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Abstract. We initiate the study of T T̄ -like irrelevant solvable deformations in
quantum field theory with boundaries and defects. For this purpose, we employ
a general formalism developed in the context of spin chains, which allows us
to derive both, the deformed bulk and boundary/defect scattering matrices of
integrable models. Using the deformed scattering matrices, we derive the flow
equation for the deformed finite volume spectrum, as well as the cylinder partition
function and the exact g-function.
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1. Introduction

The T T̄ deformation [1, 2] has extended our understanding of quantum field theory
(QFT) in 1 + 1 dimensions. The deformed theory has a number of remarkable features
which are quite robust and universal. Although a better understanding of certain seem-
ingly pathological properties, such as the Hagedorn behavior of the density of states
and the complex energy spectrum is required, it is reasonable to suspect that such
deformations are meaningful and lead to an interesting generalization of the usual local
QFTs.

Local QFTs can have extended structures such as boundaries and defects. They are
interesting for several reasons. First, they describe real physical situations where bound-
aries and defects are ubiquitous. Second, from a more formal point of view, the defects
contain a lot of useful information on the bulk theory, see for example [3–7]. A natural
question is then how such non-local structures are modified under T T̄ deformation? The
goal of the current work is to initiate investigations into this direction.

We start with a special situation where both the local QFT and the boundary/defect
are integrable. The reason is that the T T̄ deformation preserves integrability and as a
result, such theories can be studied by the powerful toolkit of integrable models, in par-
ticular employing the scattering picture and factorized S -matrices. Such a description
is very convenient for the study of the T T̄ deformed integrable QFTs because the bulk
S -matrix is deformed in a simple way [1, 2, 8]. The new ingredients in the bound-
ary/defect case are the deformed boundary and defect S -matrices, which will be derived
along the lines of [9–11]. Once the deformed S -matrices are known, we can apply the
machinery of integrability to compute various important physical quantities. This pro-
cedure is universal and does not depend on details of the theory under consideration.
In this sense, the deformed quantum model is more straightforward to study than the
classical counterpart.

Another important motivation for the study of the T T̄ deformation comes from the
theory of integrable models. It is by now known that for integrable models and CFTs,
the T T̄ deformation is a special case of a more general family of integrable deformations
triggered by bilinear operators. Such integrable bilinear deformations lead to a novel type
of integrable models. For relativistic integrable QFT and CFT, more general solvable
bilinear deformations with an additional U(1) current have been studied in [12–19].
Deformations involving higher conserved currents have been proposed and studied in
[20–24]. For spin chains, similar deformations have been introduced even before the T T̄
deformations in [9, 10] and are called bilocal deformations, cf table 1.

Their relation to T T̄ -like deformations was first pointed out in [25, 26]. Also in the
spin chain case deformations using ‘internal’ symmetries have been explored [27] and,
importantly for the present paper, a generalization to systems with open boundaries
exists [11]. Due to the discrete nature of the spin chain model, it is yet unknown how
to define the ‘real’ T T̄ deformation for lattice models, which requires the conserved
momentum current. Bilinear deformations of integrable non-relativistic quantum many-
body systems such as the 1d Bose gas (non-linear Schrödinger model) have been studied
in [28–33]. For these models, the T T̄ deformation can be defined and it was found that
the deformation has the effect of changing the length of fundamental particles of the
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Table 1. Different types of deformations for field theory and lattice models with
the respective charges employed for their construction. For integrable models, the
momentum P = Q1 and Hamiltonian H = Q2 form part of a larger set of conserved
charges Qr. Boost-type deformations can be understood as bilocal deformations
formed from the identity operator 1 and a charge Qr. While it is currently not
known how to define the original T T̄ deformation for the spin chain case, the
so-called boost deformations have only been defined for the lattice model.

model. The simplest deformation that changes the length of particles is the hard rod
deformation defined in [28, 29]. It turns out that the hard rod deformations can be
defined for a wide range of models including lattice models. The hard rod deformation
of spin chain models can be identified with the constrained XXZ [34–36] and folded
XXZ spin chain [37–41], which have recently received renewed interest from different
perspectives [42–44].

Integrable boundaries and defects have played an important role for integrable mod-
els. Therefore, it is of great interest to also study these novel types of integrable models
with boundaries and defects. The bilocal deformation of quantum spin chains in the
presence of integrable boundary conditions was first considered by one of the authors
in [11], where the deformed reflection matrix has been derived generalizing the bulk
approach of [9, 10]. The method turns out to be general and can be applied to other
types of integrable models including relativistic QFTs. In the scattering picture, inte-
grable boundaries and defects are uniquely characterized by their scattering amplitudes
with the particles. Therefore, our strategy is to determine the deformed boundary and
defect scattering amplitudes, which can be achieved by a natural generalization of the
method in [11]. Together with the deformed bulk S -matrix, we can compute important
physical quantities in the deformed theory. We consider two such quantities, which are
the deformed spectrum and the exact g-function (or Affleck–Ludwig boundary entropy).

The rest of the paper is structured as follows. In section 2, we give a brief review of
boundary and defect integrable QFTs. We perform a classical analysis of the deformed
Lagrangian in section 3. In section 4, we give a detailed discussion of integrable bilocal
deformations, which applies to general integrable systems including spin chains, rela-
tivistic and non-relativistic integrable quantum field theories (IQFTs). We then derive
the deformed boundary and defect amplitudes in section 5. Together with the deformed
bulk S -matrix, we determine the deformed finite volume spectrum and the exact g-
function in sections 6 and 7, respectively. We conclude in section 8 and discuss future
directions. More details are given in the three appendices.
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2. Boundary and defect quantum field theory

In this section, we review some general properties of boundary IQFTs following the sem-
inal paper of Ghoshal and Zamolodchikov [45]. We consider two-dimensional Euclidean
quantum field theories in flat spacetime with Cartesian coordinates (x1, x2) = (x, y). To
quantize the system one has to choose the direction of time. We consider the theory
defined on (x, y) ∈ (sL, sR)× R, where sL and sR denote the generic positions of the
left and right boundary, respectively. In the so-called open channel , one chooses the y
direction as the direction of time. In this channel, the Hamiltonian reads

Hr =

∫ sR

sL

Hr(φ(x, y)) dx− θrL(φ(sL, y)) + θrR(φ(sL, y)), (2.1)

with the left/right boundary function (or boundary Hamiltonian) θrL/R(t) = θr(sL/R, t).
Here, we denote the ‘fundamental’ field by φ(x, y), and we assume that the Hamiltonian
is a local function of φ and its derivatives ∂μφ. We could also have some boundary
degrees of freedom governed by the boundary function θrL/R living on the x = sL/R
boundary line, which is a function of φ(x = sL/R, y) and its time derivatives (recall the
time direction is y).

It is worth mentioning that the Hamiltonian (2.1) does not have the most general
form of a bulk-boundary interaction. Following Ghoshal and Zamolodchikov [45] we
make the following assumptions:

• We consider a single scalar field in the bulk.

• There are no new boundary degrees of freedom, but the boundary function depends
only on the boundary field, which is identical to the bulk field evaluated at the
boundary.

• The boundary Hamiltonian θ is of potential type, i.e. it is only a function of the
boundary field, but not of its derivatives.

For the rest of the paper, unless otherwise stated, we will make these assumptions for
the Hamiltonian, and we will sometimes also call the boundary function θ the boundary
potential.

2.1. Conserved charges

We will be interested in studying deformations generated by conserved charges. Hence,
in particular in the context of integrability the space of deformations is very rich.

Bulk charges. Let us first briefly recall how integrability is realized when there are
no boundaries. It is convenient to introduce complex coordinates5

z = x+ iy, z̄ = x− iy, (2.2)

such that

∂z =
1

2
(∂x − i∂y), ∂z̄ =

1

2
(∂x + i∂y). (2.3)

5The corresponding metric is off-diagonal. Its non-vanishing components are ηzz̄ = ηz̄z = 1/2, and ηzz̄ = ηz̄z = 2.
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Assuming Lorentz invariance, the conserved charges associated with the spacetime sym-
metries are fully encoded in the stress–energy tensor. Let us introduce some notation
for the components of the stress tensor in complex coordinates:

T = −Tzz, T̄ = −Tz̄z̄, Θ = Θ̄ = Tzz̄ = Tz̄z. (2.4)

Here Tμν is the stress tensor of the theory.
In addition to the charges associated with the stress tensor, integrable theories pos-

sess an infinite set of mutually commuting integrals of motion, which can be understood
as higher spin generalizations of the stress tensor charges. Conventionally, one can con-
struct those conserved charges in terms of some local spin-s fields T s and Θs, which
satisfy

∂z̄Ts+1 = ∂zΘs−1. (2.5)

Here the allowed spins take values in a subset of integers and are fully determined by
the theory. Assuming parity invariance, operators with negative spin s are related to the
operators with positive spin by parity, so it is convenient to define the barred charges
as

T̄ s+1 = Θ−s−1, Θ̄s−1 = T−s+1. (2.6)

With this definition, the conservation equations can now be summarized as

∂z̄Ts+1 = ∂zΘs−1. ∂zT̄ s+1 = ∂z̄Θ̄s−1, (2.7)

where the spin label s is assumed to be non-negative. We shall employ this convention
in the following.

Using the local fields, we can construct conserved charges by means of contour
integrals. Defining

Is =

∫
C
(dz Ts+1 + dz̄Θs−1) , Īs =

∫
C

(
dz̄ T̄ s+1 + dz Θ̄s−1

)
, (2.8)

one immediately sees that Is and Ī s are independent of the choice of the contour because
of (2.7). One recovers the charges in Euclidean coordinates by taking linear combinations
of Is and Ī s. For instance, the momentum and Hamiltonian are expressed as

P = −i
(
I1 − Ī1

)
, H = I1 + Ī1. (2.9)

Similarly one obtains higher H- and P -type charges:

Hs = Is + Īs =

∫
Hs(x)dx, Ps = −i

(
Is − Īs

)
=

∫
Ps(x)dx. (2.10)

https://doi.org/10.1088/1742-5468/ac6251 6
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Here the local densities Hs(x) and Ps(x) are defined as

Hs = Ts+1 + Θs−1 + T̄ s+1 + Θ̄s−1, (2.11)

Ps = −i
(
Ts+1 + Θs−1 − T̄ s+1 − Θ̄s−1

)
. (2.12)

Conservation of the above charges follows from current conservation

∂yHs = −∂xJHs
, ∂yPs = −∂xJPs

, (2.13)

where the generalized current densities take the form

JHs
= −i

(
Ts+1 −Θs−1 − T̄ s+1 + Θ̄s−1

)
, (2.14)

JPs
= −Ts+1 + Θs−1 − T̄ s+1 + Θ̄s−1. (2.15)

Note that the P -type charges are only conserved in the bulk, while conserved H-
type charges can also be defined in the boundary model as described in the following
paragraph. It will also be useful to employ the universal notation

Q2s = H2s−1, Q2s−1 = P2s−1, s = 1, 2, . . . (2.16)

Similarly we define the shifted current densities as

J2s = JH2s−1
, J2s−1 = JP2s−1

, s = 1, 2, . . . , (2.17)

such that the conservation equation takes the form

∂yQs = −∂xJs. (2.18)

Thus, for the boundary model the even charges Q2s are conserved, while the odd charges
Q2s+1 will only be conserved in the bulk. The Heisenberg equation for the charges, which
will be used in some of the following derivations, reads

∂yQr = [H,Qr] . (2.19)

Finally, the one-particle eigenvalues of the different types of charges are denoted
according to

Qs → qs(u), Hs → es(u), Ps → ps(u), (2.20)

where the eigenvalues of the Qs split up into even and odd parts:

q2s(u) = e2s−1(u), q2s−1(u) = p2s−1(u). (2.21)

Boundary effects. In the presence of a boundary, the bulk conservation law (2.7)
is not sufficient to guarantee the conservation of Is, Īs. For notational simplicity, we
consider a system with only one boundary and we set sL = −∞, sR = 0. Let us compare
the conserved charges at different times. Consider say I1 defined as an integral over two
different contours C1 and C2, which are parallel to the x-axis but end on different points
y1, y2 on the y axis. Taking the difference we find

https://doi.org/10.1088/1742-5468/ac6251 7
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IC11 − IC21 = i

∫ y2

y1

dy (T −Θ)

∣∣∣∣
x=0

�= 0,

ĪC11 − ĪC21 = i

∫ y2

y1

dy (Θ̄− T̄ )

∣∣∣∣
x=0

�= 0,

(2.22)

for generic T s, Θs, y1, y2, i.e. the charges are a priori not conserved. A simple fix is to
choose an appropriate boundary function θ as given in (2.1), such that

Txy|x=0 = − i(T − T̄ )
∣∣
x=0

=
d

dy
θ(y), (2.23)

where θ(y) = θ(x = 0, y) is some local boundary field. Physically, the original conformal
boundary condition Txy = 0 just means that there is no energy/momentum flow passing
through the impenetrable boundary at x = 0. The generalized boundary condition with
Txy �= 0 then implies that the energy flow can be absorbed by a ‘potential term’ on the
boundary. Adding θ(y), the new bulk-boundary Hamiltonian of the form

H =

∫ 0

−∞
dx (T + T̄ +Θ+ Θ̄) + θ(y) (2.24)

is a conserved quantity since the additional θ-term compensates the boundary
contribution.

Similarly, we can introduce generalized boundary conditions for higher spin fields,

− i(Tr+1 − T̄ r+1 + Θ̄r−1 −Θr−1)
∣∣
x=0

=
d

dy
θr(y), (2.25)

and the higher conserved charges are now given by

Hr =

∫ 0

−∞
dx (Tr+1 + T̄ r+1 + Θ̄r−1 + Θr−1) + θr(y). (2.26)

The discussion above immediately generalizes to the case with two boundaries: one
only needs to impose the boundary condition for both, the left (L) and right (R)
boundary. Conservation of the charges requires that the boundary field obeys

∂yθrL/R(t) = JHr
(sL/R). (2.27)

To summarize, we can construct conserved charges in the presence of the boundaries
by adding a boundary function θr to the Hamiltonian for each boundary. At the same
time, only particular (H-type, see (2.10)) linear combinations of the two types of con-
served charges Is and Īs are conserved. The odd P -type charges are not conserved in the
presence of boundaries since translation symmetry and its higher spin generalizations
are broken by the boundaries.

