
J
H
E
P
0
8
(
2
0
2
3
)
0
7
9

Published for SISSA by Springer

Received: June 6, 2023
Accepted: August 3, 2023

Published: August 16, 2023

Integrable crosscap states: from spin chains to 1D
Bose gas

Miao He and Yunfeng Jiang
School of Physics, Southeast University,
Nanjing 211189, China
Shing-Tung Yau Center, Southeast University,
Nanjing 210096, China

E-mail: hemiao@seu.edu.cn, jinagyf2008@seu.edu.cn

Abstract: The notion of a crosscap state, a special conformal boundary state first defined
in 2d CFT, was recently generalized to 2d massive integrable quantum field theories and
integrable spin chains. It has been shown that the crosscap states preserve integrability.
In this work, we first generalize this notion to the Lieb-Liniger model, which is a prototype
of integrable non-relativistic many-body systems. We then show that the defined crosscap
state preserves integrability. We derive the exact overlap formula of the crosscap state and
the on-shell Bethe states. As a byproduct, we prove the conjectured overlap formula for
integrable spin chains rigorously by coordinate Bethe ansatz. It turns out that the overlap
formula for both models take the same form as a ratio of Gaudin-like determinants with a
trivial prefactor. Finally we study quench dynamics of the crosscap state, which turns out
to be surprisingly simple. The stationary density distribution is simply a constant. We also
derive the analytic formula for dynamical correlation functions in the Tonks-Girardeau limit.

Keywords: Bethe Ansatz, Integrable Field Theories, Lattice Integrable Models

ArXiv ePrint: 2305.16046

Open Access, c⃝ The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP08(2023)079

mailto:hemiao@seu.edu.cn
mailto:jinagyf2008@seu.edu.cn
https://arxiv.org/abs/2305.16046
https://doi.org/10.1007/JHEP08(2023)079


J
H
E
P
0
8
(
2
0
2
3
)
0
7
9

Contents

1 Introduction 1

2 Crosscap states of integrable spin chains 3
2.1 Integrability of the crosscap state 4
2.2 Overlaps formula for compact chains 6
2.3 Overlap formula for the non-compact chain 12

3 Crosscap state of Lieb-Liniger model 14
3.1 Crosscap state in Lieb-Liniger model 14
3.2 Exact overlap formula 17
3.3 Crosscap partition function 20

4 Dynamical correlation functions in crosscap state 22
4.1 Two-point function 23
4.2 Four-point function 25

5 Conclusion and discussion 26

A Proof of equation (2.56) 27

B Deriving the crosscap state in Lieb-Liniger model 28

C Lattice computation of correlation functions 29

1 Introduction

An integrable quantum field theory (IQFT) in 1+1 dimension has infinitely many local
conserved charges. In the presence of boundaries, some of these charges are no longer
conserved. Nevertheless, there are special boundary conditions which preserves an infinite
subset of the conserved charges. These boundary conditions are called integrable. For a
Lorentz invariant theory, one can equivalently place the boundary in the temporal direction,
in which case the boundary condition becomes a special state in the Hilbert space called an
integrable boundary state [1]. A characteristic feature of integrable boundary states is that
they are annihilated by infinitely many odd charges of the model. In recent years, it has
become clear that the notion of integrable boundary states can be generalized to a broader
class of theories such as integrable lattice models [2, 3].

Interests on integrable boundary states stem from both statistical mechanics and
AdS/CFT correspondence. In statistical mechanics, these states can serve as initial states
for the investigation of out-of-equilibrium dynamics [4–8]. Due to their integrability, one
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can have more analytic control for the calculations. In AdS/CFT correspondence, it turns
out that various kinds of correlation functions in N = 4 SYM theory and ABJM theory
at weak coupling can be computed by the overlap of an on-shell Bethe state and an
integrable boundary state. These include the one-point functions in defect CFT [9–15],
three-point functions of two giant gravitons and one non-BPS single-trace operator [16–18],
and correlation functions of involving circular Wilson loops [19, 20] and ’t Hooft loops [21].
In all these cases, the exact overlap formulae play an important role. For integrable boundary
states, only the Bethe states with parity even rapidities lead to non-vanishing overlaps.
Moreover, the overlap formula has very nice analytic structure [22–27]. In all known cases, it
can be written as a the product of a prefactor and a ratio of Gaudin-like determinants. The
former is state dependent while the latter is universal and only depends on the symmetry.
The exact formulae have been proven in a number of cases using both the coordinate Bethe
ansatz [28, 29] and algebraic Bethe ansatz [22–27, 30, 31], while for other cases they remain
conjectures with extensive numerical evidence.

Very recently, a new type of integrable boundary states called crosscap states have
been investigated. These states first arise in 2d CFT, which are special conformal boundary
states [32]. Geometrically, they correspond to non-orientable surfaces such as RP2 and
the Klein bottle, which cannot be described by a local boundary condition. In [33], by
generalizing the geometric intuition from CFT, the authors defined crosscap states for 2d
massive IQFTs and the integrable spin chains. Remarkably, they discovered that crosscap
states as they defined are integrable. The crosscap states have several new features which
make them rather special. First of all, most known integrable boundary states such as the
two-site states and matrix product states are short-range entangled while crosscap states
are long-range entangled by construction. In addition, the overlap formula for the crosscap
state and an on-shell Bethe state has a trivial prefactor [33], and is given simply by the
ratio of Gaudin-like determinants. In this sense, crosscap states are probably the ‘cleanest’
integrable boundary states. The unique features of the crosscap states are intimately related
to their geometric origin. Therefore we expect it should be possible to define such states for
a wide class of models. Indeed, generalizations to gl(N) spin chains [34] and classical sigma
models [35] have been studied recently.

Apart from relativistic IQFTs and spin chains, there is yet another important class
of integrable models which are continuous but non-relativistic. The prototype of these
models is the Lieb-Liniger model [36], which describes one dimensional bosonic particles
interacting with a pairwise δ-function potential. Apart from theoretical interests, the
Lieb-Liniger model has direct relevance to cold atom experiments (see for examples the
reviews [37–39]). It is particularly interesting to compute its dynamical observables since
they can be measured in the laboratory. However, so far the only known integrable boundary
state for the Lieb-Liniger model is the so-called Bose-Einstein Condensate (BEC) state. It
was found that the overlap of the BEC state and on-shell Bethe states obey parity even
selection rules and the overlap formula exhibit the same structure as spin chains [29, 40, 41].
Since both for IQFTs and spin chains, one can construct many integrable boundary states,
it is a natural question whether we can construct more integrable boundary states for the
Lieb-Liniger model. In view of its close relation to experiments, such integrable boundary
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states might be even more interesting. The crosscap state seems to be a natural candidate,
as its geometric origin gives us a clear guidance for its construction. As we will show below
this indeed turns out to be the case.

Now let us sketch our strategy for the construction. The Lieb-Liniger model sits
somewhere between IQFTs and spin chains. On the one hand, it can be obtained as the
non-relativistic limit of the sinh-Gordon model [42, 43]; on the other hand, it corresponds
to special continuum limits of certain spin chain models [44, 45]. Therefore we can start
with crosscap states in either IQFTs or spin chains and then take the proper limit. It turns
out that the second option is more feasible. We will comment on its relation to the first
option later. We consider two methods to obtain crosscap state in the Lieb-Liniger model
from spin chains: the first one involves taking a special continuum limit of the XXZ spin
chain [44], while the second one involves discretizing the Lieb-Liniger model as a generalized
XXX spin chain [46]. It turns out that the two methods lead to the same result, given by

|C⟩ = exp
(∫ ℓ/2

0
dxΦ†(x)Φ†(x+ ℓ/2)

)
|Ω⟩ , (1.1)

where Φ†(x) is the bosonic operator which creates a particle at position x. The geometric
meaning of (1.1) is quite clear — particles are created in pairs at antipodal points. As a
result, this state is long-range entangled by construction. One might notice that this state
is similar to the integrable boundary states constructed by Ghoshal and Zamolodhikov in
IQFT [1] where one replaces Φ†(x)Φ†(x+ ℓ

2) by Kab(θ)A†
a(θ)A†

b(−θ). However, we want to
emphasis two important differences. First, the Faddeev-Zamolodchikov operator A†

a(θ) is a
creation operator in momentum space while Φ†(x) is the creation operator in position space.
Second, the Ghoshal-Zamolodchikov construction describes boundary states in the infinite
volume while for the crosscap state finite volume is necessary to define antipodal points.

The rest of this paper is organized as follows. In section 2, we generalize the proof
of integrability of crosscap states to anisotropic inhomogeneous Heisenberg spin chains,
and derive the exact overlap formula using the coordinate Bethe ansatz. This section
can be seen as a useful technical preparation for similar calculations in the Lieb-Liniger
model. In section 3, we propose the crosscap state in the Lieb-Liniger model by taking the
continuum limit from spin chain crosscap state. We prove its integrability and derive the
exact overlap formula of the crosscap state and an on-shell Bethe state. The dynamical
correlation function in crosscap states are studied in section 4. We conclude and discuss
future directions in section 5. Some details of the calculations are given in the appendices.

2 Crosscap states of integrable spin chains

The crosscap state is constructed by identifying the states at antipodal sites. For XXX spin
chain, the entangled pair of states at sites j and j + L

2 is

|c⟩⟩j =
(
1 + S+

j S
+
j+L/2

)
|↓⟩j ⊗ |↓⟩j+L/2, (2.1)
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where we denote the generators of the SU(2) algebra at site-j by S±
j and Sz

j . The crosscap
state is then defined by taking the tensor product of such entangled pairs

|C⟩SU(2) ≡
L/2∏
j=1

(|c⟩⟩j)⊗ =
L/2∏
j=1

(
1 + S+

j S
+
j+ L

2

)
|Ω⟩ , (2.2)

where the |Ω⟩ = | ↓L⟩ is the pseudovacuum.
The crosscap state can also be defined for the non-compact SL(2,R) spin chain [33].

