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This talk is about systems with a large 
number of degrees of freedom

One way of considering large # d.o.f.:  family of theories containing a parameter  that 
‘counts’ them and take 

Nc
Nc → ∞

+
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N2
c

+
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N4
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+ …

Nontrivial function of  λ ≡ gYM × N2
c

emergent structures appear:

By considering the ’t Hooft limit           fixedNc → ∞ λ ≡ gYM × N2
c

In gauge theories,  number of colorsNc =



This talk is about systems with a large 
number of degrees of freedom

Another way of considering large # d.o.f.:  state in a theory with a large number of 
excitations



g

 particles N
 interaction 
strength 

g

For  and  small: 
perturbation around free system

g ≪ 1 N

Large # of d.o.f

Effective interaction strength 
λeff ∼ g N



λeff ∼ g N Suggests a double scaling  and  fixed 
(e.g. mean field theory)

N → ∞ λeff

Formally looks like a ’t Hooft limit… 

Is there any similarity with the standard ’t Hooft limit....?  

Large # of d.o.f



Gauge theory with a global charge J

Physics of this large charge ’t Hooft limit  Standard large  ’t Hooft limit⟷ Nc

g2
YMJ g2

YMNc

Large # of d.o.f

?

Setup:      SYM𝒩 = 4



Outline

• Standard large charge limit vs large charge ’t Hooft limit

• Spectral problem in  SYM in the leading large charge

• Corrections to the large charge limit

• Higher-point functions

• Conclusions & future directions

𝒩 = 4



Physics of large charged states in CFTd

Two-point function   map to cylinder ⟨OJ OJ⟩ ⟶ Rt × Sd−1
L

Operator with minimal conformal 
dimension  with charge Δmin J

t

Estate =
Δmin

L
⟶ ϵstate ∼

Δmin

Ld
jstate ∼

J
Ld−1

Large charge limit:  ,   fixed:  

Lowest energy state in flat space with fixed charge density

J → ∞ , L → ∞ jstate



Physics of large states in CFTd

ϵstate ∼
Δmin

Ld
jstate ∼

J
Ld−1

• Generic (non-supersymmetric) CFTs, non-zero charge density state carries finite .   

With both   finite:

ϵstate

ϵstate, jstate

Δmin ∼ J
d

d − 1

• CFTs with moduli space of vacua,  .

E.g. in SCFT, BPS operators:

ϵstate = 0

Δmin ∼ J
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ϵstate, jstate



OJ ∼ tr ϕJ (Coulomb branch operators)

Scalar of vector multiplet

Example:    SCFTs in 𝒩 = 2 4D

⟨OJ(x1)ŌJ(x2)⟩ = ∫ 𝒟ϕ𝒟ϕ̄ exp (−S+J log(ϕ) δ(x − x1) + J log(ϕ̄) δ(x − x2))
Source terms

Intuition:

 nontrivial profile of  → ϕ ⟨ϕ⟩ ≠ 0

Large charge limit vs 
Large charge ’t Hooft limit (in SCFTs)

Similar to the Coulomb Branch 



In a theory with a marginal coupling : gYM ⟨ϕ⟩ ∼ gYM J

On this background, BPS W-bosons acquire mW ∼ gYM J

Integrating them out  higher-derivatives of massless fields    EFT→ ∼ (1/J)n ⇔

Powerful limit! However it looses some information about massive particles…

→ ∞ as J → ∞

Large charge limit vs 
Large charge ’t Hooft limit (in SCFTs)



Large charge 
’t Hooft limit:

J → ∞
gYM → 0    fixedλJ ≡ g2

YM J

•  are now finite  contribute to observablesmW ∼ gYM J →

[Bourget,Rodriguez-Gomez, Russo’18]

Large charge limit vs 
Large charge ’t Hooft limit (in SCFTs)

• Different Physics from the standard large charge limit



 SYM with SU(2) gauge group𝒩 = 4

Goal:  Determining the spectrum of non-BPS operators in the large charge limit

|Z…Z χ Z…Z χ Z…Z⟩• Add other fields to the vacuum 

Δ = J + corrections

Typically these operators are constructed as follows:

Complex scalar

• Start with a protected ‘vacuum’ state

Δ = J
|Z…Z⟩ ⇔ Ovac = Tr (Z Z)J/2

‘’Coulomb branch operator’’



 SYM with SU(2) gauge group𝒩 = 4

⟨Ovac(t1, Ω)Ōvac(t2, Ω)⟩ = ∫ [𝒟Φ] exp [−
1

g2
YM (SSYM+

λ
2

log(Tr ZZ) δ(t − t1) +
λ
2

log(Tr Z̄Z̄) δ(t − t2))]