2.2. Open- and closed-channel picture

The boundary can be placed either in the spatial or temporal direction as is shown
in figure 1. These choices give different but equivalent descriptions of the same theory.

https://doi.org/10.1088/1742-5468/ac6251 8
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Figure 1. Different channels for boundary QFTs. The left and right panels are the
closed and open channel, respectively.

In the open channel, the boundary is placed in the spatial direction. Without loss of
generality, we can put it at x = 0 and define the system on the left half line, as is shown
in the right panel of figure 1. The Hamiltonian in the open channel reads

Hopen =

∫ 0

−∞
dxTyy(x). (2.28)

Correlation functions in this channel are computed by

〈O1(x1, y1) . . .ON(xN , yN)〉 = B〈0|Ty[O1(x1, y1) . . .ON(xN , yN)]|0〉B
B〈0|0〉B

, (2.29)

where |0〉B is the ground state of Hopen and

Oi(x, y) = e−yHopenOi(x, 0)e
yHopen . (2.30)

Here, Ty means ordering with respect to the y direction.
In the closed channel, the boundary is placed in the Euclidean time direction, see

the left panel in figure 1. The Hamiltonian is the same as for a QFT without boundaries
and given by

Hclosed =

∫ ∞

−∞
dy Txx(y), (2.31)

where Txx(x) is one of the components of the stress energy tensor Tμν(x) on some
constant x slice.

Since the boundary is placed in the temporal direction, it should be understood as a
boundary state, which we denote by |B〉. Correlation functions of local operators in the
closed channel with one boundary at x = 0 are given by

〈O(x1, y1) . . .O(xN , yN)〉 =
〈0|Tx[O(x1, y1) . . .O(xN , yN)]|B〉

〈0|B〉 , (2.32)

https://doi.org/10.1088/1742-5468/ac6251 9
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where |0〉 is the ground state of Hclosed and Tx is the time ordering. We have

Oi(x, y) = exHclosedOi(0, y)e
−xHclosed . (2.33)

2.3. Scattering picture

In this section, we will discuss how the usual scattering picture arises in integrable
theories. Deformations of the respective bulk and boundary scattering matrices will
then be discussed in the subsequent sections.

Consider a multi-particle scattering process in two dimensions. Each particle is speci-
fied by its energy and momentum, which satisfies the relativistic dispersion relation e2 −
p2 = m2, where m is the mass of the particle. It is convenient to parametrize the energy
e and momentum p by the rapidity variable u, defined via (e, p) = (m coshu,m sinhu).
We thus describe scattering processes in terms of the rapidities of the particles.

Bulk scattering. Integrability imposes strong constraints on a multi-particle scat-
tering process. All multi-particle processes factorize into consecutive two-to-two scatter-
ing events. The compatibility condition is that the order of this factorization does not
affect the physical amplitudes, which leads to the Yang–Baxter equation

S12S13S23 = S23S13S12, (2.34)

where Sij = Sij(ui, uj) denotes the S -matrix of the ij two-to-two scattering process.
Here uj represents the rapidity of the scattered particle j.

Boundary scattering. In the presence of boundaries, we have to add new inte-
gredients to the Yang–Baxter equation to retain integrability. Let us first recall the
ordinary quantum mechanical scattering picture in the presence of boundaries. Consider
an incoming plane wave moving towards the boundary. If the boundary is impenetrable,
this wave must be fully reflected. For a unitary theory with a single type of particle,
the reflection amplitude can only differ by a phase from the incoming amplitude. For a
system with more than one particle type, the reflection matrix is a unitary matrix. This
boundary scattering matrix or boundary scattering phase, respectively, will be denoted
by SL(u) or SR(u). Here u stands for the rapidity of the reflected particle and L or R
denotes the left or right boundary, respectively.

Integrability imposes non-trivial constraints on the boundary S -matrix. Consider a
two-particle scattering process, where the two particles scatter through each other in
the bulk, hit the boundary and then return into the bulk. Demanding that this process
is independent of the order of scattering, we obtain the boundary Yang–Baxter equation
for e.g. the left boundary scattering matrix SL:

SL(u2)S21(u1 + u2)SL(u1)S12(u1 − u2) = S12(u1 − u2)SL(u1)S21(u1 + u2)SL(u2).

(2.35)

In addition to that, the boundary S -matrix must also satisfy the crossing and unitarity
constraints [45]. The boundary S -matrices can be obtained non-perturbatively by solving
these constraints.

https://doi.org/10.1088/1742-5468/ac6251 10
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Faddeev–Zamolodchikov algebra. Before discussing the more general cases, let
us first review a convenient way of describing integrable scattering processes. Consider
the asymptotic states of an integrable field theory, which can be expressed in terms of
creation operators A†(u) via

|u1, . . . , un〉in/out = A†(u1) . . .A
†(un)|0〉. (2.36)

The in/out states are distinguished by the relative ordering of the particle rapidities: if
u1 > u2 > . . . un it is understood to be an ‘in-state’; if instead the rapidities are ordered
as u1 < u2 < . . . < un it is understood as an ‘out-state’. It is worth mentioning that the
creation operators are not the creation operators of the free theory, instead they take
into account all interactions. However, a nice feature of those creation operators is that
we can describe the scattering process as in a free theory, where the creation operators
satisfy

A†(u1)A
†(u2) = S(u1, u2)A

†(u2)A
†(u1). (2.37)

Here the coefficient S represents the two-to-two scattering matrix. Since asymptotic
states diagonalize the local charges, we can write

[
Is,A

†(u)
]
= γ(s) esuA†(u),

[
Īs,A

†(u)
]
= γ(s) e−suA†(u), (2.38)

where the γ(s) are constants determined by the theory.
Defect theory. A defect is a generalization of an impenetrable boundary. Quantum

mechanically, the physics is identical to the scattering off a potential barrier, where we
are allowed to have both, transmitted and reflected waves. For a unitary theory, the sum
of the modulus of the reflection and transmission amplitude is 1. The study of integrable
line defects was initiated in [46, 47].

In integrable theories it is convenient to describe integrable defects by the
Faddeev–Zamolodchikov (FZ) algebra. The reason is that the generalized FZ algebra
in the presence of a defect has the same structure as the usual asymptotic quantum
mechanical scattering picture.

The line defect separates the space into two parts, which will be called the left
and right part. We denote the FZ operators in the two parts by A†(u) and B†(u),
respectively, and we assume that the action of the defect can be described by a defect
creating operator D†. The most general defect algebra is then

A†(u)D† =R(u)A†(−u)D† + T−(u)D
†B†(u),

D†B†(u) =R(u)D†B†(−u) + T+(u)A
†(u)D†. (2.39)

The physical meaning of these equations is quite clear: for instance, the first equation
describes the scattering process of the left particle off the defect.
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It has been proven that the only integrable defects in an interacting theory are topo-
logical ones [48]. These defects are purely transmissive. Setting the reflection coefficient
to zero (R(u) = 0) in the previous equations, the algebra satisfied by these operators
reads

A†(u)D† = T−(u)D
†B†(u), D†B†(−u) = T+(−u)A†(−u)D†, (2.40)

where T±(u) are the transition amplitudes. For a parity symmetric theory, we have
T−(u) = T+(u). The asymptotic states are given by

|u1, . . . , uM ; v1, . . . , vN〉 ≡ A†(u1) . . .A
†(uM)D†B†(v1) . . .B

†(vN )|0〉. (2.41)

Here, we have introduced an evident ket notation |u ; v〉 to denote the rapidities of the
left/right side of space

One can have non-topological defects, but the price to pay is that the theory has
to be free, namely the bulk S -matrices are simply S = ±1. In this case, the creation
operators A†,B† are identical, and the most general asymptotic state can be written as

|u〉D = a(u)|u ; ∅〉+ b(u)|∅ ;u〉+ c(u)| − u ; ∅〉, (2.42)

where we have

T (u) =
b(u)

a(u)
, R(u) =

c(u)

a(u)
. (2.43)

This completes our introduction to two-dimensional quantum field theories whose
deformations will be discussed in the following.

3. Classical analysis

The purpose of this section is to perform a classical analysis of deformations of the
above family of boundary field theories. In particular, we wish to understand for which
boundary conditions the T T̄ -deformed theories allow for integrability. We will see that
in order to preserve integrability at leading order in the deformation parameter, the
boundary potential of the undeformed theory has to be zero. More explicitly, we will
take a given bulk model and evaluate the constraints on the boundary conditions, which
arise from constructing a first higher spin charge. We will first briefly discuss the free
scalar as an illustrative example and then study the T T̄ -deformed model. Details on the
deformed Sine-Gordon model are given in appendix A.

3.1. Lagrangian description

In order to study classical deformations it will be convenient to use the Lagrangian
description. Recall that our field theory is defined on the −x axis, by taking sL =
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Table 2. Given a certain bulk theory, we display the boundary conditions that are
compatible with the existence of a higher conserved charge, which is a necessary
requirement for integrability. Here in the last two rows we have performed the
analysis up to the leading deformation at O(λ). The θ(φ) or θ(φ, ∂yφ) in the right
column indicates our assumptions on the dependence of the boundary Hamiltonian
θ on the fields.

Tested Bulk Boundary

Generic Free theory Mass term type: θ = gφ2/2
Sine-Gordon type: θ = c1 cosh(c2φ− φ0)

Order O(λ) T T̄ -deformed free theory θ(φ) ⇒ θ(φ) = 0, θ(φ, ∂yφ) ⇒ θ(φ, ∂yφ) �= 0
Order O(λ) T T̄ -deformed Sine-Gordon θ(φ) ⇒ θ(φ) = 0

−∞, sR = 0, with the fields vanishing at x = sL. Performing a Legendre transformation
of the Hamiltonian (2.1), the action of the system can be written as

S(φ) =

∫ ∞

−∞
dy

∫ 0

−∞
dxL(φ, ∂μφ) +

∫
dyLbdr(φbdr), (3.1)

where φbdr(y) = φ(x = 0, y). Here, the boundary Lagrangian Lbdr is essentially the
boundary potential θ2R(x = 0, y) defined in (2.1).

As usual, the classical equation of motion can be obtained by taking the functional
variation. In the bulk, the equation of motion is given by the usual Euler–Lagrange
equation, which does not depend on the boundary Lagrangian. On the contrary, the
equation of motion for the boundary field φbdr depends on both, the bulk and the
boundary Lagrangian. The dependence on the bulk Lagrangian comes from the total
spatial derivative terms in the bulk (recall that these are x-derivatives in our setup). For
instance, suppose under a field variation φ→ φ+ δφ the variation of the bulk Lagrangian
contains a spatial derivative term ∂L

∂(∂xφ)
∂xδφ. After integration by parts, a boundary

term ∂L
∂(∂xφ)

δφ
∣∣∣
x=0

remains. This term, together with the usual boundary variation, will

determine the boundary condition for the field variable φ.
Integrable boundary conditions. In order to preserve integrability, the bound-

ary potential has to satisfy the non-trivial constraint (2.25), which depends on the
form of the bulk Lagrangian. Hence, for a given bulk Lagrangian, the integrability con-
straint restricts the form of the boundary Lagrangian. In fact, following the procedure
of Ghoshal and Zamolodchikov for the Sine-Gordon model [45], we have found that in
the case of the bulk T T̄ -Lagrangian the existence of a higher conserved charge requires
the boundary potential to be zero. Our results are summarized in table 2.
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3.2. Undeformed free scalar and compatible boundary function

In order to illustrate how to obtain constraints on the boundary function using (2.25),
let us first study the free theory for a single massless scalar field, defined on the −x axis:

S(φ) =
1

2

∫ ∞

−∞
dy

∫ 0

−∞
dx ∂μφ∂

μφ+

∫
dy θ(φbdr). (3.2)

Here φbdr = φ(x = 0). Our goal is to find the most general boundary potential θ that is
compatible with (2.25).

In order to obtain the equations of motion we consider a field variation φ→ φ+ δφ:

δS =

∫ ∞

−∞
dy

∫ 0

−∞
dx ∂μφ∂

μδφ+

∫
dy

δθ

δφ
δφ

=

∫ ∞

−∞
dy

∫ 0

−∞
dx (−∂2φ)δφ+

∫ ∞

−∞
dy ∂xφδφ

∣∣∣∣
x=0

+

∫
dy

δθ

δφ
δφ.

(3.3)

As usual, we assume vanishing fields at infinity, such that the bulk and boundary
equation of motion are given by

∂2φ = 0, ∂xφ+
δθ

δφ

∣∣∣∣
x=0

= 0. (3.4)

Conserved higher charges. For the free scalar the definition of higher charges
is actually ambiguous. For instance, using the equation of motion ∂∂̄φ = 0, where
we remind of our complex coordinates with ∂ = 1

2
(∂x − i∂y) and ∂̄ = 1

2
(∂x + i∂y), one

immediately sees that any linear combination of the form

Ts =

s∑
j=0

cs,j(∂
s−jφ)(∂φ)j (3.5)

defines an on-shell spin-s conserved current in the bulk. Here the cs,j are constant
coefficients. However, not all of these linear combinations are conserved for any bound-
ary Lagrangian. We shall see how different choices of the boundary potential fix this
ambiguity.

Among the conserved charges (3.5), the T 2 term is the stress–energy tensor, while T 3

amounts to a total z-derivative. Therefore, the first non-trivial conserved higher charge
is T 4. Comparing with (3.5), one finds that the most general form of T 4 can be obtained
from the integer partition of 4 by replacing the following sets by the respective derivative
terms:

{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}. (3.6)

Thus, we obtain the ansatz

T4 = c1∂
4φ+ c2(∂φ)∂

3φ+ c3(∂
2φ)2 + c4(∂φ)

2∂2φ+ c5(∂φ)
4, (3.7)
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where the cj denote general coefficients. The conjugate T̄ 4 is obtained by the replacement
∂ → ∂̄. Since we are dealing with free theories, the conservation of T 4 immediately follows
from the equation of motion, ∂∂̄φ = 0.

Before going into further details, let us discuss the structure of T 4. The c1 and
c4 terms are different from the others, since they are total z-derivatives. Therefore, it
suffices to consider the case where c1 = c4 = 0. (We will see that those terms drops out
automatically, if we take them into account.) The c2, c3 terms are not independent, but
related by an integration by parts, (∂2φ)2 = ∂(∂φ∂2φ) − ∂φ∂3φ, so the only physical
parameter is c3 − c2. We shall see that this is indeed the case.