The main difference is that more than one particles can be excited on the same site. In this
case, the entangled pair at sites j and j + L

2 reads

|c⟩⟩j =
∞∑

n=0

1
n!
(
S+

j S
+
j+L/2

)n
|0⟩j ⊗ |0⟩j+L/2, (2.3)

where |0⟩ represents the lowest-weight state of SL(2,R). The crosscap state is given by

|C⟩SL(2) ≡
L/2∏
j=1

(|c⟩⟩j)⊗ =
L/2∏
j=1

[ ∞∑
n=0

1
n!
(
S+

j S
+
j+L/2

)n
]
|Ω⟩. (2.4)

Both (2.2) and (2.4) has been studied in [33].
In this section, we derive two new results which are useful for the Lieb-Liniger model.

One is defining crosscap states for the inhomogeneous XXZ spin chain and proving their
integrability. This constitutes a slight generalization of the results in [33]. The other is
deriving the exact overlaps between crosscap states and on-shell Bethe states for both
compact and non-compact spin chains. The overlap formula was first conjectured in [33]
and later proven in [34] using algebraic Bethe ansatz for XXX spin chain (as a special case
of gl(N) spin chain). Here we give an alternative proof using CBA, which works for both
compact and non-compact spin chains and can be generalized to the Lieb-Liniger model.

2.1 Integrability of the crosscap state

The integrable boundary states |Ψ0⟩ are the states which are annihilated by the odd charges

Q2n+1|Ψ0⟩ = 0. (2.5)

For spin chains, it is more convenient to work with the transfer matrix, which is the
generating functional of the conserved charges

T (λ) = exp
( ∞∑

n=1

λn

n!Qn+1

)
. (2.6)

In [2, 3], the authors propose to define integrable boundary states as the states satisfying

T (λ)|Ψ0⟩ = T (−λ)|Ψ0⟩. (2.7)

We shall adopt this definition here.
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Inhomogeneous XXZ chain. Let us consider the inhomogeneous XXZ spin chain defined
by the R-matrix

R(λ) =


sinh(λ+ η)

sinh(λ) sinh(η)
sinh(η) sinh(λ)

sinh(λ+ η)

 . (2.8)

For later convenience, we can also write it in the tensor product form

R(λ) = 1
2
(

sinh(λ+ η) + sinh(λ)
)
1 ⊗ 1 +

(
sinh(λ+ η) − sinh(λ)

)
Sz ⊗ σz

+ sinh(η)
(
S+ ⊗ σ− + S− ⊗ σ+

)
, (2.9)

where σα are Pauli matrices and Sα = σα/2. The Lax operator at site-j is defined as

Lj(λ) = Raj (λ− ξj − η/2) , (2.10)

where ξj is the inhomogeneity. The inhomogeneous XXZ spin chain is defined by the
following transfer matrix

TXXZ(u) = tra (L1(λ) . . . LL(λ)) . (2.11)

Crosscap state and integrability. For the inhomogeneous XXZ spin chain, we define
the crosscap state to be the same state (2.2). We now prove its integrability. Using the
relation

S±
j |c⟩⟩j = S∓

j+L/2|c⟩⟩j , (2.12)

we find that

σ2Lj(λ)σ2|c⟩⟩j = −Lj+L/2(−λ)|c⟩⟩j , (2.13)

if the inhomogeneities at site j and j + L/2 are also identified as [47]

ξj+L/2 = −ξj , j = 1, 2, . . . , L/2 . (2.14)

By employing (2.13), the action of the transfer matrix on the crosscap state reads

TXXZ(λ)|C⟩ = tra

[(
L1(λ) · · ·LL/2(λ)

) (
LL/2+1(λ) · · ·LL(λ)

)]
|C⟩

= (−1)L/2tra

[(
L1(λ) · · ·LL/2(λ)

) (
σ2L1(−λ) · · ·LL/2(−λ)σ2

)]
|C⟩

= (−1)L/2tra

[(
L1(−λ) · · ·LL/2(−λ)

) (
σ2L1(λ) · · ·LL/2(λ)σ2

)]
|C⟩

= (−1)Ltra

[(
L1(−λ) · · ·LL/2(−λ)

) (
LL/2+1(−λ) · · ·LL(−λ)

)]
|C⟩

= TXXZ(−λ)|C⟩.

Therefore the crosscap state is integrable if the inhomogeneities at antipodal sites have
paired structure (2.14).
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2.2 Overlaps formula for compact chains

Owing to the condition (2.7), the overlap of an on-shell Bethe state |λN ⟩ and an integrable
boundary state |Ψ0⟩ is only non-zero if the Bethe roots are parity even, namely {λN} =
{−λN}. For N being even, this implies

{λN} = {λ1,−λ1, λ2,−λ2 . . . , λN/2,−λN/2} . (2.15)

For parity even Bethe roots, it is known that the overlap take the following form1

⟨λN |Ψ0⟩√
⟨λN |λN ⟩

=
N/2∏
j=1

F(λj) ×

√√√√detG+
N/2

detG−
N/2

, (2.16)

where F(λ) is a state-dependent function and detG±
N/2 are the Gaudin-like determinants.

We will prove that for the crosscap states the overlaps indeed take the form (2.16) with
F(λ) = 1. We follow the method proposed in [28] with important modifications.

Coordinate Bethe ansatz. An N -particle eigenstate |λN ⟩ for both the XXX and XXZ
spin chains take the following form

|λN ⟩ =
∑
{nN}

χ (nN ,λN ) |n1, n2, · · · , nN ⟩ , (2.17)

where

|n1, n2, . . . , nN ⟩ = S+
n1S

+
n2 · · ·S

+
nN

|Ω⟩. (2.18)

The summation over {nN} means summing over all the possible particle positions with the
following constraint

0 ≤ n1 < n2 < . . . < nN ≤ L− 1. (2.19)

The wave function χ (nN ,λN ) is given by

χ (nN ,λN ) =
∑

σ∈SN

∏
j>k

f
(
λσj − λσk

) N∏
j=1

eip(λσj )nj , (2.20)

where the explicit form of p(λ) and f(λ) depend on the model. The rapidities λN satisfy
the Bethe ansatz equations

eip(λj)L
N∏

k=1
k ̸=j

f(λj − λk)
f(λk − λj) = 1, j = 1, 2, . . . , N. (2.21)

For the XXX and XXZ spin chains, the two functions are given by
1For some boundary states such as matrix product states with higher bond dimensions, the prefactor can

take a more complicated form.
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• XXX spin chain:

eip(λ) = λ− i/2
λ+ i/2 , f(λ) = λ+ i

λ
. (2.22)

• XXZ spin chain:

eip(λ) = sinh(λ− iη/2)
sinh(λ+ iη/2) , f(λ) = sinh(λ+ iη)

sinh(λ) , (2.23)

where η is related to the anisotropy by ∆ = cosh η.

The Bethe states are the eigenstate of the Hamiltonian

H |λN ⟩ = EN (λN ) |λN ⟩ . (2.24)

For the XXX spin chain, the eigenvalue reads

EN (λN ) = −
N∑

j=1

2
λ2

j + 1/4 . (2.25)

For the XXZ spin chain, the eigenvalue reads

EN (λN ) =
N∑

j=1

4 sinh2 η

cos(2λj) − cosh η . (2.26)

Norm of Bethe states. The norm of the on-shell Bethe states takes the following
form [48]

⟨λN |λN ⟩ =
N∏

j=1

1
p′ (λj)

N∏
j<k

f (λj − λk) f (λk − λj) × detGN , (2.27)

where GN is the Gaudin matrix whose elements are given by

Gjk = δjk

(
p′ (λj)L+

N∑
l=1

φ (λj − λl)
)
− φ (λj − λk) , (2.28)

φ(λ) = −i d
dλ log

(
f(λ)
f(−λ)

)
.

If the Bethe roots are parity even (2.15), the norm further factorizes

⟨λN |λN ⟩ =
N/2∏
j=1

f (2λj) f (−2λj)
(p′ (λj))2

∏
1≤j<k≤N/2

[
f̄ (λj , λk)

]2
× detG+

N/2 detG−
N/2, (2.29)

where

G±
jk = δjk

p′ (λj)L+
N/2∑
l=1

φ+ (λj , λl)

− φ± (λj , λk) , (2.30)

φ±(λ, µ) = φ(λ− µ) ± φ(λ+ µ), (2.31)
f̄(λ, µ) = f(λ− µ)f(λ+ µ)f(−λ− µ)f(−λ+ µ). (2.32)
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Some notations. Following [28], it is convenient to introduce the notations

lj = eip(λj), f(lj , lk) = f(λj − λk). (2.33)

Then the wave function becomes

χ (nN ,λN ) =
∑

σ∈SN

∏
j>k

f
(
lσj , lσk

) N∏
j=1

l
nj
σj , (2.34)

and the Bethe equations can be written as

aj = lLj =
N∏

k=1
k ̸=j

f (lk, lj)
f (lj , lk) , j = 1, 2, . . . , N. (2.35)

Crosscap overlaps. Now we turn to the overlaps. We first consider the overlaps between
the crosscap state and the N -particle basis states (2.18). From the definition of the crosscap
state (2.2), we find

⟨C|n1, n2, . . . , nN ⟩ =
N/2∏
i=1

δni,ni+N/2−L/2, (2.36)

which implies that the particles must appear in pairs with distance L/2. Therefore both L

and N should be even. We can split the valid N -particle positions into two parts

{nN}C := {nN/2} ∪ {nN/2 + L
2 }, (2.37)

{nN/2} := {n1, n2, . . . , nN/2|0 ≤ n1 < n2 < . . . < nN/2 ≤ L
2 − 1}, (2.38)

where the second part is completely determined by the first part. Using (2.36), the overlap
of the crosscap state and a Bethe state reads

⟨C|λN ⟩ = SN (lN ,aN ) =
∑

σ∈SN

∏
j>k

f
(
lσj , lσk

) ∑
{nN/2}

N/2∏
j=1

l
nj
σj l

nj+L/2
σ(j+N/2) . (2.39)

We introduce the summation function

BN (lN |L) =
∑

{nN/2}

N/2∏
j=1

l
nj

j l
nj+L/2
j+N/2 , (2.40)

for later convenience. To see how the method works, let us first consider the simplest
2-particle state.

