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1. Introduction

The main purpose of this paper is to study obstruction issues in deforming cycles and 
show how to eliminate obstructions to deforming cycles. To motivate the discussion, we 
recall the infinitesimal Hodge conjecture.
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Let X/S be a smooth projective scheme, where S = Spec(k[[t]]) with k a field of 
characteristic zero. For each integer n ≥ 0, we write Sn = Spec k[t]/(tn+1) and write 
Xn = X ×S Sn. Let K0(X0) and H∗

dR(X0/k) denote the Grothendieck group and de 
Rham cohomology respectively. There exists a Chern character ring homomorphism

ch : K0(X0) → H∗
dR(X0/k).

For an element ξ0 ∈ K0(X0)Q, we are interested in lifting ch(ξ0) ∈ H∗
dR(X0/k) to 

ch(ξ) ∈ H∗
dR(X/S) in the sense that

ch(ξ |X0) = ch(ξ0) ∈ H∗
dR(X0/k),

where ξ ∈ K0(X )Q.
Let ∇ : H∗

dR(X/S) → H∗
dR(X/S) denote the derivation in the parameter t given by 

the Gauss-Manin connection. There exists a canonical isomorphism

Φ : H∗
dR(X/S)∇ ∼−→ H∗

dR(X0/k),

where H∗
dR(X/S)∇ is the kernel of ∇.

The infinitesimal Hodge conjecture predicts that

Conjecture 1.1 (see Conjecture 1.4 of [8]). The following statements are equivalent for 
an element ξ0 ∈ K0(X0)Q:

1. Φ−1 ◦ ch(ξ0) ∈
⊕

i H
2i
dR(X/S)∇ ∩ F iH2i

dR(X/S), where F iH2i
dR denotes the Hodge 

filtration of de Rham cohomology;
2. there is an element ξ ∈ K0(X )Q such that

ch(ξ |X0) = ch(ξ0) ∈ H∗
dR(X0/k).

Some recent progress on the infinitesimal Hodge conjecture has been made by Bloch-
Esnault-Kerz [7,8], Green-Griffiths [11] and Morrow [17]. Especially relevant to our study 
of algebraic cycles is the work by Bloch, Esnault and Kerz [8]. They proved that, in ap-
pendix A of [8], the infinitesimal Hodge conjecture is equivalent to the variational Hodge 
conjecture proposed by Grothendieck [14]. Moreover, motivated by the infinitesimal (vari-
ational) Hodge conjecture, they proved the following:

Theorem 1.2 (see Theorem 1.2 of [8]). Assuming that the Chow-Künneth property (part 
of the standard conjecture) holds, the following statements are equivalent for an element 
ξ0 ∈ K0(X0)Q:

1. Φ−1 ◦ ch(ξ0) ∈
⊕

i H
2i
dR(X/S)∇ ∩ F iH2i

dR(X/S);
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2. there is an element ξ̂ ∈
(
lim←−−n

K0(Xn)
)
⊗Q such that

ch(ξ̂ |X0) = ch(ξ0) ∈ H∗
dR(X0/k).

The key point in the proof of this theorem is to eliminate obstructions to lifting ch(ξ0)
by using correspondences (the assumption of Chow-Künneth property guarantees enough 
correspondences). Moreover, if the ground field k is algebraic over Q, without assuming 
the Chow-Künneth property, Bloch-Esnault-Kerz deduced that the obstructions to lifting 
ch(ξ0) can be eliminated.

In the pioneering work [12], Green and Griffiths studied the deformation of algebraic 
cycles. Concretely, let X be a smooth projective variety over a field k of characteristic 
0, they investigated how algebraic cycles of X deformed in Xj , which is the j-th trivial 
deformations of X. In particular, they studied the first order deformations of divisors 
and zero cycles and then defined their tangent spaces. Dribus, Hoffman and the author 
extended much of their theory in [9,21–23].

Let Y ⊂ X be a subvariety of codimension 1, it is well known that the embedded 
deformation of the subvariety Y may be obstructed. However, by considering Y as an 
element of the cycle group Z1(X), Green-Griffiths predicted that we could lift the divisor 
Y to higher order successively. This prediction was verified by Ng in his Ph.D thesis [19]
by using the semi-regularity map defined by Kodaira-Spencer [16] and Bloch [5].

We sketch Ng’s idea briefly. When an infinitesimal deformation of Y is obstructed to 
higher order, let Z be a very ample divisor such that H1(OX(Y +Z)) = 0. According to 
Proposition 1.1 of [5], the semi-regularity map

π : H1(Y ∪ Z,NY ∪Z/X) → H2(OX),

where NY ∪Z/X is the normal bundle, agrees with the boundary map in the long exact 
sequence

· · · → H1(OX(Y + Z)) → H1(Y ∪ Z,NY ∪Z/X) π−→ H2(OX) → · · · .

Since H1(OX(Y + Z)) = 0, the kernel of π is 0, Y ∪ Z is semi-regular in X. According 
to Kodaira-Spencer [16] (see also Theorem 1.2 of [5]), Y ∪ Z can be lifted to higher 
order successively. On the other hand, Z can be always lifted to trivial deformations 
Z ×Spec(k) Spec(k[ε]/(εj+1)) successively.

As a cycle, Y can be written as a formal sum

Y = (Y + Z) − Z.

To deform the cycle Y is equivalent to deforming Y ∪ Z and Z respectively. Hence, Y
lifts to higher order successively, since both Y ∪ Z and Z do.

The above method suggests an interesting idea to eliminate obstructions:
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Idea 1.3. When the deformation of Y is obstructed, find Z such that

{
1. Z helps Y to eliminate obstructions,
2. Z does not bring new obstructions.

