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In this paper, we consider AdS3 with Compère-Song-Strominger (CSS) boundary conditions, under which 
the dual field theory is warped conformal field theory (WCFT), featuring a Virasoro-Kac-Moody algebra. 
We provide a holographic dual picture of the single interval entanglement entropy in WCFT in the bulk 
AdS3. We explicitly show that the bulk object captures the entanglement entropy in WCFT is a massive 
spinning particle’s worldline that anchored on the boundary of the interval. Given the mass and spin 
of the particle as functions of quantum numbers of the twist operator in WCFT, the on-shell worldline
action will match the entanglement entropy in WCFT.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Holographic duality plays an important role in the recent developments of theoretical physics. The holographic principle is believed 
to be a fundamental nature lies between gravity theories and quantum field theories. Under the holographic duality, a bulk gravitational 
physics at weak coupling, which are usually described by geometrical quantities, can be understood from the quantum degrees of freedom 
in a boundary field theory at strong coupling. This leads to a thought that the spacetime of gravity is an emergent low-energy phe-
nomenon. A recent key progress in this study is the holographic entanglement entropy proposal due to Ryu and Takayanagi [1,2]. In the 
context of AdS/CFT, they proposed that the entanglement entropy of a spatial region in the conformal field theory (CFT), which is defined 
as the von Neumann entropy of the spatial region reduced density matrix, has an elegant bulk formula in Anti de-Sitter space (AdS):

SEE = A(γ )

4G
, (1.1)

where A(γ ) is the area of a bulk minimal surface γ anchored on the boundary of the spatial region. This formula provides us a powerful 
tool to understand the relationship between spacetime geometry and quantum entanglement.

In this paper, we are going to generalize the holographic entanglement entropy proposal to a different class of field theories, namely, 
warped conformal field theories (WCFTs), which also allow holographic interpretations. Conformal field theories in two spacetime di-
mensions is a kind of most well-studied quantum field theories. They have infinitely many local symmetries, which can help fix many 
structures of the underlying theories. However, in two spacetime dimensions, this property is not contingent to CFT. It is shown in [3] that 
a two dimensional field theory with two translational invariance and a chiral scaling symmetry, which indicate a S L(2, R) × U (1) global 
symmetry, can have enhanced local symmetry algebra. There are two minimal options for this algebra. One is two copies of the Virasoro 
algebra which will leads to a CFT, and the other is one copy of Virasoro algebra plus a U (1) Kac-Moody algebra. The later choice will leads 
to a WCFT. Specific models of WCFT include chiral Liouville gravity [4], free Weyl fermions [5,6], free scalars [7], and also the Sachdev-Ye-
Kitaev models with complex fermions [8] as a symmetry-broken phase [9]. Due to the infinite symmetries, WCFT is also very constraining. 
The form of the correlation functions can be fixed without involving a specific model [10]. Another important motivation for studying 
such field theories comes from holography for a large class of geometries with S L(2, R) × U (1) isometry, including the near horizon of 
extremal Kerr (NHEK) [11,12] and the warped AdS3 spacetime (WAdS) [13], and the field theories with S L(2, R) × U (1) global symmetry 
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having infinite dimensional local symmetries can also be seen from the bulk asymptotic analysis [14–17]. The holographic dualities like 
Kerr/CFT [18], WAdS/CFT [13], WAdS/WCFT [19], and AdS3/WCFT [14] are those beyond the standard AdS/CFT correspondence.

We will work in the context of AdS3/WCFT. A Dirichlet-Neumann type boundary conditions, later called the Compère-Song-Strominger 
(CSS) boundary conditions [14] can be imposed to AdS3. Under these conditions, the asymptotic symmetry algebra of AdS3 take a similar 
form to those in WCFT. This provides an alternative choice of dual field theory for AdS3. WCFTs are not Lorentzian invariant, but share 
the modular covariance like CFTs. For finite temperature WCFT defined on a torus, it can be shown that the partition functions transform 
covariantly under the action of modular transformation which exchange the two circles of the torus. This modular property of WCFT was 
first obtained in [19], and further explained in [20,21]. The density of states at high temperature can be evaluated by using the modular 
property, which gives us a Cardy like formula for the thermal entropy of WCFT [19]. Holographically, the thermal entropy of WCFT, later 
called the DHH entropy formula is found to match the black hole entropy of WAdS [19] and of AdS3 with CSS boundary conditions [22]. 
The entanglement entropy of a single interval in WCFT can be calculated by the Rindler method [20]. After the Rindler transformation, 
the causal domain of the interval is mapped to a Rindler space. Then the thermal entropy of the Rindler space can be calculated by a 
further modular transformation which can reflect the entanglement entropy of that interval. Holographically, a bulk AdS and WAdS picture 
of the entanglement entropy has been found in [22] by translating the Rindler transformation to a quotient in the bulk. Compare to the
Ryu and Takayanagi formula, this bulk picture of the entanglement entropy is still a geodesic as minimal co-dimension two surface in 
three dimensions, but is not anchored on the end points of the interval. In this work, we are trying to find an alternative bulk picture 
of the single interval entanglement entropy in WCFT by replacing the geodesic length with a massive spinning particle’s worldline action 
in AdS3. As we will see, our trajectory of the particle can still be chosen as geodesic. In addition to the length part, we add an extrinsic 
torsion term which reveals the change of the orientation of the spin direction alone the geodesic. With this additional term, the geodesic 
line is connected to the end points of the interval on the boundary, and the value of the on-shell worldline action of the spinning particle 
can be shown to match the entanglement entropy in WCFT.

