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Backgrounds



Scattering particles in AdS

» Help understand the gauge/gravity duality.
» Probe perturbative dynamics in curved spacetime.
> Most interesting to scatter gravitons.

» Described by boundary (conformal) correlators.

Direct computation is possible (Witten diagrams)
but HARD.



Viewing from the boundary

A new approach from the boundary side:
bootstrap the conformal correlator
(cf e.g. [Bissi, Sinha, Zhou, ‘22] and reference therein)

rough idea:

» Boundary theories with a weakly-coupled gravity dual is
generally thought to have a large parameter (N).

» Expansion in N corresponds to loop expansion in the bulk.

> Large N expansion to the crossing equation induces recursive
relations among CFT data at different orders.

» This resembles the unitarity methods where 237 = T1T.



The theory we discuss today

N = 4 super Yang-Mill theory in 4d with SU(N)

supergravity limit:
N — oo, A—> 00

type Il sugra in AdSs x S°
graviton multiplet + Kaluza—Klein modes



Boundary description

» Chiral primary operators (CPO)

OP = yalya2 e yaatr(¢al¢az e ¢ap) + .. ,

y for R-symmetries,
O, & graviton, Op~o < Kaluza—Klein.

» CPO 4-point correlator

(Op,0p, 0, Op,) = (some factor) Gp, p, psps (2, 2, v, @),

where the four variables are cross-ratios

X323 X453

= u=zz ——==v=(1—-2)(1-2),
2,24 Rpe, V-7 A0-2

(similar expressions for {«, @} related to y).



Large N expansion

. 2_
Expand using the central charge c = %
(0 N cO R c I S ) N

9o} = Gip) + e T 290 F @9 T

1/2

(For now ignore the A~/ corrections.)



Large N expansion

» G0 disconnected diagrams (no interaction);
computable using mean field theory.
> g(l): tree diagrams;
arbitrary g},}}mm known by now [Rastelli, Zhou, '14].
» G2 one loop;
partial results are available recently (ggi,p, g§§)33, ...), using a
method to be discussed. [Alday, Caron-Huot, ‘17], [Aprile et al, ‘17], etc.
» GO two loops;
almost zero results before this work.

We target at g§§)22.



Spectrum

» (Super)conformal block expansion

G2222 = ((protected) short) + Z Atimn -
t,l,m,n
D e —
(unprotected) long

» Better organization (due to susy)
g2222 = gfree + I(Z7 z,a, O_Z)IH(Z’ 2)

‘H further decomposes into ordinary blocks

H= Z aT,EgT+4,K(Za 2)
(4



Spectrum

» Data not protected (i labels different long operators):
'(0)4_671 -(1)+C72’Y,§2) 37’(3)Jr .

O | 1,0 4 2,0 4 3,0

d; i i

Ti =

aj = a; +c +c + .-
(©) # 0 = double-trace operators formed by CPOs, of the
form [00],, = 0O"0°O

> a§°) © are determined from mean field theory. In particular

T,(O) =4+ 2n, for some n,

» Plug this expansion into the block expansion of H

1
H= Z ( +c a (1) + ) 80 1, g



Structure of coefficients

> Note g, ¢(z,2) = (22)7/?(---). The expansion in 1/c gives rise
to powers of log(u) (s-channel).

> Max power is p at order ¢~ P, with the form

1
W plor log(u)” Z <3(0)(’Y(1))p>7(0),egr<°>+4,é-
' 7(0) ¢

(--+) due to operator degeneracy.

» The leading log coefficients above are completely determined
by data of double-trace operators

(0)~(1)yp
0) (. (1 (@)
(2O (y (1)) ~ OIS



Structure of coefficients

» Coefficients in other terms take the generic form, e.g.,

‘ C_2 C_3
|0g(U)° (a®) (a®)
log(u)! | (aA® £ 2052y (241 4 5102 4 40,(3)
og(u)? | (aO(GWPR) (dD (W) +25014@)
log(u)° (@03

» At each order ¢cP

> The new data a(P) and ~(P) only show up in the log(u)° and
log(u)? coefficients.

> log(u)PZ? terms are in principle recursively determined by data
at lower orders.



Now the question boils down to

How to work out a(P) and 7(P) at each ¢~ order?

Luckily, log(u)® and log(u)® terms do NOT contribute to
Lorentzian singularities of the correlator.

dDisc H(z,2) = H(z,z) — %’Ho(z, z) — %Ho(z, z),

Some dispersive-like relations can be utilized.



Lorentzian inversion

P [Caron-Huot, ‘17]

1+ (—1)
Cre = E]_ )

Ldzdz (z—2\? o
/ (-) g7—+/+172_7(2, Z) leSC(H).
0

722 72 Zz

Kr42/44 X

» This integral encodes the CFT data by

aj
Cre = § .
T —Tj

!