While the deformation of divisors are relatively well understood, it is natural to ask 
how to go beyond the divisor case. A very interesting work on obstructions to deforming 
curves on a three-fold had been done by Mukai-Nasu [18]. Inspired by a question asked 
by Ng in section 1.5 of [19], the author [20] used K-theory to study the deformation of 
1-cycles on a three-fold. For Y ⊂ X a subvariety of codimension p, where p is an integer 
such that 1 ≤ p ≤ dim(X), Green-Griffiths [12] (page 187-190) predicted that we could 
lift the cycle Y ∈ Zp(X) to higher order successively. Their prediction has been verified 
in Theorem 3.11 of [23].

The purpose of this paper is to generalize Idea 1.3 to the study of deformations of 
cycles codimension p. In the second section, we recall background on K-theory and Milnor 
K-theoretic cycles. In section 3, we show how to eliminate obstructions to deforming 
cycles of codimension p.

We summarize the main result of this paper as follows. In notation of Setting 2.1
below, let Y 1 be a first order infinitesimal deformation of Y , which is generically given 
by f1 + εg1, f2, · · · , fp with g1 ∈ OX,y. By Definition 2.2 below, we attach two elements 
μY (Y 1) and μY (Y ) to Y 1 and Y respectively. Using the isomorphism OX,y = (OX,w)Q1 , 
we write g1 = a1

b1
, where a1, b1 ∈ OX,w and b1 /∈ Q1.

To avoid heavy notations, we state the main result in an informal way:

Theorem 1.4 (cf. Lemma 3.4 and Theorem 3.6). With notation as above, b1 is either 
in or not in the maximal idea (f1, · · · , fp, fp+1) ⊂ OX,w, then there are two cases as 
follows.

Case 1: If b1 /∈ (f1, · · · , fp, fp+1), then μY (Y 1) lifts μY (Y ) and it can be lifted to higher 
order successively in the sense of Definition 2.11.

Case 2: If b1 ∈ (f1, · · · , fp, fp+1), then μY (Y 1) may not be a lifting of μY (Y ) and ob-
structions to lifting μY (Y ) occur. In this case, we could find another irreducible closed 
subscheme Z ⊂ X of codimension p and attach it an element μZ(Z) (see Remark 2.4) 
such that μZ(Z) helps to eliminate obstructions to lifting μY (Y ).

We remark that Theorem 3.6 of this paper is different from Theorem 3.11 of [23]. This 
is mainly because we do not know whether the map μY of Definition 2.2 is surjective or 
not.1
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Notation.

(1). K-theory in this paper is Thomason-Trobaugh non-connective K-theory, if not stated 
otherwise.

(2). For any abelian group M , MQ denotes M ⊗Z Q.
(3). If not stated otherwise, X is a smooth projective variety over a field k of characteris-

tic 0. For each integer j ≥ 0, Xj denotes the j-th infinitesimally trivial deformation 
of X, i.e., Xj = X ×Spec(k) Spec(k[ε]/εj+1).

2. K-theory and deformation of cycles

The following setting is used below.

Setting 2.1. Let Y ⊂ X be an irreducible closed subvariety of codimension p, with generic 
point y. Let W ⊂ Y be an irreducible closed subvariety of codimension 1 in Y , with 
generic point w.

We assume that W is generically defined by f1, f2, · · · , fp, fp+1 and Y is generi-
cally defined by f1, f2, · · · , fp. It follows that OX,y = (OX,w)Q1 , where Q1 is the ideal 
(f1, f2, · · · , fp) ⊂ OX,w.

For each integer j ≥ 0, we denote by K0(OXj ,y on y) the Grothendieck group of the 
triangulated category Db(OXj ,y on y), which is the derived category of perfect complexes 
of OXj ,y-modules with homology supported on the closed point y ∈ Spec(OXj ,y).

A first order infinitesimal embedded deformation Y 1 ⊂ X1 is generically given by a 
regular sequence {f1 + εg1, f2 + εg2, · · · , fp + εgp}, where g1, · · · , gp ∈ OX,y, see [21]
(page 711-712) for related discussions if necessary.

Let F•(f1 + εg1, · · · , fp + εgp) denote the Koszul complex associated to the regular 
sequence {f1 +εg1, · · · , fp+εgp}, which defines an element [F•(f1 +εg1, · · · , fp+εgp)] ∈
K0(OX1,y on y)Q. We recall a map from the Zariski tangent space TY Hilb(X) to the 
Hilbert scheme at the point Y to the Grothendieck group K0(OX1,y on y)Q.

Definition 2.2 (Definition 2.4 of [21]). With notation as above, we define a map

μY : TY Hilb(X) → K0(OX1,y on y)Q

Y 1 −→ [F•(f1 + εg1, · · · , fp + εgp)].

For Y ∈ TY Hilb(X), μY (Y ) = [F•(f1, · · · , fp)], where F•(f1, · · · , fp) is the Koszul 
complex associated to the sequence {f1, · · · , fp}.

1 The author thanks Spencer Bloch [6] for discussions on this issue.
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In notation of Setting 2.1, let z be the point defined by the prime ideal Q2 =
(fp+1, f2, · · · , fp) ⊂ OX,w, then z ∈ X(p).

Definition 2.3. With notation as above, we define a subscheme Z ⊂ X to be the Zariski 
closure of z with closed reduced structure

Z := {z}.

Remark 2.4. We can similarly define a map

μZ : TZHilb(X) → K0(OX1,z on z)Q

as in Definition 2.2. Let F•(fp+1, f2, · · · , fp) be the Koszul complex of the sequence 
{fp+1, f2, · · · , fp}. For Z ∈ TZHilb(X), μZ(Z) = [F•(fp+1, f2, · · · , fp)].

Recall that Milnor K-groups with support are rationally defined as certain eigenspaces 
of K-groups in [22].

Definition 2.5 (Definition 3.2 of [22]). Let X be a finite equi-dimensional noetherian 
scheme and y ∈ X(p). For each l ∈ Z, Milnor K-group with support KM

l (OX,y on y) is 
rationally defined to be

KM
l (OX,y on y) := K

(l+p)
l (OX,y on y)Q,

where K(l+p)
l is the eigenspace of ψm = ml+p and ψm is the Adams operations.

Adams operations ψm for K-theory of perfect complexes has the following property.