This paper is organized as follows. In section 2, we will give the explanation of the single interval entanglement entropy in WCFT by 
using the twist operator two point function. In section 3, we study the kinematics of a massive spinning particle on a BTZ black hole 
background, and we calculated the on-shell worldline action by choosing a specific set of normal vectors. In section 4, we propose that 
in classical limit, the two point function of spinning operators in field theory can be evaluated by a bulk dual spinning particle’s on-shell 
worldline action, and we match the entanglement entropy of WCFT to a spinning probe’s on-shell action with mass and spin all equal to 
1/(8G).

2. Entanglement entropy in warped conformal fields theories

In a pure field theoretic setup, a two dimensional field theory with translational invariance x′ = x + x0, y′ = y + y0 and a scaling 
symmetry x′ = λx which implies that the global symmetry is S L(2, R) ×U (1) can be shown to have enhanced local symmetry. One minimal 
choice is the so-called warped conformal symmetry with Virasoro algebra plus a U (1) Kac-Moody algebra as its local algebra [3,19]. In 
position space, a general warped conformal symmetry transformation can be written as

x′ = f (x), y′ = y + g(x) , (2.1)

where x and y are S L(2, R) and U (1) local coordinates, and f (x) and g(x) are two arbitrary functions. The above property was later used 
as a definition of the WCFT [19]. On a cylinder, the conserved charges can be written in terms of Fourier modes, and the later named 
canonical WCFT algebra takes the following form [19],

[Ln, Lm] =(n − m)Ln+m + c

12
(n3 − n)δn+m ,

[Ln, Pm] = − mPn+m ,

[Pn, Pm] =k

2
nδn+m , (2.2)

Describing a Virasoro algebra with central charge c and a Kac-Moody algebra with level k.
Much like its CFT cousin, WCFT data are those spectrum of operators and three point coefficients. The global symmetry of WCFT which 

is generated by {L0,±1, P0} can be used to fix the form of the correlation functions [10]. The two point function of primary operators is 
determined by the scaling dimension � which is the eigenvalue of L0 and the U (1) charge Q under the action of P0. The three point 
function of primary operators further depends on the three point coefficient in addition to the scaling dimension and U (1) charge. For 
the WCFT entanglement entropy, a Rindler method can be applied which effectively map the causal domain of a subsystem to the Rindler 
space, and the thermal entropy in Rindler space reflects the entanglement entropy [20,22].

Due to the constraining of the symmetry group, a replica trick can be applied to the WCFT. The entanglement entropy and Rényi 
entropy can be calculated by using the two point function of twist operators inserted at the endpoints of the subsystem. On n copy of the 
original manifold, the trace of the n-th power of the reduced density matrix can be evaluated by the two point function of twist operators 
on a complex plane, so the level n Rényi entropy can be expressed as

Sn = 1

1 − n
log

tr(ρn
D)

(trρD)n
= 1

1 − n
log

〈�n(x1, y1)�
†
n(x2, x2)〉C

〈�1(x1, y1)�
†
1(x2, y2)〉n

C
. (2.3)

Here in the first equality, the Rényi entropy is related to the nth power of the reduced density matrix ρD for a interval D. This can be 
realized as a path integral on a manifold Rn which is made up of n decoupled copies of the original space R1. In the second equality, �n

is the twist operator inserted at the endpoints of the interval that enforce the replica boundary conditions on a plane C . (x1,2, y1,2) are 
the endpoint coordinates of the interval D. Given the two point function of the twist operator, one can evaluate the Rényi entropy of the 
2
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subsystem. The twist operator two point function depends on the conserved charges of �n , and the charges can be further determined 
by noting that there are two different approaches for evaluating the expectation values of the energy momentum tensor and the U (1)

current [10,20]. For the twist operators in WCFT, the scaling dimension and the U (1) charge take the following form [10],