2-particle states. The overlap can be calculated straightforwardly

⟨C|λ2⟩ = f(l2, l1)
l
L/2
2

(
1 − (l1l2)L/2

)
1 − l1l2

+ f(l1, l2)
l
L/2
1

(
1 − (l1l2)L/2

)
1 − l1l2

. (2.41)
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The Bethe equations read

a1 = lL1 = f(l2, l1)
f(l1, l2) , a2 = lL2 = f(l1, l2)

f(l2, l1) . (2.42)

For an on-shell Bethe state, the Bethe equation implies that (l1l2)L/2 = 1. If we naively
substituting this into (2.41), we find that the overlap is vanishing for any on-shell Bethe
state. The key point here is to notice that we need to first take the paired rapidities limit
l1l2 → 1 and then impose Bethe ansatz equations, which leads to

⟨C|λ2⟩ = L
√
f(2λ1)f(−2λ1). (2.43)

The overlap can be written in Gaudin determinant form

⟨C|λ2⟩ = 1
p′(λ1)

√
f(2λ1)f(−2λ1) × detG+

1 , detG+
1 = p′(λ1)L. (2.44)

From this simple example, we learned that the non-vanishing overlap is obtained by taking
the paired rapidities limit before imposing Bethe ansatz equations.

N -particle states. For N -particle states, the summation function defined in (2.40) can
be written as

BN (lN |L) =
N/2∏
j=1

l
L/2
j+N/2

L−N
2 +1∑

n1=0

L−N
2 +2∑

n2=n1+1
. . .

L
2∑

nN/2=nN/2−1+1

N/2∏
j=1

(
ljlj+N/2

)nj
. (2.45)

If we ignore the overall factor in (2.45), the summation function basically becomes a
summation over half of the spin chain without constraints, except that we have ljlj+N/2
instead of lj in the summand. The latter summation function can be computed by using
a recursion relation [9, 28]. This allows us to obtain an explicit albeit slightly involved
expression for BN (lN |L)

BN (lN |L) =
N/2∑
j=0

BN,j(lN |L), (2.46)

where

BN,j(lN |L) =
(−1)j ∏j+N/2

k=j+1 (ak)1/2∏N
k=j+N/2+1 ak

∏j
k=2(lklk+N/2)k−1∏N/2

k=j+1

(∏k
i=j+1 lili+N/2 − 1

)∏j
k=1

(∏j
i=k lili+N/2 − 1

) . (2.47)

The summation function is a rational function of lj . In order to take the paired rapidity
limit, we first consider the behavior of BN (lN |L) near the pole at lmlm+N/2 = 1. There are
two terms BN,m−1(lN |L) and BN,m(lN |L) that contain this pole. Taking the sum of these
two terms and using lmlm+N/2 = 1 for the regular part, we obtain

BN,m−1(lN |L) +BN,m(lN |L)

=

[(
amam+N/2

)1/2
− 1

] (
am+N/2

)1/2

lmlm+N/2 − 1

×
(−1)m−1∏m+N/2−1

k=m+1 (ak)1/2∏N
k=m+N/2+1 ak

∏m−1
k=2 (lklk+N/2)k−1∏N/2

k=m+1

(∏k
i=m+1 lili+N/2 − 1

)∏m−1
k=1

(∏m−1
i=k lili+N/2 − 1

) . (2.48)
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Notice that the second line is nothing but BN,m with two particles at m and m + N/2
removed. Therefore near the pole lmlm+N/2 = 1, we have

BN (lN |L) ∼

(
amam+N/2

)1/2
− 1

lmlm+N/2 − 1
(
am+N/2

)1/2
BN−2,m−1({1, . . .✚✚m. . .✘✘✘✘✘m+N/2 . . . , N}|L).

(2.49)

Plugging back to the overlap formula (2.39), we also need to multiply a factor in front of
BN (lN |L) and then sum over all the permutations. Since we focus on the pole lmlm+N/2 = 1,
we also need to separate out the lm and lm+N/2 dependent part for the multiplying factor.
Note that the exchange of lm and lm+N/2 preserve the relative position of m and m+ L/2,
which gives the same pole. After factorizing the lmlm+N/2 = 1 pole, we find

SN (lN ,aN ) =
∑

σ∈SN

∏
j>k

f
(
lσj , lσk

)
BN (σlN |L)

∼

(
amam+N/2

)1/2
−1

lmlm+N/2−1
(
Fm+Fm+N/2

)
×

∑
σ∈SN−2

∏
j>k

j,k ̸=m,m+N/2

f
(
lσj , lσk

)
BN−2,m−1(σ{1, . . .✚✚m.. .✘✘✘✘✘m+N/2 . . . ,N}|L),

(2.50)

where the last line does not depend on lm and lm+N/2. The sum of Fm and Fm+N/2 reads

Fm + Fm+N/2 =
m+N/2−1∏

j=m+1

f (lj , lm) f
(
lj , lm+N/2

)
f (lm, lj) f

(
lm+N/2, lj

)
1/2

N∏
j=m+N/2+1

f (lj , lm) f
(
lj , lm+N/2

)
f (lm, lj) f

(
lm+N/2, lj

)
×

N∏
j=1

j ̸=m,m+N/2

f (lm, lj) f
(
lm+N/2, lj

)
× F(lm, lm+N/2), (2.51)

where

F(lm, lm+N/2) =
m+N/2−1∏

j=m+1

f (lj , lm)f
(
lm+N/2, lj

)
f (lm, lj)f

(
lj , lm+N/2

)
1/2

×f(lm+N/2, lm)
(
am+N/2

)1/2

+
m+N/2−1∏

j=m+1

f
(
lj , lm+N/2

)
f (lm, lj)

f
(
lm+N/2, lj

)
f (lj , lm)

1/2

×f(lm, lm+N/2)(am)1/2 . (2.52)

The main new feature of the crosscap state is that the function F(lm, lm+N/2) depends on
not only lm, lm+N/2 but also lj for m < j < m + N/2, while for the integrable boundary
states considered in [28], the poles appear at neighboring lmlm+1 = 1 and the function F
just depends on lm and lm+1. We introduce the modified parameters

amod
j =

f (lj , lm) f
(
lj , lm+N/2

)
f (lm, lj) f

(
lm+N/2, lj

)aj , 1 ≤ j ≤ N , (2.53)
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so that the first line on the right hand side in (2.51) can be absorbed in BN−1,m−1 by
making the replacement aj → amod

j . Then the recursion relation (2.50) can be written as

SN (lN |L) ∼

(
amam+N/2

)1/2
− 1

lmlm+N/2 − 1 F(lm, lm+N/2)
N/2∏
j=1
j ̸=m

f̄ (lm, lj)

× Smod
N−2({1, . . .✚✚m. . .✘✘✘✘✘m+N/2 . . . , N}|L) (2.54)

Now we consider the paired rapidity limit

λj+N/2 → −λj , j = 1, 2, . . . , N/2. (2.55)

In this limit, F(lm, lm+N/2) simplifies drastically

F(lm, lm+N/2) → 2
√
f(−2λm)f(2λm) . (2.56)

The details can be found in appendix A. Let us denote the paired rapidity limit of SN (lN |L)
by D

(
λN/2,mN/2|L

)
, in which we have introduced the new parameter

mj = −i d
dλj

log(aj) = p′(λj)L. (2.57)

The recursion relation (2.54) implies that

∂D(λN/2,mN/2|L)
∂mm

=
√
f(−2λm)f(2λm)

p′(λm)

N/2∏
j=1
j ̸=m

f̄(λm, λj) ×D(λN/2−1,m
mod
N/2−1|L), (2.58)

where the modified parameter is given by

mmod
j = −i d

dλj
log

(
amod

j

)
= mj + φ+(λj , λm). (2.59)

To write the recursion relation in a nicer form, let us define D̃
(
λN/2,mN/2|L

)
via

D
(
λN/2,mN/2|L

)
=

N/2∏
j=1

√
f(−2λj)f(2λj)

p′ (λj)
∏

1≤j<k≤N/2
f̄ (λj ,λk)D̃

(
λN/2,mN/2|L

)
. (2.60)

It follows from (2.58) that the new function satisfies

∂D̃
(
λN/2,mN/2|L

)
∂mm

= D̃
(
λN/2−1,m

mod
N/2−1|L

)
, (2.61)

where it is understood that mm is not included on the right hand side. The initial condition
for this differential equation is given in (2.44). Following the same arguments as in [28, 48],
the unique solution to (2.61) is nothing but the Gaudin determinant

D̃
(
λN/2,mN/2|L

)
= detG+

N/2. (2.62)

– 11 –



J
H
E
P
0
8
(
2
0
2
3
)
0
7
9

Finally, we obtain the exact on-shell overlaps of crosscap states and Bethe states

⟨C|λN ⟩ =
N/2∏
j=1

√
f (2λj) f (−2λj)

p′ (λj)
∏

1≤j<k≤N/2
f̄ (λj , λk) × detG+

N/2, (2.63)

which leads to

⟨C|λN ⟩√
⟨λN |λN ⟩

=

√√√√detG+
N/2

detG−
N/2

. (2.64)

Therefore we indeed find a trivial prefactor. This fact seems to be universal for crosscap
states defined in all integrable models so far. From our derivations, it is clear that this is
the case for both XXX and XXZ spin chains. The exact crosscap overlap formula in gl(N)
symmetric spin chains also takes the same form [34]. We will see that it is also the case for
the Lieb-Liniger model.