Integrability constraints on the boundary potential. For free theories, the
Θ2, Θ̄2 terms vanish (cf (2.5)). Based on this, we can compute the boundary contribution
(2.25) when r = 3,

−8i(T4 − T̄ 4) = A(φ)(∂yφ)
3 +B(φ)∂yφ∂

2
yφ+ C(φ)∂3

yφ+ (functions of φ) ∂yφ,

(3.8)

where (for θ(j)(φ) = ∂j
φθ(φ))

A(φ) = −8c1θ
(4)(φ)− 4c4θ

(3)(φ)− 2c4θ
′′(φ)− 4c5θ

′(φ),

B(φ) = −24c1θ
(3)(φ)− 4c2θ

′′(φ)− 8c3θ
′′(φ)− 4c4θ

′(φ),

C(φ) = −8c1θ
′′(φ)− 4c2θ

′(φ).

(3.9)

Here, we have replaced ∂2
x using the bulk equation of motion, and we have replaced ∂x

using the boundary equation of motion, see (3.4). Employing those equations we can
thus eliminate all x-derivatives at the boundary.

The last term of (3.8) is automatically a total y-derivative. For the first three terms,
we can perform integration by parts on the A,C terms to bring them into the form of
the B term:

A(φ)(∂yφ)
3 =

d

dy

(∫
dφA(φ)

)
(∂yφ)

2

= −2

(∫
dφA(φ)

)
∂yφ∂

2φ+ totaly-derivative terms,

C(φ)∂3
yφ = C(φ)

d

dy
(∂2

yφ) = −C ′(φ)∂yφ∂
2
yφ+ total-derivative terms.

(3.10)

Therefore, the condition of being a total y-derivative is equivalent to

2

∫
dφ (A(φ)−B(φ) + C ′(φ)) = const. (3.11)
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We allow for a constant since

const× ∂yφ(∂
2
yφ) = const× 1

2
∂y

[
(∂yφ)

2
]

(3.12)

can also be expressed as a total derivative. Using the explicit expressions for A(φ), B(φ),
and C(φ), we find

2

∫
dφ A(φ)−B(φ) + C ′(φ) = const ⇒ (c3 − c2)θ

′′(φ)− c5θ(φ) = const.

(3.13)

We see that the dependence on c1 and c4 drops out automatically, and indeed the result
only depends on c3 − c2. The solutions of this differential equation for the boundary
function θ fall into three categories:

• c3 − c2, c5 �= 0: the constant term on the right-hand side just shifts the boundary
potential by const/c5, which has no physical consequences. Therefore, it suffices to
take this constant to be zero, and the solution reads

θ(φ) = c1 cosh (c2φ− φ0) , c2 =

√
c5

c3 − c2
, (3.14)

where c1,φ0 denote constants of integration. This result essentially represents
the boundary potential for the Sine-Gordon theory as found by Ghoshal and
Zamolodchikov [45].

• c5 = 0, c3 − c2 �= 0: the constant term on right-hand side is now important, since it
yields a quadratic contribution to the potential:

θ(φ) =
const

2(c3 − c2)
φ2 + c3 + c4φ, (3.15)

where c3, c4 denote constants of integration. Physically they are not important, since
we can absorb them by a constant field shift. This is the boundary function discussed
in [49].

• c3 − c2 = 0, c5 �= 0 case: the boundary potential is a constant. Consequently, the bulk
field satisfies Neumann boundary conditions.

This completes the story of the free theory. In summary, based on the analysis of
the first non-trivial higher charge T 4, there are only two options to choose a bound-
ary potential (or boundary Lagrangian), which preserves integrability of the free bulk
scalar:

(a) If on the one hand θ(φ) = gφ2/2, we find for the higher conserved charges

θ(φ) = g
φ2

2
⇒ T2s = (∂sφ)2. (3.16)
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(b) If on the other hand θ(φ) = c1 cosh (c2φ− φ0), the higher conserved charges take a
different form:

θ(φ) = c1 cosh (c2φ− φ0) ⇒ T2s = (∂φ)2s +
1

c22
(∂sφ)2. (3.17)

In the following it will be convenient to distinguish between charges of the form (a)
(∂sφ)2 or (b) (∂φ)2s. Statements about their linear combinations, as e.g. in (3.17) follow
straightforwardly.

3.3. TT̄ deformed free massless scalar

Now we proceed with a similar investigation in the context of deformed theories. We
shall restrict to the T T̄ case in this section.

Bulk T T̄ deformation. As a starting point for the T T̄ deformation consider the
stress tensor. For the free theory, using the general formula

Tμν =
∂L

∂(∂μφ)
∂νφ− δμνL, (3.18)

we find

det T bulk
μν =

1

4
[(∂xφ)

2 + (∂yφ)
2]2. (3.19)

Equivalently, in complex coordinates we have

det T bulk
μν = (∂φ∂̄φ)2. (3.20)

We assume that in the bulk the action is deformed by the conventional T T̄ deformation,
i.e. the deformation is defined by the equation

dSbulk

dλ
= −

∫ ∞

−∞
dy

∫ 0

−∞
dx det T bulk

μν . (3.21)

The deformed bulk Lagrangian is the Nambu–Goto Lagrangian [2]

Lbulk =
1

2λ

(√
1 + 4λ(∂φ∂̄φ)− 1

)
= (∂φ∂̄φ)− λ(∂φ)2(∂̄φ)2 +O(λ2).

(3.22)

It induces the deformed bulk equation of motion

∂∂̄φ = λ
∂̄2φ(∂φ)2 + ∂2φ(∂̄φ)2

1 + 2λ∂φ∂̄φ
, (3.23)
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and the deformed boundary equation of motion6

0 =
∂xφ√

1 + λ[(∂xφ)2 + (∂yφ)2]
+

dθλ
dφ

∣∣∣∣
x=0

. (3.24)

Here θλ represents the deformed boundary potential, and we assume it is still only a
function of the bulk field, but not of its derivatives.

In the following we will identify the choices of the boundary potential which preserve
integrability, i.e. which imply that all higher conserved charges satisfy the modified
boundary condition (2.25).

Deformed higher charges. Using the deformed equation of motion and the differ-
ent possibilities for the initial (undeformed) higher charges T 2s(λ = 0), one can obtain
the deformed higher charges:

(a) If the initial charges are T 2s(0) = (∂φ)2s and Θs(0) = 0, the all-order deformations
are known and given by [2]

Ts(λ) =
(∂φ)s

S

(
2

S + 1

)s−2

, Θs−2(λ) =
λ(∂φ)s(∂̄φ)2

S

(
2

S + 1

)s

, (3.25)

where S =
√

1 + 4λ∂φ∂̄φ.

(b) On the other hand, if the initial charges are T2s(0) = (∂sφ)2 and Θs(0) = 0, the all
order deformations can in principle be obtained, but there is no simple formula for
a generic deformed charge. The leading higher charges T 4(λ) and Θ2(λ) are given
by [22]

T4(λ) =
(∂φ)2

S

(
(S − 1)4∂̄2φ− 16λ2(∂̄φ)4∂2φ

4λ(S − 1)(S2 + 1)(∂̄φ)3

)2

,

Θ2(λ) =
(S − 1)2

4λS

(
(S − 1)4∂̄2φ− 16λ2(∂̄φ)4∂2φ

4λ(S − 1)(S2 + 1)(∂̄φ)3

)2

.

(3.26)

The conjugates T̄ s and Θ̄s are obtained by replacing z by z̄.
Clearly, if the initial charges are linear combinations of both types (a) and (b)

presented above, as in the case (3.17), the deformed charges are given by the same
(deformed) linear combinations.

Boundary T T̄ deformation for θ = θ (φ). Let us now investigate the following
boundary integrablity condition (2.25) for the first few charges:

− i(Tr+1 − T̄ r+1 + Θ̄r−1 −Θr−1)
∣∣
x=0

=
d

dy
θr(y). (3.27)

Even though conservation of T 2 does not correspond to integrability, we first discuss
this case for completeness. For r = 1 the above equation involves the deformed stress
tensor T 2. Note that T 2 is unique, such that we can use (3.25). We immediately see that

6We have rescaled θλ by a factor of 1/2, to cancel the factor 1/2 from the first term.
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Θ0(λ) and Θ̄0(λ) cancel out, and the non-trivial contribution at the boundary is given
by

− i(T2 + Θ̄0 − T̄ 2 −Θ0)
∣∣
x=0

=
i√

1 + 4λ∂φ∂̄φ

(
(∂φ)2 − (∂̄φ)2

)
=

∂xφ∂yφ√
1 + 4λ∂φ∂̄φ

∣∣∣∣
x=0

= −∂yφ
dθλ
dφ

. (3.28)

It is now clear that as long as θλ is a function of φ only, the expression above is a total
y-derivative, regardless of the functional form of θλ.

The first non-trivial constraint on the boundary function θλ comes from the leading
higher charge T 4. A generic all-order analysis seems rather involved, so we restrict to a
perturbative analysis at O(λ). The bulk equation of motion is then given by

∂2
xφ = −∂2

yφ+ λ
(
∂2
yφ

[
(∂yφ)

2 − (∂xφ)
2
]
+ 2∂xφ∂yφ(∂x∂yφ)

)
+O(λ2). (3.29)

Similarly, we can solve the deformed boundary equation of motion. Expanding the
boundary potential in λ according to

θλ = θ(0) + λθ(1) +O(λ2), (3.30)

we find

∂xφ|x=0 = −θ′(0) − λ

(
θ′(1) −

1

2
θ′(0)[(θ

′
(0))

2 + (∂yφ)
2]

)
+O(λ2). (3.31)

Using those deformed equations of motion, we can analyze the deformed T 4 for different
undeformed charges:

(a) If the undeformed charges are T 4 = (∂φ)4, using the general expressions (3.25), we
find that at O(λ) the expression only contains single x-derivatives. Substituting
∂xφ, we obtain the O(λ) contributions

− 2i(T4 + Θ̄2 − T̄ 4 −Θ2)
∣∣
x=0,O(λ)

=

(
3

4
(θ′(0))

3 − θ′(1)

)
(∂yφ)

3 +
3

8
θ′(0)(∂yφ)

5 + (functions of φ) ∂yφ.

(3.32)

(b) On the other hand, if the undeformed charge reads T4 = (∂2φ)2, using (3.26) and
substituting ∂xφ, ∂

2
xφ, we find that the additional O(λ) contribution is given by

https://doi.org/10.1088/1742-5468/ac6251 19

https://doi.org/10.1088/1742-5468/ac6251


J.S
tat.

M
ech.

(2022)
043102

Irrelevant deformations with boundaries and defects

− 2i(T4 + Θ̄2 − T̄ 4 −Θ2)
∣∣
x=0,O(λ)

= (functions of φ) ∂yφ+

(
3

2
θ′(0)(θ

′′
(0))

2(∂yφ)
3 −

[
3

2
(θ′(0))

2θ′′(0) + 2θ′′(1)

]
∂yφ∂

2
yφ

)
+

3

2

(
θ′′(0)(∂yφ)

3∂2
yφ− θ′(0)(∂yφ)(∂

2
yφ)

2
)
. (3.33)

From the expressions for both of the above cases one immediately sees that the
five-derivative terms, namely the terms that are proportional to (∂yφ)

5, (∂yφ)(∂
2
yφ)

2, or

(∂yφ)
3(∂2

yφ) only depend on the undeformed boundary potential θ(0). Since we are missing

a term ∂3
yφ∂

2
yφ to combine with ∂yφ(∂

2
yφ)

2, we are unable to turn those five-derivative
terms into a total y-derivative. The only solution which preserves integrability is to set
θ(0) to zero.

If we set θ(0) = 0, the θ(1) dependent terms now have exactly the same structure
as those for the boundary function in the undeformed theory. Hence, the most gen-
eral solution at this order is identical to the undeformed boundary function. In other
words, the boundary potential would be delayed by one order. However, since we have
found that the O(λ) analysis forces θ(0) to vanish, it is conceivable that going to the
next perturbative order O(λ2) implies that also θ(1) has to vanish in order to preserve
integrability. This phenomenon is actually quite general. We have verified that for the
Sine-Gordon theory, the deformed boundary potential also gets delayed, see appendix A
for details. This suggests that the most general boundary potential which is compatible
with integrability and the bulk T T̄ deformation is zero.

Boundary T T̄ deformation for θ =θ (φ, ∂yφ). The result in the previous para-
graph does not necessarily exclude the possibility that the boundary potential depends
on the derivatives of φ. In fact, we shall see that at leading order, the deformed boundary
Lagrangian can be non-trivial, if it depends also on ∂yφ.

Drawing inspiration from the T T̄ deformed charges, we now assume that the
deformed boundary potential is a function of φ and ∂yφ. The deformed Lagrangian
takes the form

θλ = θ(0)(φ) + λ
(
θ(1,1)(φ) + θ(1,2)(φ)(∂yφ)

2
)
+O(λ2), (3.34)

where we assume the undeformed boundary Lagrangian θ(0) is still of the potential
type, i.e. does not depend on derivatives of φ. Here, we have assumed that the O(λ)
terms only contain y-derivatives up to second order ∂2

yφ, because higher order derivative
terms would contribute to (2.25) with more than five-derivative terms, which would be
inconsistent with the structure we have found. Now, the deformed boundary equation
of motion becomes

∂xφ|x=0 = −θ′(0) − λ

(
θ(1,1)(φ)

′ − θ(1,2)(φ)
′(∂yφ)

2 − 2θ(1,2)(φ)(∂yφ)
2

+
1

2
θ′(0)[(θ

′
(0))

2 + (∂yφ)
2]

)
+O(λ2). (3.35)
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With the additional θ(1,2) term, there will be a new five-derivative contribution propor-
tional to (∂3

yφ)(∂
2
yφ) in (3.33). Combined with the problematic ∂yφ(∂

2
yφ)

2 term, they can
become a total y-derivative. Explicitly, they read

(∂yφ)(∂
2
yφ)

2

(
8θ′(1,2) −

3

2
θ′(0)

)
︸ ︷︷ ︸

=A1,2,2

+ (∂3
yφ)(∂

2
yφ)4θ(1,2)︸ ︷︷ ︸

=A2,3

. (3.36)

Thus, the coefficients must satisfy

A2,3(φ)− 2

∫
dφ A1,2,2(φ) = const ⇒ θ(1,2) = c1,2 +

1

4
θ(0), (3.37)

where c1,2 denotes an arbitrary constant. What remains in (3.33) is simply a term of the
form 2θ′′(0)(∂yφ)

3(∂2
yφ). Now, we can use the explicit forms of the undeformed boundary

potential, which are compatible with integrability (see (3.16) and (3.17)):

(a) If the undeformed boundary potential reads gφ2/2, the remaining term
2θ′′(0)(∂yφ)

3(∂2
yφ) is automatically a total y-derivative. Demanding the three-

derivative terms to be a total y-derivative, we find

θ(1,1) = −5g3

32
φ4 + d1φ

2 + d2φ+ d3, (3.38)

where the dj denote constants.