�n = n

(
c

24
+ Lvac

0

n2
+ i P vac

0 α

2nπ
− α2k

16π2

)
, Q n = n

(
− P vac

0

n
− i

kα

4π

)
, (2.4)

where Lvac
0 and P vac

0 are the vacuum expectation values of L0 and P0 respectively, and α is a constant which is related to the spectral flow 
parameter of the WCFT algebra [23]. Given the charges above, and the form of the two point function of the twist operators in WCFT [10],

〈�n(x1, y1)�
†
n(x2, y2)〉C ∼ e

i Q n

(
y1−y2+ β̄−α

β
(x1−x2)

) (
β

π
sinh

π(y1 − y2)

β

)−2�n

, (2.5)

where β and β̄ are the inverse temperature along x and y, the Rényi entropy as a function of such constants and the interval can be 
evaluated,

Sn = 1

1 − n
log

tr(ρn
D)

(trρD)n
= 1

1 − n
log

〈�n(x1, y1)�
†
n(x2, y2)〉C

〈�1(x1, y1)�
†
1(x2, y2)〉n

C

= −i P vac
0

(
�y + β̄ − α

β
�x

)
+

(
− α

π
i P vac

0 − 2(n + 1)

n
Lvac

0

)
log

(
β

π
sinh

π�x

β

)
, (2.6)

where �x = x2 − x1, �y = y2 − y1. The entanglement entropy is a special case when n = 1 in the Rényi entropy. In fact, the dependence 
of the subsystem interval in the expression of the entanglement entropy S E E = S1 is understandable. For the WCFT, the S L(2, R) part 
shares the scaling invariance which leads to a logarithmic dependence, while the U (1) part with a spectral flow is a nonlocal direction 
which leads to a linear dependence.

In the limit n → 1, and using equation (2.3), the entanglement entropy can be written as

SEE = lim
n→1

Sn = −
(
∂n log〈�n(x1, y1)�

†
n(x2, y2)〉C − log〈�1(x1, y1)�

†
1(x2, y2)〉C

)
|n=1 . (2.7)

In the following sections, we will find out a holographic dual of the twist operator two point function in the bulk AdS3 as a spinning 
particle’s on-shell action, so the holographic picture of the entanglement entropy in WCFT can be specified by a worldline of a spinning 
particle with end points anchored on the boundary. The reason why we consider spinning particle is that under the action of the warped 
conformal group, the twist operator’s spin angular momentum is nonzero, so it’s natural to consider a massive spinning particle as its 
dual object. This will be clear in the following sections.

3. Massive spinning particles in BTZ black hole spacetime

The BTZ black hole spacetime metric can be written in a form with light-like coordinates,

ds2 = T 2
udu2 + 2ρdudv + T 2

v dv2 + dρ2

4(ρ2 − Tu T v)
, (3.1)

along with the identifications

u ∼ u + 2π, v ∼ v + 2π . (3.2)

Tu and T v are variable constants. The local isometry for BTZ black hole is S L(2, R) × S L(2, R), while only the U (1) × U (1) part is globally 
defined due to the spatial circle.

For a particle with mass m and spin s, the worldline action can be written as [24]

S =
∫

dτ

(
m

√
gμν Ẋμ Ẋν + sñ · ∇n

)
+ Sconstraints . (3.3)

Here τ is the length parameter, Ẋμ is the tangent vector of the worldline, and Sconstraints contains Lagrange multipliers which require that 
the two normalized vectors n and ñ should be mutually orthogonal and perpendicular to the worldline, i.e.,

n2 = −1, ñ2 = 1, n · ñ = 0, n · Ẋ = ñ · Ẋ = 0 . (3.4)

The symbol ∇ with no subscript indicates a covariant derivative alone the worldline:

∇V μ := Ẋν∇ν V μ . (3.5)

The equations of motion with respect to Xμ(τ ) are known as the Mathisson-Papapetrou-Dixon (MPD) equations,

∇[mẊμ + Ẋν∇sμν ] = −1

2
Ẋν sρσ Rμ

νρσ , (3.6)

where sμν is the spin tensor,

sμν = s(nμñν − ñμnν) . (3.7)
3
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As was noticed in [24], in locally AdS spacetimes, the contraction of the Riemann tensor with sμν Ẋρ vanishes. The MPD equations reduce 
to

∇[mẊμ − sμν∇ Ẋν ] = 0 . (3.8)

Although the worldline action (3.3) is obtained in [24] from the topological massive gravity by using the conical method developed 
in [25], here we use it as a known result for spinning particle in three dimensional Einstein gravity, since the MPD equation (3.6) works 
geometrically in any background. One obvious solution to the MPD equation above is a geodesic,

∇ Ẋμ = 0 . (3.9)

We are trying to find the path that minimize the worldline action (3.3). However, the local minimum or the saddle point of the worldline 
action is not necessary a geodesic. Here we will take the solution to MPD equation in AdS3 as a geodesic. The first reason is that it is the 
simplest case for discussing geometric quantities in the bulk. The second reason comes from the fact that in the Frenet-Serret gauge with 
one of the extrinsic curvatures of a path vanishes identically [26], the geodesic one takes a smaller value of the on-shell worldline action. 
In [27], the relationship between the entanglement entropy of a CFT with gravitational anomaly and the non-geodesic Mathisson’s helices 
has been studied. We will leave the discussions of the non-geodesic case when matching the WCFT entanglement entroy in our future 
works.