2.3 Overlap formula for the non-compact chain

In this subsection, we generalize the above consideration to the non-compact SL(2,R) spin
chain. The Hilbert space is spanned by the following N -particle basis

|n1, n2, · · · , nN ⟩ ≡ S+
n1S

+
n2 · · ·S

+
nN

|Ω⟩, (2.65)

where |Ω⟩ denotes the pseudovacuum. Since for the non-compact chain we can excite
multiple particles on one site, when we take the sum over the magnon positions we have

0 ≤ n1 ≤ n2 ≤ . . . ≤ nN ≤ L− 1. (2.66)

This model is also solvable by coordinate Bethe ansatz. The Bethe states take the same
form as for the compact chains, except the restriction for the summation over nj is now
given by (2.66), and the two functions in the Bethe wavefunction reads

eip(λ) = λ− i/2
λ+ i/2 , f(λ) = λ− i

λ
. (2.67)

We shall follow the same procedure as before. From the definition of the crosscap state (2.4),
for basis states satisfying (2.66) we have

⟨C|n1, n2, . . . , nN ⟩ =
N/2∏
j=1

δnj ,nj+N/2−L/2 . (2.68)

We can again divide the position of N -particle states into two sets

{nN}C := {nN/2} ∪ {nN/2 + L
2 }, (2.69)

{nN/2} := {n1, n2, . . . , nN/2|0 ≤ n1 ≤ n2 ≤ . . . ≤ nN/2 ≤ L
2 − 1}. (2.70)
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Using (2.68), the overlap reads

⟨C|λN ⟩ =
∑

σ∈SN

∏
j>k

f
(
lσj , lσk

) ∑
{nN/2}

N/2∏
j=1

l
nj
σj l

nj+L/2
σ(j+N/2) . (2.71)

Similarly, it is convenient to introduce the summation function

BN (lN |L) =
N/2∏
j=1

l
L/2
j+N/2

L/2−1∑
n1=0

L/2−1∑
n2=0

. . .

L/2−1∑
nN/2=0

N/2∏
j=1

(
ljlj+N/2

)nj
. (2.72)

For the non-compact chain, BN can also be computed by a recursion relation, leading to

BN (lN |L) =
N/2∑
j=0

BN,j(lN |L), (2.73)

where

BN,j(L) =
(−1)j ∏j+N/2

k=j+1 (ak)1/2∏N
k=j+N/2+1 ak

∏N/2
k=j+1(lklk+N/2)N/2−k∏N/2

k=j+1

(∏k
i=j+1 lili+N/2 − 1

)∏j
k=1

(∏j
i=k lili+N/2 − 1

) . (2.74)

The main observation is that, although the summation functions are different, their behavior
near the pole lmlm+N/2 are the same

BN (lN |L) ∼

(
amam+N/2

)1/2
− 1

lmlm+N/2 − 1
(
am+N/2

)1/2
BN−2,m−1({1, . . .✚✚m. . .✘✘✘✘✘m+N/2 . . . , N}|L).

(2.75)

This leads to the same F(lm, lm+N/2) function and the same recursion relation for the
overlap. As a consequence, we get the crosscap overlap formula

⟨C|λN ⟩√
⟨λN |λN ⟩

=

√√√√detG+
N/2

detG−
N/2

. (2.76)

Before ending the section, let us comment on the universality of the crosscap overlaps.
In fact, the key point is the overlaps between crosscap states and N -particle basis gives a
product of the Kronecker deltas, which imposes strong constraints on the particle positions.
Such constraints reflects the geometric origin of the crosscap state. It effectively reduces
the Bethe wave function of N particles to be the one with N/2 particles, except for the
replacements lj → ljlj+N/2, see (2.45) and (2.72). The overlaps are the sum of Bethe wave
functions which satisfy the constraints on the particle positions. For the crosscap constaints,
the overlaps turn to be the sum of reduced Bethe wave function of N/2 particles without
constraints on the particle positions. After taking the paired rapidities limit, the sum of
the reduced Bethe wave functions is actually the norm of the Bethe states except for the
replacement of Gaudin-like determinant detG−

N/2 → detG+
N/2, which hence leads to the

trivial prefactor for the overlaps.
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3 Crosscap state of Lieb-Liniger model

In this section, we present the derivations of our proposal for the crosscap state of the Lieb-
Liniger model (1.1). We will then prove its integrability and derive the exact overlap formula.

3.1 Crosscap state in Lieb-Liniger model

In the second quantized form, the Hamiltonian of the Lieb-Liniger model is given by

H =
∫ ℓ

0
dx
[
∂xΦ†(x)∂xΦ(x) + cΦ†(x)Φ†(x)Φ(x)Φ(x)

]
, (3.1)

where the bosonic fields satisfy the usual commutation relations

[Φ(x),Φ†(y)] = δ(x− y), [Φ(x),Φ(y)] = [Φ†(x),Φ†(y)] = 0. (3.2)

We consider the periodic boundary condition with system size ℓ. This model can be solved
by coordinate Bethe ansatz as well as the Quantum Inverse Scattering Method (QISM) [49].
We shall make use of both approaches in what follows. For the proof of integrability, it is
more convenient to use QISM, but it is necessary to first define the model on the lattice
and then take the continuum limit. For the derivation of exact overlap formula, we make
use of coordinate Bethe ansatz.

As mentioned before, Lieb-Liniger model can be obtained by taking continuum limit of
integrable lattice models. There are at least two ways to achieve this. The first one is by
taking the special continuum limit of the XXZ spin chain after performing the Dyson-Maleev
transformation [44]. The second one is taking the continuum limit of a generalized XXX
spin chain [46]. Our strategy is staring from the crosscap state in spin chains, and then
taking the continuum limit. We consider both approaches, and it turns out that they lead
to the same crosscap state in the Lieb-Liniger model.

Method I: Dyson-Maleev transformation. The Dyson-Maleev transformation maps
the local spin operators to the bosonic operators

S+
i = a†i (1 − a†iai), S−

i = ai, Sz
i = −1

2 + a†iai , (3.3)

where the bosonic operators satisfy the canonical commutation relations

[ai, a
†
j ] = δij , [ai, aj ] = [a†i , a

†
j ] = 0. (3.4)

Applying the transformation to the crosscap state of the XXZ spin chain (2.2), we obtain

|C⟩ =
L/2∏
j=1

(
1 + a†ja

†
j+L/2

)
|Ω⟩, (3.5)

where we have used the fact

ai|Ω⟩ = S−
i |Ω⟩ = 0. (3.6)
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Let us consider a XXZ spin chain of length L. We denote the lattice spacing by δ. The
system size of the continuum model is ℓ = Lδ. The bosonic operators can be written in
terms of Fourier modes

an = 1√
L

∑
k

e−ikxn ãk, xn = nδ. (3.7)

In this representation, the continuum limit is obtained by

∑
k

→ ℓ

2π

∫
dk, ãk →

(2π
ℓ

)1/2
Φ̃k. (3.8)

Then one transforms back to real space by the inverse Fourier transformation

Φ̃k = 1√
2π

∫
dx eikxΦ(x), k = 2πm

ℓ
. (3.9)

Applying above procedure to (3.5), we arrive at the crosscap state

|C⟩ = exp
(∫ ℓ/2

0
dxΦ†(x)Φ†(x+ ℓ/2)

)
|Ω⟩, (3.10)

where we assume the pseudovacuum in spin chain corresponds to the Fock vacuum |Ω⟩ of
the Lieb-Liniger model in the continuum limit. Details of the derivation can be found in
appendix B.

Method II: generalized XXX model. In this approach, we first discretize the Lieb-
Liniger model by picking L points on the interval [0, ℓ] located at xn = ∆n, xL = ℓ [46]. We
then define the operators

ψn = 1√
∆

∫ xn

xn−1
Φ(x) dx, ψ†

n = 1√
∆

∫ xn

xn−1
Φ†(x) dx. (3.11)

One can check the operators satisfy

[ψn, ψ
†
m] = δmn, [ψn, ψm] = [ψ†

n, ψ
†
m] = 0. (3.12)

In the lattice model, the pseudovacuum is identified with the Fock vacuum which satisfies

Φ(x)|0⟩ = ψn|0⟩ = 0. (3.13)

The quantum Lax operator takes the form

Ln(u) =
(

1 − iu∆
2 + c∆

2 ψ
†
nψn −i

√
c∆ψ†

nρ
+
n

i
√
c∆ρ−nψn 1 + iu∆

2 + c∆
2 ψ

†
nψn

)
, (3.14)

where the operator ρ±n satisfy two constraints:

ρ±n = ρ±n

(
ψ†

nψn

)
, ρ+

n ρ
−
n = 1 + c∆

4 ψ†
nψn. (3.15)
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For example, we can take

ρ−n = 1, ρ+
n = 1 + c∆

4 ψ†
nψn. (3.16)

The transfer matrix is defined as usual

T (u) = tr
(
L1(u)L2(u) . . . LL(u)

)
. (3.17)

In order to define the crosscap state for the discretized Lieb-Liniger model, we make use of
the fact that it is closely related to the generalized XXX spin chain [46, 50]. This can be
seen easily by the following transformation of the Lax operator