As before, vacuum is very heavy: sources a non-trivial profile for Z

Since these are protected operators,    and:SSYM → Sfree

ially charged15 with respect to P . As we see later in section ??, the scalar expectation value

induced by the large charge state on Rt ⇥ S3 is given by

hZi =
p
2Zcl =

 
gYM

p
J

2⇡
ei' 0

0 �
gYM

p
J

2⇡
ei'

!
, (3.9)

where ei' is a (time-dependent) phase which does not a↵ect the spectrum. Thus the upper

and lower o↵-diagonal components of fundamental fields have charges ±gYM

p
Jei'/⇡ under

P respectively while the diagonal components are uncharged16:

M =

 
m0 m+

m�
�m0

!
, (3.10)

P ·m± = ±2gei' m± , P ·m0 = 0 . (3.11)

Now, on Rt ⇥ S3, supersymmetry generators Q’s are Hermitian conjugate to supercon-

formal generators S’s. This implies that the anti-commutator of superconformal generators

also get extended in the following way:

{Sa

↵
, Sb

�
} = {Ṡ ȧ

↵̇
, Ṡ ḃ

�̇
} = ✏ab✏↵�[Z

�1, ] . (3.12)

As shown above, the transformation involves an inverse of the field Z, which might seem

unusual at first sight. However, such a transformation is possible once we include quantum

corrections. In fact, this relation was originally found in planar N = 4 SYM through the

two-loop analysis of superconformal generators. Here we do not have such a direct field-

theoretical derivation; instead we simply assume its presence, motivated by the closure of

the algebra. In what follows, we denote this action by K · = [Z�1, ]. The action of K on

fundamental fields can be deduced from the Hermiticity of the algebra. Namely by taking a

Hermite conjugate of (3.11), we obtain

K ·m± = ±2ge�i'm± , K ·m0 = 0 . (3.13)

Together with the global psu(2|2)⇥ psu(2|2)nR discussed earlier, these generators con-

stitute the centrally extended psu(2|2)⇥ psu(2|2) symmetry, which has new nontrivial anti-

15Of course, physical observables are always gauge invariant and are given in terms of gauge-invariant
combinations of these excitations as we see below.

16Recall the definition of g: g =
p
�J/(4⇡) = gYM

p
J/(4⇡)

30

⟨Z⟩ =
gauge partially fixed :

SU(2) U(1)→

∼ J



 SYM with SU(2) gauge group𝒩 = 4

|Z…Z χ Z…Z χ Z…Z⟩

Symmetry preserved by the vacuum: SO(4) × SO(4)
Rotational 
symmetry 

around origin

Rotation of 
scalars that are 

not  nor Z Z̄

⟶ 𝔭𝔰𝔲(2 |2)2 × ℝ

Excitations are classified by irreps of the symmetry preserved by the vacuum 



Spectrum from algebra

Actual symmetry is larger: centrally extended !𝔭𝔰𝔲(2 |2)2 × ℝ
[Beisert]

𝔭𝔰𝔲(2 |2)2 × ℝ not enough to constrain the dynamics (no  dependence)gYM

Same symmetry as in the large N limit!



Central extension of 𝔭𝔰𝔲(2 |2)

In general: {Q, Q} = 0 for any two supercharges Q

This is true when acting on gauge invariant operators.

{Q, Q}χ ∼ [Z, χ]

But on individual fields, this does not have to be the case!

Field-dependent gauge transformation!

 Carries information about the interaction 
terms of the Lagrangian

↓



Central extension of 𝔭𝔰𝔲(2 |2)

{Qa
α, Qb

β} = ϵabϵαβ P , {Sα
a, Sβ

b} = ϵabϵαβ K

P ⋅ χ ≡ [Z, χ] , K ⋅ χ ≡ [Z−1, χ]

The central extended algebra is then:

The action of  and  are determined by the vev of !P K Z



Spectrum from central extension

Every field  is an adjoint field of SU(2)χ

ially charged15 with respect to P . As we see later in section ??, the scalar expectation value
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χ =

{Q, Q} m± ∼ ± 2λm± {Q, Q} m0 = 0

By demanding closure of the central extended algebra on a state |Z…m±…Z⟩

U(1) gauge indices

Central 
extension

Single-particle state

(D̂ − ̂J)2 − 4PK = 1



Spectrum from central extension
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χ =

{Q, Q} m± ∼ ± 2λm± {Q, Q} m0 = 0

By demanding closure of the central extended algebra on a state |Z…m±…Z⟩

(D − ̂J) |Z…m±…Z⟩ = 1 + 16 λ |Z…m±…Z⟩

(D − ̂J) |Z…m0…Z⟩ = |Z…m0…Z⟩

U(1) gauge indices

Central 
extension

Single-particle state



Spectrum from central extension

|Z…Z m− m− m0 Z…Z m+ m+ Z…Z⟩

Now to construct a gauge invariant state,  demand 

# m+ = # m−

e.g.