Lemma 2.6 (Prop 4.12 of [10]). Let L(x1, · · · , xp) be the Koszul complex of a regular 
sequence {x1, · · · , xp}, then Adams operations ψm on L(x1, · · · , xp) satisfy that

ψm(L(x1, · · · , xp)) = mpL(x1, · · · , xp).

It follows that [F•(f1 + εg1, · · · , fp + εgp)] ∈ K0(OX1,y on y)Q lies in the eigenspace 
space K(p)

0 (OX1,y on y)Q. In other words, [F•(f1 + εg1, · · · , fp + εgp)] lies in the Milnor 
K-group with support

[F•(f1 + εg1, · · · , fp + εgp)] ∈ KM
0 (OX1,y on y).

Theorem 2.7 (Theorem 3.14 of [22]). For each integer j > 0, there exists the following 
commutative diagram in which the morphisms Ch from K-groups to local cohomology 
groups are induced by Chern character from K-theory to negative cyclic homology



60 S. Yang / Journal of Algebra 601 (2022) 54–71
⊕
y∈X(p)

Hp
y ((Ωp−1

X/Q)⊕j) Ch←−−−−
⊕

y∈X(p)
KM

0 (OXj ,y on y)

∂p,−p
1

⏐⏐� dp,−p
1,Xj

⏐⏐�⊕
w∈X(p+1)

Hp+1
w ((Ωp−1

X/Q)⊕j) Ch←−−−−∼=

⊕
w∈X(p+1)

KM
−1(OXj ,w on w).

(2.1)

Tensor triangular Chow groups of a tensor triangulated category were defined by 
Balmer [3], and they were further explored by Klein [15]. By slight modifying Balmer’s 
definition, we proposed Milnor K-theoretic cycles.

Definition 2.8 (Definition 3.4 and 3.15 of [22]). The p-th Milnor K-theoretic cycle group 
of X is defined to be2

ZM
p (DPerf(X)) :=

⊕
y∈X(p)

KM
0 (OX,y on y).

For each integer j > 0, the p-th Milnor K-theoretic cycle group of Xj is defined to 
be3

ZM
p (DPerf(Xj)) := Ker(dp,−p

1,Xj
),

where dp,−p
1,Xj

is the differential in the commutative diagram (2.1).
The elements of ZM

p (DPerf(X)) and ZM
p (DPerf(Xj)) are called Milnor K-theoretic 

cycles.

By Lemma 2.6, both μY (Y ) and μZ(Z) have eigenweight p. This shows that

Corollary 2.9. Both μY (Y ) and μZ(Z) are Milnor K-theoretic cycles

μY (Y ) ∈ ZM
p (DPerf(X)), μZ(Z) ∈ ZM

p (DPerf(X)).

Remark 2.10. It is obvious that KM
0 (OX,y on y) is a direct summand of KM

0 (OXj ,y on y)
and its image under dp,−p

1,Xj
is zero, so ZM

p (DPerf(X)) is a direct summand of
ZM
p (DPerf(Xj)).

Milnor K-theoretic cycles can detect nilpotents, which is important in the study of 
deformation of cycles. For each integer j > 0, the natural map gj : Xj−1 → Xj induces 
a commutative diagram (see section 3.1 of [23]),

2 It was proved in Theorem 3.16 of [22] that ZM
p (DPerf(X)) agreed with the classical cycle group Zp(X)Q.

3 The reason why we use the kernel of dp,−p
1,Xj

to define Milnor K-theoretic cycles ZM
p (DPerf(Xj)) is ex-

plained in section 2.2 of [23].
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⊕
y∈X(p)

KM
0 (OXj ,y on y)

g∗
j−−−−→

⊕
y∈X(p)

KM
0 (OXj−1,y on y)

dp,−p
1,Xj

⏐⏐� dp,−p
1,Xj−1

⏐⏐�
⊕

w∈X(p+1)
KM

−1(OXj ,w on w)
g∗
j−−−−→

⊕
w∈X(p+1)

KM
−1(OXj−1,w on w).

This further induces

g∗j : ZM
p (Dperf(Xj)) → ZM

p (Dperf(Xj−1)). (2.2)

Definition 2.11 (Definition 3.3 of [23]). Given ξj−1 ∈ ZM
p (Dperf(Xj−1)), an element 

ξj ∈ ZM
p (Dperf(Xj)) is called a deformation (or lift) of ξj−1, if g∗j (ξj) = ξj−1.

The elements ξj−1 and ξj can be formally written as finite sums

ξj−1 =
∑

y∈X(p)

λj−1 · {y}, ξj =
∑

y∈X(p)

λj · {y},

where {y} is with closed reduced structure and λj ’s are perfect complexes such that ∑
y
λj ∈ Ker(dp,−p

1,Xj
) ⊂

⊕
y∈X(p)

K0(OXj ,y on y)Q. When we lift from ξj−1 to ξj , we lift the 

coefficients from 
∑
y
λj−1 to 

∑
y
λj .

For later purpose, we want to describe the map Ch in Theorem 2.7

Ch :
⊕

y∈X(p)

KM
0 (OXj ,y on y) →

⊕
y∈X(p)

Hp
y ((Ωp−1

X/Q)⊕j).

When j = 1, this map Ch has been described by using a construction of Angéniol and 
Lejeune-Jalabert [1], see Lemma 3.8 of [21]. For general j, it can still be described by 
their construction. For readers’ convenience, we sketch the description of Ch below.

An element M ∈ KM
0 (OXj ,y on y) ⊂ K0(OXj ,y on y)Q is represented by a strict 

perfect complex L• supported at y

0 −−−−→ Fn
Mn−−−−→ Fn−1

Mn−1−−−−→ . . .
M2−−−−→ F1

M1−−−−→ F0 −−−−→ 0,

where each Fi = Ori
Xj ,y

and Mi’s are matrices with entries in OXj ,y.

