traditional transductive
	learning to hypergraph structure learning, including the information about
	vertex, hyperedge and multi-hypergraphs. We then introduce the hypergraph
	neural network framework for data representation learning, which can encode
	high-order data correlation in a hypergraph structure. In this part, a hyperedge
	convolution operation is designed to handle the data correlation during
	representation learning. In this way, traditional hypergraph learning procedure
	can be conducted using hyperedge convolution operations efficiently. HGNN is
	able to learn the hidden layer representation considering the high-order data
	structure, which is a general framework considering the complex data
	correlations. Finally, we will introduce the applications of hypergraph learning.

Learning on hypergraph: method and applications

On some more robust image selective segmentation models

SPEAKER:	Ke Chen, University of Liverpool, United Kingdom
SCHEDULED:	Tuesday, December 11, 16:50-17:25
DETAILS:	Minisymposium talk 3
ABSTRACT:	Image segmentation is one important problem in mathematical imaging
	research and computer vision applications. As the fast-growing technologies of
	imaging generate increasingly higher precision images, demand for fast and
	accurate solution techniques is equally high. This talk will first discuss some
	models in variational image segmentation. Then it will focus on more recent
	works done at our Liverpool group to design robust models for segmentation of
	images with weak contrast. Our work can be used to help preparation of AI
	training data which is a crucial step in deep learning.

Bighai i ceover y	
SPEAKER:	Deyu Meng, Xi'an Jiaotong University
SCHEDULED:	Tuesday, December 11, 17:25-18:00
DETAILS:	Minisymposium talk 3
ABSTRACT:	The loss function used in a conventional machine learning problem is generally
	specified as an easy fixed form, like L2 norm or L1 norm, which intrinsically
	assumes the noises contained in data are generated from a simple distribution,
	like an i.i.d. Gaussian or Laplacian. However, in practical scenarios with
	complex noise configurations, such modeling inclines to encounter the
	robustness issue, that is, such modeling manner tends to make the related
	learning algorithm sensitive to complex noises. In this talk, I will introduce
	some developments of our research team on noise/loss modeling, which aims to
	make a machine learning model capable of adaptively learning an appropriate
	loss function/noise distribution from data, so as to alleviate the robustness issue
	of generally machine learning regimes. Such loss/noise modeling paradigms
	have been used on multiple image/video/hyper-spectral image restoration tasks,
	and achieved state-of-the-art performance on hyper-spectral image denoising,
	online background subtraction on surveillance videos, low-dose CT image
	enhancement and video deraining. Such a fundamental regime is expected to
	inspire useful learning algorithms for more machine learning tasks.

Signal recovery through noise/loss modeling

Minisymposium 3 (Computer Vision with Applications)

Talks are arranged at Juxing Room, Lakeview Xuanwu Hotel.

Wednesday, December 12

Intelligent pro	cessing and display of future 3D video
SPEAKER:	Shaoping Lu, Nankai University
SCHEDULED:	Wednesday, December 12, 14:00-14:35
DETAILS:	Minisymposium talk 3
ABSTRACT:	Modern multiview and 3D multimedia systems offer great potential of
	immersive experience for users compared to classical monocular or
	stereoscopic ones, and such systems are quickly boosting numerous creative
	applications such as 3D media creation, augmented and mixed reality, gaming,
	medical visualization, to name a few. The multiview and 3D video related
	display opens the door for such future applications, but it remains a challenge to
	acquire, store, transmit, represent and process this type of data in an efficient
	and effect manner. In this talk, I will present some research topics on multiview
	video and 3D capturing, compression for transmission and interactive display.