Energy =  individual energies
(interactions )

∑
∼ 1/J

Δ − J = 1 + 4 1 + 16 λ
Small  expansion matches direct perturbative 

computation with Feynman diagrams  (2-loop check)
λ

(also states are parity even!)



Spectrum from central extension
Spectrum of excitations include spinning letters, i.e.

|Z…Z DnZ Z…Z⟩

(D̂ − ̂J)2 − 4PK = (n + 1)2

They sit in (anti-symmetric) ‘‘bound state’’ BPS representation:

E = n2 + 16 λ



Spectrum at order 1/J

|Z…Z m− m− m0 Z…Z m+ Z…Z m+ Z…Z⟩

ℏ ∼
1
J

At , only two-body interactions. 

Particles are commutative (no color indices at this point)  every particle interacts 
with every other

1/J

⟶

Distinct from spin chain picture of large !N



Spectrum at order 1/J

|Z…Z m− m− m0 Z…Z m+ Z…Z m+ Z…Z⟩Algebraic constraints on the dilatation operator?

E.g.   subsector: 𝔰𝔲(2 |2)

{ |ϕm
a=1,2⟩, |ψm

α=3,4⟩}

U(1) gauge indices

Unknown coefficientscharge of the state
(omitting vacuum fields)

Most general ansatz compatible with (bosonic) symmetries:

similarly to other fields…

E.g. D1−loop |ϕm1
a ϕm2

b ⟩J = αm1m2
(λ) |ϕm1

a ϕm2
b ⟩J + βm1m2

(λ) |ϕm1
b ϕm2

a ⟩J + γm1m2
(λ) ϵαβϵab |ψm1

α ψm2
β ⟩J−1



Spectrum at order 1/J

• We allow for one-loop corrections to the supercharges as well
• Impose closure of  algebra𝔰𝔲(2 |2)

D1−loop |ϕm1
a ϕm2

b ⟩J = αm1m2
(λ) |ϕm1

a ϕm2
b ⟩J + βm1m2

(λ) |ϕm1
b ϕm2

a ⟩J + γm1m2
(λ) ϵαβϵab |ψm1

α ψm2
β ⟩J−1

Outcome: 

• Coefficients  uniquely fixed up to a global normalization!α, β, γ
• Product of two (short) fundamental representations  unique long-multiplet→



We determined a few of these coefficients by direct 
computation in the EFT but not all of them.  We can 
compute the full spectrum to order  up to two 
unknown functions of . 

1/J
λ

Spectrum at order 1/J

the result here while leaving the details in the appendix C:

G1 :=

x+ y±

x+ y±

x+ y�

x� y+

x+ y±

x+ y±

1

= �
2�J
J

1

1+
�J
2⇡2

(2⇡)4 |x1 � x2|
4X1122 G2 :=

x+ y±

x+ y±

x+ y�

x� y+

x+ y±

x+ y±

1

= 4�J
J

1

1+
�J
2⇡2

(2⇡)4 |x1 � x2|
4X1122

G±

3
:=

x+ y±

x± y+

x+ y±

x+ y±

1

= ⌥
16�J
J

1

1+
�J
2⇡2

(2⇡)4|x1 � x2|
4 limx3!x1

x4!x2
@2 · @4H12,34 .

The double line corresponds to the massive scalar propagator and the coiled line represents

the propagator of the massless mode of the gluon field. The functions X1234 and H12,34 are

standard integrals with four external legs defined in the appendix C and the repeated label

in X means taking a colliding limit of the respective points.

The coe�cient functions are obtained by combining the above integrals as follows

FJ,�+ =
�
G1 +G�

3

� ��
log

= �
12g2

1 + 16g2
' �12g2 + 192g4 + . . .

GJ,�+ = (G2)
��
log

= �
8g2

1 + 16g2
' �8g2 + 128g4 + . . .

F̂J,�� =
�
G1 +G+

3

� ��
log

=
20g2

1 + 16g2
' 20g2 � 320g4 + . . .

(4.26)

where we are extracting the coe�cient of the logarithmic divergence of the respective integral

(and also factorising out the tree-level respective contribution).

Comparison with data. We can partially fix the coe�cients of the dilatation operator

obtained in (4.11) by using the perturbative data summarised in table 1. The result is

FJ,�+ + 2A� ' 24g2 + . . .

FJ,+0 ' �8g2 + . . .

F̂J,�� � 2A� ' �16g2 + . . .

(4.27)

which is fully consistent with the e↵ective field theory computation (4.26).