Definition 2.12 (page 24 of [1]). The local fundamental class attached to this perfect 
complex is defined to be the following collection

[L•]loc = { 1
p!dMi ◦ dMi+1 ◦ · · · ◦ dMi+p−1}, i = 1, 2, · · · ,

where d = dQ and each dMi is the matrix of absolute differentials. In other words,
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dMi ∈ Hom(Fi, Fi−1 ⊗ Ω1
OXj,y

/Q).

By Lemme 3.1.1 (on page 24) and Definition 3.4 (on page 29) of [1], the class 
[L•]loc above is a cycle in Hom(L•, Ωp

OXj,y
/Q ⊗ L•), and the image of [L•]loc in 

Hp(Hom(L•, Ωp
OXj,y

/Q ⊗ L•)) does not depend on the choice of the basis of L•.
Since

Hp(Hom(L•,Ωp
OXj,y

/Q ⊗ L•)) = EXT p(L•,Ωp
OXj,y

/Q ⊗ L•),

the above local fundamental class [L•]loc defines an element (still denoted [L•]loc) of 
EXT p(L•, Ωp

OXj,y
/Q ⊗ L•).

Since L• is supported on y, by discussions after Definition 2.3.1 on page 98-99 of [1], 
there exists the following trace map

Tr : EXT p(L•,Ωp
OXj,y

/Q ⊗ L•) −→ Hp
y (Ωp

Xj/Q
).

Definition 2.13 (Definition 2.3.2 on page 99 of [1]). The image of [L•]loc under the above 
trace map, denoted Vp

L•
, is called Newton class.

Theorem 2.14 (Proposition 4.3.1 on page 113 of [1]). The Newton class Vp
L•

is well-
defined on K0(OXj ,y on y).

The truncation map  ∂

∂ε
: Ωp

Xj/Q
→ Ωp−1

X/Q ⊗ k[ε]/(εj) induces a map

 ∂

∂ε
: Hp

y (Ωp
Xj/Q

) −→ Hp
y ((Ωp−1

X/Q)⊕j),

where we identify Ωp−1
X/Q ⊗ k[ε]/(εj) with (Ωp−1

X/Q)⊕j .

Lemma 2.15 (cf. Lemma 3.8 of [21]). With notation as above, the map

Ch : KM
0 (OXj ,y on y) → Hp

y ((Ωp−1
X/Q)⊕j)

can be described as a composition

K
M
0 (OXj,y on y) → H

p
y (Ωp

Xj/Q
) → H

p
y ((Ωp−1

X/Q)⊕j)

L• −→ Vp
L•

−→ Vp
L•



∂

∂ε
.

We use this Lemma to describe Ch(L•) below, where L• is represented by some Koszul 
complexes. When j = 1, such descriptions were given in [21] (page 715-716).

In notation of Setting 2.1, let g1, · · · , gj be arbitrary elements of OX,y. The Koszul 
resolution of OXj ,y/(f1 + εg1 + · · · + εjgj , f2, · · · , fp), denoted F j

• , has the form
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0 −−−−→ F j
p −−−−→ F j

p−1 −−−−→ · · · −−−−→ F j
0 −−−−→ 0,

where each F j
i =

∧i((OXj ,y))⊕p. This complex defines an element [F j
• ] ∈ KM

0 (OXj ,y on y)
whose image under the Ch map can be described by Lemma 2.15. Concretely, the fol-
lowing diagram

⎧⎨
⎩

F j
• −−−−→ OXj ,y/(f1 + εg1 + · · · + εjgj , f2, · · · , fp)

F j
p (∼= OXj ,y)

[F j
• ]loc−−−−→ F j

0 ⊗ Ωp
OXj,y

/Q(∼= Ωp
OXj,y

/Q),

where [F j
• ]loc is the local fundamental class attached to F j

• , gives an element in 
Extp(OXj ,y/(f1 + εg1 + · · · + εjgj , f2, · · · , fp), Ωp

OXj,y
/Q). This further gives Newton 

class Vp

F j
•
∈ Hp

y (Ωp
Xj/Q

).
Let F•(f1, f2, · · · , fp) be the Koszul resolution of OX,y/(f1, f2, · · · , fp), which has the 

form

0 −−−−→ Fp −−−−→ Fp−1 −−−−→ · · · −−−−→ F0 −−−−→ 0,

where each Fi =
∧i

O⊕p
X,y. The image Ch([F j

• ]), which is the truncation of Newton class 
Vp

F j
•
, is represented by the following diagram,

⎧⎪⎨
⎪⎩
F•(f1, f2, · · · , fp) −−−−→ OX,y/(f1, f2, · · · , fp)

Fp(∼= OX,y)
[F j

• ]loc

∂

∂ε−−−−−−−→ F0 ⊗ (Ωp−1
OX,y/Q

)⊕j(∼= (Ωp−1
OX,y/Q

)⊕j),
(2.3)

where the truncation [F j
• ]loc

∂

∂ε
= (−1)p−1(g1 + · · · + jgj)df2 ∧ · · · ∧ dfp with d = dQ. 

To be precise, the above diagram gives an element α in Extp(OX,y/(f1, f2, · · · , fp),
(Ωp−1

OX,y/Q
)⊕j). Since

Hp
y ((Ωp−1

X/Q)⊕j) = lim−−→
n→∞

Extp(OX,y/(f1, f2, · · · , fp)n, (Ωp−1
OX,y/Q

)⊕j),

the image [α] of α under the limit is in Hp
y ((Ωp−1

X/Q)⊕j) and it is Ch([F j
• ]).

3. Chern character and obstructions

Let Dperf(Xj) denote the derived category obtained from the exact category of perfect 
complexes on Xj and L(i)(Xj) is defined to be

L(i)(Xj) := {E ∈ Dperf(Xj) | codim(supph(E)) ≥ −i},

where the closed subset supph(E) ⊂ X is the support of the total homology of the 
perfect complex E and the codimension of supph(E) is no less than −i.
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Let (L(i)(Xj)/L(i−1)(Xj))# denote the idempotent completion of Verdier quotient 
L(i)(Xj)/L(i−1)(Xj) in the sense of Balmer-Schlichting [4].