I ast construction of alsorete geodesic graph	Fast	construction	of	discrete	geodesic	grap	h
---	------	--------------	----	----------	----------	------	---

SPEAKER:	Ying He, Nanyang Technological University
SCHEDULED	Wednesday, December 12, 14:35-15:10
DETAILS:	Minisymposium talk 3
ABSTRACT:	I will introduce a new method for constructing Discrete Geodesic Graph (DGG) - an undirected, sparse graph for computing discrete geodesic distances and paths on triangle meshes. Based on a novel accuracy aware window propagation scheme, our method is able to compute DGG edges in a direct and efficient manner. Let M be a manifold triangle mesh with n vertices and surface area A . Define the unit area $\mathring{A} = A/n$ and the unit length $\mathring{l} = \sqrt{\mathring{A}}$. Assuming that the triangular faces of M have $O(1)$ edge length and $\Theta(1)$ area (i.e., the lengths and areas are bounded by some resolution independent constant), we prove that our method produces a DGG with $O(\frac{n}{\sqrt{\varepsilon}})$ edges in $O(\frac{n}{e^{0.75}} \log \frac{1}{\varepsilon})$ time, greatly improving the time complexity $O(\frac{n}{\varepsilon} \log \frac{1}{\varepsilon})$ of the existing approach, where ε is the user-specified parameter for accuracy control. Through extensive evaluation, we demonstrate that our method produces DGGs with size and accuracy comparable to the existing method, but it runs up to 2 orders of magnitude faster for meshes with 1 million vertices. Moreover, our algorithm can handle meshes of moderate degree of anisotropy directly, whereas the existing methods must add a large number of pseudo vertices to maintain the graph or mesh quality.

SPEAKER:	Jianmin Zheng, Nanyang Technological University
SCHEDULED:	Wednesday, December 12, 15:10-15:45
DETAILS:	Minisymposium talk 3
ABSTRACT:	Reconstructing the shape of a 3D object from multi-view images under general
	illumination is a fundamental problem in computer vision and graphics. High
	quality reconstruction is usually challenging especially when fine detail is
	needed and the albedo of the object is non-uniform. In this talk, I will present
	some of our recent work in estimating the shape and the unknown illumination
	as well. The talk will be focused on the computational model for reconstruction
	and the representation of the surface and illumination. In particular, a concept
	of per-vertex overall illumination is introduced to model the overall effect of
	the general illumination, subdivision schemes are employed to represent the
	geometry and illumination, and a total variation based model is proposed for
	reconstruction. All these are integrated to provide a robust and efficient surface
	reconstruction method that can well recover the surface details even for objects
	with varying albedo.

Estimating geometry and illumination from multi-view images

TBA

SPEAKER:	Laurent Younes, The Johns Hopkins University
SCHEDULED:	Wednesday, December 12, 16:15-16:50
DETAILS:	Minisymposium talk 3
ABSTRACT:	

TBA

SPEAKER:	Giuseppe Patane, The Johns Hopkins University
SCHEDULED:	Wednesday, December 12, 16:50-17:25
DETAILS:	Minisymposium talk 3
ABSTRACT:	

SPEAKER:	Ming Yan, Michigan State University
SCHEDULED:	Wednesday, December 12, 17:25-18:00
DETAILS:	Minisymposium talk 3
ABSTRACT: When a measurement falls outside the quantization or measurable range, i	
	becomes saturated and cannot be used in classical reconstruction methods. E.g.,
	the limited dynamic range of C-arm flat detectors leads to overexposure in
	some projections during an acquisition, such as imaging relatively thin body
	parts (e.g., the knee). Aiming at overexposure correction for computed
	tomography (CT) reconstruction and spare signal recovery, we propose mixed
	one-bit compressive sensing (M1bit-CS) approaches to acquire information
	from both regular and saturated measurements. In this talk, I will introduce
	several approaches and their applications in CT reconstruction.

Signal and image recovery from saturated measurements

Minisymposium 3 (Computer Vision with Applications)

Talks are arranged at Juxing Room, Lakeview Xuanwu Hotel.

Thursday, December 13

Data-driven sketch interpretation		
SPEAKER:	Hongbo Fu, City University of Hong Kong	
SCHEDULED:	Thursday, December 13, 14:00-14:35	
DETAILS:	Minisymposium talk 3	
ABSTRACT:	Freehand sketching provides an easy tool for communication between people.	
	While human viewers can easily interpret the semantics of a freehand sketch, it	
	is often difficult to teach machines understand sketches like we do, especially	
	because of different levels of abstraction, drawing styles, and various sources of	
	drawing errors. In this talk, we will introduce how data-driven approaches can	
	help us address various sketch understanding tasks, including the beautification,	
	classification, segmentation, animation, and 3D interpretation of freehand	
	sketches.	