We first consider a massive spinning particle moving in the BTZ black hole with zero temperature, i.e., Tu,v = 0. We choose the solution 
to the MPD equation as geodesic, and we set the starting and ending point of the particle all fixed on the AdS3 boundary. The geodesic 
line that connect {−�u

2 , −�v
2 , ∞} and {�u

2 , �v
2 , ∞} can be parameterized as

u(τ ) = �u

2
tanh

(
τ + 1

2
log(�u�v)

)
, (3.10)

v(τ ) = �v

2
tanh

(
τ + 1

2
log(�u�v)

)
, (3.11)

ρ(τ ) = 1

2

(
eτ + 1

�u�v
e−τ

)2

, (3.12)

where τ parameterize the length of the geodesic varying from −∞ to +∞. The tangent vector of the geodesic can be written down as 
derivative with respect to τ ,

Ẋμ∂μ = 1/�v

ρ
∂u + 1/�u

ρ
∂v + 4uρ

�u
∂ρ. (3.13)

On-shelly, the worldline action consist of two parts. The first part is the length of the geodesic times its mass, and the second part is 
the extrinsic torsion term due to the spin.

Son-shell = mLgeo + Storsion = mLgeo + s

∫
dτ ñ · ∇n . (3.14)

If we label the radial coordinate of the geodesic close to the boundary as ρ∞ , the length parameter of the two end points can be read off 
from (3.12),

τ f = log
√

2ρ∞, τi = log
1√

2ρ∞�u�v
, (3.15)

then the length of the geodesic is the difference of τ f and τi , and this is actually divergent as expected according to the infinity of ρ∞ ,

Lgeo = τ f − τi = log
�u�v

1/(2ρ∞)
. (3.16)

The inverse of 2ρ∞ can be viewed as a UV cutoff in the u-v plane.
The worldline of the particle as a one dimensional object in the bulk has intrinsic and extrinsic properties, which can help to fix the 

geometrical nature of the worldline. The intrinsic properties can be obtained from the tangent vector Ẋμ , and its normalization Ẋμ Ẋμ = 1
indicates that the worldline has trivial induced metric which only characterize the reparameterization of that line. The extrinsic quantities 
can be figured out by studying how the tangent and normal vectors changes as we move alone the worldline. One can always decompose 
the tangent directional derivative ∇ of the normal vectors into their tangent and normal contributions,

∇nμ = K n Ẋμ − T nññμ , (3.17)

∇ñμ = K ñ Ẋμ − T ñnnμ , (3.18)

where K and T tensors are the extrinsic curvature and extrinsic torsion respectively. The geodesic line has vanishing extrinsic curvature, 
i.e., K n = −n · ∇ Ẋ = 0, K ñ = −ñ · ∇ Ẋ = 0 due to the geodesic equation (3.9).

The extrinsic torsion tensor can be expressed as T nñ = −T ñn = −ñ · ∇n, which is exactly the integrand of the second term of the 
on-shell action (3.14), characterizing the twist of the worldline. When a particle has spin, the spin direction can be used to determine a 
local frame (q, ̃q), with q2 = −1, ̃q2 = 1, which is parallelly transported along its trajectory, i.e. ∇q(q̃) = 0. If the worldline is spacelike, the 
4
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integral of the extrinsic torsion along that line is determined by the change of the rapidity of the Lorentz boost from parallelly transported 
frame to the normal frame between the two end points [24],

Storsion = s(η f − ηi) , (3.19)

where η is the rapidity which is the Lorentz angle between (n, ̃n) and (q, ̃q). This change of the rapidity or the extrinsic torsion term 
can always be chosen as a positive value, since it reveals the rotation of the spin direction from initial to final. In fact, given any two 
normal frames that belong to the same worldline, there exists a local Lorentz transformation that relates these two normal frames on 
each point on that line. The difference of the two torsions defined by these two normal frames is just a line derivative of the local angle 
parametrizing the local rotation between them [26]. So the integral of the extrinsic torsion along the worldline is invariant under local 
rotation of the normal frame up to boundary contribution from the end points, and its value depends on the specific choice of the local 
frame.