» Again, plug in the ¢! of the data.



Lorentzian inversion

(a?) < (A1) 4 5(0)~(2)) <a(0)(7(1))2>
Cre D 2 Z ( +

G \T— (0 (1 — 7(0)2 (r — 7(0)3
+ Z 3(3) 3(2)7(1) _|_ a(l)f}/(2) _|_ a(o)f}/(3)>
T —7(0 (1 — 7(0)2
N <a(1)(7( )) +23(0)7(1)7(2)> N <a(0)(7(1))3>
(1 — 7(0)3 (1 — 7(0)4

» Coefficients here are identical to those in the block expansion.
> Workflow at one loop [Alday, Caron-Huot, ‘17]:
1. Compute (a®(y1)?2) from lower-loop data (a(®)) and
(a®~M) (need to solve operator degeneracy).
2. Compute ¢, ¢ at order c~2 using Lorentzian inversion.
3. Extract coefficients of the simple and double poles.



Tentative Computation



At two loops

1. Compute (a®(y(1)2 4 2a0)~1)~(2)) and (a(®(y(1))3) from
lower-loop data.
(If we accept the spectrum here still consists of double-trace
operator only.)

3

2. Compute c; ¢ at order ¢ using Lorentzian inversion.

3. Extract coefficients of the simple and double poles.



Problem encountered...

Unfortunately, the c; , computed in this way do not have
fourth-order pole!

The problem lies in the entrance of
triple-trace operators [OOQO)].



More Ingredients



Hidden symmetries

» Tree-level results suggests a hidden 10d conformal symmetry.
[Caron-Huot, Trinh, ‘18]

P This dictates the leading log terms to be identical to
_ 8)]P 1 =
H(p)’mg(u)p — [A( )} FP(z,3).
Here (D, = 220,(1 — 2)0,)
zz z—z

D,(D; = 2)D5(Dz — 2)—-,

V4 zz

The components of vector 3 take values in {0,1}. p3is a
polynomial of weight 7 in each variable.



Correlator at one loop

» The leading log
7_[(2) ’Iog(u)2 = A(g)]:(Z)(Za 2)'

» This structure extends to the entire correlator at one loop,
with a slight modification [Aprile et al, ‘19]

2@ — A® £ 4 Ly
4 )

4 _
&= 3 ”"’_L(Z’?G(s;z)c(a*;z).
im0 272

» pzz is again some polynomial of degree 7 in each variable.
» The total weight of each term including that of the coefficient
does not exceed 4.



Ansatz



Main ansatz

HO® = [A(B)]z £+ 1@ 4 gy,



Functions that can appear

| 2

>
>

Up to one loop the correlator as a function belongs to
multiple polylogarithms, with maximal weight 2p.

The correlator is single-valued on the Euclidean slice z = Z*.

Crossing symmetries of Gaooo forms an S3 group acting on the
correlator. It dictates that

has to be fully crossing invariant.

By definition Ha22 is invariant under exchanging z <> Z,
which forms a Zy group.

These together makes an S3 x Z; group, whose
representations fall into six types {1F,1F, 2%},

The above combination transforms in 17 (singlet).



Basis

> We want a complete set of independent single-valued MPLs
up to weight 6 that transforms according to one of the above
representations.

» This is possible when one restricts to a finite set of symbol
alphabets.

> A symbol of an MPL is (roughly) an algebraic structure
capturing info of its singularities, e.g.

Slog(x) = x,
Slog(x)log(y) = x® y+ y® x,
SLix(x) = —(1 — x) ® x.

» An alphabet is the collection of all symbol entries.
» Up to one loop, the alphabet is restricted to

{z,2,1 - 2,1 —2z}.



Basis

Three loops calls for an extra z— z in the alphabets.

We want a complete set of independent single-valued MPLs
up to weight 6 transforming in one of {1, 1% 2%} with
symbol alphabets {z,z,1 — z, 1 —z z— Z}.

Denote these functions as
G i(2,2), (1)

w: weight, r: representation, i: extra degeneracy.

There is a well-defined algorithm for recursively working out
these functions (choice is not unique when degeneracy
occurs). [Chavez, Duhr, ‘12]



Basis

» Counting of functions without z— z

N\ 11— 1+ 1- 2t 2

0 1 0 0 0 0 0
1 0 0 0 0 1 0
2 2 1 0 0 1 0
3 2 0 1 0 3 1
4 5 3 1 0 5 2
5 7 3 4 2 11 5
6 15 10 6 3 20 12

» Functions with z— Z starts to appear at weight 3, where there
is a unique one. It turns out functions at higher weights are
not needed.