(b) If the undeformed boundary potential reads c1 cosh(c2φ− φ0), the term
2θ′′(0)(∂yφ)

3(∂2
yφ) must combine with other five-derivative terms coming from the

deformed (∂φ)4 charge. For the five-derivative terms the condition of being a total
derivative is then automatically satisfied. Plugging this into the third-order terms,
we find a second-order differential equation for θ(1,1):

0 =
3

2
c21c

2
2 sinh

2 (c2φ− φ0) (c1,2 − 2c1 cosh (c2φ− φ0))−
2θ′′1,1(φ)

c22
. (3.39)

The solution to this equation is easily obtained, but it is not illuminating. Therefore
we shall not present it here.

Summary. To summarize, given the T T̄ deformed bulk Lagrangian our O(λ)
perturbative analysis shows the following:

• If the boundary function only depends on φ and not on its derivatives, the deformed
boundary potential is delayed by one order. This suggests that for the full T T̄
deformed bulk Lagrangian, the only integrability-preserving boundary potential is
zero.

• If instead we allow for derivative corrections at O(λ) in the boundary function, then a
non-trivial, integrability-preserving solution for the deformed boundary Lagrangian
exists. This suggests that a non-trivial, integrability-preserving boundary Lagrangian
necessarily depends on ∂yφ.
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4. Review of deformations for closed and open boundaries

In this section we discuss some general principles underlying deformations of two-
dimensional models, e.g. field theories, spin chains or the Bose gas.

4.1. Closed boundaries

Let us review the construction of [9, 10] adapted to the field theory context. We are
interested in deformations of a Hamiltonian, or more generically, a set of conserved
charges, which preserve locality7 in the sense that the undeformed as well as the deformed
Hamiltonian can be written as an integral over a local density H(x):

H =

∫
dxH(x). (4.1)

In the following we will focus on continuous models but similar considerations apply
to discrete spin chains, where integrals are replaced by lattice sums. A general class of
deformed Hamiltonians Hλ is defined via a parallel transport equation of the following
form:

d

dλ
Hλ = [X ,Hλ] . (4.2)

where the deformation operator X also depends on λ, but we omit it systematically
for simplicity. For an integrable model, such deformations preserve integrability if the
integrable charges Qr are deformed by means of the same deformation equation as the
Hamiltonian. Deformations that preserve locality in the above sense are conveniently
introduced using the notion of bilocal operators defined as

(4.3)

Here A and B represent two local operators in the above sense and sL and sR denote
the positions of the left and right boundary, respectively. For the infinite line we have
sL/R = ∓∞. The label ‘closed’ indicates that we will slightly refine this definition of a
bilocal operator in the context of open boundary systems. While the introduction of the
above bilocal operators may seem ad hoc at first sight, it is motivated by the following
fact: for spin chains it has been shown that this class of deformation generators exhausts
the complete space of integrability preserving deformations found for closed [51] and
open [52] gl(N) chains, as well as in the XXZ case [27].

Importantly, locality of the Hamiltonian H defined via (4.2) is preserved if the local
operators A and B both commute with H, e.g. for two conserved charges A = Qr and
B = Qs. In that case, i.e. for X = [Qr|Qs], the only non-vanishing contributions to the
commutator [[A|B],H] originate from the local term Qr(x)Qs(x) in the definition of the
bilocal operator (4.3), which yields a local result, see figure 2.8 Would either Qr or Qs not
commute with H, the result of the commutator were bilocal. This subtlety arises in the

7This should not be confused with locality of quantum field theory in the Wightman axioms [50].
8 Note that e.g. for a tri -local operator this would not be the case.
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Figure 2. The only non-vanishing contribution to the commutator of a bilocal
charge with a local charge originates from the last term where both legs Qr and Qs

of the bilocal operator are close to each other. The first two terms vanish since the
local charge Qt commutes with both local charges Qr and Qs.

case of open boundaries where the parity-odd charges are typically not conserved but
still required to generate the full space of admissible deformations [11], see section 4.2.
Note that the charges Qr can be taken to be the spacetime P - or H-type charges
described in section 2.1 or some internal commuting charge, see [27] for an example
of latter. While the T T̄ -deformation belongs to the class of deformations induced by
bilocal spacetime charges, the combination of spacetime and internal charge is referred
to as JT̄ -deformations in the field theory context, see [12–19]. Similar deformations for
spin chains were considered in [27].

Note that also the constituent charges Qr and Qs of the bilocal charge [Qr|Qs] should
be deformed via an equation of the form (4.2), in order to preserve [H(λ),Qr(λ)] = 0
for λ �= 0. That is, strictly speaking all operators in this paragraph carry an argument
λ, which we have omitted to avoid clutter.

Relation to T T̄ -like deformations. Let us relate the above bilocal deformations
to bilinear deformations expressed in terms of currents, see [25, 26, 53]. Consider the
deformation equation (4.2) with

X = [Qr|Qs] =

∫
x1<x2

dx1 dx2 Qr(x1)Qs(x2). (4.4)

Using the Heisenberg equation (2.19) given by ∂yQr = [H,Qr] as well as the conservation
equation (2.18) given by ∂yQr = −∂xJr, we find

[X ,H] =

∫
x1<x2

dx1 dx2 ([Qr(x1),H]Qs(x2) +Qr(x1) [Qs(x2),H])

=

∫ sR

sL

dx2 (Jr(x2)− Jr(sL))Qs(x2) +

∫ sR

sL

dx1 Qr(x1) (Js(sR)−Js(x1)) .

(4.5)

We introduce the operator

Ors = −εμνJ
μ
r J

ν
s = JrQs −QrJs, (4.6)

such that we can write

[X ,H] =

∫ sR

sL

Ors(x)dx−Jr(sL)Qs +QrJs(sR). (4.7)
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On the infinite line with sL = −∞ and sR = +∞, where the last two terms drop out,
we thus find

dHλ

dλ
=

∫ ∞

−∞
Ors(x)dx. (4.8)

In the special case of s = 1, r = 2 with T = T 2, Θ = Θ0, we have

O21 = 4
(
T T̄ −ΘΘ̄

)
= det Tμν. (4.9)

Note that the densities Qr and Js also receive deformations in λ, and that the
deformation equation (4.2) is formally solved by

Hλ = U−1
λ H0Uλ, Uλ = P exp

[
−
∫ λ

0

X(λ′) dλ′
]
. (4.10)

4.2. Open boundaries

For systems with open boundary conditions there are important differences in the
construction of locality and integrability preserving deformations to the closed case
discussed above, see [11].

Firstly, for open systems merely the parity-even charges Q2r = H2r−1 are conserved,
while conservation of the odd charges Q2r−1 = P 2r−1 is typically broken by boundary
terms. In particular, the odd momentum operatorQ1 = P is not conserved. Nevertheless,
we can still define odd ‘charge operators’, see (2.16), by the requirement that these are
conserved in the bulk of the theory. In particular, we have

[Qr,Q2s+1] = boundary terms, (4.11)

where boundary terms may act nontrivially on the boundary but vanish in the bulk.
Note that formally we may include boundary terms like the boundary Hamiltonian θ
into the bulk density of the operators by writing them as total derivatives, e.g.

θ(x = sR, y) =

∫ sR

−∞
dx ∂xθ(x, y). (4.12)

Note, however, that the classical analysis of the T T̄ -deformed model in the previous
section 3 suggests to set the boundary functions θ of the considered charges to zero.

Secondly, deformations with bilocal charges [Qr|Qs] will generically result in bilocal
deformations of the even conserved charges Q2t of the open model, if one of the charges
Qr or Qs is odd. Therefore the order of the local operators entering the bilocal operator
is crucial when applied to semi-infinite systems. We will distinguish such systems with
either an open boundary on the left (left-open) or on the right (right-open). For a
left-open model for instance, we obtain local deformations only when using the bilocal
operator [Q2r|Q2s+1], but not for [Q2s+1|Q2r].

Finally, in the case of open boundaries nontrivial deformations can be induced by
local operators in addition to the above bilocal charges. In particular, this means that
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the precise choice of local regularization of bilocal operators becomes important. In the
open case we define the bilocal operators as9

[A|B] :=

∫ sR

sL

dx2

∫ x2

sL

dx1
1

2
{A(x1),B(x2)} −

1

4

∫ sR

sL

dx {A(x),B(x)}

=

∫ sR

sL

dx2

∫ x2

sL

dx1
1

2

(
1− 1

2
δ(x1 − x2)

)
{A(x1),B(x2)} . (4.13)

Here {·, ·} denotes the anti-commutator. The above definition yields

[A|B] + [B|A] =
1

2
{A,B} . (4.14)

In particular, this regularization implies that the sum of conserved bilocal charges

[Qr|Qs] + [Qs|Qr] = QrQs (4.15)

commutes with the Hamiltonian (and higher integrable charges) in the bulk, i.e. the
only non-trivial bulk deformations are induced by the difference of bilocal charges
X = [Qr|Qs]− [Qs|Qr] when inserted into (4.13). Moreover, the bulk projection of the
commutator of the form [[Q2r|Q2s+1],Q2t] equals the bulk projection of the commutator
− [[Q2s+1|Q2r],Q2t], i.e.

[[Q2r|Q2s+1],Q2t] + [[Q2s+1|Q2r],Q2t]

∣∣∣∣
bulk

=
1

2
[{Q2r,Q2s+1} ,Q2t]

∣∣∣∣
bulk

= 0, (4.16)

which will be important for the below construction.

4.3. Explicit construction for open boundaries

Following [11], in this section, we present more details of the deformations for open
boundaries which are the main focus of this paper. In particular, we will review how
deformations generated in a left- and right-open model can be combined into deformed
charge operators for systems with two boundaries.

First of all we refine the above notion of boundary terms by introducing left bound-
ary terms Abdr

L and right boundary terms Abdr
R , which only act on the left or the right

boundary, respectively. Acting for instance with a right boundary term Abdr
R on a state

in a left-open model yields zero:

Abdr
R |ψ〉L = 0. (4.17)

Here we denote states in the left- or right-open model by |·〉L or |·〉R, respectively.
Moreover, it will be useful to introduce a notion of setting boundary terms to zero.
We employ the notation |L to indicate that we set right boundary terms to zero and |R
to set left boundary terms to zero. More explicitly, if we apply the boundary conditions
of a left- or right-open model denoted by |L or |R, respectively, we have

Abdr
L |L = Abdr

L , Abdr
L |R = 0, (4.18)

9Note that one can also use this regularized version of bilocal operators in the case of closed boundary conditions, cf (4.3). The
additional local term makes no difference in that case.
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Abdr
R |L = 0, Abdr

R |R = Abdr
R . (4.19)

The bulk part of a local operator A can thus be defined as

Abulk = A|L|R ≡ A|LR. (4.20)

Note that for a system with open boundaries, the odd charges commute up to boundary
terms according to

[Qr,Q2s+1] = Abdr
L + Abdr

R . (4.21)

Semi-infinite systems. We now want to deform a set of even charge opera-
tors Q2r,L/R = Q2r,L/R(λ = 0), which are conserved in the left or right open model,
respectively. For a non-integrable model this set may only contain the Hamiltonian
Q2,L/R = HL/R. Accordingly, we introduce two sets of charges deformed in the parameter

λ labelled by L and R and defined by the equation10

d

dλ
Q2r,L/R(λ) =

[
XL/R(λ),Q2r,L/R(λ)

]∣∣
L/R

. (4.22)

This equation guarantees that charges, which commute for λ = 0, will also commute for
a non-vanishing deformation parameter λ �= 0. Here the requirement of locality for the
deformed charges implies that the bilocal deformation generators have to be chosen as

XL = +[Q2r|Q2s+1], XR = −[Q2s+1|Q2r]. (4.23)

The two sets of (deformed) charges defined by (4.22) take the form

Q2r,L/R = Qbulk
2r +Qbdr

2r,L/R, (4.24)

with a bulk term and a left or right boundary term, respectively. Here the building
blocks are defined in terms of the solutions of (4.22) according to

Qbulk
2r = Q2r,L|LR = Q2r,R|LR, (4.25)

Qbdr
2r,L = Q2r,L −Qbulk

2r , (4.26)

Qbdr
2r,R = Q2r,R −Qbulk

2r , (4.27)

cf (4.16) for the second equality in the first line. The deformed charges commute by
definition in the left- or right-open model, respectively, e.g. in the left-open case we
have

[Q2r,L,Q2s,L] = Abdr
R |L = 0. (4.28)

Here Abdr
R denotes some boundary term that only acts on a right boundary. In the

left-open model, however, the right boundary is absent and thus the boundary term
vanishes when imposing the respective boundary conditions as denoted by |L. The above
equation (4.28) can be expanded according to[

Qbulk
2r ,Qbulk

2s

]
= Abdr

L +Abdr
R , (4.29)

10 Here we refrain from adding a label X to the deformation parameter λ, which can be useful when studying different types of
deformations at the same time.
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Qbulk

2r ,Qbdr
2s,L

]
+

[
Qbdr

2r,L,Q
bulk
2s

]
+
[
Qbdr

2r,L,Q
bdr
2s,L

]
= −Abdr

L . (4.30)

Finite systems. The next important step is to proceed to a finite open system with
boundaries on the left and on the right. Using the above building blocks from both
half-open systems, we define deformed charges as

Q2r(λ) = Qbulk
2r (λ) +Qbdr

2r,L(λ) +Qbdr
2r,R(λ). (4.31)

The charges defined in this way obey

[Q2r,Q2s] =
[
Qbdr

2r,L,Q
bdr
2s,R

]
+

[
Qbdr

2r,R,Q
bdr
2s,L

]
= Abdr

L&R. (4.32)

Here the terms Abdr
L&R act on both boundaries at the same time and are referred to as

spanning terms, cf [11, 52]. In the spin chain case it is clear that the interaction range
of the charge deformations increases with increasing order in λ. Hence, for a given chain
of finite length, spanning terms arise at a finite order of the deformation parameter λ.
In the field theory case the deformations of the charge operators at a given perturbative
order in λ are naively localized at some point x and would thus never act on both
boundaries at the same time, i.e. contributions Abdr

L&R would be zero in the field theory.
In a non-perturbative context, however, interactions seeing both boundaries may arise.