L̃n(u) = σ3σ2Ln(u)σ2 = i∆
2 u1 ⊗ 1 + c∆

2
[
S̃z

n ⊗ σ3 −
(
S̃+

n ⊗ σ− + S̃−
n ⊗ σ+

)]
, (3.18)

where we have introduced

S̃z
n = 2

c∆ + ψ†
nψn, S̃−

n = 2i√
c∆

ρ−nψn, S̃+
n = 2i√

c∆
ψ†

nρ
+
n . (3.19)

One can verify that they satisfy the standard SU(2) algebra[
S̃z

n, S̃
±
n

]
= ±S̃±

n ,
[
S̃+

n , S̃
−
n

]
= 2S̃z

n. (3.20)

The local spin operators act on the vacuum as following

S̃−
n |Ω⟩ = 0, S̃+

n |Ω⟩ = ψ†
n|Ω⟩, S̃z

n|Ω⟩ = 2
c∆ |Ω⟩. (3.21)

For the generalized XXX spin chain, we can define the crosscap state using the local spin
operators S̃

|C⟩ =
L/2∏
n=1

(
1 + S̃+

n S̃
+
n+ L

2

)
|Ω⟩. (3.22)

We then show that the crosscap state so defined is integrable in the sense of (2.7). Firstly,
one can verify

σ2L̃n(u)σ2|c⟩⟩n = −L̃n+L/2(−u)|c⟩⟩n . (3.23)

It follows that

σ2Ln(u)σ2|c⟩⟩n = Ln+L/2(−u)|c⟩⟩n. (3.24)

Then we have

T (u)|C⟩ = ⟨C|tr
[(
L1(u) . . . LL/2(u)

)(
LL/2+1(u) . . . LL(u)

)]
= ⟨C|tr

[(
L1(u) . . . LL/2(u)

)(
σ2L1(−u) . . . LL/2(−u)σ2

)]
= ⟨C|tr

[(
L1(−u) . . . LL/2(−u)

)(
σ2L1(u) . . . LL/2(u)σ2

)]
= ⟨C|tr

[(
L1(−u) . . . LL/2(−u)

)(
LL/2+1(−u) . . . LL(−u)

)]
= T (−u)|C⟩. (3.25)
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In the continuum limit, we expect the crosscap state becomes an integrable boundary state
for the Lieb-Liniger model. The continuum version of the crosscap states can be obtained

|C⟩ ≡
L/2∏
n=1

(
1 + S̃+

n S̃
+
n+ L

2

)
|Ω⟩ → exp

(∫ ℓ/2

0
dxΦ†(x)Φ†(x+ ℓ/2)

)
|Ω⟩. (3.26)

Details about taking the continuum limit can be found in appendix B. The resulting state
is indeed the same as the result from the first method.

Two comments about the crosscap state are in order.

• By expanding the exponential function, we can write the crosscap state as

|C⟩ =
∞∑

N=0
|C2N ⟩, (3.27)

where the 2N -particle state is given by

|C2N ⟩ =
∫

T
dNx

N∏
j=1

Φ†(xj)Φ†(xj + ℓ/2)|Ω⟩. (3.28)

The factor 1/N ! from the exponential is dropped because we have fixed the order
of particle position T : 0 ≤ x1 < x2 < . . . < xN ≤ ℓ/2. The crosscap state is a
superposition state of even number of particles. Therefore, the crosscap state can
have non-vanishing overlaps with Bethe states with any even number of particles.

• The crosscap state for Lieb-Liniger model can also be written in momentum space by
performing a Fourier transformation

|C⟩ = exp
(
i

2π
∑
m,n

Kmnξ
†
mξ

†
n

)
|Ω⟩, Kmn = (−1)m − (−1)n

m+ n
, (3.29)

where we used

Φ(x) = 1√
ℓ

∑
q

eiqxξq, q = 2πm
ℓ

. (3.30)

This formula is similar to the boundary state in integrable quantum field theory, and
the coefficient Kmn plays the role of two-particle boundary amplitudes [1].

3.2 Exact overlap formula

In this subsection, we will derive the overlap of the crosscap state and an on-shell Bethe
state using the coordinate Bethe ansatz. This method has been applied in the calculating
the overlap of the BEC state and Bethe state in Lieb-Liniger model [29].

Using coordinate Bethe ansatz, the eigenstate is given by

|λN ⟩ = 1√
N !

∫ ℓ

0
dNxχN (xN |λN ) Φ† (x1) . . .Φ† (xN ) |Ω⟩, (3.31)
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where |Ω⟩ is the Fock vacuum of the Lieb-Liniger model. The wave function is

χN (xN |λN ) = 1√
N !

∑
σ∈SN

∏
j>k

[
λσj − λσk

− icϵ (xj − xk)
λσj − λσk

]
exp

(
i

N∑
n=1

xnλσn

)
, (3.32)

where ϵ is the sign function. We consider the configuration space

T : 0 ≤ x1 < x2 < . . . < xN ≤ ℓ . (3.33)

Introducing

f(λ) = λ− ic

λ
, lj = eiλj , (3.34)

we can write the wave function as

χN (xN |λN ) = 1√
N !

∑
σ∈SN

∏
j>k

f(λσj − λσk
)

N∏
n=1

lxn
σn
. (3.35)

Similar to the spin chain, the norm of an on-shell Bethe state is given by the Gaudin
determinant

⟨λN |λN ⟩ =
∏
j>k

f (λj − λk) f (λk − λj) detGN , (3.36)

where the Gaudin matrix elements are

Gjk = δjk

(
ℓ+

N∑
l=1

φ (λj − λl)
)
− φ (λj − λk) , (3.37)

with

φ(λ) = 2c
λ2 + c2 . (3.38)

If the rapidities are paired, the norm factorizes

⟨λN |λN ⟩ =
N/2∏
j=1

f (2λj) f (−2λj)
∏

1≤j<k≤N/2

[
f̄ (λj , λk)

]2
detG+

N/2 detG−
N/2, (3.39)

where

G±
jk = δjk

ℓ+
N/2∑
l=1

φ+ (λj , λl)

− φ± (λj , λk) , (3.40)

φ±(λ, µ) = φ(λ− µ) ± φ(λ+ µ), (3.41)
f̄(λ, µ) = f(λ− µ)f(λ+ µ)f(−λ− µ)f(−λ+ µ). (3.42)

Let us first consider the overlap of the crosscap state and an N -particle state basis
state given by

|xN ⟩ = Φ† (x1) . . .Φ† (xN ) |Ω⟩. (3.43)
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From the definition of crosscap state (3.10), we find

⟨C|xN ⟩ =
N/2∏
j=1

δ(xj+N/2 − xj − ℓ/2). (3.44)

The overlap of the crosscap state and a Bethe states can be computed as

⟨C|λN ⟩ =
∫

T
dNx ⟨C|xN ⟩ ⟨xN |λN ⟩

=
∫

T
dNx

N/2∏
j=1

δ(xj+N/2 − xj − ℓ/2)χN (xN |λN )

=
∑

σ∈SN

∏
j>k

f(λσj − λσk
)BN (σlN |ℓ), (3.45)

where the integral region T is defined in (3.33), the function BN (lN |ℓ) is given by

BN (lN |ℓ) =

N/2∏
n=1

lℓ/2
n

∫ ℓ/2

0
dxN/2

∫ xN/2

0
dxN/2−1 · · ·

∫ x2

0
dx1

N/2∏
j=1

(ljlj+N/2)xj . (3.46)

Following the strategy used in spin chain, we can calculate the overlap. The mainly difference
is that the particle position is continuous and the summations become integrals.

For the 2-particle states, one can compute the integral exactly

B2(l2|ℓ) = ia
1/2
2

(a1a2)1/2 − 1
λ1 + λ2

. (3.47)

The overlap reads

⟨C|λ2⟩ = if(l2, l1)a1/2
2

(a1a2)1/2 − 1
λ1 + λ2

+ if(l1, l2)a1/2
1

(a1a2)1/2 − 1
λ1 + λ2

. (3.48)

Similar to the spin chain case, we first take the paired rapidity limit

λ2 → −λ1 , (3.49)

which leads to the result

⟨C|λ2⟩ = −ℓ
√
f(−2λ1)f(2λ1) =

√
f(−2λ1)f(2λ1) detG+

1 . (3.50)

For the N -particle states, we have

BN (lN |ℓ) =
N/2∑
j=0

BN,j(lN |ℓ), (3.51)

where

BN,j(lN |ℓ) = (−1)j

∏j+N/2
k=j+1a

1/2
k

∏N
k=j+N/2+1ak(∏N/2

k=j+1
∑k

i=j+1 i
(
λi+λi+N/2

))(∏j
k=1

∑j
i=k i

(
λi+λi+N/2

)) . (3.52)
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By investigating the behavior of BN (lN |ℓ) near the pole λm + λm+N/2 = 0, we find that

BN (lN |ℓ) ∼

(
amam+N/2

)1/2
− 1

i(λm + λm+N/2)
(
am+N/2

)1/2
BN−2,m−1({1, . . .✚✚m. . .✘✘✘✘✘m+N/2 . . . , N}|ℓ).

(3.53)

Interestingly, this relation is exactly the same as the one for Heisenberg spin chain (2.49).
Following the same steps in spin chain model, one can obtain the overlap

⟨C|λN ⟩ =
N/2∏
j=1

√
f (2λj) f (−2λj)

∏
1≤j<k≤N/2

f̄ (λj , λk) × detG+
N/2 (3.54)

Dividing by the norm of Bethe state (3.39), we finally arrive at the normalized overlap

⟨C|λN ⟩√
⟨λN |λN ⟩

=

√√√√detG+
N/2

detG−
N/2

. (3.55)

We find that indeed the prefactor is again trivial.

