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This talk is about systems with a large
number of degrees of freedom

One way of considering large # d.o.f.: family of theories containing a parameter NV, that
‘counts’ them and take N, — oo

In gauge theories, N. = number of colors

By considering the 't Hooft limit  N.— oo 1 = gy X N> fixed

Nontrivial function of A = gy X Ng

emergent structures appear. 1 1
4+ ﬁ + ﬁ + ...



This talk is about systems with a large
number of degrees of freedom

Another way of considering large # d.o.f.: state in a theory with a large number of
excitations



Large # of d.o.f
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For ¢ << 1 and N small:
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perturbation around free system



Large # of d.o.f

Suggests a double scaling N — oo and A fixed
ﬂ@ff ~ g N (e.g. mean field theory)

Formally looks like a 't Hooft limit...

Is there any similarity with the standard 't Hooft limit....?



Large # of d.o.f

Gauge theory with a global charge J

47

Physics of this large charge 't Hooft limit « Standard large N_ 't Hooft limit

Setup: A =4 SYM



Qutline

Standard large charge limit vs large charge 't Hooft limit
Spectral problem in ./ = 4 SYM in the leading large charge
Corrections to the large charge limit

Higher-point functions

Conclusions & future directions



Physics of large charged states in CFT

< >

Two-point function (O; O;) —> map to cylinder R, X Sg_l /

.

Operator with minimal conformal

dimension A_ . with charge J N
E _ Amin Amin ! J
state T Estate ™ 7d Jstate ™ 7 d—1

Large charge limit: J — oo, L — 00, J.,. fixed:

Lowest energy state in flat space with fixed charge density



Physics of large states in CFT

A , J
state L d J state " L d—1

e Generic (non-supersymmetric) CFTs, non-zero charge density state carries finite € ...

With both €., /.. fiNite:

[Alvarez-Gaume, Cuomo, Dondi,
A o del Giombi, Hellerman, Kalogerakis, Loukas,
IIliIl Monin, Orlando, Pirtskhalava, Rattazzi,
Reffert, Sannino,Watanabe etc.]

e CFTs with moduli space of vacua, € ... — 0. [Arias-Tamargo, Beccaria, Bourget,

: . Hellerman, Maeda, Orlando, Rodriguez-
Eg In SCFT’ BPS operators. Gomez, Reffert, Russo, VWatanabe etc.]
A o~J

min



Physics of large states in CFT
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Large charge limit vs
Large charge 't Hooft limit

Example: ./ =2 SCFTs in 4D O g~ tr ¢J (Coulomb branch operators)

5

. Scalar of vector multiplet
Intuition: P

(0/(x))0(x) ) = J@(p@(ﬁ exp (—S+J log(¢) 5(x — x) + J log(h) 6(x — x,))

~—

Source terms

— nontrivial profile of ¢ (p) =0

Similar to the Coulomb Branch



Large charge limit vs
Large charge 't Hooft limit

In a theory with a marginal coupling gv\r: <¢> ~ gYM\/*_]

On this background, BPS W-bosons acquire my, ~ gYM\/j — 00 as J— o

Integrating them out — higher-derivatives of massless fields ~ (1/J)" < EFT

Powerful limit! However it looses some information about massive particles...




Large charge limit vs
Large charge 't Hooft limit

J = 00 ,
Large charge = 8ym Y fixed
t Hooft limit: gym — U

[Bourget,Rodriguez-Gomez, Russo’ | 8]

°* My ~ gYM\/j are now finite — contribute to observables

e Different Physics from the standard large charge limit



A =4 SYM with SU(2) gauge group

Goal: Determining the spectrum of non-BPS operators in the large charge limit

Typically these operators are constructed as follows:

e Start with a protected ‘vacuum’ state | /.. Z> < Ovac = It (Z Z)J/ 2
"Coulomb branch operator”
e e ~\IZfCompIex scalar A =]

e Add other fields to the vacuum | Z . Z)(Z . Z)(Z . Z>

A = J + corrections



A =4 SYM with SU(2) gauge group

As before, vacuum is very heavy: sources a non-trivial profile for Z

<Ovac(t1, Q)0,, (1, Q)) = J[S/Zd)] exp [ (SSYM+i log(TrZZ) 6(t — t,) + 4 log(Tr ZZ) 5(t — tz))]