Finally we note that deformations with bilocal operators [Q2r|Q2s] composed of two
even charges can as well be performed within the finite model and thus correspond to
trivial similarity transformations. Deformations with [Q2r+1|Q2s+1] do not result in local
deformations.

Expressions in terms of currents. A feature that did so far not appear in the con-
text of field theory T T̄ -like deformations for closed systems are the above deformations
generated by odd charges, see [11] for the spin chain case. Let us thus translate these
deformations into expressions in terms of currents. For the open model the Hamiltonian
does not commute with the odd charges and we have

0 �= [H,Q2r+1] =

∫ sR

sL

[H,Q2r+1(x)] dx =

∫ sR

sL

∂yQ2r+1(x)

=

∫ sR

sL

(−∂xJ2r+1(x)) = −J2r+1(sR) + J2r+1(sL). (4.33)

Hence, we find

[+Q2r+1,H] |L = −J2r+1(sL), (4.34)

[−Q2r+1,H] |R = −J2r+1(sR), (4.35)

such that via (4.22) the deformed Hamiltonian becomes

H(λ) = H + λ
(
Hbulk

λ +Hbdr
2r,λ,L +Hbdr

2r,λ,R

)
+O(λ2), (4.36)
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with

Hbulk
λ = 0, Hbdr

2r,λ,L = −J2r+1(sL), Hbdr
2r,λ,R = −J2r+1(sR). (4.37)

The fact that these deformations merely act on the boundary is in agreement with
the observation that they only deform the boundary scattering matrix as shown in the
following.

5. Deformations of scattering factors

In this section we review the deformations of the scattering factors closely following
[10, 11]. These scattering factors are induced by the above deformations of the conserved
charges. We emphasize that essentially the same derivation applies in the context of field
theory and lattice models.

5.1. Bulk scattering phase

Consider the two-particle scattering state

|u, u′〉 � a(u, u′) |u < u′〉+ a(u′, u) |u′ < u〉 , (5.1)

which is an asymptotic eigenstate of the Hamiltonian:

H |u, u′〉 = (h(u) + h(u′)) |u, u′〉 . (5.2)

Here |u < u′〉 represents a partial momentum eigenstate (as opposed to the in/out states
in (2.36)) with the particle with rapidity u(p) (or momentum p) being on the left of the
particle with rapidity u′(p′) (or momentum p′):

|p < p′〉 =
∫
x�x′

eipx+ip′x′ |x, x′〉 . (5.3)

The � in (5.1) signals that we ignore contributions where both particles forming the two-
particle state are close to each other. Such contributions will not affect the two-particle
scattering factor which is defined as

S(u, u′) =
a(u′, u)

a(u, u′)
. (5.4)

We deform the Hamiltonian via the equation

dHλ

dλ
= [X ,Hλ] , (5.5)

where

X |u, u′〉 = g(u, u′) |u, u′〉 , (5.6)
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for some eigenvalue function g; for the moment we do not specify g or X, but we will
do so in due course. Differentiating the eigenvalue equation (5.2) with respect to λ and
using11

d

dλ
h(u) = 0,

d

dλ
|u < u′〉 = 0, (5.7)

we obtain

0 =
d

dλ
[Hλ − h(u)− h(u′)] |u, u′〉

= [X ,Hλ] |u, u′〉+ [Hλ − h(u)− h(u′)]

(
da(u, u′)

dλ
|u < u′〉+ da(u′, u)

dλ
|u′ < u〉

)
= [Hλ − h(u)− h(u′)]

(
−X |u, u′〉+ da(u, u′)

dλ
|u < u′〉+ da(u′, u)

dλ
|u′ < u〉

)
.

(5.8)

Reading off the coefficients of |u < u′〉 and |u′ < u〉 yields the equation

0 = −g(u, u′)a(u, u′) +
da(u, u′)

dλ
, (5.9)

which is solved by

a(u, u′) = eλg(u,u
′)a0(u, u

′). (5.10)

Hence, the deformed two-particle scattering factor reads

Sλ(u, u
′) = eλ(g(u

′,u)−g(u,u′)) S(u, u′). (5.11)

Now we may specify the deformation generator X to the bilocal charge operator, such
that

X = [Qr|Qs], g(u, u′) = iqr(u)qs(u
′) + frs(u) + frs(u

′). (5.12)

Here frs denotes a local contribution that originates from both constituent charges of the
bilocal operator acting on the same particle. Hence, we find the following deformation
of the bulk scattering matrix:

Sλ(u, u
′) = e−iλ(qr(u)qs(u

′)−qs(u)qr(u
′))S(u, u′). (5.13)

5.2. Boundary scattering phase

Consider the left boundary scattering state12

|u〉L � a(u) |u〉+ a(−u) |−u〉 , (5.14)

11 Below we will specify the generator X in (5.5) to bilocal charges. If we assume the local charge densities to annihilate the
vacuum, bilocal charge deformations have no non-trivial effects on one-particle states. This is in contrast to boost and basis change
deformations discussed for spin chains in [10]. The given equations for the one-particle eigenvalues and ordered two-particle states
represent the equations from [10] for vanishing boosts and basis changes.
12 An analogous investigation applies to the right boundary.
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which is an eigenstate of the Hamiltonian:

H|u〉L = h(u)|u〉L. (5.15)

Similarly as above we ignore contributions to the boundary scattering state for which
the particle is close to the boundary and which do not affect the scattering factors. The
boundary scattering factor is defined as

SL(u) =
a(u)

a(−u)
. (5.16)

We deform the Hamiltonian via the equation

dHλ

dλ
= [X ,Hλ] , (5.17)

where

X |u〉 = f(u) |u〉 , (5.18)

for some eigenvalue function f and again, for the moment we do not specify f or X.
Differentiating the eigenvalue equation (5.15) with respect to λ and using

d

dλ
h(u) = 0,

d

dλ
|u〉 = d

dλ
|−u〉 = 0, (5.19)

we obtain

0 =
d

dλ
[Hλ − h(u)] |u〉L

= [X ,Hλ] |u〉L + [Hλ − h(u)]

(
da(u)

dλ
|u〉+ da(−u)

dλ
|−u〉

)
= [Hλ − h(u)]

(
−X |u〉L +

da(u)

dλ
|u〉+ da(−u)

dλ
|−u〉

)
. (5.20)

Reading off the coefficients of |u〉 and |−u〉 yields the equations

0 = −f(u)a(u) +
da(u)

dλ
,

0 = −f(−u)a(−u) +
da(−u)

dλ
, (5.21)

which are solved by

a(u) = eλf(u)a0(u). (5.22)
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Hence, the deformed boundary scattering factor reads

SL,λ(u) = eλ(f(u)−f(−u))SL(u). (5.23)

Now we may specify the deformation generator X to one of the two cases which induce
deformations of the left boundary scattering matrix:

1) : X = [Q2r|Q2s+1], f(u) =
i

2
q2r(u)q2s+1(u), (5.24)

2) : X = Q2r+1, f(u) = iq2r+1(u). (5.25)

Note that the factor 1/2 in (5.24) originates from the 1/2 in front of the local contribution
q2r(x)q2s+1(x) to the bilocal operator as prescribed by the definition (4.13). Analogously
we can proceed for the right boundary where we use X = [Q2s+1|Q2r].

For deformations generated by X = [Q2r|Q2s+1], the deformed bulk S -matrix takes
the form (cf (5.13))

Sλ(u, u
′) = e−iλ(q2r(u)q2s+1(u

′)−q2s+1(u)q2r(u
′))S(u, u′), (5.26)

and for the boundary scattering factor deformed by (5.24) we have

SL,λ(u) = Sλ(u,−u)SL,λ(−u), (5.27)

which is the boundary cross-unitarity condition of [45].

5.3. Defect scattering phase

The derivation of the deformed scattering phase parallels the boundary case. We first
consider the topological case and then the non-topological one.

Topological defects. The topological defect is purely transmissive. To determine
the deformed transmissive amplitude, we consider the following one-particle state

|u〉D = a(u)|u ; ∅〉+ b(u)|∅ ;u〉. (5.28)

The transmissive amplitude is given by

T−(u) = T+(u) = T (u) =
b(u)

a(u)
. (5.29)

Consider the bilocal deformation (5.17) of the Hamiltonian. We denote the deformed
Hamiltonian by Hλ. In the infinite volume limit, we have

Hλ|u〉D = h(u)|u〉D. (5.30)

As before, the asymptotic states diagonalize the operator X :

X |u ; ∅〉 = f(u)|u ; ∅〉, X |∅ ;u〉 = f(u)|∅ ;u〉. (5.31)
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Taking the derivative of (5.30) with respect to λ, we obtain

[X ,Hλ]|u〉D +Hλ
d

dλ
|u〉D = h(u)

d

dλ
|u〉D, (5.32)

where we have used the fact that

d

dλ
|u ; ∅〉 = d

dλ
|∅ ;u〉 = 0,

d

dλ
h(u) = 0. (5.33)

Equation (5.32) can be brought to the form

[Hλ − h(u)]

(
−X |u〉D +

da(u)

dλ
|u ; ∅〉+ db(u)

dλ
|∅ ;u〉

)
= 0, (5.34)

which implies

−f(u) +
da(u)

dλ
= 0, −f(u) +

db(u)

dλ
= 0. (5.35)

These equations can be solved by

aλ(u) = eλf(u)a(u), bλ(u) = eλf(u)b(u). (5.36)

This leads to the conclusion that the transmission amplitude is not affected:

Tλ(u) =
aλ(u)

bλ(u)
=

a(u)

b(u)
= T (u). (5.37)

Physically, this is expected for the T T̄ deformation. Topological defects, by definition,
are invariant under variations of the metric. As a result, they are not sensitive to the
stress energy tensor. Since the T T̄ operator is constructed from the stress energy tensor,
it is natural that topological defects are not affected by the T T̄ deformation. From our
derivation, we see that the topological defect is not affected by these deformations.

Non-topological defects. Integrable defects that are non-topological are only
allowed in free theories with the bulk S -matrix being S = ±1. In this case, the
one-particle state is given by

|u〉D = a(u)|u ; ∅〉+ b(u)|∅ ;u〉+ c(u)| − u ; ∅〉. (5.38)

The transmission and reflection amplitudes are given by

T (u) =
b(u)

a(u)
, R(u) =

c(u)

a(u)
. (5.39)

Going through the same steps, we find that the corresponding deformed quantities are

Rλ(u) = eλf(u)−λf(−u)R(u), Tλ(u) = T (u). (5.40)
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Figure 3. Theories defined on a strip.

We see that the reflection amplitude is deformed in the same way as in the boundary
case while the transmission amplitude is undeformed like the topological defect. Here
we note similarities to the deformation factor obtained in [54].

6. Finite volume spectrum

In the previous sections, we have derived the deformed bulk and boundary S -matrices.
This data allows us to compute important physical quantities. In this section, we will
focus on the finite volume spectrum for theories defined on a strip, i.e. with two inte-
grable boundaries in the spatial direction, as is shown in figure 3. In the left panel of
figure 3, the distance between the boundaries L is large such that the spectrum can be
well approximated by the asymptotic Bethe ansatz; in the right panel, the distance L is
finite and the spectrum needs to be determined by the boundary thermodynamic Bethe
ansatz (BTBA).

We will consider the deformed spectrum for two types of deformations. The first one
is the bilinear deformation triggered by the operators

Ors = εμνJ
μ
Pr
Jν
Hs
, (6.1)

or alternatively by the bilocal operators

[Pr|Hs] or [Hs|Pr], (6.2)

respectively (see section 4.1 for relation between the two alternative pictures). Among
the general bilinear deformations, two families are of special interest. The case r = s
denotes the Castillejo–Dalitz–Dyson (CDD) deformations. These are the deformations
that preserve Lorentz invariance. The additional phase factor inherited by the deformed
S -matrix is the famous CDD factor. The case r = 1 is also special and shall be called
the dynamical hard rod deformation. This family is interesting because it has the nice
physical interpretation to correspond to deforming point particles into finite size hard
rods. The two families of deformations coincide for s = 1, which is the T T̄ deformation.
Let us comment on the possible values of the index s of higher charges Ps,Hs. A priori ,
s runs over the odd integers. However, for a given theory, in general s does not cover all
odd values. The possible set of values of s is an important characteristic of the model,
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see [55] for more details. Since we aim at developing the general framework and do
not specify our considerations to a certain theory, we will simply take s to be an odd
number.

The other type of deformation, which is specific to the boundary case, is triggered
by an odd charge and defined by

dHλ

dλ
= [Pr,Hλ]. (6.3)

This type of deformation does not change the bulk S -matrix (5.25), but has non-trivial
effects on the boundary S -matrices, which deform the spectrum in an interesting way.

6.1. Large volume limit

We first consider the limit L � 1. In this limit, the spectrum is determined by the
asymptotic Bethe equations

e2ip(uj)LSL(uj)SR(−uj)
N∏
k �=j

S(uj, uk)S(uj,−uk) = 1, j = 1, . . . ,N , (6.4)

where S(u, v) is the bulk S -matrix and SL,R(u) denotes the left and right boundary
S -matrix, respectively.

Bilinear deformations. For the bilinear deformations, the deformed bulk and
boundary matrices are given by13 (5.13) and (5.23), which we quote here

Sλ(u, v) =S(u, v)e−iλ(pr(u)es(v)−es(u)pr(v)),

SL,λ(u) =SL(u)e
iλpr(u)es(u),

SR,λ(u) =SR(u)e
−iλpr(u)es(u), (6.5)

where

pr(u) = γr sinh(ru), es(u) = γs cosh(su), (6.6)

and both r, s are odd integers. We have

pr(−u) = −pr(u), es(−u) = es(u). (6.7)

For deformations involving higher charges, it is more convenient to consider the twisted
Bethe equations

e2iL(p(uj)+νrpr(uj))SL(uj)SR(−uj)

N∏
k �=j

S(uj, uk)S(uj,−uk) = 1, (6.8)

13 See [11, 52] for similar results in the spin chain case.
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where νr is the twist that couples to the odd (P -type) charges. The deformed Bethe
equations read

e2iL(p(uj)+νrpr(uj))
N∏
k=1

e2iλpr(uj)es(uk) SL(uj)SR(−uj)
N∏
k �=j

S(uj, uk)S(uj,−uk) = 1.