Here we give our recipe for choosing the normal vectors. Given a parallelly transported frame (q, ̃q) along the trajectory, there exists 
two sets of normal vectors (n1, ̃n1) and (n2, ̃n2), which have opposite Lorentz angle to (q, ̃q) at each point. Set a time direction on the 
boundary, and take one of the time-like normal vectors alone that time on the boundary, one of the two sets of normal vectors will 
give out a extrinsic torsion term that is responsible for the entanglement entropy in CFT with gravitational anomaly [24] and the other 
corresponds to WCFT. Geometrically, the normal vectors n and ñ are perpendicular to the geodesic and so to Ẋ . We choose our normal 
frame with the normal vectors satisfying (3.4) as the following,

nμ∂μ = ±
�u2

√
ρ2 − 2ρ

�u�v

ρ
√

2�u2�v2ρ − (�u + �v)2
∂u ∓

�v2
√

ρ2 − 2ρ
�u�v

ρ
√

2�u2�v2ρ − (�u + �v)2
∂v

+ 2ρ(�u − �v)√
2�u2�v2ρ − (�u + �v)2

∂ρ , (3.20)

ñμ∂μ = �u + �v − �u2�vρ

�vρ
√

2�u2�v2ρ − (�u + �v)2
∂u + �u + �v − �u�v2ρ

�uρ
√

2�u2�v2ρ − (�u + �v)2
∂v

±
2(�u + �v)

√
ρ2 − 2ρ

�u�v√
2�u2�v2ρ − (�u + �v)2

∂ρ , (3.21)

where the up sign corresponds to the left part of the geodesic with u < 0, and the down sign corresponds to the right part of the geodesic 
with u > 0. When u = 0 or at the turning point of the geodesic with τm = 1

2 log 1
�u�v , we have ρ = ρm = 2

�u�v , and these two sets of 
normal vectors are smoothly connected. On the boundary, at the end points of the geodesic, the normal vectors take the expressions,

nμ
b ∂μ = ± �u

�v
√

2ρ∞
∂u ∓ �v

�u
√

2ρ∞
∂v , (3.22)

ñμ
b ∂μ = − �u

�v
√

2ρ∞
∂u − �v

�u
√

2ρ∞
∂v . (3.23)

These boundary values of the normal vectors is a set of our gauge choice of the local Lorentz rotation on the frame. In fact these boundary 
values together with (3.4) can uniquely determine (3.20) and (3.21). The parallelly transported vector q at the end points can also be 
carried out,

qμ
b ∂μ = ±

√
�u

2�vρ∞
∂u ∓

√
�v

2�uρ∞
∂v , (3.24)

where the up sign corresponds to the initial point at τ = τi , and the down sign corresponds to the final point at τ = τ f . For the light-cone 
coordinates u and v , the time t and spatial σ coordinates can be given by u = σ + t , v = σ − t . Here the normal vector, say nμ , we choose 
is not the simply along t . Explicitly, on the boundary, the normalized vector along t takes the form,

nμ
t ∂μ = ± 1√

2ρ∞
∂u ∓ 1√

2ρ∞
∂v . (3.25)

It can be shown that the Lorentz angle between nt and qb is opposite to the Lorentz angle between nb and qb , which means that nt and 
nb are oppositely boosted. For the choice of nt as boundary value of the time-like normal vector, the calculations of the extrinsic torsion 
term in AdS3 have been done in [24], where the dual field theory is taken to be CFT with gravitational anomaly. Here we choose nb as 
the time-like vector on the boundary, and try to explain the entanglement entropy in the WCFT. We will see from the following finite 
temperature case that the normal vectors we choose are consistent with the CSS boundary conditions.

Given the explicit expressions of the normal vectors (3.20) and (3.21), and the tangent vector (3.13), we can calculate the extrinsic 
torsion at each point on the geodesic,

ñ · ∇n = �v2 − �u2

2�u2�v2ρ − (�u + �v)2
. (3.26)

Substituting (3.12) into the above expression and do the τ integration from τi to τ f , we find,
5
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τ f∫
τi

dτ ñ∇n = log

(
�u

�v

)
. (3.27)

Now we can combine the two parts of the on-shell action together. Given (3.16) and (3.27), the on-shell worldline action (3.14) can be 
evaluated,

Son-shell = m log
�u�v

ε
+ s log

�u

�v
, (3.28)

where ε = 1/(2ρ∞) is the UV cutoff.
For finite temperature, let us consider the case of Tu = 0 and T v left as a variable constant. The geodesic line that followed by a 

massive spinning particle, connecting {−�u
2 , −�v

2 , ∞} and {�u
2 , �v

2 , ∞} can be parameterized as

u(τ ) =
�u sinh

(
2τ + log �u sinh(T v�v)

T v

)
2
(

cosh(T v�v) + cosh
(

2τ + log �u sinh(T v�v)
T v

)) , (3.29)

v(τ ) = 1

2T v
log

T v

(
sinh

(
2τ + log �u sinh(T v�v)