52

ϕ−
2ϕ+

1

ϕ+
2 ϕ−

1

E.g. β+−(λ)
Massive 

propagator on 
the EFT

arises from
β+−(λ) = −

8λ
1 + 16λ

≃ − 8 λ + 128 λ2 + …

• The missing normalization: 1-loop Feynman diagrams in the EFT

• Normalization from semiclassic perturbation theory:

Z = Zclassical + δZ

ℒEFT = ℒ𝒩=4 SYM [Z = Zclassical + δZ]



Relation to Poincaré SUSY
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SUSY

�c

Figure 2: The Compton wavelength `c of a particle in a short representation of psu(2|2)2

scales inversely with the large charge ’t Hooft coupling
p

�J in units of the S3 radius L.
The standard large charge limit (fixed gYM and J ! 1) corresponds to �J ! 1. In this
limit, the sphere flattens out, resulting in a BPS particle protected by the flat space Poincaré
supersymmetry.

morphing into the centrally-extended Poincaré supersymmetry. Correspondingly the short

representations of the former symmetry become the BPS particle representations of the

contracted symmetry. This group-theoretical understanding provides a solid foundation for

the relationship between the large charge limit of SCFTs and the dynamics on the Coulomb

branch discussed in the literature. For more explanation, see Figure 2 and Section 3.1.4.

In addition to determining the large charge spectrum, we compute the three-point func-

tion of the Konishi operator and two large-charge BPS operators, and heavy-heavy-light-light

(HHLL) four-point functions of two large-charge BPS operators and two light BPS operators.

The three-point function is given by a simple integral involving the Bessel function,

C(1)

K = �8g2 + 4g

Z
1

0

dw
4gw � J1(8gw)

sinh2(w)
, (1.4)

which nevertheless exhibits a rich structure interpolating between the perturbative series at

weak coupling (�J ⌧ 1) and the worldline instantons at strong coupling (�J � 1).5 See

equation (5.30) for the explicit result and also Figure 3 for a summary. The HHLL four-point

5See (1.2) for the relation between �J and g.
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SUSY

�c

Figure 2: The Compton wavelength `c of a particle in a short representation of psu(2|2)2

scales inversely with the large charge ’t Hooft coupling
p

�J in units of the S3 radius L.
The standard large charge limit (fixed gYM and J ! 1) corresponds to �J ! 1. In this
limit, the sphere flattens out, resulting in a BPS particle protected by the flat space Poincaré
supersymmetry.

morphing into the centrally-extended Poincaré supersymmetry. Correspondingly the short

representations of the former symmetry become the BPS particle representations of the

contracted symmetry. This group-theoretical understanding provides a solid foundation for

the relationship between the large charge limit of SCFTs and the dynamics on the Coulomb

branch discussed in the literature. For more explanation, see Figure 2 and Section 3.1.4.

In addition to determining the large charge spectrum, we compute the three-point func-

tion of the Konishi operator and two large-charge BPS operators, and heavy-heavy-light-light

(HHLL) four-point functions of two large-charge BPS operators and two light BPS operators.

The three-point function is given by a simple integral involving the Bessel function,

C(1)

K = �8g2 + 4g

Z
1

0

dw
4gw � J1(8gw)

sinh2(w)
, (1.4)

which nevertheless exhibits a rich structure interpolating between the perturbative series at

weak coupling (�J ⌧ 1) and the worldline instantons at strong coupling (�J � 1).5 See

equation (5.30) for the explicit result and also Figure 3 for a summary. The HHLL four-point

5See (1.2) for the relation between �J and g.
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Relation to Poincaré SUSY

In the standard large charge limit:     D̂ − ̂J, K, P ∝ J

Using these rules, we recover the spectrum of some simple operators studied in the

previous section. For example, let us consider the simplest states in the SU(2) sector with

two excitations. By the rules above, J needs to be even and the only states one can construct

are the following with the corresponding energies

|�0

1
�0

1
iJ with E = 2 , |�+

1
��

1
iJ with E = 2

p
1 + 16g2 . (3.32)

We display in Table 2, a list of some states up to four excitations in the SU(2) and SU(3)

scalar sectors. We recover the spectrum of the last section by expanding the results of this

section for small �J (equivalently small g).

A similar analysis can be performed also for the SL(2) sector once we include the higher

representations (h0, ni). As expected, the results are in perfect agreement with the pertur-

bative analysis in the previous section.

3.1.4 Relation to Poincaré supersymmetry

Before ending this subsection, let us comment on the relation to the Poincaré supersymmetry.

So far we have been discussing the large charge ’t Hooft limit, in which the double-scaled

coupling �J is fixed. If we instead take the standard large charge limit in which the coupling

gYM is fixed, the dynamics is described by the e↵ective action on the Coulomb branch

[18–22, 24–27]. Therefore in this latter limit, we expect that the relevant symmetry is the

centrally-extended Poincaré supersymmetry.

