Based on 2306.00929 with Shota Komatsu and Yifan Wang

## Large Charge 't Hooft limit of $\mathcal{N} = 4 \text{ SYM}$

### João Caetano



Shing-Tung Yau Center of Southeast University 25 September 2023

## This talk is about systems with a large number of degrees of freedom

'counts' them and take  $N_c \rightarrow \infty$ 

In gauge theories,  $N_c =$  number of colors

By considering the 't Hooft limit  $N_c \rightarrow$ 

emergent structures appear:

One way of considering large # d.o.f.: family of theories containing a parameter  $N_c$  that

$$\Delta \equiv g_{\rm YM} \times N_c^2$$
 fixed

Nontrivial function of  $\lambda \equiv g_{\rm YM} \times N_c^2$ 

$$+\frac{1}{N_c^2}$$
  $+\frac{1}{N_c^4}$   $+\frac{1}{N_c^4}$   $+\dots$ 

# This talk is about systems with a large number of degrees of freedom

Another way of considering large # d.o.f.: state in a theory with a large number of excitations

## Large # of d.o.f



### For $g \ll 1$ and N small: perturbation around free system



## Effective interaction strength $\lambda_{\rm eff} \sim g \, N$

## Large # of d.o.f

## $\lambda_{ m eff} \sim g N$ Suggest (e.g. me

Formally looks like a 't Hooft limit...

Is there any similarity with the standard 't Hooft limit....?

Suggests a double scaling  $N \to \infty$  and  $\lambda_{\rm eff}$  fixed (e.g. mean field theory)

### Gauge theory with a global charge J

### Physics of this large charge 't Hooft limit $\leftrightarrow$ Standard large $N_c$ 't Hooft limit $g_{\rm VM}^2 N_c$ $g_{v_N}^2 J$





## Large # of d.o.f

### Setup: $\mathcal{N} = 4$ SYM



- Standard large charge limit vs large charge 't Hooft limit
- Spectral problem in  $\mathcal{N} = 4$  SYM in the leading large charge
- Corrections to the large charge limit
- Higher-point functions
- Conclusions & future directions

### Outline

Two-point function  $\langle O_J O_J \rangle \longrightarrow$  map to cylinder  $R_t \times S_L^{d-1}$ Operator with minimal conformal

dimension  $\Delta_{\min}$  with charge J

$$E_{\text{state}} = \frac{\Delta_{\min}}{L} \longrightarrow$$

Large charge limit:  $J \to \infty$ ,  $L \to \infty$ ,  $j_{\text{state}}$  fixed: Lowest energy state in flat space with fixed charge density



## Physics of large states in $CFT_d$



• Generic (non-supersymmetric) CFTs, non-zero charge density state carries finite  $\epsilon_{\text{state}}$ . With both  $\epsilon_{\text{state}}, j_{\text{state}}$  finite:

min

• CFTs with moduli space of vacua,  $\epsilon_{state} = 0$ . E.g. in SCFT, BPS operators:

 $\epsilon_{\text{state}} \sim \frac{\Delta_{\min}}{I d} \qquad j_{\text{state}} \sim \frac{J}{I d - 1}$ 

$$\sim J^{\frac{d}{d-1}}$$

[Alvarez-Gaume, Cuomo, Dondi, Giombi, Hellerman, Kalogerakis, Loukas, Monin, Orlando, Pirtskhalava, Rattazzi, Reffert, Sannino, Watanabe etc.]

 $\Delta_{\min} \sim J$ 

[Arias-Tamargo, Beccaria, Bourget, Hellerman, Maeda, Orlando, Rodriguez-Gomez, Reffert, Russo, Watanabe etc.]

## Physics of large states in $CFT_d$



• Generic (non-supersymmetric) CFTs, non-zero charge density state carries finite  $\epsilon_{\text{state}}$ . With both  $\epsilon_{\text{state}}, j_{\text{state}}$  finite:

• CFTs with moduli space of vacua,  $\epsilon_{state} = 0$ . E.g. in SCFT, BPS operators:

 $\epsilon_{\text{state}} \sim \frac{\Delta_{\min}}{I d} \qquad j_{\text{state}} \sim \frac{J}{I d - 1}$ 

$$\sim J^{rac{d}{d-1}}$$

[Alvarez-Gaume, Cuomo, Dondi, Giombi, Hellerman, Kalogerakis, Loukas, Monin, Orlando, Pirtskhalava, Rattazzi, Reffert, Sannino, Watanabe etc.]

min  $\sim J$ 

[Arias-Tamargo, Beccaria, Bourget, Hellerman, Maeda, Orlando, Rodriguez-Gomez, Reffert, Russo, Watanabe etc.]