(6.9)

They can be recast as

e2iL(p(uj)+νrpr(uj)) SL(uj)SR(−uj)
N∏
k �=j

S(uj, uk)S(uj,−uk) = e−2iλQ
(s)
N pr(uj), (6.10)

where

Q
(s)
N =

N∑
k=1

es(uk), EN = Q
(1)
N . (6.11)

We see that the deformed Bethe equations take the same form as the undeformed ones,
except that the twist νr is shifted according to

νr → νr +
λQ

(s)
N

L
. (6.12)

This implies the following flow equation for the energy and total even charge:

∂λEN =
1

L
Q

(s)
N ∂νrEN , ∂λQ

(s)
N =

1

L
Q

(s)
N ∂νrQ

(s)
N . (6.13)

The case r = 1 is special. In this case pr(uj) coincides with the momentum and there is
no need to introduce additional twist. The deformation has the effect of changing the
length L as

L→ L+ λQ
(s)
N . (6.14)

This leads to the following flow equations

∂λEN = Q
(s)
N ∂LEN , Q

(s)
N = Q

(s)
N ∂LQ

(s)
N . (6.15)

The deformations triggered by O1s have an interesting intuitive interpretation as is
shown in figure 4. For λ < 0, the deformation turns point particles into finite size hard
rods with length −λes(uj). Therefore, the effective length, which describes the ‘free

space’ between the rods, is reduced and becomes L+ λQ
(s)
N . For λ > 0, the distances

between the particles are increased and the effective length becomes larger. This inter-

https://doi.org/10.1088/1742-5468/ac6251 35

https://doi.org/10.1088/1742-5468/ac6251


J.S
tat.

M
ech.

(2022)
043102

Irrelevant deformations with boundaries and defects

Figure 4. The dynamical hard rod interpretation for the O1s deformation.

Figure 5. The ‘thick wall’ interpretation of the odd charge deformation.

pretation was first proposed in non-relativistic models [28–30]. Here we see a natural
generalization to the relativistic case.

The odd charge deformations. For the odd charge deformations triggered by Pr,
the deformed bulk and boundary S -matrices read

Sλ(u, v) =S(u, v),

SL,λ(u) =SL(u)e
iλpr(u),

SR,λ(u) =SR(u)e
−iλpr(u). (6.16)

Notice that the bulk S -matrix is undeformed. The deformed asymptotic Bethe equation
takes the following form:

e2iL(p(uj)+νrpr(uj)) SL(uj)SR(−uj)
N∏
k �=j

S(uj, uk)S(uj,−uk) = e−2iλpr(uj). (6.17)

We see that it can be brought to the original form by shifting the chemical potential

νr → νr +
λ

L
. (6.18)

This implies the following flow equation for the energy and total even charge:

∂λEN =
1

L
∂νrEN. (6.19)

The case r = 1 is again special. The deformed Bethe equation is simply obtained from
the undeformed one by setting

L→ L+ λ, (6.20)
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which implies a linear flow equation for the spectrum:

∂λEN = ∂LEN. (6.21)

We also have an intuitive interpretation for this result, as is shown in figure 5. For λ < 0,
the deformation makes the boundary ‘thicker’, which reduces the distances between the
two boundaries by |λ|. For λ > 0, the distance between the boundaries is increased
by |λ|.

We make one comment before ending this subsection. Although the flow equations
we have obtained so far are in the large volume limit, we expect that they should hold
also in the finite volume, based on the experience on previous results in the bulk case.
As we shall see, this will be confirmed by the boundary TBA computation below.

6.2. Finite volume

Now we consider the situation where L is finite. Due to finite size corrections,
the asymptotic Bethe ansatz is no longer sufficient. To obtain the spectrum, we exploit
the boundary TBA approach. The idea of this approach is to translate the calculation
of the finite size spectrum to the calculation of the thermal free energy of the mir-
ror theory . The mirror theory is defined in the infinite volume limit and the asymptotic
description is valid. Because our deformations involve higher conserved charges, we need
to consider a generalized partition function that contains additional chemical potentials
and charges. In the mirror theory, these chemical potentials correspond to twists , which
enter the quantization conditions of the mirror rapidities [23].

Double Wick rotation. The mirror theory is obtained from the physical theory
by performing a double Wick rotation which swaps the role of space and time:

H �→ iP̃ , P �→ iH̃. (6.22)

Here we use a tilde to denote quantities in the mirror theory. Under the double Wick
rotation, the rapidity is transformed as u �→ u+ iπ

2
. For higher charges with s = 2r − 1,

we have similarly

H2r−1 �→ i(−1)r−1P̃ 2r−1, P2r−1 �→ i(−1)r−1H̃2r−1, r = 1, 2, . . . (6.23)

The single-particle eigenvalues of the higher mirror charges P̃ 2r−1, H̃2r−1 take the same
form as in the original theory

ẽ2r−1(u) = γ2r−1 cos(2r − 1)u, p̃2r−1 = γ2r−1 sin(2r − 1)u. (6.24)

The mirror bulk S -matrix is given by the mirror transformation of the physical S -matrix.
The boundary S -matrix is related to the two-particle form factor K(u) in the mirror
channel. More explicitly, we have

S̃(u, v) = S

(
u+

iπ

2
, v +

iπ

2

)
, K(u) = SR

(
u− iπ

2

)
. (6.25)
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Generalized mirror BTBA. Now we consider the generalized mirror boundary
TBA. In the physical channel, the length of the space is L. We take the length of the
periodic direction to be R. The generalized partition function takes the following form:

Zab = tr
[
e−R(H+μsHs)

]
. (6.26)

Here we have introduced the additional chemical potentials μs for the even charges14.
In the limit R � 1, the partition function is dominated by the ground state charges:

Zab ∼ e
−R

[
E(0)(L)+μsE

(0)
s (L)

]
. (6.27)

To compute the energy and the higher charge of the ground state, we go to the mirror
kinematics, as is shown in figure 6. The partition function in the mirror kinematics takes
the form

Zab = 〈Ba|e−L
(
H̃+(−1)

r+1
2 νrH̃r

)
|Bb〉, (6.28)

where |Bj〉 (j = a, b) are the boundary states which correspond to the two boundaries
in the open channel. We introduced an additional (−1)(r+1)/2 in the definition of the
chemical potential for later convenience. The chemical potential in (6.26) is implicitly
contained in the mirror partition function. It becomes the twist in the mirror channel,
which enters the quantization condition for the mirror rapidities. The mirror partition
function (6.28) can be written as

Zab =
∑
n

〈Ba|n〉〈n|Bb〉
〈n|n〉 e−LXn(R), (6.29)

where the sum is over all eigenstates of the Hamiltonian and Xn(R) is defined as(
H̃ + (−1)

r+1
2 νrH̃r

)
|n〉 = Xn(R)|n〉. (6.30)

For integrable boundaries, the overlap 〈Ba|n〉 is only non-zero for the states with paired
rapidities

|n〉 = |α2N〉 = |uN ,−uN , . . . , u1,−u1〉, (6.31)

where uN > uN−1 > . . . > u1. For a state with paired rapidities {u1,−u1, . . . , uN ,−uN},
the eigenvalue is given by

Xn(R) = 2
N∑
j=1

Xν(uj), (6.32)

where

Xν(u) = ẽ(u) + (−1)
r+1
2 νrẽr(u). (6.33)

14 In principle we could also introduce chemical potentials for the odd charges P and Pr . However, for a theory with integrable
boundaries the odd charges are zero and we can set the chemical potential to zero from the beginning.
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Figure 6. Computing the ground state vacuum using the mirror TBA.We introduce
twists and chemical potentials, which get mapped into each other under the mirror
transformation.

In the mirror channel for R � 1, the spectrum can be described by the asymptotic Bethe
ansatz. The rapidities satisfy the mirror Bethe ansatz equations. In the usual case, the
mirror Bethe ansatz equations take the following form

eimR sinh(ui)S̃(ui,−ui)

N∏
j �=i

S̃(ui, uj)S̃(ui,−uj) = 1. (6.34)

As mentioned before, we have additional twists which come from the chemical potential
in the physical channel. In this case, we need to modify the Bethe equations by the
replacement

eimR sinh(u) �→ eRYμ(u+ iπ
2 ), (6.35)

where

Yμ(u) = e(u) + μses(u). (6.36)

Following the standard procedure, we introduce the density of pair rapidities and holes
ρ̃(u), ρ̃h(u). From (6.34), we have

ρ̃(u) + ρ̃h(u) =
∂uYμ

(
u+ iπ

2

)
2πi

+ (ϕ̃+ ∗ ρ̃)(u), (6.37)

where

ϕ̃(u, v) =
1

2πi

∂

∂u
log S̃(u, v), (6.38)

and

ϕ̃+(u, v) = ϕ̃(u, v) + ϕ̃(u,−v), (ϕ̃+ ∗ ρ̃)(u) =
∫ ∞

0

ϕ̃(u, v)ρ̃(v)dv. (6.39)

https://doi.org/10.1088/1742-5468/ac6251 39

https://doi.org/10.1088/1742-5468/ac6251


J.S
tat.

M
ech.

(2022)
043102

Irrelevant deformations with boundaries and defects

Therefore the partition function can be written as

Zab =

∫
Dρ̃ exp

[
R

∫ ∞

0

(log[χab(u)]− 2LXν(u)) ρ̃(u)du+ S[ρ̃, ρ̃h]

]
, (6.40)

where

χab(u) = Ka(u)Kb(u), (6.41)

and S[ρ̃, ρ̃h] is the Yang–Yang entropy

S[ρ̃, ρ̃h] = R

∫ ∞

0

[(ρ̃+ ρ̃h) log(ρ̃+ ρ̃h)− ρ̃ log ρ̃− ρ̃h log ρ̃h] du. (6.42)

In the limit R→∞, the partition function Zab (6.40) is dominated by the saddle point.
The saddle-point equation is the boundary TBA equation

ε(u) = 2LXν(u)− log[χab(u)]− log(1 + e−ε) ∗ ϕ+, (6.43)

where ε(u) is the pseudo-energy given by eε(u) = ρ̃h(u)/ρ̃(u). The free energy reads

F =
R

2πi

∫ ∞

0

∂uYμ

(
u+

iπ

2

)
log

(
1 + e−ε(u)

)
du. (6.44)

Comparing with (6.27), we obtain the expressions for the finite volume charges in the
ground state:

E(0)(L, νr) =− 1

2πi

∫ ∞

0

∂ue(u+ iπ/2) log
(
1 + e−ε(u)

)
du,

Q(0)
s (L, νr) =− 1

2πi

∫ ∞

0

∂ues(u+ iπ/2) log
(
1 + e−ε(u)

)
du. (6.45)

The deformed TBA kernel is given by

ϕ̃+,λ(u, v) =ϕ̃+(u, v) +
λ

π
∂ues(u+

iπ

2
)pr(v +

iπ

2
)

=ϕ̃+(u, v)− (−1)
r−1
2
λ

πi
∂ues(u+

iπ

2
)ẽr(v). (6.46)

Plugging this into the TBA equation (6.43), we find that it takes the same form as the
undeformed one, except for the shift of νr according to

νr → νr +
λ

L
Q(0)

s . (6.47)

This implies the following flow equation for the ground state energy and charge:

∂λE
(0)
λ =

1

L
Q

(0)
s,λ∂νrE

(0)
λ , ∂λQ

(0)
s,λ =

1

L
Q

(0)
s,λ∂νrQ

(0)
s,λ. (6.48)
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This is precisely the same flow equation as we obtained in the large volume limit (6.15).
Again the case r = 1 is special. In this case, we simply have

L→ L+ λQ(0)
s (6.49)

and the flow equation becomes

∂E
(0)
λ = Q

(0)
s,λ∂LE

(0)
λ , ∂λQ

(0)
s,λ = Q

(0)
s,λ∂LQ

(0)
s,λ. (6.50)

The flow equations (6.48) and (6.50) are the same as in the large volume case (6.13)
and (6.15), as expected.

We can perform the same analysis for the odd charge deformations in the finite
volume. The resulting flow equations of the spectrum again take the same form as the
ones in the large volume limit (6.19) and (6.21).

7. Deformed partition function and exact g-function

In this section, we discuss the flow equation for the partition function and the g-function,
under the T T̄ deformation. We shall restrict to the case where the partition function
takes the form of the ordinary thermo partition function. For integrable systems, we
could have generalized partition functions that also depend on higher charges, see the
discussion in appendix B.

7.1. Asymptotic behavior of the partition function

For generic QFTs at thermal equilibrium, the quantum states with energy E are fully
characterized by the Boltzmann weight exp(−βE). The same also holds for IQFTs with
vanishing higher charges, because those charges will stay zero after the deformation.

Asymptotic limit. Before discussing the deformed partition function and the g-
function, let us first study the general behavior of the partition function in the large
volume limit, where the circumference R and the height L of the cylinder are both large.
For massive IQFT, the precise meaning of large is R,L � 1/m, where m is the mass
gap of the theory. We remind that the open and closed channel description was briefly
introduced in section 2.2.