2 2
~ J

Since these are protected operators, Sqyy = Ofee and:

gymVJ plP () gauge partially fixed :

27T
<Z > o 0 ngﬁw\/j elP SU(2) —U(1)




A =4 SYM with SU(2) gauge group

| X X )

Excitations are classified by irreps of the symmetry preserved by the vacuum

Symmetry preserved by the vacuum: 504) X S04) — psu(2] 2)2 X |

Rotational Rotation of
symmetry scalars that are

around origin not Z nor Z



Spectrum from algebra

p31u(2]2)* X R not enough to constrain the dynamics (no gv,, dependence)

Actual symmetry is larger: centrally extended p311(2[2)” X R!

[Beisert]

Same symmetry as in the large N limit!



Central extension of p3ut(2|2)

In general: { Q, Q} = () for any two supercharges O

This is true when acting on gauge invariant operators.

But on individual fields, this does not have to be the case!

Field-depend e praiont
{Q, Q})( ~/ [Z,)(] - ependent garge transtormation

Carries information about the interaction
terms of the Lagrangian



Central extension of p3ut(2|2)

The central extended algebra is then:

(0%, 0%} = ePey P, {5%,.8P,) =€ K

P-y=I[Zyl, K-y=[Z"4]

The action of P and K are determined by the vev of /!



Spectrum from central extension

mO mO
Every field y is an adjoint field of SU(2) A =
Central

extension

{Q, Q} m>* N {Q, Q} mO _ 0 U(1) gauge indices

By demanding closure of the central extended algebra on a state | m=...7)

W

Single-particle state

(D — J)?>—4PK = 1



Spectrum from central extension

B m D
Every field y is an adjoint field of SU(2) A =
m S
Central

extension

{Q, Q} m>* N {Q, Q} mO _ 0 U(1) gauge indices

By demanding closure of the central extended algebra on a state | m=...7)

W

(D — j) ‘ I/I/li > =V l1+16 4 ‘ Wli > Single-particle state
D-NIZ..m°..2y=Z..m"...Z)




Spectrum from central extension

Now to construct a gauge invariant state, demand

H m+ = H#m (also states are parity even!)

e.g. | m m m() m+ m+ >
A—-J=14+4/1+164

Energy = 2 individual energies

(interactions ~ 1/J) Small 4 expansion matches direct perturbative
computation with Feynman diagrams (2-loop check)




Spectrum from central extension

Spectrum of excitations include spinning letters, i.e.
| D"Z >
They sit in (anti-symmetric) “bound state” BPS representation:

(D —J)? —4PK = (n + 1)?

E=+/n*+1621



Spectrum at order 1/J

1
/é%é\ /
| Z..Zm m m®Z..Zm*Z.. Zm*Z...7)

At 1/J, only two-body interactions.

Particles are commutative (no color indices at this point) — every particle interacts
with every other

Distinct from spin chain picture of large V!



Spectrum at order 1/J

A

Algebraic constraints on the dilatation operator?! |Z..Zm m mZ. . Zm* 7. . Zm*7Z. . .7)

KJ‘ U(Il) gauge indices

f ‘¢Zl:1,2>a "/fm:3,4>}

Most general ansatz compatible with (bosonic) symmetries:

charge of the state )’\/

Unknown coefficients

E.e. 31(2|2) subsector:

(omitting vacuum fields) similarly to other fields...



Spectrum at order 1/J

Dl—]oop ‘ ¢2’11¢Z¢2>J — amlmz(/’l) ‘ ¢c’lnl¢[§nz>f + ﬁmlmz(/l) ‘ ¢le¢glz>] + }/mlmz(/l) Gaﬁeab ‘ l//gflll/j;12>]—l

* We allow for one-loop corrections to the supercharges as well
* Impose closure of 311(2|2) algebra

Outcome:

» Coefficients a, /3, ¥ uniquely fixed up to a global normalization!

* Product of two (short) fundamental representations — unique long-multiplet



Spectrum at order 1/J

* Normalization from semiclassic perturbation theory:
L= chassical +0Z

Z EFT — Z N =4 SYM [Z — chassical + 04 ]

* The missing normalization: |-loop Feynman diagrams in the EF T

2 2
Massive B._ (1) = i 81+ 1281 +
+_ - _ o o 0
y) : propagator on 1 + 164
E.g. p._(A) arises from r\f e EFT

We determined a few of these coefficients by direct
2 3 computation in the EFT but not all of them. We can

compute the full spectrum to order 1/J up to two
unknown functions of A.