### Large charge limit vs Large charge 't Hooft limit (in SCFTs)

### Example: $\mathcal{N} = 2$ SCFTs in 4D

Intuition:

$$\left\langle O_J(x_1)\bar{O}_J(x_2)\right\rangle = \int \mathscr{D}\phi \mathscr{D}\bar{\phi}\exp\left(-A\right)$$

### $\rightarrow$ nontrivial profile of $\phi$

 $O_J \sim \operatorname{tr} \phi^J$  (Constrained on the second second sector multiplet) (Constrained on the second sector multiplet)

(Coulomb branch operators)

 $S+J\log(\phi)\,\delta(x-x_1)+J\log(\bar{\phi})\,\delta(x-x_2)\Big)$ 

Source terms

 $\langle \phi \rangle \neq 0$ 

Similar to the Coulomb Branch

### Large charge limit vs Large charge 't Hooft limit (in SCFTs)

In a theory with a marginal coupling  $g_{VN}$ 

**Powerful limit!** <u>However</u> it looses some information about massive particles...

$$_{\rm M}: \quad \langle \phi \rangle \sim g_{\rm YM} \sqrt{J}$$

On this background, BPS W-bosons acquire  $m_W \sim g_{\rm YM} \sqrt{J} \rightarrow \infty$  as  $J \rightarrow \infty$ 

### Integrating them out $\rightarrow$ higher-derivatives of massless fields $\sim (1/J)^n \Leftrightarrow \text{EFT}$

### Large charge limit vs Large charge 't Hooft limit (in SCFTs)

### Large charge 't Hooft limit:

- $m_W \sim g_{YM} \sqrt{J}$  are now finite  $\rightarrow$  contribute to observables
- Different Physics from the standard large charge limit

### $J \rightarrow \infty$ $\lambda_J \equiv g_{\rm YM}^2 J$ fixed $g_{\rm YM} \rightarrow 0$

[Bourget,Rodriguez-Gomez, Russo'18]



## $\mathcal{N} = 4$ SYM with SU(2) gauge group

Goal: Determining the spectrum of non-BPS operators in the large charge limit

Typically these operators are constructed as follows:

Add other fields to the vacuum



 $\Delta = J + corrections$ 

## $\mathcal{N} = 4$ SYM with SU(2) gauge group

As before, vacuum is very heavy: sources a non-trivial profile for Z

$$\left\langle O_{\rm vac}(t_1,\Omega)\bar{O}_{\rm vac}(t_2,\Omega)\right\rangle = \int [\mathcal{D}\Phi] \exp\left[-\frac{1}{g_{\rm YM}^2}\left(S_{\rm SYM} + \frac{\lambda}{2}\log({\rm Tr}\,ZZ)\,\delta(t-t_1) + \frac{\lambda}{2}\log({\rm Tr}\,\bar{Z}\bar{Z})\,\delta(t-t_1)\right)\right]$$

Since these are protected operators,  $S_{i}$ 

$$\langle Z \rangle = \begin{pmatrix} \frac{g_{\rm YM}\sqrt{J}}{2\pi}e^{i\varphi} \\ 0 \end{pmatrix}$$

$$S_{\text{SYM}} \rightarrow S_{\text{free}}$$
 and:

$$\frac{g_{\rm YM}\sqrt{J}}{2\pi}e^{i\varphi}$$

gauge partially fixed :

 $SU(2) \rightarrow U(1)$ 



# $\mathcal{N} = 4$ SYM with SU(2) gauge group $Z...Z \chi Z...Z \chi Z...Z \rangle$

### Excitations are classified by irreps of the symmetry preserved by the vacuum

### Symmetry preserved by the vacuum:

*SO*(4)

Rotational symmetry around origin

 $\times SO(4) \longrightarrow \mathfrak{psu}(2|2)^2 \times \mathbb{R}$ 

Rotation of scalars that are not Z nor  $\overline{Z}$ 

### Spectrum from algebra

 $\mathfrak{psu}(2|2)^2 \times \mathbb{R}$  not enough to constrain the dynamics (no  $g_{YM}$  dependence)

Actual symmetry is larger: centrally extended  $\mathfrak{psu}(2|2)^2 \times \mathbb{R}!$ [Beisert]

Same symmetry as in the large N limit!