3.3 Crosscap partition function

In [33], the crosscap overlaps in IQFTs was obtained by studying the partition function on
a cylinder and contract the two ends with the crosscap states, which is related to the Klein
bottle partition function. For the Lieb-Liniger model, an analogous quantity is the so-called
return amplitude, or Loschmidt amplitude. For a generic initial state, the Loschmidt
amplitude is defined by

L (ω) = ⟨Ψ0|e−ωH |Ψ0⟩, (3.56)

where ω is a complex number. This quantity plays an important role in the study of quench
dynamics and for integrable spin chains it can be computed analytically [51, 52]. Now
taking |Ψ0⟩ = |C⟩ and ω = R to be a real number, we can define

LC(R) = ⟨C|e−RH |C⟩ . (3.57)

Using the expansion (3.27) and noticing that particle number is conserved, we can equiva-
lently write LC(ω) as

LC(R) =
∞∑

N=0
⟨C2N |e−RH |C2N ⟩ = Tr

[
Πc e

−RH
]
, Πc =

∞∑
N=0

|C2N ⟩⟨C2N |. (3.58)

The right hand side of (3.58) takes a very similar form to the Klein bottle partition function
of IQFT. Inserting a complete set of Bethe states in (3.58) and using the exact overlap
formula (3.55), we obtain

LC(R) =
∞∑

N=0

∑
{λ2N}

e−RE(λ2N ) detG+
N

detG−
N

. (3.59)
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This is almost the same as a thermal partition function, except for the overlaps. In the
thermodynamic limit ℓ→ ∞, the ratio of Gaudin-like determinant tends to 1. In this case,
the only difference between LC(R) and the thermal partition function is that the Bethe
roots should be parity even, which agrees exactly with the proposal for crosscap states in
IQFT [33].

In the thermodynamic limit ℓ → ∞ and N → ∞ with fixed the particle density
D = N/ℓ, we can compute LC(R) by thermodynamic Bethe ansatz (TBA) [53], or the
quench action approach [54] in this context. The only modification from the standard TBA
is that one should impose the parity even conidition on the Bethe roots. In this limit, the
sum of Bethe roots becomes a path integral over the distribution density

Z2N ≡ ⟨C2N |e−RH |C2N ⟩ =
∫

D[ρ]e
−2So[ρ]+SYY[ρ]−RE[ρ]+hℓ

[
D−
∫∞
−∞ dλρ(λ)

]
. (3.60)

The So[ρ] comes from the extensive part of the logarithm of the overlaps, or the prefactors
in the exact overlap formula. For the crosscap states, however, the prefactor is trivial and
hence So[ρ] = 0. SYY[ρ] is the Yang-Yang entropy given by

SYY[ρ] = ℓ

∫ ∞

−∞
dλ
[
(ρ+ ρh) ln(ρ+ ρh) − ρ ln ρ− ρh ln ρh

]
. (3.61)

The hole density ρh is related to the Bethe root density ρ through

ρ(λ) + ρh(λ) = 1
2π +

∫ ∞

−∞

dµ

2πφ(λ− µ)ρ(µ), (3.62)

where the integral kernel is given by (3.38). The energy for a given distribution ρ is

E[ρ] = ℓ

∫ ∞

−∞
dλρ(λ)λ2. (3.63)

The chemical potential h is introduced for the normalization of ρ(λ). In addition, one
should note the distribution ρ(λ) should be an even function because of the parity even
condition.

The functional integral can be evaluated by using the saddle point approximation. The
saddle point equation is just the Yang-Yang equation

ϵ(λ) = ϵ0(λ) − 1
R

∫ ∞

−∞

dµ

2πφ(λ− µ) log
(
1 + e−Rϵ(µ)

)
, (3.64)

where
ρ(λ)
ρh(λ) = e−Rϵ(λ), ϵ0(λ) = λ2 − h. (3.65)

It is known that distributions are the even functions for the cases of c → ∞ and
c→ 0 [53], which correspond to the free Fermi gas and free Bose gas respectively. These
solutions still hold for the crosscap partition functions. For the limit R → 0, which
corresponds to the high temperature limit in the standard TBA, the solution of saddle
point equation is given by the uniform distribution

ρ(λ) = 1
8π , ρh(λ) = 1

4π . (3.66)
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4 Dynamical correlation functions in crosscap state

In the study of out-of-equilibrium dynamics, it is of central importance to compute the time
evolution of operators in a given initial state ⟨Ψ0|O(t)|Ψ0⟩. Even for integrable models, an
exact computation of this quantity is a highly challenging task. For the Lieb-Liniger model,
the full time dependence of dynamical correlation functions is only known for very limited
cases in the Tonks-Girardeau limit c→ ∞ [41, 55]. In this section, we study the dynamical
correlation functions in crosscap state of Lieb-Liniger model, namely we compute correlation
functions of the form ⟨C|O(t)|C⟩. We obtain analytic results in the Tonks-Girardeau limit.

In the c → ∞ limit, the model describes the hard-core boson, which behaves like a
fermion since the infinite repulsion acts as an effective Pauli principle. Let us denote the
hard-core bosonic field as Φ̃(x). They obey the usual equal time bosonic commutation
relations. The hard-core constraint is imposed by the additional algebraic relations

[Φ̃(x)]2 = [Φ̃†(x)]2 = 0, {Φ̃(x), Φ̃†(x)} = 1. (4.1)

The non-linear relation between the canonical bosons and hard-core bosons are given by

Φ̃†(x) = PxΦ†(x)Px, Px = |0⟩ ⟨0|x + |1⟩ ⟨1|x , (4.2)

where Px is the local projector on the truncated Hilbert with at most one boson at x. The
hard-core bosons are also related to the free fermions via the Jordan-Wigner transformation

Ψ(x) = exp
[
iπ

∫ x

0
dz Φ̃†(z)Φ̃(z)

]
Φ̃(x), (4.3)

with the anti-commutation relation

{Ψ(x),Ψ(y)} = {Ψ†(x),Ψ†(y)} = 0, {Ψ(x),Ψ†(y)} = δ(x− y). (4.4)

The Jordan-Wigner transformation also maps the hard-core bosonic Hamiltonian to the
one describes free fermions. In momentum space, we have

H =
∞∑

k=−∞
k2η†kηk, ηk = 1√

ℓ

∫ ℓ

0
dxe−ikxΨ(x), k = 2πm

ℓ
. (4.5)

The time evolution of the fermionic operator is given by [55]

ηk(t) = eiHtηke
−iHt = e−ik2t/2ηk. (4.6)

Therefore, the time-dependent becomes an overall factor in the Tonks-Girardeau limit, and
the dynamical correlation functions can be computed analytically.

In what follows, we first consider the fermionic two-point and four-point functions. By
taking the equal time limit, we obtain the density correlation functions, where the fermionic
density is defined as

ρ̂(x, t) = Ψ†(x, t)Ψ(x, t). (4.7)

Note that the bosonic two-point correlation function is different from the fermionic two-point
correlation function because it contains an infinite strings of fermionic operators, and the
fermionic multi-point function can not factorize into two-point functions. However, the
fermionic density-density correlation function becomes factorizable in the crosscap state.
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4.1 Two-point function

The two-point function can be expressed as

⟨Ψ†(x1, t1)Ψ(x2, t2)⟩C = 1
ℓ

∑
k1,k2

e−i(k1x1−k2
1t1−k2x2+k2

2t2)⟨η†k1
ηk2⟩C , (4.8)

where we used the following notation

⟨O⟩C = ⟨C|O|C⟩
⟨C|C⟩

. (4.9)

So we need to evaluate the time-independent fermionic two-point correlation

⟨η†k1
ηk2⟩C = 1

ℓ

∫ ℓ

0
dz1dz2e

ik1z1−ik2z2⟨Ψ†(z1)Ψ(z2)⟩C . (4.10)

The fermionic two-point function ⟨Ψ†(z1)Ψ(z2)⟩C can be transformed to the hard-core
bosonic correlation function by the Jordan-Wigner transformation (4.3). But the crosscap
state is defined by the canonical boson operator, which is related to the hard-core boson
through the projection (4.2). Handling the projector in the continuous Lieb-liniger model is
somewhat subtle. On the other hand, in the lattice version, the crosscap state is already
defined in the truncated Hilbert space. Therefore, we will first calculate the two-point
fermionic function in lattice model then take the continuum limit, this strategy was also
taken for the computation of correlation functions in the BEC state [41, 55].

We consider a one-dimensional lattice model of L sites with lattice spacing δ and define
the lattice operators as follows

bm =
√
δΦ(mδ), am =

√
δΦ̃(mδ), cm =

√
δΨ(mδ). (4.11)

The canonical bosons are denoted as bi, b
†
i , which are related to hard-core boson through

ai = PibiPi, a†i = Pib
†
iPi, (4.12)

where Pi = |0⟩⟨0|i + |1⟩⟨1|i is the on-site projector on the truncated Hilbert space. They
satisfy the following (anti)commutation relations

[ai, aj ] = [a†i , a
†
j ] = [ai, a

†
j ] = 0, i ̸= j (4.13)

a2
i = (a†i )2 = 0, {ai, a

†
i} = 1. (4.14)

The Jordan-Wigner transformation in the lattice model becomes

ci = e
iπ
∑

j<i
a†

jajai =
∏
j<i

(
1 − 2a†jaj

)
ai, (4.15)

where the ci, c
†
i are the free fermion operators. Since the crosscap state is already defined in

the truncated Hilbert space, we can replace the hard-core boson by the canonical boson. The
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lattice version of the fermionic two-point function can be calculated using the commutation
relations of the bosonic operators, see appendix C. The result turns out to be simply

⟨c†rcs⟩C = 1
2δr,s. (4.16)

In the continuum limit, this leads to the two-point time-independent fermionic correla-
tion function

⟨Ψ†(x)Ψ(y)⟩C = 1
2δ(x− y). (4.17)

Finally, we compute the time dependent two-point correlation function using (4.8), where
we have taken the limit ℓ→ ∞, the momentum sum becomes integrals and the final result is

⟨Ψ†(x1, t1)Ψ(x2, t2)⟩C = 1
2πG(x12, t12). (4.18)

Here we have introduced the notation xij = xi − xj , tij = ti − tj . The function G(x, t) is
the solution of 1D diffusion equation given by

G(x, t) =
∫ ∞

−∞

dk

2πe
−ikx+ik2t = 1

2
√
−iπt

e−
ix2
4t . (4.19)

The two-point correlation function is translation invariant, which just depends on the dis-
tance between two points. We can also compute the dynamical structure factor as the double
Fourier transform of the two-point correlation function in x12 and t12. The result is simply

S(p, ω) = 2δ
(
ω − p2

)
. (4.20)

Apart from the delta function which simply imposes the massive non-relativistic dispersion
relation, the result is a constant.