T v

)
− sinh(T v�v)

)
sinh(T v�v) sinh

(
2τ + log �u sinh(T v�v)

T v
− T v�v

) , (3.30)

ρ(τ ) = 1

2

(
e2τ + 2T v cosh(T v�v)

�u sinh(T v�v)
+

(
T v

�u sinh(T v�v)

)2

e−2τ

)
, (3.31)

where τ is the length parameter varying from τi to τ f with the following expression,

τ f = log
√

2ρ∞, τi = log
T v√

2ρ∞�u sinh(T v�v)
, (3.32)

ρ∞ is the radial coordinate near the boundary. The length of the geodesic, which is the difference of the end point parameters, in this 
case can be written as

Lgeo = log
�u sinh(T v�v)

(1/(2ρ∞))T v
. (3.33)

The tangent vector of the geodesic takes the following form,

Ẋμ∂μ =
(

T v coth(T v�v)

ρ
− T 2

v

�uρ2

)
∂u + 1/�u

ρ
∂v + 4uρ

�u
∂ρ . (3.34)

The normal vectors satisfying (3.4) in the finite temperature case we choose are the following,

nμ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

±�u

√
ρ2+ T 2

v
�u2 − 2ρT v coth(T v �v)

�u

(
T 2

v
�u2 +ρ(T v coth(T v�v)+T v )2

)

ρ2

√
T 2

v −T 2
v coth2(T v �v)

�u2 +(T v+T v coth(T v�v))2
(

2ρ− 2T v coth(T v �v)
�u −(T v+T v coth(T v�v))2

) ,

∓
√

ρ2+ T 2
v

�u2 − 2ρT v coth(T v �v)
�u

�uρ

√
T 2

v −T 2
v coth2(T v �v)

�u2 +(T v+T v coth(T v�v))2
(

2ρ− 2T v coth(T v �v)
�u −(T v+T v coth(T v�v))2

) ,

2

(
T 2

v
�u2 − ρT v coth(T v �v)

�u +ρ(T v coth(T v�v)+T v )2
)

√
T 2

v −T 2
v coth2(T v �v)

�u2 +(T v+T v coth(T v�v))2
(

2ρ− 2T v coth(T v �v)
�u −(T v+T v coth(T v�v))2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.35)

ñμ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
(

T 2
v

�u +ρ2�u−ρT v coth(T v�v)

)
(T v+T v coth(T v�v))2+ T 3

v coth(T v �v)

�u2 − ρT 2
v coth2(T v �v)

�u

ρ2

√
T 2

v −T 2
v coth2(T v �v)

�u2 +(T v+T v coth(T v�v))2
(

2ρ− 2T v coth(T v �v)
�u −(T v+T v coth(T v�v))2

) ,

−
(
ρ− T v coth(T v �v)

�u

)
+(T v+T v coth(T v�v))2

�uρ

√
T 2

v −T 2
v coth2(T v �v)

�u2 +(T v+T v coth(T v�v))2
(

2ρ− 2T v coth(T v �v)
�u −(T v+T v coth(T v�v))2

) ,

∓2

√
ρ2+ T 2

v
�u2 − 2ρT v coth(T v �v)

�u

(
T v coth(T v �v)

�u +(T v+T v coth(T v�v))2
)

√
T 2

v −T 2
v coth2(T v �v)

�u2 +(T v+T v coth(T v�v))2
(

2ρ− 2T v coth(T v �v)
�u −(T v+T v coth(T v�v))2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.36)

where we use the convention (u, v, ρ) to label the component. The up sign corresponds to the left part of the geodesic with u < 0, and 
the down sign corresponds to the right part of the geodesic with u > 0. These two parts are smoothly connected at the turning point with 
ρm = T v coth((T v �)v/2) . The boundary values of these normal vectors are,
�u

6
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nμ
b ∂μ = ±�u(T v + T v coth(T v�v))√

2ρ∞
∂u ∓ 1/(�u(T v + T v coth(T v�v)))√

2ρ∞
∂v , (3.37)

ñμ
b ∂μ = −�u(T v + T v coth(T v�v))√

2ρ∞
∂u − 1/(�u(T v + T v coth(T v�v)))√

2ρ∞
∂v , (3.38)

where the up sign corresponds to the initial point at τ = τi , and the down sign corresponds to the final point at τ = τ f . When T v = 0, 
these vectors recover (3.22) and (3.23).