### Central extension of $\mathfrak{psu}(2|2)$

### $\{Q, Q\} = 0$ In general:

This is true when acting on gauge invariant operators.

But on individual fields, this **does not** have to be the case!

 $\{Q, Q\}\chi \sim [Z, \chi]$ 

- for any two supercharges Q

Field-dependent gauge transformation! Carries information about the interaction terms of the Lagrangian

### Central extension of $\mathfrak{psu}(2|2)$

The central extended algebra is then:

$$\{Q^{a}_{\ \alpha}, Q^{b}_{\ \beta}\} = \epsilon^{ab}\epsilon_{\alpha\beta}P$$

 $P\cdot\chi\equiv[Z,\chi]\,,$ 

The action of P and K are determined by the vev of Z!

$$\{S^{\alpha}_{a}, S^{\beta}_{b}\} = \epsilon_{ab} \epsilon^{\alpha\beta} K$$

$$K \cdot \chi \equiv [Z^{-1}, \chi]$$

### Spectrum from central extension

### Every field $\chi$ is an adjoint field of SU(2)

 $\{Q, Q\} m^{\pm} \sim \pm 2\lambda m^{\pm}$ 

By demanding closure of the central extended algebra on a state  $|Z...m^{\pm}...Z\rangle$ 

$$(\hat{D}-\hat{J})^2$$



Single-particle state

-4PK =



### Spectrum from central extension

### Every field $\chi$ is an adjoint field of SU(2)

 $\{Q,Q\} m^{\pm} \sim \pm 2\lambda m^{\pm}$ 

By demanding closure of the central extended algebra on a state  $|Z...m^{\pm}...Z\rangle$ 

$$(D - \hat{J}) | Z \dots m^{\pm} \dots Z \rangle = \sqrt{1 + 16 \lambda} | Z \dots m^{\pm} \dots Z \rangle$$

 $(D - \hat{J}) | Z \dots m^0 \dots Z \rangle = | Z \dots m^0 \dots Z \rangle$ 

$$\chi = \begin{pmatrix} m^0 & m^{\bigoplus} \\ m & -m \end{pmatrix}$$
  
Tentral tension  

$$\{Q, Q\} m^0 = 0$$

$$(m^0 - m^{\bigoplus} )$$

$$U(I) \text{ gauge indices}$$

Single-particle state



Now to construct a gauge invariant state, demand

### e.g. $Z m^{-} m^{-} m$

### Energy = $\sum_{i=1}^{n}$ individual energies (interactions $\sim 1/J$ )

### Spectrum from central extension

- $\# m^+ = \# m^-$ (also states are parity even!)

$$n^0 Z \dots Z m^+ m^+ Z \dots Z \rangle$$

## $\Delta - J = 1 + 4\sqrt{1 + 16\lambda}$

Small  $\lambda$  expansion matches direct perturbative computation with Feynman diagrams (2-loop check)

### Spectrum from central extension

Spectrum of excitations include spinning letters, i.e.

 $Z...ZD^n ZZ...Z$ 

They sit in (anti-symmetric) "bound state" BPS representation:

 $(\hat{D} - \hat{J})^2 - 4PK = (n+1)^2$ 

 $\bullet \quad E = \sqrt{n^2 + 16\lambda}$ 

At 1/J, only two-body interactions.

with every other

Distinct from spin chain picture of large N!



### Particles are commutative (no color indices at this point) $\rightarrow$ every particle interacts

E.g.  $\mathfrak{Su}(2|2)$  subsector:

 $\{ | \phi_{a=}^{m} \}$ 

Most general ansatz compatible with (bosonic) symmetries:

E.g. 
$$D_{1-\text{loop}} | \phi_a^{m_1} \phi_b^{m_2} \rangle_J = \alpha_{m_1 m_2}(\lambda) | \phi_a^{m_1} \phi_b^{m_2} \rangle_J + \beta_{m_1 m_2}(\lambda) | \phi_b^{m_1} \phi_a^{m_2} \rangle_J + \gamma_{m_1 m_2}(\lambda) \epsilon^{\alpha \beta} \epsilon_{ab} | \psi_\alpha^{m_1} \psi_\beta^{m_2} \rangle_J$$
  
charge of the state Unknown coefficients  
(omitting vacuum fields)