Open channel. In the open channel, the partition function is given by

Zab(R,L) = Tr e−HabR =
∑
ψ

e−Eψ
ab(L)R, (7.1)

where Hab is the open channel Hamiltonian and the sum is over all the eigenstates of
Hab, denoted here by ψ. In the limit mR � 1, the partition function is dominated by

the ground state energy E
(0)
ab (L). In the large L limit, the ground state energy has the

following universal behavior

E
(0)
ab (L) = ε0 L+ fa + fb +O(e−mL), (7.2)
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where ε0 is the bulk energy density and fa,b are the non-extensive contributions from
the boundary. To sum up, in the limit mR,mL � 1, we find

Zab(R,L) = e−R(ε0L+fa+fb) + · · · = e−RLε0−Rfa−Rfb + · · · (7.3)

Closed channel. In the closed channel, the partition function is given by

Zab(R,L) = 〈Ba|e−H(R)L|Bb〉 =
∑
φ

(Gφ
a(R))∗Gφ

b (R)e−Eφ(R)L, (7.4)

where the amplitudes Gφ
j (R) are defined as the normalized overlaps

Gφ
j (R) =

〈φ|Bj〉√
〈φ|φ〉

, j = a, b. (7.5)

In the limit mL � 1, the partition function is dominated by the ground state

Zab(R,L) ∼ [G(0)
a (R)]∗G

(0)
b (R)e−E0(R)L. (7.6)

Taking the mR � 1 limit of this expression, we find

E0(R) ≈ ε0R +O(e−mR), (7.7)

where ε0 is the same quantity as the one which appears in (7.2). As opposed to (7.2),
E0(R) does not have O(1) contributions from the boundaries, since the system is closed.
Therefore, in the mR,mL � 1 limit, we have

Zab(R,L) ∼ [G(0)
a (R)]∗G

(0)
b (R)e−RLε0 + · · · (7.8)

Definition of the g-function. Comparing the asymptotics in the closed channel
with the open channel, (7.3), we must have

G
(0)
j (R) ∼ e−fjR(1 + · · · ). (7.9)

Namely, the overlap should be e−fjR multiplied by some order 1 quantity. We will define
this quantity as the g-function:

log ga(R) = log G(0)
a (R) + faR. (7.10)

To summarize, the exact g-function, or the boundary entropy, is defined as the
overlap between the finite volume vacuum state and the boundary state. To extract
important information about the boundary, we have subtracted a universal constant

part faR from the naive overlap G
(0)
j , in the definition of g. The exact g-function is

an important quantity of interest in QFTs with boundaries. It describes the boundary
degrees of freedom [56] and has interesting properties along RG flow [57].

7.2. Flow equation

In this section, we present derivations of the flow equation of the T T̄ deformed parti-
tion function and the g-function. Our strategy is as follows. The flow equation for the
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spectrum in the open channel is known from the exact deformed S -matrices. Since the
spectrum is deformed universally, that is, all the energies obey the same flow equation,
we can write down the equation for the partition function in the open channel. We then
re-interpret the flow equation of the partition function in the closed channel. We also
know the flow equation for the spectrum in the closed channel. This leads to the flow
equation for the overlap, which gives the flow equation for the g-function after taking
into account the exponential factor.

Open channel. Recall that the flow equation of the spectrum in the open channel
is given by

∂λEab(L,λ) = Eab(L,λ)∂LEab(L,λ). (7.11)

Applying it to the open channel partition function Zab,

Zab(R,L|λ) =
∑
ψ

e−Eψ
ab(L,λ)R, (7.12)

we find

∂λZab =
∑
ψ

R
(
−∂λE

ψ
ab

)
e−Eψ

abR

=
∑
ψ

R
(
−Eψ

ab∂LE
ψ
ab

)
e−Eψ

abR

=− (∂R −R−1)∂LZab. (7.13)

Therefore, we have the following flow equation

∂λZab(R,L|λ) = −
(

∂

∂R
− 1

R

)
∂LZab(R,L|λ). (7.14)

This flow equation has been obtained first by Cardy in [58] from random geometry con-
siderations, which serves as a consistency check for our result. We can also apply the flow
equation to the closed channel partition function. We define Fφ

ab(R) = (Gφ
a(R))∗Gφ

b (R);
identifying each Boltzmann weight, we have

∂λ

(
Fφ
ab(R,λ)e−Eφ(R,λ)L

)
= −

(
∂

∂R
− 1

R

)
∂L

(
Fφ
ab(R,λ)e−Eφ(R,λ)L

)
. (7.15)

Expanding both sides, we find that the O(L) piece reduces to the flow equation of the
deformed spectrum Eφ(R,λ) in the closed channel

∂λEφ(R,λ) = Eφ(R,λ)∂REφ(R,λ), (7.16)
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while the O(1) piece gives the flow equation for Fφ
ab

∂λF
φ
ab(R,λ) =

(
∂

∂R
− 1

R

)
(Fφ

ab Eφ). (7.17)

Now we specify to the ground state and denote the corresponding quantity as Fab. The
product of g-functions is given by

gab = g∗agb = e(fa(λ)+fb(λ))RFab. (7.18)

To write down the flow equation for gab, we need to know the flow equation for fa(λ) +
fb(λ). This can be derived by considering the large L limit of the flow equation (7.11).
By comparing the coefficients of L, we find that

ε′0(λ) = ε0(λ)
2, f′a(λ) + f′b(λ) = ε0(λ)(fa(λ) + fb(λ)). (7.19)

These equations can be solved, which leads to

ε0(λ) =
ε0

1− λε0
, fa(λ) + fb(λ) =

fa + fb
1− λε0

, (7.20)

where the quantities on the right-hand side of the above equations are undeformed. We
can then derive the flow equation for the quantity gab(R,λ) as

∂λgab =R(f′a(λ) + f′b(λ))gab + e(fa+fb)R∂λFab

=Rε0(fa(λ) + fb(λ))gab + e(fa+fb)R∂R (FabEφ)−
1

R
gabEφ. (7.21)

Using the fact that

e(fa+fb)R∂RFab = ∂Rgab − (fa + fb)gab, (7.22)

and the flow equation (7.19), we obtain

∂λgab = (Rε0 −Eφ)(fa + fb)gab + (∂R −R−1) (gabEφ) . (7.23)

Example: free theory and CFTs. We can easily verify the flow equation (7.17),
or its equivalent form (7.23) for free theories and CFTs, where the exact g-function is
known [2]:

Gφ
a(R,λ) = Gφ,CFT

a

√
R

R + λEφ(R,λ)
. (7.24)

Here Gφ,CFT
a is a constant that only depends on the boundary condition, but not on the

size of the system. It implies that we could treat it as a constant, when studying the
flow equation. Comparing with the definition of Fab, we immediately see that

Fφ
ab = (Gφ

a)
∗Gφ

b = (Gφ,CFT
a )∗Gφ,CFT

b

R

R+ λEφ(R,λ)
. (7.25)
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Using the flow equation of the energy (7.16), one finds the deformed Gφ
a defined above

solves the flow equation (7.17).
General solutions. We can simplify the structure of (7.17). Defining

Fφ
ab = F̃ φ

ab

R

R + λEφ(R,λ)
, (7.26)

the flow equation of F̃ ab simplifies to

∂λ log F̃ ab = Eφ∂R log F̃ ab + ∂REφ. (7.27)

Denoting log F̃ by F , we can solve this first order partial differential equation (PDE)
for F by the method of characteristics. We refer to appendix C for a brief review of this
method. Introducing an auxiliary ‘time’ parameter t, the equation above is equivalent
to the following set of ordinary differential equations,

dλ(t)

dt
= 1,

dR(t)

dt
= −Eφ(R(t),λ(t)),

dF
dt

= ∂REφ, (7.28)

where we treat λ,R and their functions as functions of t.
We choose the initial value of those equations in such way that when t = 0, the

solutions correspond to the undeformed theory, where λ = 0. The first equation then
immediately implies λ = t. For the second equation, notice that the total derivative of
Eφ vanishes due to the flow equation (7.16):

dEφ

dt
=

dR

dt
∂REφ +

dλ

dt
∂λEφ = ∂λEφ − Eφ∂REφ = 0. (7.29)

Therefore, the rhs of the second equation is actually independent of t. The solution
is then obtained by integrating once, R(t) = R0 − tE0(R0), where E0, R0 denote the
undeformed energy and the undeformed circumference, respectively. In order to solve
the last equation, notice that

d

dt
(∂REφ) =

dR

dt
∂2
REφ +

dλ

dt
∂λ∂RE = ∂R∂λEφ −Eφ∂

2
REφ = (∂REφ)

2, (7.30)

where we take another ∂R derivative of the flow equation (7.16) to simplify the rhs.
Therefore, as a function of t, ∂RE is easily found to read

(∂REφ)(t) =
∂R0

E0

1− t∂R0
E0

, (7.31)

where the derivative ∂R0
E0 is evaluated at t = 0, namely in the undeformed theory. The

solution for F is then easily obtained,

F(t,R0) = F0(R0)− log (1− t ∂R0
E0(R0)) , (7.32)
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where F0 = log Fab(λ = 0,R0) is the undeformed g-function.
To summarize, we have found the general solution to the flow equation F = log Fab,

which depends on two parameters (R0, t). In order to convert them into the original
variables (R,λ), we have to solve them in terms of (R0, t). Explicitly, they are given by
the implicit solutions of the following equations,

t = λ, R = R0 − tE0(R0) = R0 − tE(R(t),λ(t)), (7.33)

where F0 = log Fab(λ = 0) is the undeformed g-function. Substituting the solution t =
t(R,λ),R0 = R0(R,λ) to F(t,R0), we find the final solution of logFab.

For the free theory, the ground state energy is given by the Casimir energy
E0(R0) = −πc/6R0, where c is the effective central charge. In this case, the coordinate
transformation between (t,R0) and (λ,R) can be made explicit,

t = λ, R0 =
1

2

(
R +

√
R2 − 2cπλ

3

)
. (7.34)

One can easily solve for F :

F(λ,R) = F0(R0(λ,R))− log

(
1− cπλ

6R2
0

)
. (7.35)

Substituting the function R0(R,λ), one can verify that the flow equation (7.27) holds,
regardless of the form of F0.

8. Conclusions and outlook

While T T̄ -like deformations of quantum field theories have so far mainly been studied
for systems with closed boundary conditions, in this paper we initiate the study of such
deformations for QFTs with boundaries and defects. For this purpose we have applied
the generic formalism developed in [9–11], which allowed us to derive the deformed
scattering matrices. With these quantities at hand, we derived the flow equation for the
deformed finite volume spectrum for all bilocal- and odd charge-deformations. For the
T T̄ deformation, we rederived the flow equation for the cylinder partition function and
the deformed exact g-function [58]. There are plenty of directions that deserve further
investigation.

First, it would be important to further explore the relation between field theory and
spin chain deformations as illustrated in table 1. While the original T T̄ -deformations
of field theories have not been defined for the lattice models due to the lack of a con-
served momentum charge density, the moduli space of known spin chain deformations is
enlarged by the so-called boost deformations which have no analogue in the field theory
yet. It would be highly desirable to extend the respective field theory deformations to
the spin chain and vice versa. Here it might be fruitful to consider the continuum limit
of a specific lattice model in detail and to trace the respective deformations. Another
promising direction is to take inspiration from the relation between the above boost
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deformations and inhomogeneous spin chains [10, 59] and to investigate a field theory
analogue of the latter.

Furthermore, here we have mainly focussed on deformations induced by charges of
spacetime-type. Similarly, the employed formalism allows us to use charges correspond-
ing to internal symmetries [27], in analogy to the JT̄ deformations in field theory [12–19].
It should be enlightening to extend our analysis of boundaries and defects to the class
of JT̄ deformations in field theory.

Moreover, the leading order classical analysis in section 3 suggests that for a given
T T̄ -deformed bulk model, the boundary Hamiltonian θ(φ) has to be trivial in order to
preserve integrability. It would be desirable to prove or falsify this statement at higher
orders in the deformation parameter and for generic deformed bulk models. As demon-
strated, a way out is to allow the boundary Hamiltonian to depend also on derivatives
of the field φ. Further investigation of this type of models would also be desirable. It
should also be interesting to investigate the possibility that there is no higher charge
of spin 4 while a higher charge of spin 6 exists. Notably, in the spin chain case it has
been shown that deformations of models with non-trivial boundary Hamiltonian can be
performed using the formalism applied here [27].

While in this work we introduced field theory deformations by extension of previous
findings for lattice models, it should be very interesting to explore the full field the-
ory moduli space in order to verify that no deformations were missed, see [24] for an
interesting work in this direction. In the spin chain case such an analysis was performed
for integrable models by making a general ansatz for the leading deformed charges and
requiring a certain symmetry and locality in the sense of (4.1) [27, 51, 52]. Demand-
ing that these charges commute, then resulted in constraints, whose solutions could
be mapped to the boost and bilocal deformation generators discussed above. A similar
analysis in the field theory context might reveal new types of deformations that have
not been explored so far.

Finally, in the present paper we have put an emphasis on systems with integrable
boundaries. While this is convenient, there is a priori no reason to assume integrability
in the field theory context, where deformations merely require the conserved momen-
tum and Hamiltonian. Investigating explicit examples of boundary theories beyond the
scope of integrability will be highly interesting and should be feasible with the methods
employed here.
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Appendix A. Classical deformation of the Sine-Gordon model

Consider the Sine-Gordon (SG) model. Its action is given by

S =

∫
d2x

(
1

2
(∂μφ)

2 − m2

β2
cos βφ

)
+

∫
dy θ(φ). (A.1)

Based on classical analysis, in [45] the authors have determined the most general
boundary potential θ(φ) that is compatible with integrability

θ(φ) = −M cos
β

2
(φ− φ0), (A.2)

where M ,φ0 are two free parameters.
Equation of motion. The equation of motion is obtained by taking the functional

variation w.r.t. φ,

�φ =
m2

β
sin βφ ⇔ ∂∂̄φ =

m2

4β
sin βφ. (A.3)

The boundary equation of motion is identical to the free theory one, since the potential
term in the bulk will not contribute any boundary terms.

T T̄ deformation. The stress tensor can be computed using the textbook formula,

T bulk
μν =

∂Lbulk

∂(∂μφ)
∂νφ− δμνLbulk = ∂μφ∂νφ− ημνLbulk. (A.4)

In complex coordinates, we find

T = −Tzz = −(∂φ)2, T̄ = −Tz̄z̄ = −(∂̄φ)2,

Θ = Tzz̄ = Θ̄ = Tz̄z =
m2

2β2
cos βφ.

(A.5)

Using the expressions above, the determinant of the stress tensor,

det T bulk
μν = 4(T T̄ −ΘΘ̄), (A.6)

induces the desired T T̄ deformation. To leading order O(λ), the deformed bulk action
is given by

Sλ
bulk = Sλ=0

bulk + λ

∫
d2x 4(T T̄ −ΘΘ̄) +O(λ2). (A.7)
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Deformed stress tensor. Applying (A.4) to the deformed bulk action, we find the
deformed bulk stress tensor. In complex coordinates, its components read

T = −Tzz = −1

2

∂Lbulk

∂(∂̄φ)
∂φ = −(∂φ)2 − 4λ(∂φ)3(∂̄φ),

T̄ = −Tz̄z̄ = −1

2

∂Lbulk

∂(∂φ)
∂̄φ = −(∂̄φ)2 − 4λ(∂φ)(∂̄φ)3,

Θ = Tzz̄ = +
1

2

∂Lbulk

∂(∂̄φ)
∂̄φ− 1

2
L(λ)

bulk =
m2

2β2
cos βφ− λ

m2

β2
cos2 βφ+ 2λ(∂φ)2(∂̄φ)2,

Θ̄ = Tz̄z = +
1

2

∂Lbulk

∂(∂φ)
∂φ− 1

2
L(λ)

bulk =
m2

2β2
cos βφ− λ

m2

β2
cos2 βφ+ 2λ(∂φ)2(∂̄φ)2.