In the Fefferman-Graham expansion, any three dimensional metric takes the form,

ds2 = dρ2

4ρ2
+ ρ

(
g(0)

ab + 1

ρ
g(2)

ab +O(ρ−2)

)
dxadxb , (3.39)

where we use the radial coordinate ρ = r2/2 instead of r in [14] and set � = 1. The CSS boundary conditions imposed on the above 
expansion are,

g(0)
v v = 0, g(0)

uu = ∂u P̄ (u), g(0)
uv = g(0)

vu = 1 ,

g(2)
v v = 4G�. (3.40)

We can use the above normal vectors (3.35) and (3.36) as well as the tangent vector along the geodesic (3.34) to recover the boundary 
behavior of the metric components,

gμν = −nμnν + ñμñν + Ẋμ Ẋν . (3.41)

At large radius ρ , the fall of behavior of the metric components can be figures out,

gρρ = 1

4ρ2
+O(ρ−3) ,

gρu = O(ρ−3) , gρv = O(ρ−3) ,

guv = ρ + coth2(T v�v)

�u2(1 + coth(T v�v))2
+O(ρ−1) (3.42)

guu = O(ρ−3) ,

gv v = T 2
v (1 + 2 coth2(T v�v)) +O(ρ−1) .

We see that the asymptotic expansions (3.42) of the metric components are consistent with the CSS boundary conditions (3.40).
The extrinsic torsion that relates to (3.35) and (3.36) can be calculated,

ñ∇n =
1

�u2 − T 2
v e4T v �v

sinh2(T v�v)

2ρe2T v�v − 1
�u2 − 2T v e2T v �v coth(T v�v)

�u − T 2
v e4T v �v

sinh2(T v�v)

. (3.43)

Taking into account the radius function (3.31) along the geodesic, the integral of the extrinsic torsion from τi to τ f is,

τ f∫
τi

dτ ñ∇n = log
T v�ue2T v�v

sinh(T v�v)
. (3.44)

Combining the length (3.33) and torsion (3.44) parts, the on-shell action of the spinning particle in the finite temperature case can be 
written as

Son-shell = m log
�u sinh(T v�v)

εT v
+ s log

T v�ue2T v �v

sinh(T v�v)
, (3.45)

where ε = 1/(2ρ∞) is the UV cutoff.

4. Entanglement entropy in AdS3/WCFT

Under CSS boundary conditions [14], which is a Dirichlet-Nuemann type boundary condition, asymptotically AdS3 spacetimes are 
conjectured to be dual to WCFTs in the sense that the symmetry algebras on both sides take a similar form. In the light-like coordinate 
system, the BTZ black hole metric (3.1) with identification (3.2) satisfies the CSS boundary conditions,

g(0)
uv = 1, g(0)

v v = 0, ∂v g(0)
uu = 0, g(2)

v v = T 2
v , (4.1)

with T v fixed. The asymptotic Killing vectors obeying the boundary condition (4.1) are,

ξn = einu
(

∂u − 1
in∂ρ

)
, ηn = −einu∂v . (4.2)
2
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The asymptotic symmetry algebra under the above mentioned boundary conditions is the Virasoro-Kac-Moody algebra, which can be 
written as

[L̃n, L̃m] = (n − m)L̃n+m + c

12
(n3 − n)δn,−m,

[L̃n, P̃m] = −mP̃n+m + mP̃0δn,−m, (4.3)

[ P̃n, P̃m] = k̃

2
nδn,−m ,

where

c = 3

2G
, k̃ = − T 2

v

G
. (4.4)

L̃0 and P̃0 are the conserved charges associated with left and right moving Killing vectors ∂u and ∂v respectively, and are related to the 
bulk mass and energy momentum by 〈L̃0〉 = 1

2 (E + J ), 〈 P̃0〉 = − 1
2 (E − J ). The asymptotic charges L̃n, P̃n are both finite and integrable 

with fixed T v . The above algebra (4.3) is not the canonical WCFT algebra (2.2). One way to relate them is utilizing the following charge 
redefinition [19],

L̃n = Ln − 2P0 Pn

k
+ P 2

0δn,0

k
, P̃n = 2P0 Pn

k
− P 2

0δn,0

k
. (4.5)

In this paper, we are interested in states with 〈Pn〉 = 0, ∀n = 0, and this amounts to a nonlocal reparameterization of the theory,

u = x, v = ky

2〈P0〉 + x . (4.6)

On such states we further have the expectation values,

〈L0〉 = 〈L̃0〉 + 〈 P̃0〉 = J ,
〈P0〉2

k
= 〈 P̃0〉 = 1

2
( J − E) . (4.7)

For the BTZ black holes (3.1), the expectation values of the zero modes of the canonical WCFT algebra (2.2) can now be read from the 
background geometry,

〈L0〉 = 1

4G
(T 2

u − T 2
v ), 〈P0〉 = − T v

2

√−k

G
. (4.8)

The WCFT vacuum corresponds to the global AdS3 with Tu = T v = − i
2 , so the vacuum charges can be written down,

Lvac
0 = 0, P vac

0 = i

4

√−k

G
. (4.9)

The Kac-Moody level k is a free parameter introduced in the charge redefinition (4.5). However, under holographic duality, a negative k
is responsible to provide a real U (1) charge of excited states and leave the vacuum charge to be pure imaginary. The negative k leads 
to descendent states with negative norms, whose contribution to the partition function can be estimated and is much smaller than the 
primaries [28]. Furthermore, modular covariance requires that states with pure imaginary charges have to exist, consistent with the fact 
that global AdS3 has pure imaginary charge.