Algebraic constraints on the dilatation operator?  $|Z...Zm^-m^-m^0Z...Zm^+Z...Zm^+Z...Z\rangle$ 

$$\bigcup_{1,2} \langle \psi_{\alpha=3,4}^{m} \rangle$$

similarly to other fields...





$$D_{1-\text{loop}} |\phi_a^{m_1} \phi_b^{m_2}\rangle_J = \alpha_{m_1 m_2}(\lambda) |\phi_a^{m_1} \phi_b^{m_2}\rangle_J$$

- We allow for one-loop corrections to the supercharges as well
- Impose closure of  $\mathfrak{Su}(2|2)$  algebra

### Outcome:

- Coefficients  $\alpha, \beta, \gamma$  uniquely fixed up to a global normalization!
- Product of two (short) fundamental representations  $\rightarrow$  unique long-multiplet

 $+ \beta_{m_1m_2}(\lambda) |\phi_b^{m_1}\phi_a^{m_2}\rangle_J + \gamma_{m_1m_2}(\lambda) \epsilon^{\alpha\beta} \epsilon_{ab} |\psi_\alpha^{m_1}\psi_\beta^{m_2}\rangle_{J-1}$ 

Normalization from semiclassic perturbation theory:



 $Z = Z_{\text{classical}} + \delta Z$ 

$$_{\rm YM} \left[ Z = Z_{\rm classical} + \delta Z \right]$$

Massive propagator on the EFT

$$\beta_{+-}(\lambda) = -\frac{8\lambda}{1+16\lambda} \simeq -8\lambda + 128\lambda^2 +$$

We determined a few of these coefficients by direct computation in the EFT but not all of them. We can compute the full spectrum to order 1/J up to two unknown functions of  $\lambda$ .

• • •



### 22 Weak roupling analysis elation to be perators projection . 2.3 SL(2) Sector: bound states . . . Superconformal index and partition function at large of sector: bound states SU(3) sector: parity projection Symmetry and spectrum at leading large J function at large charge . 33.\$ynfynetry and its central exten siggen the large charge 3. 3. 3. 3. Ymr Istandard symmetry at large charge charge 't Hoof 3.1.2 (grafixed) 3.1.2 Central extension and its representations . . . Central extension and its representations . . . . . . . Gauge invariant operators and comparison with data . Relation to Poincaré supersymmetry . . . . . BPS rep of $\mathfrak{psu}(2|2)^2 \longrightarrow \mathfrak{PS}(2|2)^2$ BPS particle of Poincaré SUSY 4 Spectrum at 1/J

4.1 Constraints from centrally-extended symmetry



### Relation to Poincaré SUSY

$$\mathfrak{psu}(2|2): \qquad \{S^{\alpha}{}_{a}, Q^{b}{}_{\beta}\} = \delta^{b}{}_{a}L^{\alpha}{}_{\beta} + \delta^{\alpha}{}_{\beta}R^{b}{}_{a} + \delta^{b}{}_{a}\delta^{\alpha}{}_{\beta}\frac{(\hat{D}-\hat{J})}{2}, \\ \{Q^{a}{}_{\alpha}, Q^{b}{}_{\beta}\} = \epsilon^{ab}\epsilon_{\alpha\beta}P, \quad \{S^{\alpha}{}_{a}, S^{\beta}{}_{b}\} = \epsilon_{ab}\epsilon^{\alpha\beta}K.$$

In the standard large charge limit:  $\hat{D} - \hat{J}, K, P \propto \sqrt{J}$  $\frac{\hat{D}-\hat{J}}{2} = \sqrt{J} \mathbf{P}^0, \quad P = \sqrt{J} \mathbf{Z}, \quad K = \sqrt{J} \,\overline{\mathbf{Z}}.$ 