Theorem 3.1 ([2]). For each i ∈ Z, localization induces an equivalence

(L(i)(Xj)/L(i−1)(Xj))# � �
x∈X(−i)

Dperf
x (Xj)

between the idempotent completion of the quotient L(i)(Xj)/L(i−1)(Xj) and the coproduct 
over x ∈ X(−i) of the derived category of perfect complexes of OXj,x-modules with ho-
mology supported on the closed point x ∈ Spec(OX,x). Consequently, localization induces 
an isomorphism

K0((L(i)(Xj)/L(i−1)(Xj))#) �
⊕

x∈X(−i)

K0(OXj ,x on x). (3.1)

We keep the notation of Setting 2.1 below. For each non-negative integer j, let 
a1, · · · , aj be arbitrary elements of OX,w. We denote by Cj the Koszul resolution of 
OX,w/(f1fp+1 +εa1 + · · ·+εjaj , f2, · · · , fp). Since the support of the Koszul complex Cj

has codimension p, we consider Cj as an element of L(−p)(Xj) which defines an element 
of K0((L(−p)(Xj)/L(−p−1)(Xj))#)Q, denoted [Cj ].

When p = 1 and j = 1, for X a surface, it was proved in Theorem 2.18 of [23] that 
the Koszul complex of f1f2 + εa1 defined a Milnor K-theoretic cycle.4

It is interesting to generalize Theorem 2.18 of [23] and find more Milnor K-theoretic 
cycles. Let Q1 = (f1, f2, · · · , fp) as in Setting 2.1 and let z be point given by Q2 =
(fp+1, f2, · · · , fp) as in Definition 2.3, we denote by C1

j and C2
j the Koszul resolutions of 

(OXj ,w)Q1/(f1 + ε
a1

fp+1
+ · · · + εj

aj
fp+1

, f2, · · · , fp) and (OXj ,w)Q2/(fp+1 + ε
a1

f1
+ · · · +

εj
aj
f1

, f2, · · · , fp) respectively.

Using isomorphisms OXj ,y = (OXj ,w)Q1 and OXj ,z = (OXj ,w)Q2 , one sees that C1
j

and C2
j gives elements of K0(OXj ,y on y) and K0(OXj ,z on z), denoted [C1

j ] and [C2
j ]

respectively.
Under the isomorphism (3.1) (let i = −p)

K0((L(−p)(Xj)/L(−p−1)(Xj))#) �
⊕

y∈X(p)

K0(OXj ,y on y),

the element [Cj ] decomposes into the direct sum of [C1
j ] and [C2

j ],5

4 For the geometric meaning of Theorem 2.18 of [23], we refer to page 103-104 and the summary on page 
119 of Green-Griffiths [12]. See also page 316-318 of [23] for a summary.
5 Since f−1

p+1 exists in (OXj,w)Q1 , the complex C1
j and the Koszul resolution of (OXj,w)Q1/(f1 + ε

a1

fp+1
+

· · · + εj
aj

fp+1
, f2

fp+1
, · · · , fp

fp+1
) define the same element of Grothendieck group. There is a similar expla-

nation for [C2
j ].
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[Cj ] = [C1
j ] + [C2

j ].

By Lemma 2.6, one sees that [C1
j ] ∈ KM

0 (OXj ,y on y) and [C2
j ] ∈ KM

0 (OXj ,z on z). In 
particular, when j = 0, C1

0 and C2
0 are Koszul complexes of sequences {f1, f2, · · · , fp}

and {fp+1, f2, · · · , fp} respectively. It is obvious that [C1
0 ] = μY (Y ) and [C2

0 ] = μZ(Z), 
where μY (Y ) and μZ(Z) are defined in Definition 2.2 and Remark 2.4.

The following theorem gives a generalization of Theorem 2.18 of [23].

Theorem 3.2. With notation as above, [Cj ] = [C1
j ] + [C2

j ] is a Milnor K-theoretic cycle 
in the sense of Definition 2.8

[Cj ] = [C1
j ] + [C2

j ] ∈ ZM
p (DPerf(Xj)).

The strategy of proving this theorem is to use the commutative diagram (2.1) in 
Theorem 2.7. Concretely, we describe the images Ch([C1

j ]) and Ch([C2
j ]), and then show 

that Ch([C1
j ]) + Ch([C2

j ]) lies in the kernel of the differential ∂p,−p
1 . This implies that 

[Cj ] lies in the kernel of the differential dp,−p
1,Xj

.

Proof. The images Ch([C1
j ]) and Ch([C2

j ]) can be described by Lemma 2.15. In fact, 
they can be represented by diagrams as (2.3) on page 10. Concretely, let Q1 be the 
ideal (f1, f2, · · · , fp) as in Setting 2.1. Let F•(f1, f2, · · · , fp) be the Koszul resolution of 
(OX,w)Q1/(f1, f2, · · · , fp), which has the form

0 −−−−→ Fp −−−−→ Fp−1 −−−−→ · · · −−−−→ F0 −−−−→ 0,

where each Fi =
∧i((OX,w)Q1)⊕p. The image Ch([C1

j ]) ∈ Hp
y ((Ωp−1

X/Q)⊕j) is represented 
by the following diagram,⎧⎨

⎩
F•(f1, f2, · · · , fp) −−−−→ (OX,w)Q1/(f1, f2, · · · , fp)

Fp(∼= (OX,w)Q1)
ω1−−−−→ F0 ⊗ (Ωp−1

(OX,w)Q1/Q
)⊕j(∼= (Ωp−1

(OX,w)Q1/Q
)⊕j),

where ω1 = (−1)p−1( a1

fp+1
+ · · · + jaj

fp+1
)df2 ∧ · · · ∧ dfp.