Ansatz

HO) = [A(B)] ’ L£® 4 ayH® + aHD),

ZZ“’Z_(ZZZ Gl (z.2)

w=0 r,i

+ i
w,r w,rt
E cuszzk Ciik = $c,kd.
J,k=0



Bootstrap



Constraints on £®): general

1. In Euclidean region £(3) should be finite at z = Z.

2. As a sum of s-channel blocks with identical external operators,
exchanging operator 1 and 2 should leave £(3) unchanged

£ (z23) = £® (2 Z) ,

z—1'z—1



Constraints on £3): SYM

A When expanding £3) in the s-channel, all the log(u)? terms
with p > 3 have to vanish.

B The log(u)? terms of £3) should match known data
£(3)(27 2) ‘ |og(u)3 — ‘F(3) (Z7 2)’

This is because the leading log terms are determined solely by
double-trace operators, and the recursive data (a(®(7(1)3)
can be trusted.



Constraints on #(): general

3 H®) should respect the full crossing symmetries. With the
help of the S3 x Zy SVMPL basis, this is equivalent to
requiring that in

(Z_Z 3)_ZQWI’ZZ) er( )

er

the rational coefficient functions Q;"'(z,z) transform in a way
such that each term on RHS is an S3 invariant.



Constraints on H©®): SYM

C Tree-level H(1) has poles at z=1 and z= 1, which are not
expected to be present in H(3). So there should be

cancellation between H() and [A(S)]2E(3). This fixes

1
ag=——.
1 16

D Recursive data for the subleading log
(aW(yM)2 1 25007 (1)~(2)y can be trusted at twist 4, which
consists of a unique double-trace operator

(@M ()2 4 2504 (1), )y, ,

(@@)a (@3,

2a07 ) (7D + 507 @)gy  (@ED)F (D)

This fits

dp = —.



Constraints on H©®): SYM

E Bulk-point limit should reduce to the flat-space four-graviton
scattering amplitude in 10d. Specifically here, the leading
divergence of dDisc H (2", 2) at the bulk point limit should
match the discontinuity of the scattering amplitude A across
the t-channel cut.

(z - 2)2dDisc H®) (2", 2)|

r(2)(1 —z)uz*
= ( )( 88 ) DISCX>1A(2)(X)‘X:]_/§7 (2)

z—=Z

The two-loop supergravity amplitude A(2)(X) has been
computed in [Bissi et al, ‘20].



Constraints on H©®): SYM

F By construction the ansatz does not necessarily produces OPE
data with sufficient analyticity in spin. At two loops analyticity
should hold down to ¢ = 6. For this purpose we require that
the ansatz be self-consistent under Lorentzian inversion.

» Insert the ansatz into the inversion integral to generate
tentative CFT data at two loops.

» Feed these data into conformal block expansions in the
t-channel and re-summed over all spins and over twists up to a
cutoff Teutoft.

» Compare the resulting expression with the ansatz itself in the
expansion near z =1 (which is valid up to certain order related
to 7’cutoff)-

At log(v)? additional freedom exits in the £ = 0 coefficients.

At log(v)! and log(v)? in £ = 2,4 as well.



Result

> After all the above computations
3) ®]% 23 4 29 _ Ly
HY = {A } L+ ZH - EH + (counterterms).

> We are left with a few remaining degrees of freedom.
> All of them can be identified as coefficients of counterterms
(which is beyond the scope of this work), except for ONE!

» This unique freedom looks a somewhat misterious.
By far we are not aware of additional concrete PHYSICAL
constraints that ultimately fixes it.



However...

There are two observations which seem to strongly suggests a
unique value for this dof.

» The number of indepedent functions in the ansatz basis
significantly reduces after the bootstrap. If one asks to further
reduce the number, the ONLY possibility is to fix this dof.

» In principle £(3) does not have to respect the full crossing
symmetry. If one insists on doing this, then it is necessary to
fix this dof to the SAME value.



Resulting space of functions

r _ T T_ _
N 1t 1 TR | 2t 2

0 1 0 0 0 0 0
1 0 0 0 0 1 0
2 2—1 1 0 0 1 0
3 21 0 1 0 3—=2 1
4 52 3—>2 1 0 5—>1 2
5 7—-1 3—-1 4—-1 2—1 11—-3 5—>3
6 5—-0 102 6—-0 3—-1 20—-0 12—2




Outlook

Determine the string correction.

Data for triple-trace operators.

>

>

» Other two-loop correlators.

» Structure of Hoxoo at even higher loops.
>

Understand the hidden conformal symmetries at loop level.



Thank you very much!

Questions & comments are welcome.
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