To see the relation between the two explicitly, we carefully take the limit of anti-commutation

relations of the maximally-centrally-extended psu(2|2):

{S↵
a, Q

b
�} = �baL

↵
� + �↵�Rb

a + �ba�
↵
�

(D̂ � Ĵ)

2
,

{Qa
↵, Q

b
�} = ✏ab✏↵�P , {S↵

a, S
�
b} = ✏ab✏

↵�K .

(3.33)

In the standard large charge limit, the eigenvalues of D̂ � Ĵ , P and K all go to infinity as

/
p

J . Therefore, it is more natural to rescale the generators in the following way:

Qa
↵ = J1/4Qa

↵ , S↵
a = J1/4Q̄a

↵ ,
D̂ � Ĵ

2
=

p

J P0 , P =
p

JZ , K =
p

J Z̄ . (3.34)
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After this redefinition, the anti-commutators become

{Qa
↵ , Q̄b

�̇} = �a,b�↵,�̇P0 ,

{Qa
↵ ,Qb

�} = ✏ab✏↵�Z , {Q̄a
↵̇ , Q̄b

�̇} = ✏ab✏↵̇�̇Z̄ ,
(3.35)

which can be identified with the anti-commutation relations29 for the centrally-extended

Poincaré supersymmetry. In addition, the BPS condition for the maximally-centrally-extended

psu(2|2)2 (3.22) becomes

(D̂ � Ĵ)2 � 4PK = (n + 1)2 7! P0 = |Z| , (3.36)

which coincides with the BPS condition of the extended Poincaré supersymmetry. Note that

the representation index n disappears from the BPS condition upon taking the large charge

limit. This is a reflection of the fact that the entire tower of h0, ni ⌦ h0, ni’s combine into a

BPS single-particle representation on the Coulomb branch. We will see this more explicitly

in Section 5.4.

3.2 Recovering the leading large J spectrum from semiclassics

In this section, we will recover the previous results from a simple semiclassical analysis. In

particular, we will derive the relation (3.28).

It proves useful to study the theory on the Euclidean cylinder S3
⇥R⌧ by a Weyl rescaling

of R4. We profit from the state/operator map, and consider the insertion of large charged

states created by the action on the vacuum of Tr ZJ and its conjugate at ⌧ = �1 and

⌧ = +1 respectively. As we have explained, these states break a particular R-symmetry

subgroup U(1)R ⇢ SO(6)R and are protected by supersymmetry so that � = |J |. The full

superconformal subalgebra preserved by this setup is (3.4). The longitudinal direction of the

cylinder provides an additional isometry corresponding to time translations and the energies

of the states are equal to the conformal dimensions of the operators in flat space. Therefore

the combination H � Ĵ (where H is the time-translation generator) is preserved by these

states, a situation that finds parallel in a superfluid state carrying a finite homogeneous

charge density on the 3-sphere, namely ⇢ ⇠ J/L3 [4], with the crucial di↵erence that the

energy density in this case is vanishing by supersymmetry. The SYM path integral is now

29Here we only have P0 on the right hand side of the anti-commutator of Q and Q̄. We can see the
other components of translation generators by rescaling L↵

� and L↵̇

�̇
so that the three of the six generators

survive in the limit. This is a standard Inonu-Wigner contraction of so(4) ' su(2) ⇥ su(2) to iso(3).
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BPS condition becomes the 
massive BPS condition in flat 

space extended SUSY

After this redefinition, the anti-commutators become

{Qa
↵ , Q̄b

�̇} = �a,b�↵,�̇P0 ,

{Qa
↵ ,Qb

�} = ✏ab✏↵�Z , {Q̄a
↵̇ , Q̄b

�̇} = ✏ab✏↵̇�̇Z̄ ,
(3.35)

which can be identified with the anti-commutation relations29 for the centrally-extended

Poincaré supersymmetry. In addition, the BPS condition for the maximally-centrally-extended

psu(2|2)2 (3.22) becomes

(D̂ � Ĵ)2 � 4PK = (n + 1)2 7! P0 = |Z| , (3.36)

which coincides with the BPS condition of the extended Poincaré supersymmetry. Note that

the representation index n disappears from the BPS condition upon taking the large charge

limit. This is a reflection of the fact that the entire tower of h0, ni ⌦ h0, ni’s combine into a

BPS single-particle representation on the Coulomb branch. We will see this more explicitly

in Section 5.4.

3.2 Recovering the leading large J spectrum from semiclassics

In this section, we will recover the previous results from a simple semiclassical analysis. In

particular, we will derive the relation (3.28).