Reconstruction	of 3D	human	body	pose
----------------	-------	-------	------	------

SPEAKER:	Shihong Xia, Institute of Computing Technology, Chinese Academy of Sciences
SCHEDULED:	Thursday, December 13, 14:35-15:10
DETAILS:	Minisymposium talk 3
ABSTRACT:	3D human body pose has applications in computer graphics, computer vision,
	robotics, virtual reality, and sports science. Many efforts have been made in this
	research community. However, it remains challenging to synthesize natural 3D
	pose with fewer constraints, and estimate 3D pose with accuracy and efficiency,
	because human body is very complex and has self-occlusion in general. In this
	talk, I will present our recent works on reconstruction of 3D human body pose
	with kinematic motion modeling techniques, which include data-driven inverse
	kinematics and pose regression from RGB-D images. Also I will introduce
	mathematical foundations on inverse kinematics, and discuss pose and shape
	reconstruction from RGB-D video.

0000000000000	
SPEAKER:	Yong-Jin Liu, Tsinghua University
SCHEDULED:	Thursday, December 13, 15:10-15:45
DETAILS:	Minisymposium talk 3
ABSTRACT:	In machine perception and computer vision, three-dimensional objects are
	usually represented by 2-manifold meshes M. Compared to Euclidean metric
	spaces, the Voronoi diagrams based on geodesic metric on M exhibit many
	distinct properties that fail all existing Euclidean Voronoi diagram. In this talk,
	the combinatorial structure of geodesic Voronoi diagrams with complexity
	analysis is presented. We also present some recent study on intrinsic Delaunay
	trangulation from the dual of geodesic Voronoi diagram. Finally practical
	algorithms for constructing geodesic Voronoi diagram and its dual IDT on M,
	as well as some applications in computer vision and pattern analysis are
	presented.

Geodesic voronoi diagrams and intrinsic delaunay triangulation

Data-driven indoor scene 3D modeling and simulation

SPEAKER:	Yanwen Guo, Nanjing University
SCHEDULED:	Thursday, December 13, 16:15-16:50
DETAILS:	Minisymposium talk 3
ABSTRACT:	Indoor scene modeling and simulation have received considerable attention due
	to the wide applications in interior design, smart home, and virtual and
	augmented reality. In this talk, I will present systematically our work on indoor
	scene modeling and simulation. First, we present a data-driven indoor scene
	modeling method from a single color image with iterative object segmentation
	and model retrieval. Second, given a 3D indoor scene, a data-driven approach
	that colorizes 3D furniture models and indoor scenes by leveraging indoor
	images on the internet will be introduced. I will finally introduce our material-
	scanning system used for obtaining the surface micro-scale geometry and
	physics attributes for visual effect simulation in product design.

nu vunces m u	istructured mesh generation and adaptation
SPEAKER:	Hang Si, Weierstrass Institute for Applied Analysis and Stochastics
SCHEDULED:	Thursday, December 13, 16:50-17:25
DETAILS:	Minisymposium talk 3
ABSTRACT:	Mesh generation and adaptation are key steps in many applications such as
	numerical methods like finite element and finite volume methods. It is itself a
	research topic with background in mathematics, computer science, and
	engineering. In this talk, we will first review triangle mesh generation and
	adaptation in the plane. This problem has been well studied. Efficient
	algorithms are developed. We then introduce tetrahedral mesh generation in 3d,
	which is still challenged by many theoretical and practical issues. In this talk,
	we will highlight some recent development in this field.