Then the density one-point function can be obtained by taking the limit t2 → t1, x2 →
x1, which leads to

⟨ρ̂(x, t)⟩C = 1
2πδ(0). (4.21)

The fermionic density expectation value in crosscap state is time-independent but divergent.
This result can be interpreted as follows. The time-independence indicates that the density
does not evolve. In fact, applying the quench action approach, we find that the driving
term which usually comes from prefactor is vanishing for the crosscap state. Hence the
quench action coincides with the Yang-Yang entropy, and the state tends to maximize the
entropy, which is given by the uniform distribution. The situation is similar to an infinite
temperature thermal partition function. At the same time, the crosscap state is given by a
superposition state with arbitrary even number of particles, so that the particle number
density is divergent.
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4.2 Four-point function

We then consider the four-point function, which can be written as

⟨Ψ†(x1, t1)Ψ(x2, t2)Ψ†(x3, t3)Ψ(x4, t4)⟩C

= 1
ℓ2

∑
k1,k2,k3,k4

e−i(k1x1−k2x2+k3x3−k4x4−k2
1t1+k2

2t2−k2
3t3+k2

4t4)⟨η†k1
ηk2η

†
k3
ηk4⟩C . (4.22)

So we need to evaluate the initial fermionic four-point correlation function

⟨η†k1
ηk2η

†
k3
ηk4⟩C = 1

ℓ2

∫ ℓ

0
dz1dz2dz3dz4e

i(k1z1−k2z2+k3z3−k4z4)

× ⟨Ψ†(z1)Ψ(z2)Ψ†(z3)Ψ(z4)⟩C . (4.23)

The main ingredient is the four-point function in crosscap state. We first compute the
corresponding four-point function in the lattice model using the same technique for the two-
point function, then taking the continuum limit. In the lattice model, we need to compute
the four-point function ⟨c†kclc

†
mcj⟩C . We divide the four operators into two neighbouring

pairs and then use Jordan-Wigner transformation on each pairs. The final result can be
obtained using the commutation relation of hard-core bosonic operators. We just consider
the operators are in the order k ≤ l ≤ m ≤ j. For the other orders of k, l,m, j, one can also
obtain the same formula up to a sign. The detail calculation is given in appendix C, which
leads to the result

⟨c†kclc
†
mcj⟩C = 1

4δk,lδm,j + 1
4δk,lδm,jδl,m + 1

4δk,lδm,jδl,m−L/2. (4.24)

In the continuum limit, we have

⟨Ψ†(z1)Ψ(z2)Ψ†(z3)Ψ(z4)⟩C

= 1
4δ(z2 − z1)δ(z4 − z3)

(
1 + δ(z3 − z2) + δ(z3 − z2 − ℓ/2)

)
. (4.25)

Plugging into (4.22), we obtain

⟨Ψ†(x1, t1)Ψ(x2, t2)Ψ†(x3, t3)Ψ(x4, t4)⟩C

=
( 1

2π

)2
G(x12, t12)G(x34, t34)

+ 1
16π

√
τ

iπt1t2t3t4

G
(
x23,

τ
t1t4

)
G
(
x14,

τ
t2t3

)
G
(
x34,

τ
t1t2

)
G
(
x12,

τ
t3t4

)
G
(
x24,

τ
t1t3

)
G
(
x13,

τ
t2t4

)
+ 1

16π

√
τ

iπt1t2t3t4

G
(
x23+ ℓ

2 ,
τ

t1t4

)
G
(
x14+ ℓ

2 ,
τ

t2t3

)
G
(
x34,

τ
t1t2

)
G
(
x12,

τ
t3t4

)
G
(
x24+ ℓ

2 ,
τ

t1t3

)
G
(
x13+ ℓ

2 ,
τ

t2t4

) , (4.26)

where we have defined

τ = t1t2t34 + t12t3t4. (4.27)
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We are interested in the density-density correlation function, which can be obtain from
the four-point function by taking t2 → t1, t4 → t3, x2 → x1, x4 → x3. In this case, the last
two terms in (4.26) become vanishing. The leading order is the first term, the result shows
the dynamical density-density correlation function is

⟨ρ(x1, t1)ρ(x3, t3)⟩C =
( 1

2π

)2
δ2(0), (4.28)

which is also time-independent but divergent. This result coincides with the product of
two fermionic density expectation value in crosscap state, which means the density-density
correlation function is factorizable. We learn that the density operator expectation and
density-density correlator are time-independent, which is quite different from the general
case. For the BEC state, the density-density correlator is time-dependent, but it becomes a
stationary one for the late time limit [41].

5 Conclusion and discussion

In this paper, we derived a number of new results for crosscap states of both integrable
spin chains and the Lieb-Liniger model. For spin chains, we generalized the proof of the
integrability of crosscap state to anisotropic and inhomogeneous Heisenberg spin chain.
We proved the exact overlap formula of crosscap states and on-shell Bethe states using
coordinate Bethe ansatz for both compact and non-compact spin chains.

We constructed the crosscap state (1.1) for Lieb-Liniger model. This is achieved by
taking the proper continuum limits of spin chain models. We provided two methods to derive
the crosscap state in Lieb-Liniger model, which lead to the same result. The integrablility
of the crosscap state is proved after discretizing the Lieb-Liniger model. The crosscap state
has non-vanishing overlaps with any 2N -particle Bethe states if the Bethe roots are paired.
We derived the exact overlap formula of the crosscap state and Bethe states, which is simply
given by the ratio of two Gaudin-like determinants, with a trivial prefactor — the same
as in IQFTs and spin chains. These results indicate certain universality of the crosscap
overlaps. We considered the Loschmidt echo of the crosscap state. In the thermodynamic
limit, it coincides with the thermal partition function with the parity even condition on the
Bethe roots. This is similar to the Klein bottle partition function defined for IQFTs.

Moreover, we studied the dynamical fermionic correlation functions in crosscap state in
the Tonks-Girardeau limit. We derived analytic results for the two- and four-point functions,
which turns out to be surprisingly simple. This gives another valuable data point of analytic
results of dynamical correlation functions. By taking the equal time limit, we obtain the den-
sity expectation value and the density-density correlator. We find that the density expecta-
tion value is time-independent but divergent and the density-density correlator is factorizable.

There are some unsolved problems and natural extensions of this work. Firstly, the
exact nature of the divergences in the density correlation function should be further clarified.
In this regard, it would be interesting to consider the quench dynamics of the crosscap
state in the Heisenberg spin chains. One can study the correlation functions for finite chain
first and then consider the continuum limit. As usual, the discrete nature of the spin chain
would regularize the divergence and provides us useful insights for the continuous model.
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An intriguing direction for future research would be to extend the concept of the
crosscap state to other integrable models which is in the same category, examples include
Gaudin-Yang model, Toda chain and Calogero-Sutherland model. One can even consider
integrable deformations such as T T̄ -deformation of these models. The T T̄ -deformation of
the Lieb-Liniger model was studied in [56–58], which turns out to describe dynamical hard
rod gas. The study of integrable boundary and boundary states in the T T̄ -deformed context
was initiated in [59]. Our current work gives a clear hint for the construction of crosscap
states for these models. It would be interesting to explore the meaning of integrable states
in these models and study their properties.

Finally, within the Lieb-Liniger model, our construction gives another concrete example
of integrable boundary states in addition to the BEC state. It is natural to ask whether one
can construct more integrable boundary states for the Lieb-Liniger model. Our current work
indicates that considering continuum limit of the spin chain models might be a promising
direction.
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A Proof of equation (2.56)

In this appendix, we shall prove that the function F(lm, lm+N/2) becomes just depend on λm

in the paired rapidities limit, namely (2.56). According to the notation (2.33), we transform
the arguments lj into λj then consider the limit

λj+N/2 → −λj , j = 1, 2, . . . , N/2. (A.1)

After this procedure, one can obtain

m+N/2−1∏
j=m+1

f (lj , lm) f
(
lm+N/2, lj

)
f (lm, lj) f

(
lj , lm+N/2

)
1/2

=
m−1∏
j=1

f
(
lj+N/2, lm

)
f
(
lm+N/2, lj+N/2

)
f
(
lm, lj+N/2

)
f
(
lj+N/2, lm+N/2

)
1/2

N/2∏
j=m+1

f (lj , lm) f
(
lm+N/2, lj

)
f (lm, lj) f

(
lj , lm+N/2

)
1/2

=
m−1∏
j=1

[
f (−λj − λm) f (−λm + λj)
f (λm + λj) f (−λj + λm)

]1/2 N/2∏
j=m+1

[
f (λj − λm) f (−λm − λj)
f (λm − λj) f (λj + λm)

]1/2

=
N/2∏
j=1
j ̸=m

[
f (−λj − λm) f (−λm + λj)
f (λm + λj) f (−λj + λm)

]1/2

. (A.2)