Relation to Poincare SUSY

dill e
\ /
R_XS; R4
Ay — o
—— A\
/\ Standard
large charge
i (8ym fixed)
£ 1
L \/,1_J
\ /
Centrally extended p31(2|2)? ——  Centrally extended Poincaré SUSY

BPS rep of psu(2|2)? ——  BPS particle of Poincaré SUSY



Relation to Poincare SUSY

D —J)
9 7
{anﬂ Qbﬁ} — Eabeaﬁpv {Saav Sﬁb} — Eabeaﬁl( :

{S%; Q) = 6,L%5 + 05 R4 + 0,05

In the standard large charge limit: D—-J,K,P \/,_/

_ D] )
Qaa:J1/4Qaa, Saa:J1/4Qaa, ; J :\/jPO, P:\/jZ, K:\/jZ

(D—J)?—4PK = (n+1? — Py=|Z

{Q%, Q") =%, ¢Po. BPS condition b h
_ 3 _ condition becomes the
a,a b _ ab N Z a,d b _ ab Z . T .
1Q%, Qs = €"easZ, Q% Q) = TespZ, massive BPS condition in flat

space extended SUSY



This ends the analysis of the
spectrum in the large charge limit.

Other interesting observables are
the higher point functions.



Higher-point functions

* Consider higher-point functions involving also light-operators

(OJ(O)Oil(xl). . .Oin(xn)OJ(oo)) = (J| O; (x1)...0; (x,) | J)
S~ ——

Light-operators

+ Example: light half-BPS operators O, ~ tr(Y'¢h)* rrotected operators,

defined by polarization null vector Y,

* Four-point function <]‘ 02(X1)02(x2) ‘J> /tH=OOft <02(X1)02(x2)>LC backg



Higher-point functions

* At leading order in J: tree level computation in the EFT (exact in A)

* Basic building block: propagator in the large charge background

e ) T
‘1\ [Broadhurst,
@ Davydychev ‘ 10]
Conformal ladder integrals
Background

(=vacuum)




Higher-point functions

e We found a refined formula:

<¢¢>LCbackg — - Z)ii —?) Z Wi(p+2mn)+ W2t — ¢+ 27n) W(x) ~ Kl(\/zx)
n=0
\\;;ss-ratio
= e

Strong coupling
limit of the mass
of particles

—4\/2n/ 6% + Qan + @) —4\/2 /6% + Qan + 1) — ¢)?
<¢¢>LC backg ™ Z € \/ THe \/
n

Infinite sum of massive propagator: worldline instanton wrapping
a great circle of S° 1 times, in 2 different orientations




Four-point functions HHLL

At leading order in 1/J, tree level computation in the EFT:

2
(0O )ger ~ 0 ()=(0) @~ ((PPcrucie)

&’Z

Massive exchange

2
Check: integrated correlator [dpt(z, 2) (<¢¢>LC backg) [Grassi, K_I?i?;rfg’disg;,

J Strong coupling (1 worldine
instanton)

Can be matched with the result of
supersymmetric localization: “emergent”

Weak coupling

matrix model of size of order J.

- N w AN (@)} ()] ~
L s B s B L s B B s s B B s B B @




Non-BPS ops: Three-point function HHK

* Three-point with Konishi K(x) = Tr &9, = ZCD?(I)? + ZCD;_(DI_

't Hooft

(JIK(xp) | J) (K(x)))EFT

* Interesting part (coupling dependent) arises from massive contraction

Summing

_ ladders >0 A4/ Aw —J (8 W)
2070, Crpy = — 82+ 4\/7 [ v/ Smh;(w)\/_
— O

(Beyond localization...)



Conclusions & future directions

Large charge 't Hooft limit provides another solvable corner of /' = 4 SYM

Same underlying algebra, and equally powerful

Other observables like correlators can also be determined in this limit without much
effort

Topological expansion interpretation?

Higher rank gauge group!?

More general three-point functions?

Less supersymmetric states? E.g. semiclassics around |/16 BPS states?

Combining large J with large N? Semiclassics from multi-scaling limit?
Large spin 't Hooft limit? E.g. g%M log § = fixed



Thank you!