Advances in unstructured mesh generation and adaptation

Atomic scale crystal analysis: methodology and discovery

SPEAKER:	Haizhao Yang, National University of Singapore
SCHEDULED:	Thursday, December 13, 17:25-18:00
DETAILS:	Minisymposium talk 3
ABSTRACT:	Recent developments in imaging techniques enable researchers to visualize
	materials at the atomic resolution to better understand the microscopic
	structures of materials. This talk focuses on the automatic and quantitative
	characterization of potentially complicated microscopic crystal images,
	providing feedback to tweak theories and improve synthesis in materials
	science. As such, we introduce an efficient toolbox, SynCrystal, based on
	phase-space analysis and optimization for automatic information learning for
	atomistic structures, including crystal image segmentation, classification, defect
	detection, rotation, and deformation estimation.

4 About Shing-Tung Yau Center of Southeast University

Shing-Tung Yau Center of Southeast University

The Shing-Tung Yau Center at Southeast University (the SEU-Yau Cneter) was officially inaugurated on July 7, 2017. It is managed by the Southeast University. Prof. Shing-Tung Yau, a famous mathematician who won the Fields Medal in 1982, heads the new research center.

The main research mission of the SEU-Yau Center is to conduct high level AI-oriented interdisciplinary scientific researches, with special focuses on the applications of modern mathematical theory and methods for solving important and critical engineering problems including, but not limited to, biomedical imaging, modern data-analysis and data extraction, and scientific computations at extreme large scales. At its official launch, the SEU-Yau Center established five research directions to undertake for its near future. They cover the areas of computational sciences, information sciences, data analysis, medical imaging and other related research fields. The center will foster strong interdisciplinary collaborations among researchers in pure mathematics, artificial intelligence, data mining, intelligent control, image processing, among others. Educationally, under the unwavering support of Southeast University and guidance of Prof. Shing-Tung Yau, the SEU-Yau Center strives to attract high-level young talents and train them to become the next generation world class scientists. Competitive supports will be provided to these young researchers while they are enrolled with the center.

The SEU-Yau Center is composed of faculty members from various departments of Southeast University whose research interests align with the main missions of the center, postdoctoral researchers and postgraduates home and abroad, and short-term visitors around the globe. The faculty members are with the center part time while their primary employments are still with their home departments at the university, and postdoctoral researchers and postgraduates are full time employees of the center.

For more details, please visit yauc.seu.edu.cn.

5 Introduction on School of Mathematics, Southeast University

School of Mathematics, Southeast University

The mathematics faculty of Southeast University (SEU) was established in 1921 and created by the famous mathematician Mr Xiong Qinglai. After the adjustment of the institutes and faculties in the year of 1952, it has been developed into the School of Mathematics with the great emphasis on both the teaching and scientific research, the overall development of multiple subjects and the strong teaching power today from the basic science faculty, the mathematics and mechanics faculty and the applied mathematics faculty.

There are totally 86 professional teachers and 9 working staffs in the entire school (including 1 distinguished professor of university, 2 young distinguished professors of SEU). Among them, there are 1 academician of the European Academy of science, 1 IEEE fellow, 3 global highly cited scientists of Thomson Reuters, 4 Chinese highly cited scholars of Elsevier, 1 expert of national natural science foundation's subject evaluation group, 1 young top talent of ten thousand national talents, 1 leading talent of 333 high-level talent's cultivation project of Jiangsu Province, 2 winner of national excellent youth fund, 1 winner of Chinese female young scientist, 1 winner of young teacher prize of the higher institutes of the Education Ministry, 3 persons of the new century outstanding talents supporting plans of the Education Ministry, 4 persons of the outstanding prizes of Bao Gang's Education Fund, 1 winner of Huo Yingdong's Young Teachers Foundation Sponsorship, 1 winner of German Humboldt foundation sponsorship, 4 persons of "the Six-talent summit" of Jiangsu Province, 1 winner of the outstanding young scientific foundation of Jiangsu Province, 4 leading persons of "the Blue project" academy of the higher institutes of Jiangsu Province etc. There are a huge batch of the scientific research elites and capable teachers. Meanwhile, the department also owns a batch of the visiting professors and industry professors with the world first-rate academic levels, including 1 academician of European academy of science, 1 academician of the third world academy of science, 2 persons of IEEE Fellow, 4 experts of "Thousand talents program".