Similarly, we have

m+N/2−1∏
j=m+1

f
(
lj , lm+N/2

)
f (lm, lj)

f
(
lm+N/2, lj

)
f (lj , lm)

1/2

=
N/2∏
j=1
j ̸=m

[
f(λj + λm)f(λm − λj)
f(−λm − λj)f(λj − λm)

]1/2

. (A.3)
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In addition, the Bethe equations can be written as

am =
N∏

k=1
k ̸=m

f(lk, lm)
f(lm, lk)

=
N/2∏
k=1
k ̸=m

f(lk, lm)f(lk+N/2, lm)
f(lm, lk)f(lm, lk+N/2) ·

f
(
lm+N/2, lm

)
f
(
lm, lm+N/2

)

=
N/2∏
k=1
k ̸=m

f(λk − λm)f(−λk − λm)
f(λm − λk)f(λm + λk) · f (−2λm)

f (2λm) , (A.4)

as well as

am+N/2 =
N/2∏
k=1
k ̸=m

f(λk + λm)f(λm − λk)
f(−λm − λk)f(λk − λm) · f (2λm)

f (−2λm) . (A.5)

Substituting these relations (A.2)–(A.5) into (2.52), we find most of the terms are cancelled
and the final result is

F(lm, lm+N/2) = 2
√
f(−2λm)f(2λm), 1 ≤ m ≤ N/2. (A.6)

B Deriving the crosscap state in Lieb-Liniger model

We treat more details about deriving the crosscap state in Lieb-Liniger model, which are
mentioned in section 3.1.

We first consider the Dyson-Maleev transformation method. Applying the limit proce-
dure to (3.5), we arrive at

|C⟩ ≡
L/2∏
j=1

(
1 + a†ja

†
j+L/2

)
|Ω⟩

= exp

L/2∑
j=1

log
(
1 + a†ja

†
j+L/2

) |Ω⟩

= exp
[

1
δ

∫ ℓ/2

0
dx log

(
1 + 1

L

(∑
k

e−ikxã†k

)(∑
k′

e−ik′(x+ℓ/2)ã†k′

))]
|Ω⟩

= exp
(

1
δ

∫ ℓ/2

0
dx log

(
1 + ℓ2

L(2π)2

∫
dk

∫
dk′e−i(k+k′)x−ik′ℓ/2Φ̃†

kΦ̃†
k′

)]
|Ω⟩

≈ exp
[

ℓ

(2π)2

∫ ℓ/2

0
dx

∫
dk

∫
dk′e−i(k+k′)x−ik′ℓ/2Φ̃†

kΦ̃†
k′

)
|Ω⟩

= exp
(∫ ℓ/2

0
dxΦ†(x)Φ†(x+ ℓ/2)

)
|Ω⟩. (B.1)
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In the first step, we rewrite the crosscap into the exponential form. In the second and
third step we use the Fourier transformation and take the limiting procedure. In the fourth
step, we consider the large L limit but fix the ℓ. We finally obtain the crosscap state after
integrating out the momentum space.

We then consider the discrete version of Lieb-Liniger model, which is closely related to
the generalized XXX spin chain [46]. By using the definition of the local spin operator (3.19),
we have

|C⟩ ≡
L/2∏
n=1

(
1 + S̃+

n S̃
+
n+ L

2

)
|Ω⟩ =

L/2∏
n=1

(
1 + ψ†

nψ
†
n+L/2

)
|Ω⟩

= exp

L/2∑
n=1

log
(
1 + ψ†

nψ
†
n+L/2

) |Ω⟩

= exp

L/2∑
n=1

log
(
1 + ∆Φ†(xn)Φ†(xn + ℓ/2)

) |Ω⟩

≈ exp

L/2∑
n=1

∆Φ†(xn)Φ†(xn + ℓ/2)

 |Ω⟩

= exp
(∫ ℓ/2

0
dxΦ†(x)Φ†(x+ ℓ/2)

)
|Ω⟩, (B.2)

where we use the fact ψn annihilate the pseudovacuum.
We can also treat the discrete version of Lieb-Liniger model as non-compact SL(2,R)

spin chain then take the continuum limit. The crosscap state defined in SL(2,R) spin chain
can be written as

|C⟩ =
L/2∏
n=1

exp
(
S̃+

n S̃
+
n+ L

2

)
|Ω⟩

= exp

L/2∑
n=1

S̃+
n S̃

+
n+ L

2

 |Ω⟩

= exp

∆
L/2∑
j=1

Φ†(xn)Φ†(xn + ℓ/2)

 |Ω⟩

= exp
(∫ ℓ/2

0
dxΦ†(x)Φ†(x+ ℓ/2)

)
|Ω⟩. (B.3)

Finally, we arrive at the same crosscap state in Lieb-Liniger model by taking the
continuum limit from both Heisenberg spin chains and non-compact SL(2,R) spin chain.

C Lattice computation of correlation functions

This section is the detail calculation of the correlation function in lattice model. Since the
crosscap state is already defined in truncated Hilbert space, we can straightforward obtain
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the time-independent correlation function. According to the definition of the crosscap state
and the commutation relation of the hard-core boson aj , we find the following relations

a†ras|C⟩ = a†ra
†
s+L/2

L/2∏
j=1,j ̸=s

(
1 + a†ja

†
j+L/2

)
|Ω⟩, 1 ≤ s < L/2, (C.1)

a†ras+L/2|C⟩ = a†ra
†
s

L/2∏
j=1,j ̸=s

(
1 + a†ja

†
j+L/2

)
|Ω⟩, 1 ≤ s < L/2, (C.2)

a†ra
†
s|C⟩ = a†ra

†
s

L/2∏
j=1,j ̸=s

(
1 + a†ja

†
j+L/2

)
|Ω⟩, 1 ≤ s < L/2, (C.3)

a†ra
†
s+L/2|C⟩ = a†ra

†
s+L/2

L/2∏
j=1,j ̸=s

(
1 + a†ja

†
j+L/2

)
|Ω⟩, 1 ≤ s < L/2, (C.4)

which lead to (for r ≤ s)

⟨C|a†ras|C⟩ = 2L/2−1δr,s, (C.5)
⟨C|ara

†
s|C⟩ = 2L/2−1δr,s, (C.6)

⟨C|a†ra†s|C⟩ = 2L/2−1δs,r+L/2, (C.7)
⟨C|aras|C⟩ = 2L/2−1δs,r+L/2. (C.8)

Notice the norm of the crosscap state is ⟨C|C⟩ = 2L/2, we then obtain that (for r ≤ s)

⟨C|c†rcs|C⟩
⟨C|C⟩

=
⟨C|a†r

∏s−1
p=r+1

(
1 − 2a†pap

)
as|C⟩

⟨C|C⟩
= 1

2δr,s, (C.9)

⟨C|crc
†
s|C⟩

⟨C|C⟩
= −

⟨C|ar
∏s−1

p=r+1

(
1 − 2a†pap

)
a†s|C⟩

⟨C|C⟩
= −1

2δr,s, (C.10)

⟨C|c†rc†s|C⟩
⟨C|C⟩

=
δr+L/2,s⟨C|a†ra

†
r+L/2

∏L/2
p=1,p ̸=r

(
1 − 2a†pap

)
|C⟩

⟨C|C⟩
= 1

2δr+L/2,sδL,2, (C.11)

⟨C|crcs|C⟩
⟨C|C⟩

= −
δr+L/2,s⟨C|arar+L/2

∏L/2
p=1,p ̸=r

(
1 − 2a†pap

)
|C⟩

⟨C|C⟩
= −1

2δr+L/2,sδL,2, (C.12)

where we use the Jordan-Wigner transformation. If we consider the length of the chain
larger than 2, the last two cases become vanishing.

For the four-point function, we first consider the indices are in the order k ≤ l ≤ m ≤ j

⟨C|c†kclc
†
mcj |C⟩ (C.13)

We split the four operator into two pairs, then use the Jordan-Wigner transformation for
each pair. The non-vanishing of the correlation indices must be paired k = l,m = j, namely

⟨c†l clc
†
jcj⟩C =

{
1/4 i ̸= j, j + L

2
1/2 i = j, j + L

2
. (C.14)
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If the operators are not in this order k ≤ l ≤ m ≤ j, we permute them so that they are
spatially ordered. Note that the final order of the two creation and the two annihilation
operators may be different from the original one. There are three situations

ckcl = ak

l−1∏
p=k

(
1 − 2a†pap

)
al = −ak

l−1∏
p=k+1

(
1 − 2a†pap

)
al, (C.15)

ckc
†
l = ak

l−1∏
p=k

(
1 − 2a†pap

)
a†l = −ak

l−1∏
p=k+1

(
1 − 2a†pap

)
a†l , (C.16)

c†kc
†
l = a†k

l−1∏
p=k

(
1 − 2a†pap

)
a†l = a†k

l−1∏
p=k+1

(
1 − 2a†pap

)
a†l , (C.17)

which follow the results

operator 0 pair 1 pair 2 pairs 2 pairs
(l = m)

2 pairs
(l + L

2 = m)

⟨c†kc
†
l cmcj⟩C 0 0 0 0 0

⟨c†kclc
†
mcj⟩C 0 0 1

4
1
2

1
2

⟨c†kclcmc
†
j⟩C 0 0 −1

4 0 0
⟨ckc

†
l c

†
mcj⟩C 0 0 −1

4 0 0
⟨ckc

†
l cmc

†
j⟩C 0 0 1

4
1
2

1
2

⟨ckclc
†
mc

†
j⟩C 0 0 0 0 0

We conclude the results as

⟨c†kclc
†
mcj⟩C = (−1)ω 1

4δk,lδm,j

(
1 + (−1)ω(δl,m + δl+M/2,m)

)
, (C.18)

where the ω represents the number of pairs beginning with annihilation operator.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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