It proves useful to study the theory on the Euclidean cylinder S3
⇥R⌧ by a Weyl rescaling

of R4. We profit from the state/operator map, and consider the insertion of large charged

states created by the action on the vacuum of Tr ZJ and its conjugate at ⌧ = �1 and

⌧ = +1 respectively. As we have explained, these states break a particular R-symmetry

subgroup U(1)R ⇢ SO(6)R and are protected by supersymmetry so that � = |J |. The full

superconformal subalgebra preserved by this setup is (3.4). The longitudinal direction of the

cylinder provides an additional isometry corresponding to time translations and the energies

of the states are equal to the conformal dimensions of the operators in flat space. Therefore

the combination H � Ĵ (where H is the time-translation generator) is preserved by these

states, a situation that finds parallel in a superfluid state carrying a finite homogeneous

charge density on the 3-sphere, namely ⇢ ⇠ J/L3 [4], with the crucial di↵erence that the

energy density in this case is vanishing by supersymmetry. The SYM path integral is now

29Here we only have P0 on the right hand side of the anti-commutator of Q and Q̄. We can see the
other components of translation generators by rescaling L↵

� and L↵̇

�̇
so that the three of the six generators

survive in the limit. This is a standard Inonu-Wigner contraction of so(4) ' su(2) ⇥ su(2) to iso(3).

42

Using these rules, we recover the spectrum of some simple operators studied in the

previous section. For example, let us consider the simplest states in the SU(2) sector with

two excitations. By the rules above, J needs to be even and the only states one can construct

are the following with the corresponding energies

|�0

1
�0

1
iJ with E = 2 , |�+

1
��

1
iJ with E = 2

p
1 + 16g2 . (3.32)

We display in Table 2, a list of some states up to four excitations in the SU(2) and SU(3)

scalar sectors. We recover the spectrum of the last section by expanding the results of this

section for small �J (equivalently small g).

A similar analysis can be performed also for the SL(2) sector once we include the higher

representations (h0, ni). As expected, the results are in perfect agreement with the pertur-

bative analysis in the previous section.

3.1.4 Relation to Poincaré supersymmetry

Before ending this subsection, let us comment on the relation to the Poincaré supersymmetry.

So far we have been discussing the large charge ’t Hooft limit, in which the double-scaled

coupling �J is fixed. If we instead take the standard large charge limit in which the coupling

gYM is fixed, the dynamics is described by the e↵ective action on the Coulomb branch

[18–22, 24–27]. Therefore in this latter limit, we expect that the relevant symmetry is the

centrally-extended Poincaré supersymmetry.

To see the relation between the two explicitly, we carefully take the limit of anti-commutation

relations of the maximally-centrally-extended psu(2|2):

{S↵
a, Q

b
�} = �baL

↵
� + �↵�Rb

a + �ba�
↵
�

(D̂ � Ĵ)

2
,

{Qa
↵, Q

b
�} = ✏ab✏↵�P , {S↵

a, S
�
b} = ✏ab✏

↵�K .

(3.33)

In the standard large charge limit, the eigenvalues of D̂ � Ĵ , P and K all go to infinity as

/
p

J . Therefore, it is more natural to rescale the generators in the following way:

Qa
↵ = J1/4Qa

↵ , S↵
a = J1/4Q̄a

↵ ,
D̂ � Ĵ

2
=

p

J P0 , P =
p

JZ , K =
p

J Z̄ . (3.34)
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𝔭𝔰𝔲(2 |2) :



This ends the analysis of the 
spectrum in the large charge limit. 

Other interesting observables are 
the higher point functions.



Higher-point functions

⟨OJ(0)Oi1(x1)…Oin(xn)OJ(∞)⟩ = ⟨J |Oi1(x1)…Oin(xn) |J⟩

• Consider higher-point functions involving also light-operators

Light-operators

• Example: light half-BPS operators O2 ∼ tr(YIϕI)2 Protected operators,
defined by polarization null vector YI

⟨J |O2(x1)O2(x2) |J⟩• Four-point function ′ t Hooft= ⟨O2(x1)O2(x2)⟩LC backg



• Basic building block: propagator in the large charge background

Higher-point functions

ϕ±

J

J

…

Background 
(=vacuum)

⟨ϕϕ⟩LC backg =

• At leading order in : tree level computation in the EFT (exact in )J λ

∝ ∑
k

λkF(k)(z, z̄)

Conformal ladder integrals

The solution to this equation has already been worked out in [3]. One considers an expansion

in powers the ’t Hooft coupling �J

G(x, y) =
1X

k=0

gk(x, y) , gk(x, y) ⇠ O(�k

J
) . (B.8)