Currently, there are three undergraduate majors: the mathematics and applied mathematics major, information and computer science major, and statistics major. All these majors execute large class enrollment, implement the wide aperture training mode, strengthen the general education, set a solid mathematics foundation, focus on the specialty intersecting and intensify the creativity capacities. The specific major can be reselected by the students after one-year entrance study. The overall toll of undergraduate enrollment of this year is about 90 persons.

The cultivation quality of the talents of bachelor, master and doctor degrees has been improving continuously. In recent 5 years, we have won a series of high-level awards, such as 1 item of the nomination prize of the national outstanding doctoral dissertation award, 1 item of the new person prize of the doctoral postgraduate academy of education department, 3 articles have won the outstanding doctoral dissertation prize of Jiangsu Province, 2 items of China's most influential international academic paper award, 2 items of the second prize of

national university" the challenging cup" (All the participants are the undergraduates of our faculty) etc. The mathematical modeling results of the university students guided by the teachers of our faculty are quite outstanding, 2 items of the grand prize of modeling competition of international university students were won by our school in the academic year of 2014, which ranked the second at home, second only to Tsinghua University and realized the historical breakthrough. The undergraduate students have been sent to make an academic exchange visit to many famous high institutes in USA, UK, Hongkong and Taiwan. We also have had the deep cooperation in the domains like the joint project research, academic exchange and visit, the students exchange cultivation and mutual sharing of teaching and scientific research information.

6 Author index

Index

Bai, Zhaojun, 9, 24 Li, Xiaolin, 9, 25 Li, Zhiyuan, 10, 27 Chen, Ke, 16, 46 Liang, Haixia, 11, 29 Chen, Shixiang, 12, 32 Liang, Xin, 14, 38 Cheng, Jin, 8, 21 Liu, Haixia, 10, 28 Liu, Yong-Jin, 18, 52 Deng, Youjun, 11, 29 Lou, Yifei, 15, 42 Du, Qiang, 9, 25 Lu, Shaoping, 17, 48 Lu, Shuai, 12, 32 Fu, Hongbo, 18, 51 Meng, Deyu, 16, 47 Gao, Lin, 16, 45 Gao, Weiguo, 13, 36 Nakatsukasa, Yuji, 14, 39 Gao, Yue, 16, 46 Gong, Rongfang, 10, 28 Patane, Giuseppe, 17, 49 Guo, Yanwen, 18, 52 Si, Hang, 18, 53 Guo, zhenchen, 15, 43 Su, Yangfeng, 13, 36 He, Ying, 17, 48 Tao, Min, 11, 30 Jiang, Daijun, 12, 33 Truhar, Ninoslav, 13, 35 Ju, Tao, 8, 23 Wang, Li, 14, 39 King-Wah, Eric Chu, 14, 38 Wang, Wenping, 8, 22 Kwok-Po, MichaelNg, 8, 20 Wei, Musheng, 13, 36 Wei, Suhua, 12, 34 Lei, Na, 16, 44 Wei, Yimin, 15, 42 Lei, Yuan, 13, 37 Wei, Zhihui, 10, 26 Li, Jingzhi, 12, 33 Wen, Youwei, 10, 26 Li, Limin, 13, 37 Wu, Chunlin, 11, 31 Li, Wen, 15, 41

63

Xia, Jianlin, 9, 24 Xia, Shihong, 18, 51 Xiao, Chun-Xia, 16, 44 Xue, Jungong, 15, 41

Yan, Ming, 17, 50 Yang, Haizhao, 18, 53 Yang, Xiaoping, 11, 30 Yau, Shing-Tung, 8, 20 Younes, Laurent, 17, 49 Yu, Bo, 14, 40 Yuan, Ganghua, 10, 27

Zeng, Tieyong, 11, 31 Zhang, Leihong, 14, 40 Zhang, Xiaoqun, 12, 34 Zheng, Bing, 15, 43 Zheng, Jianmin, 17, 49