Recall that Q2 is the ideal (fp+1, f2, · · · , fp) of OX,w. The Koszul resolution of 
(OX,w)Q2/(fp+1, f2, · · · , fp), denoted F•(fp+1, f2, · · · , fp), has the form

0 −−−−→ F ′
p −−−−→ F ′

p−1 −−−−→ · · · −−−−→ F ′
0 −−−−→ 0,

where each F ′
i =

∧i((OX,w)Q2)⊕p. Let ω2 = (−1)p−1(a1

f1
+ · · · + jaj

f1
)df2 ∧ · · · ∧ dfp, the 

image Ch([C2
j ]) is represented by the following diagram

⎧⎨
⎩
F•(fp+1, f2, · · · , fp) −−−−→ (OX,w)Q2/(fp+1, f2, · · · , fp)

F ′
p(∼= (OX,w)Q2)

ω2−−−−→ F ′
0 ⊗ (Ωp−1 )⊕j(∼= (Ωp−1 )⊕j).
(OX,w)Q2/Q (OX,w)Q2/Q
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Let F•(f1, f2, · · · , fp, fp+1) and F•(fp+1, f2, · · · , fp, f1) be Koszul resolutions of 
OX,w/(f1, f2, · · · , fp, fp+1) and OX,w/(fp+1, f2, · · · , fp, f1) respectively. The image 
∂p,−p
1 (Ch([C1

j ])) is represented by the following diagram (denoted β1)

{
F•(f1, f2, · · · , fp, fp+1) −−−−−→ OX,w/(f1, f2, · · · , fp, fp+1)

Fp+1(∼= OX,w)
(−1)p−1(a1+···+jaj)df2∧···∧dfp−−−−−−−−−−−−−−−−−−−−−→ F0 ⊗ (Ωp−1

OX,w/Q)⊕j(∼= (Ωp−1
OX,w/Q)⊕j),

and ∂p,−p
1 (Ch([C2

j ])) is represented by the following diagram (denoted β2)

{
F•(fp+1, f2, · · · , fp, f1) −−−−−→ OX,w/(fp+1, f2, · · · , fp, f1)

Fp+1(∼= OX,w)
(−1)p−1(a1+···+jaj)df2∧···∧dfp−−−−−−−−−−−−−−−−−−−−−→ F0 ⊗ (Ωp−1

OX,w/Q)⊕j(∼= (Ωp−1
OX,w/Q)⊕j).

The two complexes F•(f1, f2, · · · , fp, fp+1) and F•(fp+1, f2, · · · , fp, f1) are related by 
the following commutative diagram (see page 691 of [13])

OX,w
Dp+1−−−−→ ∧pO⊕p+1

X,w

Dp−−−−→ · · · −−−−→ O⊕p+1
X,w

D1−−−−→ OX,w

detA1

⏐⏐� ∧pA1

⏐⏐� ⏐⏐� A1

⏐⏐� =
⏐⏐�

OX,w
Ep+1−−−−→ ∧pO⊕p+1

X,w

Ep−−−−→ · · · −−−−→ O⊕p+1
X,w

E1−−−−→ OX,w,

where each Di and Ei are defined as usual. In particular, D1 = (f1, f2, · · · , fp, fp+1), 
E1 = (fp+1, f2, · · · , fp, f1), and A1 is the matrix

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · · 1
0 1 0 · · · 0
0 0 1 · · · 0
. . . . . . . . . . . . . .

1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠ .

Since the determinant detA1 = −1, one has

β1 = −β2 ∈ Extp+1(OX,w/(f1, f2, · · · , fp, fp+1), (Ωp−1
OX,w/Q)⊕j).

Consequently, ∂p,−p
1 (Ch([C1

j ])) + ∂p,−p
1 (Ch([C2

j ])) = 0 ∈ Hp+1
w (Ωp−1

OX,w/Q). This implies 
that dp,−p

1,Xj
([C1

j ] + [C2
j ]) = 0 because of the commutative diagram (2.1)

Ch([C1
j ]) + Ch([C2

j ]) Ch←−−−− [C1
j ] + [C2

j ]

∂p,−p
1

⏐⏐� dp,−p
1,Xj

⏐⏐�
∂p,−p
1 (Ch([C1

j ]) + Ch([C2
j ])) = 0 Ch←−−−−∼=

dp,−p
1,Xj

([C1
j ] + [C2

j ]).

In conclusion, [C1
j ] +[C2

j ] is a Milnor K-theoretic cycle in the sense of Definition 2.8. �



S. Yang / Journal of Algebra 601 (2022) 54–71 67
For each integer j, g∗j ([Cj ]) = [Cj−1], where g∗j is the map (2.2). When j = 1, 
g∗1([C1]) = g∗1([C1

1 ] + [C2
1 ]) = μY (Y ) + μZ(Z). This shows that

Corollary 3.3. With notation as above, [C1] ∈ ZM
p (DPerf(X1)) is a first order deformation 

of μY (Y ) +μZ(Z) and it can be successively lifted to higher order [Cj ] ∈ ZM
p (DPerf(Xj)).

For a first order infinitesimal deformation Y 1 of Y , by Definition 2.2, μY (Y 1) ∈
K0(OX1,y on y)Q is given by the Koszul complex F•(f1 + εg1, · · · , fp + εgp). We want to 
check whether μY (Y 1) is a Milnor K-theoretic cycles or not.

For simplicity, we assume that g2 = · · · = gp = 0 in the following. In notation of 
Setting 2.1, for g1 ∈ OX,y = (OX,w)Q1 , we write g1 = a1

b1
, where a1, b1 ∈ OX,w and 

b1 /∈ Q1, then b1 is either in or not in the maximal idea (f1, · · · , fp, fp+1) ⊂ OX,w.

Lemma 3.4. With notation as above, in the case b1 /∈ (f1, · · · , fp, fp+1), then μY (Y 1)
is a Milnor K-theoretic cycle which lifts μY (Y ) and it can be lifted to higher order in 
ZM
p (DPerf(Xj)) successively in the sense of Definition 2.11.