The leading order term satisfies the massless propagator equation

�2xg0 = �(4)(x� y) ) g0 =
1

4⇡2

1

|x� y|2
, (B.9)

whereas the remaining terms obey

�2xgk+1 +m2gk = 0 , (B.10)

where we have omitted the arguments for simplicity. It is simple to obtain iteratively the

perturbative solution at any order k

gk(x, y) = (�1)k
 

kY

n=1

Z
d4zn m

2(zn)g0(zn, zn+1)

!
g0(x, z1) , (B.11)

where we defined zk+1 ⌘ y. More explicitly, this is equivalent to

gk(x, y) =
�
�4g2

�k (x1 � x2)2

4⇡2(x� x1)2(y � x2)2
F (k)(z, z̄) (B.12)

where F (k)(z, z̄) stems from a ladder type integral and can be pictorially represented by:

x
+ y

±

x
+ y

±

x
+ y

�

x
� y

+

x

x1

. . .
y

x2

1

=
⇡2k

(y � x)2(x1 � x2)2k
(1� z)(1� z̄)

z � z̄
F (k)(z, z̄)

Here the integration points are represented by the black dots while the white dots are unin-

tegrated external points. The conformal cross-ratios z, z̄ are given by

zz̄ ⌘
(y � x1)2(x� x2)2

(x� x1)2(y � x2)2
, (1� z)(1� z̄) ⌘

(x1 � x2)2(x� y)2

(x� x1)2(y � x2)2
. (B.13)

68

[Broadhurst, 
Davydychev ‘ 10]



Higher-point functions

⟨ϕϕ⟩LC backg = W(x) ∼ K1( λx)

cross-ratio

Figure 2: Left Panel: The three-point function of the Konishi operator and two large-charge
BPS operators at leading order in the large charge expansion as a function of the large ’t
Hooft coupling is depicted. The blue line represents the exact result from weak to strong
large charge ’t Hooft coupling. The green and orange dashed lines correspond to the weak
and strong coupling perturbative expansions, respectively. The weak coupling expansion is
truncated to the first ten terms, while the strong coupling expansion incorporates a single
worldline instanton contribution. Remarkably, the strong coupling expansion yields a highly
accurate result, even at small coupling. The zoomed-in box highlights the weak coupling
region. Right Panel: The integrated correlator of two large-charge BPS operators and
two light BPS operators at leading order in the large charge expansion as a function of the
large charge ’t Hooft coupling is illustrated. The blue line corresponds to the exact result
that interpolates from weak to strong large charge ’t Hooft coupling. The green and orange
dashed lines represent the weak and strong coupling perturbative expansions, respectively.
Similarly, the weak coupling expansion is truncated to the first ten terms, whereas the strong
coupling expansion includes a single worldline instanton contribution.

inspiration from it, we express the resummed conformal ladder integrals as a sum over

magnons,

t(z, z̄) =
(1 � z)(1 � z̄)

p
zz̄

1X

a=1

ae��
p

a2+16g2

p
a2 + 16g2

sin(a')

sin(')
, (1.7)

with e�� =
p

zz̄ and ei' =
p

z/z̄, and use this to read o↵ the operator-product-expansion

(OPE) data. In addition, we derive a strong coupling expansion of the resummed ladder

integrals,

t(z, z̄) =
(1 � z)(1 � z̄)

p
zz̄

1X

n=0

W (' + 2⇡n) + W (2⇡ � ' + 2⇡n) ,

W (x) =
4gxK1(4g

p
x2 + �2)

sin(x)
p

x2 + �2
.

(1.8)

This expression has two remarkable features;

1. It provides an exact rewriting of the resummed conformal ladder integrals in terms of

8

• We found a refined formula:

λ ≫ 1 :

⟨ϕϕ⟩LC backg ∼ ∑
n

#e−4 λ σ2 + (2πn + φ)2
+#e−4 λ σ2 + (2π(n + 1) − φ)2

Strong coupling 
limit of the mass 

of particles

Infinite sum of massive propagator: worldline instanton wrapping 
a great circle of   times, in 2 different orientations S3 n

Figure 3: An illustration of the worldline instanton representation (1.8) of the HHLL four-
point function from summing massive propagators. The blue and red curves depict the two
distinct terms, representing the worldline instanton’s wrapping of the cylinder in opposite
directions. The varying tones of blue and red correspond to di↵erent winding numbers
(n = 0, 1, 2) for each respective direction.

the worldline instanton contributions W (x) depending on the orientation (blue versus

red) and the winding number n of the instanton. See Figure 3.

2. The worldline instantons have the same functional form as the massive propagator in

flat space (i.e. Bessel K1). This provides a concrete link between the large charge limit

in the CFT and the physics on the Coulomb branch.

See Section 5.1 for further discussions on these points.