(A.8)

As a consistency check, the integrable boundary condition for the stress tensor

− i
(
T − T̄ + Θ̄−Θ

)∣∣
x=0

= ∂xφ∂yφ
(
1 + λ[(∂xφ)

2 + (∂yφ)
2]
)
, (A.9)

is still satisfied automatically, as long as the deformed boundary Lagrangian is of poten-
tial type. Therefore, we should still investigate higher conserved charges to impose
constraints on the boundary Lagrangian.

Deformed equations of motion. It is straightforward to verify that the modified
equations of motion are given by

Bulk : 4∂∂̄φ(1 + 8λ∂φ∂̄φ) =
m2

β
sin βφ + λ

m4

β3
sin(2βφ)− 8λ

(
∂̄2 φ(∂φ)2 + ∂2φ(∂̄φ)2

)
,

Bdr : ∂xφ|x=0 = −θ′(φ)− λ∂xφ
[
(∂xφ)

2 + (∂yφ)
2)
]
,

(A.10)

where we use 4∂φ∂̄φ = (∂xφ)
2 + (∂yφ)

2. At order O(λ), we can solve ∂∂̄φ for the bulk
equation of motion:

4∂∂̄φ =
m2

β
sin βφ(1− 8λ∂φ∂̄φ) + λ

m4

β3
sin(2βφ)− 8λ

(
∂̄2φ(∂φ)2 + ∂2φ(∂̄φ)2

)
+O(λ2).

(A.11)

Odd charge: T 3. Before discussing the deformation of the first even higher charge,
let us briefly discuss why there is no odd charge in SG theory. The reason is that all odd
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charges are total derivatives. For instance, let us consider T 3. The most general form
containing three z derivatives is the following

T3 =
1

3
α0(∂φ)

3 + α1∂
2φ∂φ+ α2∂

3φ, Θ1 = F (φ)∂φ. (A.12)

Computing derivatives, we find (for simplicity, we rescale the fields and take m2 = 4)

∂̄T3 = (∂φ)2(∂∂̄φ) + α1∂(∂∂̄φ)∂φ+ α1∂
2φ(∂∂̄φ) + α2∂

2(∂∂̄φ)

= (∂φ)2(α0 sin φ+ α1 cos φ− α2 sin φ) + ∂2φ(α1 sin φ+ α2 cos φ),

∂Θ1 = F (φ)∂2φ+ F ′(φ)(∂φ)2.

(A.13)

Comparing the derivatives we find that we must have α0 = 0. What remains are just
total z derivatives.

Deformation of T 4. The first set of non-trivial higher conserved charges is given
by T 4 and its conjugate:

T
(0)
4 = (∂2φ)2 − β2

4
(∂φ)4, Θ

(0)
2 =

m2

4
(∂φ)2 cos βφ,

T̄
(0)
4 = (∂̄2φ)2 − β2

4
(∂̄φ)4, Θ̄

(0)
2 =

m2

4
(∂̄φ)2 cos βφ.

(A.14)

We would like to study their one-loop deformations. Expanding all charges in λ, and
denoting the correction term with a superscript,

T4 → T
(0)
4 + λT

(1)
4 +O(λ2), etc. (A.15)

We would like to choose the T
(1)
4 term to make the conservation equations work at this

order.
For instance, let us compare both sides of ∂̄T4 = ∂Θ2 to order O(λ). Taking

derivatives, we find

∂̄T4 = 2(∂2φ)(∂2∂̄φ)− β2(∂φ)3(∂∂̄φ) + λ∂̄T
(1)
4 +O(λ2),

∂Θ2 =
m2

2
cos βφ(∂2φ)∂φ− m2β

4
sin(βφ)(∂φ)2 + ∂Θ

(1)
2 +O(λ2).

(A.16)

We continue by substituting the bulk equation of motion (A.11). The O(λ) contribution
of ∂̄T4 is simply,

∂̄T4

∣∣
O(λ)

= 2∂2φ∂
(
∂∂̄φ

∣∣
O(λ)

)
− β2(∂φ)3

(
∂∂̄φ

∣∣
O(λ)

)
+ ∂̄T

(1)
4 . (A.17)

Similarly, the O(λ) contribution of ∂Θ2 is simply ∂Θ
(1)
2 , since the tree-level pieces does

not involve any equations of motion. After some manipulations, one can verify the
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following solve the conservation equation,

T
(1)
4 = 8(∂2φ)2∂φ∂̄φ− 2β2(∂φ)5∂̄φ− 3m2(∂2φ)2 cos(βφ)

β2
+

m2∂2φ(∂φ)2 sin(βφ)

β

− 3

4
m2(∂φ)4 cos(βφ),

Θ
(1)
2 =

β2

2
(∂φ)4(∂̄φ)2 − 2(∂2φ)2(∂̄φ)2 − m4

4β2
(∂φ)2

(
1 + 2 sin2 βφ

)
.

As usual, T̄ 4, Θ̄2 are obtained by swapping z, z̄.
Integrability-preserving boundary potential. As for the free scalars, we expand

the boundary potential to O(λ):

θλ = θ(0) + λθ(1) +O(λ2). (A.18)

The strategy to proceed is to eliminate two or more x-derivative terms by the bulk
EOM, while to eliminate one x-derivative terms by the boundary EOM. After long but
straightforward algebra, we finally find the following:

For the one-loop term, it has the following structure

− 8i
(
T4 − T̄ 4 + Θ̄2 −Θ2

)∣∣
O(λ)

= (functions ofφ)∂yφ+A1,1,1(φ)(∂yφ)
3 +A1,2(φ)(∂yφ)∂

2
yφ

+A1,1,1,1,1(φ)(∂yφ)
5 +A1,1,1,2(∂yφ)

3∂2
yφ+A1,2,2(φ)(∂yφ)(∂

2
yφ)

2.

(A.19)

Here the subscript of the coefficient functions represents the accompanying derivative
structure, in an apparent way. The explicit expressions of them are listed below:

A1,1,1(φ) = β2θ′1(φ)−
1

32
βM sin

βφ

2

(
cos(βφ)

(
9β4M 2 − 48m2

)
+ 32m2 + 3β4M 2

)
,

A1,2(φ) =
M

8
cos

βφ

2

(
cos(βφ)

(
80m2 − 3β4M 2

)
− 32m2 + 3β4M 2

)
− 8θ′′1(φ),

A1,1,1,1,1(φ) = +
3

8
β3 M sin

βφ

2
,

A1,1,1,2(φ) = −3β2M cos
βφ

2
,

A1,2,2(φ) = +6βM sin
βφ

2
.

(A.20)

Notice that all five derivative terms are independent of θ1, so they must combine to be
a total derivative by themselves.

Since the structure of the five-derivative terms missed a structure that is proportional
to (∂yφ)

2(∂3
yφ), it cannot be written as total derivatives. Thus, the only solution is to
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take M = 0. If it is the case,

−i
(
T

(1)
4 − T̄

(1)
4 + Θ̄2 −Θ2

)
= λ

(
β2θ′1

(
∂φ

∂y

)3

− 8
∂φ

∂y

∂2φ

∂y2
θ′′1

)
+ total y − derivatives.

(A.21)

For this term to be a total derivative, rewriting the first term as

θ′1

(
∂φ

∂y

)3

=
d

dy

(
θ1(∂yφ)

2
)
− 2θ1∂yφ∂

2
yφ. (A.22)

Therefore, a necessary condition for being a total derivative is

β2θ1 + 4θ′′1 = 0 ⇒ θ1 = M1 cos
β(φ− φ1)

2
, (A.23)

with M 1,φ1 constant of integrations.
The conclusion is, at O(λ), the most general boundary potential stays the same form,

but it must be delayed for one order. It suggests that the only compatible boundary
potential with bulk T T̄ deformation is zero, as for the free case.

Appendix B. Generalized partition function and higher deformations

Generalized partition function. Unlike non-integrable systems, which are fully char-
acterized by the Boltzmann weight at thermal equilibrium, the integrable systems do
not fully thermalize. Explicitly, it means that the thermal eigenstates carry additional
quantum numbers that are associated with the infinite set of higher conserved charges.
This will lead to technical difficulties.

Toy model of higher deformation. In this appendix, we shall illustrate the
technical difficulties of deriving a flow equation for the generalized partition function.

Let us consider the following toy model, whose partition function only contains one
higher charge Q,

Z =
∑
n

e−βEn−μQn, (B.1)

where we expand the charges on the complete eigenbasis of the Hamiltonian.
Suppose the system is deformed by the higher charge Q, explicitly, the energy and

the charges will be deformed as

∂λEn = Qn∂νEn, ∂λQn = Qn∂νQn. (B.2)

Here ν represents the twist.
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Applying the flow equation to the partition function, we find

∂λZ = −
∑
n

(β∂λEn + μ∂λQn)e
−βEn−μQn = −

∑
n

Qn(β∂νEn + μ∂νQn)e
−βEn−μQn.

(B.3)

Compare with the ∂ν derivative of the partition function,

∂νZ = −
∑
n

(β∂νEn + μ∂νQn)e
−βEn−μQn, (B.4)

one immediately sees that

∂μ∂νZ = −∂λZ −
∑
n

∂νQne
−βEn−μQn. (B.5)

Unfortunately, it seems hard to rewrite the second term on the rhs of the previous
equation as a differential operator acting on the partition function like in the T T̄ case.
This is the barrier for us to write down a simple flow equation for the deformed partition
function. This difficulty is likely to be related to the fact that we do not have a gravity
description of this type of deformation. It is interesting to compare the current situation
with the one of JT a deformation. There, we also have an additional U(1) current and the
corresponding charge Q enters the generalized partition function. However, the impor-
tant difference is that in that the U(1) conserved charge does not depend on rapidities.
Therefore it does not flow under the deformation. In our situation, the higher conserved
charge are rapidity dependent, which also flows under the deformation. Suppose we can
write down a simple flow equation for the partition function. Since the partition function
can be written in the Lagrangian formalism, it would be possible to derive it from the
point of view of 2d gravity. Such a situation would be ‘too nice to be true’. The higher
conserved charges might be related to coupling the theory to some higher spin theory.

Appendix C. Method of characteristics

In this appendix, we review the basic idea of the method of characteristics . Consider
the following boundary value problem, characterized by a PDE

a(x, y)
∂u

∂x
+ b(x, y)

∂u

∂y
= c(x, y), u(x, y = 0) = f(x), (C.1)

where for simplicity we restrict us to the two variable case, and we denote the variables by
x, y. The unknown function to be solved is denoted by u(x, y). The coefficient functions
a, b, c and f are known functions.

Geometric interpretation. The crucial idea of the method of characteristics is to
treat the equation above as a geometric constraint. Explicitly, we consider the unknown
function u(x, y) as the graph of the function F (x, y, z) = z − u(x, y) = 0. In terms of
this function F in R

3, the original PDE is equivalent to the geometric constraint that
the vector field (a, b, c) ∈ R

3 is always perpendicular to the normal of the surface F = 0.
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Moreover, if we start at an arbitrary point on the surface, the geometric constraint
implies that all points on the integral curve of the vector field (a, b, c) will remain on
the surface. If the integral curves exist globally and do not intersect, regardless of the
initial points, the surface F , or equivalently u(x, y), is the union of all integral curves.

For most of the applications, one can find an appropriate coordinate system, such
that the initial value of the original PDE lies on the y = 0 surface. (For T T̄ case it
means y is essentially the deformation parameter λ). For simplicity we shall assume the
initial value surface being y = 0, for the rest of this section.

Characteristic curve. Now, we are going to solve the integral curve of the vector
field (a, b, c). It is called characteristic curve in the literature.

For definiteness, let us pick an arbitrary point (x0, y = 0) on the boundary sur-
face. The integral curve of (a, b, c) with such an initial condition can then be uniquely
determined by solving the following set of ordinary differential equations,

dx(s)

ds
= a(x(s), y(s)),

dy(s)

ds
= b(x(s), y(s)),

du(s)

ds
= c(x(s), y(s)).

(C.2)

The last equation for u is not an independent equation, but it follows from the first two.
Solving the characteristic equations and fixing the parametrization of the integral

curve by demanding x(s = 0) = x0, y(s = 0) = 0, we obtain the explicit parametrization

x(s) = f1(x0, s), y(s) = f2(x0, s), (C.3)

on the integral curve. Plugging them into the third differential equation for u(s), we
find a unique solution u(s, x0), satisfying u(s = 0) = u(x0, y = 0) = f(x0).

Reconstructing the PDE solution. What does this have to do with the original
PDE? The point is that for a generic point (x1, y1) with y1 �= 0, we can always find an
integral curve that passes through it. Suppose this curve starts at (x0, 0) and passes
through (x1, y1) at a time s0, then by construction, the solution u(s0, x0) automatically
solves the PDE. The only thing that remains is to do a coordinate transformation that
maps (x0, s0) to the original Cartesian coordinates (x1, y1).

Summary. To summarize, the method of characteristics consists of three steps:

(a) Pick an arbitrary point (x0, y = 0) on the boundary and solve the characteristic
equations dx/ds = a, dy/ds = b. The ambiguity of the parametrization is elimi-
nated by demanding that the boundary point (x0, 0) corresponds to s = 0, for any
x0. This will provide a coordinate transformation (x, y) �→ (x0, s).

(b) Using known solutions for x, y, we can solve for u as a function of (x0, s) as well.
The initial value of u, is nothing but f(x0). In other words, for fixed x0, the integral
curve gives a line of solutions to the original PDE.

(c) We now have the solution u(x0, s). By changing x0 we can reach any point (x1, y1)
at finite time s0. One can then take a coordinate transformation, (x0, s0) �→ (x1, y1)
by solving

x1 = x(x0, s0), y1 = y(y0, s0). (C.4)
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The solution u(x1, y1), for arbitrary (x1, y1) is then obtained by substituting (x0, s0)

in the solution u(x0, s0).
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