Proof. If b1 /∈ (f1, · · · , fp, fp+1), then b1 is a unit in OX,w, this says g1 = a1

b1
∈ OX,w. Let 

T 1 denote Koszul resolution of (OX1,w)Q1/(f1 + εg1, f2, · · · , fp). For each integer j ≥ 2, 
let T j denote Koszul resolution of (OXj,w)Q1/(f1 + εg1 + ε2h2 + · · · + εjhj , f2, · · · , fp), 
where h2, · · · , hj are arbitrary elements of OX,w.

For each j ≥ 1, T j gives an element [T j ] ∈ K0(OXj ,y on y)Q. Moreover, by Lemma 2.6, 
[T j ] ∈ KM

0 (OXj ,y on y). We use the same strategy of proving Theorem 3.2 to prove 
that [T j ] ∈ ZM

p (DPerf(Xj)). The image of [T j ] under the Ch map, Ch([T j ]), can be 
represented by the following diagram (cf. (2.3) on page 10)

⎧⎨
⎩
F•(f1, f2, · · · , fp) −−−−→ (OX,w)Q1/(f1, f2, · · · , fp)

Fp(∼= (OX,w)Q1)
η−−−−→ F0 ⊗ (Ωp−1

(OX,w)Q1/Q
)⊕j(∼= (Ωp−1

(OX,w)Q1/Q
)⊕j).

Here η = (−1)p−1(g1 +2h2 + · · ·+ jhj)df2 ∧ · · · ∧ dfp and F•(f1, f2, · · · , fp) is the Koszul 
resolution of (OX,w)Q1/(f1, f2, · · · , fp). Since fp+1 /∈ Q1, f−1

p+1 exists in (OX,w)Q1 , η can 

be rewritten as η = fp+1η

fp+1
.

The image ∂p,−p
1 (Ch([T j ])) is represented by the following diagram (denoted γ),

⎧⎨
⎩
F•(f1, f2, · · · , fp, fp+1) −−−−→ OX,w/(f1, f2, · · · , fp, fp+1)

Fp+1(∼= OX,w) fp+1η−−−−→ F0 ⊗ (Ωp−1
OX,w/Q)⊕j(∼= (Ωp−1

OX,w/Q)⊕j),

where the complex F•(f1, f2, · · · , fp, fp+1) is of the form

0 −−−−→
∧p+1(O )⊕p+1 Mp+1−−−−→

∧p(O )⊕p+1 −−−−→ · · · .
X,w X,w
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Let {e1, · · · , ep+1} be a basis of (OX,w)⊕p+1, the map Mp+1 is

e1 ∧ · · · ∧ ep+1 →
p+1∑
j=1

(−1)jfje1 ∧ · · · ∧ êj ∧ · · · ep+1,

where êj means to omit ej .
Since fp+1 appears in Mp+1, the diagram γ defines a trivial element of Extp+1(OX,w/

(f1, · · · , fp, fp+1), (Ωp−1
OX,w/Q)⊕j). Hence, ∂p,−p

1 (Ch([T j ])) = 0. It follows from the com-
mutative diagram (2.1) that dp,−p

1,Xj
([T j ]) = 0. This proves that [T j ] ∈ ZM

p (DPerf(Xj)).
It is obvious that g∗j ([T j ]) = [T j−1], where g∗j is the map (2.2). In particular, [T 1] =

μY (Y 1) and g∗1([T 1]) = g∗1(μY (Y 1)) = μY (Y ).
In conclusion, [T 1] = μY (Y 1) is a Milnor K-theoretic cycle and it lifts μY (Y ). More-

over, [T 1] lifts to higher order [T j ] ∈ ZM
p (DPerf(Xj)) successively. �

Now, we consider the case b1 ∈ (f1, f2, · · · , fp, fp+1). Since b1 /∈ (f1, f2, · · · , fp), we 
can write b1 =

∑p
i=1 lif

ni
i + lp+1f

np+1
p+1 , where lp+1 is a unit in OX,w and each nj is some 

integer. For simplicity, we assume that each nj = 1 and lp+1 = 1.
Let KM

0 (OX1,y on y, ε) denote the kernel of the natural projection

KM
0 (OX1,y on y) ε=0−−→ KM

0 (OX,y on y).

There exists the following isomorphism (see Corollary 9.5 in [9] or Corollary 3.11 in [22])

KM
0 (OX1,y on y, ε) ∼= Hp

y (Ωp−1
X/Q).

It follows that there is an isomorphism

(P,Ch) : KM
0 (OX1,y on y) ∼= KM

0 (OX,y on y) ⊕Hp
y (Ωp−1

X/Q), (3.2)

where P is induced by the map ε → 0 and Ch is the map induced by Chern character 
from K-theory to negative cyclic homology (see Theorem 2.7).

For μY (Y 1) = [F•(f1 + εg1, f2, · · · , fp)] ∈ KM
0 (OX1,y on y), where g1 = a1

b1
, the 

image P(μY (Y 1)) = μY (Y ) ∈ KM
0 (OX,y on y). The image Ch(μY (Y 1)) can be described 

by Lemma 2.15 (cf. (2.3) on page 10). Concretely, let F•(f1, f2, · · · , fp) be the Koszul 
resolution of (OX,w)Q1/(f1, f2, · · · , fp), which is of the form

0 −−−−→ Fp
Mp−−−−→ Fp−1 −−−−→ · · · −−−−→ F0 −−−−→ 0,

where each Fi =
∧i((OX,w)Q1)⊕p. The map Mp is

e1 ∧ · · · ∧ ep →
p∑

(−1)jfje1 ∧ · · · ∧ êj ∧ · · · ep, (3.3)

j=1
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where {e1, · · · , ep} is a basis of ((OX,w)Q1)⊕p and êj means to omit ej .
The following diagram (denoted γ1)

⎧⎪⎨
⎪⎩
F•(f1, f2, · · · , fp) −−−−−→ (OX,w)Q1/(f1, f2, · · · , fp)

Fp(∼= (OX,w)Q1 )
(−1)p−1

a1

b1
df2∧···∧dfp

−−−−−−−−−−−−−−−→ F0 ⊗ Ωp−1
(OX,w)Q1/Q

(∼= Ωp−1
(OX,w)Q1/Q

),

defines an element of Extp((OX,w)Q1/(f1, f2, · · · , fp), Ωp−1
(OX,w)Q1/Q

). The limit [γ1] ∈
Hp

y (Ωp−1
(OX,w)Q1/Q

) of γ1 is Ch(μY (Y 1)).