In our previous paper, we find that the mean structure of WCFT, which contains a heavy-heavy-light three point function, can be 
estimated by a bulk tadpole diagram on a BTZ black hole background [21]. Since the operators have spin angular momentum, it turns out 
that the geodesic length approximation is not work directly. The propagator in the tadpole diagram is well approximated by a massive 
spinning particle’s on-shell worldline action. For a general operator in WCFT with mass and spin, we propose that the bulk quantity that 
dual to the two point function for such operator is e−S , where S is the on-shell worldline action of a massive spinning particle with 
mass and spin related to the operator. The trajectory of the particle ends on the two points on the boundary. This works in a classical 
approximation with the range that the mass of the particle is much greater than 1 but still far less than c.

For the twist operators in WCFT, the scaling dimension and the U (1) charge is given by (2.4). For n = 1, the twist operator should be 
trivially identity due to the normalization of the reduced density matrix. This is true by noticing that the vacuum charge are given by 
(4.9) and c = 3/(2G) in a holographic sense, and further requiring that k = −1/G and α = π . Compering to CFT on the algebraic level, 
L̃0 and − P̃0 play the role as left and right moving energies, respectively. Near n = 1, the twist operator is in classical approximation, and 
its dual object is a classical massive spinning particle with mass still in the perturbative region. In fact, by considering (4.5), we have the 
following relation,

�n − Q 2
n

k
+ c

24
= mn + sn

2
, − Q 2

n

k
+ c

24
= mn − sn

2
, (4.10)

where mn and sn are the mass and spin of the twist operator dual particle in the bulk AdS3. The two point function of the twist operator 
near n = 1 is now well approximated by

〈�n(u1, v1)�
†
n(u2, v2)〉C ∼ e−St

on-shell , (4.11)

where
8
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St
on-shell = mn

(u2,v2)∫
(u1,v2)

dτ + sn

(u2,v2)∫
(u1,v1)

dτ ñ · ∇n , (4.12)

is the on-shell worldline action of a massive spinning particle with mass mn and spin sn . From (4.10), using (2.4), (4.9), and c = 3/(2G), 
and further requiring k = −1/G and α = π , we find,

∂nmn|n=1 = 1

8G
, ∂nsn|n=1 = 1

8G
. (4.13)

According to (2.7), and using (4.11), (4.12), (4.13), the entanglement entropy for a single interval with end points at (u1, v1) and (u2, v2)

on the boundary can be expressed as

SEE = 1

8G

⎛
⎜⎝

(u2,v2)∫
(u1,v2)

dτ +
(u2,v2)∫

(u1,v1)

dτ ñ · ∇n

⎞
⎟⎠ . (4.14)

This can be viewed as the on-shell worldline action with mass and spin all equal to 1/(8G). When Tu = 0, setting m = s = 1/(8G) in 
(3.45), the entanglement entropy of a single interval with separation (�u, �v) takes the form,

SEE = 1

4G

(
T v�v + log

�u

ε

)
. (4.15)

This result also cover the case with Tu,v = 0 by setting m = s = 1/(8G) in (3.28). Under the holographic dictionary of the temperature 
obtained in [10],

Tu = π

β
, T v = β̄ − α

β
, (4.16)

and using (4.6) and (4.8), and k = −1/G , the entanglement entropy from the bulk (4.15) matches the entanglement entropy obtained by a 
pure field theory calculation SEE = S1, with S1 given in (2.6) in a zero temperature limit, i.e. β → ∞, β̄ → ∞, with β̄/β finite.

The bulk picture of a single interval entanglement entropy in WCFT here we present is different to the one studied in [22]. In both 
pictures, the entangling surfaces in the bulk are all geodesics. The main differences come from two aspects: Geometrically, the geodesic 
line in [22] is a straight line in the bulk without ending on the asymptotic boundary, while here the geodesic line is connected to the end 
points of the interval. And quantitatively, the quantity on the geodesic given in [22] that reflects the entanglement entropy is its length 
divided by 4G , while here is the on-shell worldline action of a spinning particle. Both results are correct, and here we give an alternative 
way to find the gravity dual of the entanglement entropy in WCFT. Using the spinning particle’s picture, it is interesting to study like the 
Witten diagrams or the Rényi mutual information [29] in the context of AdS3/WCFT, and we leave these as our future works.
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