We also compute the integrated four-point functions for arbitrary SU(N) gauge groups

by recasting results from supersymmetric localization into a matrix integral of size J/2. The

matrix integrals can be evaluated by saddle-point techniques and the answers are in precise

agreement with the results in the literature obtained by other methods [52, 53]. For N = 2,

we derive the same answer from our un-integrated HHLL four-point function by explicitly

carrying out the integral over the conformal cross-ratios z, z̄, thus providing a nontrivial

consistency check of our formulae. See Figure 2 for an illustrative summary. Note that the

large charge ’t Hooft limit corresponds to a standard ’t Hooft limit of this matrix integral,

thereby o↵ering another evidence for the similarity between the two limits.

The rest of this paper is organized as follows. In Section 1.2, we explain generalities of

the large charge limit and the large charge ’t Hooft limit in SCFTs and discuss similarities

9



At leading order in , tree level computation in the EFT:1/J

Four-point functions HHLL

⟨O2(x1)O2(x2)⟩EFT ∼
Massive exchange

O2 O2 ∼ (⟨ϕϕ⟩LC backg)
2

∫ dμ(z, z̄) (⟨ϕϕ⟩LC backg)
2

Check:  integrated correlator 

Can be matched with the result of 
supersymmetric localization:  “emergent” 
matrix model of size of order .
 

J

0.1 0.2 0.3 0.4 0.5
g

1

2

3

4

5

6

7

GJ

Figure 2: Left Panel: The three-point function of the Konishi operator and two large-charge
BPS operators at leading order in the large charge expansion as a function of the large ’t
Hooft coupling is depicted. The blue line represents the exact result from weak to strong
large charge ’t Hooft coupling. The green and orange dashed lines correspond to the weak
and strong coupling perturbative expansions, respectively. The weak coupling expansion is
truncated to the first ten terms, while the strong coupling expansion incorporates a single
worldline instanton contribution. Remarkably, the strong coupling expansion yields a highly
accurate result, even at small coupling. The zoomed-in box highlights the weak coupling
region. Right Panel: The integrated correlator of two large-charge BPS operators and
two light BPS operators at leading order in the large charge expansion as a function of the
large charge ’t Hooft coupling is illustrated. The blue line corresponds to the exact result
that interpolates from weak to strong large charge ’t Hooft coupling. The green and orange
dashed lines represent the weak and strong coupling perturbative expansions, respectively.
Similarly, the weak coupling expansion is truncated to the first ten terms, whereas the strong
coupling expansion includes a single worldline instanton contribution.

inspiration from it, we express the resummed conformal ladder integrals as a sum over

magnons,

t(z, z̄) =
(1 � z)(1 � z̄)

p
zz̄

1X

a=1

ae��
p

a2+16g2

p
a2 + 16g2

sin(a')

sin(')
, (1.7)

with e�� =
p

zz̄ and ei' =
p

z/z̄, and use this to read o↵ the operator-product-expansion

(OPE) data. In addition, we derive a strong coupling expansion of the resummed ladder

integrals,

t(z, z̄) =
(1 � z)(1 � z̄)

p
zz̄

1X

n=0

W (' + 2⇡n) + W (2⇡ � ' + 2⇡n) ,

W (x) =
4gxK1(4g

p
x2 + �2)

sin(x)
p

x2 + �2
.

(1.8)

This expression has two remarkable features;

1. It provides an exact rewriting of the resummed conformal ladder integrals in terms of
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Weak coupling

Strong coupling (1 worldine 
instanton)

[Grassi, Komargodski, 
Tizzano’ 19]

Similar in spirit to:



Non-BPS ops:   Three-point function HHK

• Three-point with Konishi

⟨J |K(x1) |J⟩ ′ t Hooft= ⟨K(x1)⟩EFT

K(x) = Tr ΦIΦI = 2Φ0
I Φ

0
I + 2Φ+

I Φ−
I

• Interesting part (coupling dependent) arises from massive contraction

2Φ0
I Φ

0
I +2Φ+

I Φ−
I CKJJ = − 8λ + 4 λ ∫

∞

0
dw

4 λw − J1(8 λw)
sinh2(w)

Summing 
ladders

(Beyond localization…)



Conclusions & future directions

• Large charge ’t Hooft limit provides another solvable corner of  SYM

• Same underlying algebra, and equally powerful

• Other observables like correlators can also be determined in this limit without much 
effort

• Topological expansion interpretation?
• Higher rank gauge group?
• More general three-point functions?
• Less supersymmetric states? E.g. semiclassics around 1/16 BPS states?
• Combining large  with large ? Semiclassics from multi-scaling limit?
• Large spin ’t Hooft limit? E.g.   

𝒩 = 4

J N
g2

YM log S ≡ fixed



Thank you!