By Lemma 2.6, the Koszul resolution of (OX1,w)Q1/(f1 + ε
a1

fp+1
, f2, · · · , fp) gives an 

element [F (f1 + ε
a1

fp+1
, f2, · · · , fp)] ∈ KM

0 (OX1,y on y) whose image under the map P is 

μY (Y ). By Lemma 2.15, the image of [F (f1 + ε
a1

fp+1
, f2, · · · , fp)] under the map Ch is 

the limit [γ2] ∈ Hp
y (Ωp−1

(OX,w)Q1/Q
), where γ2 is the following diagram (cf. (2.3) on page 

10)

⎧⎪⎨
⎪⎩
F•(f1, f2, · · · , fp) −−−−→ (OX,w)Q1/(f1, f2, · · · , fp)

Fp(∼= (OX,w)Q1)
(−1)p−1

a1

fp+1
df2∧···∧dfp

−−−−−−−−−−−−−−−−→ F0 ⊗ Ωp−1
(OX,w)Q1/Q

(∼= Ωp−1
(OX,w)Q1/Q

).

It follows from the isomorphism (3.2) that

μY (Y 1) = μY (Y ) + [γ1], [F (f1 + ε
a1

fp+1
, f2, · · · , fp)] = μY (Y ) + [γ2].

Since 
a1

b1
− a1

fp+1
=

a1(−
∑p

i=1 lifi)
b1fp+1

and each fi (i = 1, · · · , p) appears in the map Mp

(3.3), [γ1] = [γ2] ∈ Hp
y (Ωp−1

(OX,w)Q1/Q
). This shows that

Lemma 3.5. The element μY (Y 1) agrees with [F (f1 + ε
a1

fp+1
, f2, · · · , fp)].

It is sufficient to assume that μY (Y 1) is represented by the Koszul resolution of 
(OX1,w)Q1/(f1 + ε

a1

fp+1
, f2, · · · , fp) in the following. The image ∂p,−p

1 (Ch(μY (Y 1))) is 

represented by the following diagram
⎧⎨
⎩
F•(f1, f2, · · · , fp, fp+1) −−−−→ OX,w/(f1, f2, · · · , fp, fp+1)

Fp+1(∼= OX,w) (−1)p−1a1df2∧···∧dfp−−−−−−−−−−−−−−→ F0 ⊗ Ωp−1
OX,w/Q(∼= Ωp−1

OX,w/Q),

which is not necessarily to be trivial. It follows from the commutative diagram (2.1)
that μY (Y 1) is not a Milnor K-theoretic cycles. Hence, μY (Y 1) is not a deformation of 
μY (Y ). In this way, obstructions to deforming μY (Y ) arise.
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Recall that Z is the subscheme defined in Definition 2.3 and μZ(Z) ∈ ZM
p (DPerf(X))

is represented by the Koszul complex of the sequence {fp+1, f2, · · · , fp}. Inspired by Idea 
1.3, we use μZ(Z) to eliminate obstructions to deforming μY (Y ).

Since μY (Y ) can be written as a formal sum

μY (Y ) = (μY (Y ) + μZ(Z)) − μZ(Z) ∈ ZM
p (DPerf(X)),

to lift μY (Y ) is equivalent to lifting μY (Y ) + μZ(Z) and μZ(Z) respectively.
By Corollary 3.3, the element [C1] is a Milnor K-theoretic cycle and it is a first 

order deformation of μY (Y ) +μZ(Z). By Remark 2.10, μZ(Z) ∈ ZM
p (DPerf(X1)), so the 

formal sum [C1] −μZ(Z) ∈ ZM
p (DPerf(X1)). Since g∗1([C1] −μZ(Z)) = (μY (Y ) +μZ(Z)) −

μZ(Z) = μY (Y ), where g∗1 is the map (2.2), [C1] − μZ(Z) is a first order deformation of 
μY (Y ).

The Milnor K-theoretic cycle [C1] − μZ(Z) lies in the direct sum of K-groups

[C1] − μZ(Z) ∈ ZM
p (DPerf(X1)) ⊂

⊕
y∈X(p)

KM
0 (OX1,y on y).

Let ([C1] −μZ(Z))|Y denote the direct summand corresponding to Y (with generic point 
y) of [C1] −μZ(Z), one sees that ([C1] −μZ(Z))|Y = [F (f1+ε

a1

fp+1
, f2, · · · , fp)] = μY (Y 1).

By Remark 2.10, for each integer j > 1, μZ(Z) ∈ ZM
p (DPerf(Xj)). According to Corol-

lary 3.3, the element [C1] ∈ ZM
p (DPerf(X1)) lifts to [Cj ] ∈ ZM

p (DPerf(Xj)) successively. 
It follows that [C1] − μZ(Z) ∈ ZM

p (DPerf(X1)) lifts to [Cj ] − μZ(Z) ∈ ZM
p (DPerf(Xj))

successively. In summary,

Theorem 3.6. With notation as above, in the case b1 ∈ (f1, · · · , fp, fp+1), there ex-
ists a Milnor K-theoretic cycle μZ(Z) ∈ ZM

p (DPerf(X)), where Z ⊂ X is another 
irreducible closed subscheme of codimension p, and a Milnor K-theoretic cycle [C1] ∈
ZM
p (DPerf(X1)), which is a first order deformation of μY (Y ) + μZ(Z) such that

1. ([C1] − μZ(Z))|Y = μY (Y 1);
2. [C1] − μZ(Z) is a first order deformation of μY (Y );
3. [C1] − μZ(Z) lifts to higher order successively.
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