$$Q^{a}{}_{\alpha} = J^{1/4} \mathbf{Q}^{a}{}_{\alpha}, \quad S^{\alpha}{}_{a} = J^{1/4} \bar{\mathbf{Q}}^{a}{}_{\alpha},$$
$$\left\{ \mathbf{Q}^{a}{}_{\alpha}, \bar{\mathbf{Q}}^{b}{}_{\dot{\beta}} \right\} = \delta^{a,b} \delta_{\alpha,\dot{\beta}} \mathbf{P}_{0},$$
$$\left\{ \mathbf{Q}^{a}{}_{\alpha}, \mathbf{Q}^{b}{}_{\beta} \right\} = \epsilon^{ab} \epsilon_{\alpha\beta} \mathbf{Z}, \qquad \{ \bar{\mathbf{Q}}^{a}{}_{\dot{\alpha}}, \bar{\mathbf{Q}}^{b}{}_{\dot{\beta}} \} = \epsilon^{ab} \epsilon_{\alpha\beta} \mathbf{Z},$$

 $(\hat{D} - \hat{J})^2 - 4PK = (n+1)^2 \quad \mapsto \quad \mathbf{P}_0 = |\mathbf{Z}|$ 

**BPS** condition becomes the massive BPS condition in flat space extended SUSY

 $\epsilon^{ab}\epsilon_{\dotlpha\doteta}ar{f Z}\,,$ 



### This ends the analysis of the spectrum in the large charge limit.

Other interesting observables are the higher point functions.

### Higher-point functions

Consider higher-point functions involving also light-operators

 $\langle O_J(0)O_{i_1}(x_1)...O_{i_n}(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O_J(x_n)O$ Light-operators

Example: light half-BPS operators 

• Four-point function

$$|\infty\rangle\rangle = \langle J | O_{i_1}(x_1) \dots O_{i_n}(x_n) | J \rangle$$

 $O_2 \sim \mathrm{tr}(\mathrm{Y}^{\mathrm{I}}\phi_{\mathrm{I}})^2$  defined by polarization null vector  $Y_I$ 

 $\langle J | O_2(x_1) O_2(x_2) | J \rangle \stackrel{\text{'t Hooft}}{=} \langle O_2(x_1) O_2(x_2) \rangle_{\text{LC backg}}$ 



### Higher-point functions

- At leading order in J: tree level computation in the EFT (exact in  $\lambda$ )
- Basic building block: propagator in the large charge background





### Higher-point functions

### • We found a refined formula:



Infinite sum of massive propagator: worldline instanton wrapping a great circle of  $S^3 n$  times, in 2 different orientations

$$(\pi n) + W(2\pi - \varphi + 2\pi n)$$

$$+ #e^{-4\sqrt{\lambda}\sqrt{\sigma^2 + (2\pi(n+1) - \varphi)^2}}$$

$$W(x) \sim K_1(\sqrt{\lambda}x)$$

### Four-point functions HHLL

At leading order in 1/J, tree level computation in the EFT:

 $\langle O_2(x_1)O_2(x_2)\rangle_{\rm EFT} \sim$ 

Can be matched with the result of supersymmetric localization: "emergent" matrix model of size of order J.



### Non-BPS ops: Three-point function HHK

• Three-point with Konishi

 $\langle J | K(x_1) | J$ 

Interesting part (coupling dependent) arises from massive contraction •



 $K(x) = \text{Tr} \Phi_{T} \Phi_{T} = 2\Phi_{T}^{0} \Phi_{T}^{0} + 2\Phi_{T}^{+} \Phi_{T}^{-}$ 

$$V \rangle \stackrel{\text{'t Hooft}}{=} \langle K(x_1) \rangle_{\text{EFT}}$$

$$C_{KJJ} = -8\lambda + 4\sqrt{\lambda} \int_0^\infty dw \frac{4\sqrt{\lambda}w - J_1(8\sqrt{\lambda}w)}{\sinh^2(w)}$$

(Beyond localization...)



### Conclusions & future directions

- Large charge 't Hooft limit provides another solvable corner of  $\mathcal{N}=4$  SYM lacksquare
- Same underlying algebra, and equally powerful  $\bullet$
- Other observables like correlators can also be determined in this limit without much  $\bullet$ effort
- **Topological expansion interpretation?**
- Higher rank gauge group?
- More general three-point functions? •
- Less supersymmetric states? E.g. semiclassics around 1/16 BPS states?  $\bullet$ Combining large J with large N? Semiclassics from multi-scaling limit? ullet• Large spin 't Hooft limit? E.g.  $g_{YM}^2 \log S \equiv \text{fixed}$

Thank you!