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1 Introduction

It is now a general agreement that most asymptotic series in physics are in want of a non-
perturbative completion. Topological string theory as a subsector of type II superstring theory
compactified on Calabi-Yau threefolds has many asymptotic series, such as free energies
and Wilson loop vevs, which are both mathematically well-defined and more amenable to
calculations, and it is therefore a perfect laboratory to explore non-perturbative completions of
asymptotic series. In general, the non-perturbative completion would be ambiguous. However,
under the assumption that the asymptotic series in topological string is resurgent, the non-
perturbative corrections are strongly constrained, and the powerful method of resurgence
theory [1] can be used to study them.

According to the resurgence theory, the non-perturbative corrections to an asymptotic
series of Gevrey-1 type

φ(z) =
∑

n

φnzn, φn ∼ n! (1.1)

can be encoded in the form

φ(∗) = e−A∗/z
∑

n

φ(∗)
n zn+b∗ . (1.2)

Furthermore, these non-perturbative corrections are closely related to the perturbative series
via Stokes transformations, so that much information of the non-perturbative corrections can
be extracted from the perturbative series φ. For instance, the non-perturbative action A∗ that
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determines the magnitude e−A∗/z of the non-perturbative correction is given as singularities
of the Borel transform of the asymptotic series, while the coefficients in the non-perturbative
corrections, together with the coefficients of the Stokes transformations known as the Stokes
constants, can be read off from the large order asymptotics of the perturbative coefficients.
These data are sometimes collectively called the resurgent structure.

The resurgence method was first applied to study the perturbative free energy F (t; gs)
in topological string [2–6] as an asymptotic series in the string coupling constant gs, and
a rich structure of non-perturbative corrections was discovered.

First of all, it was found that the non-perturbative actions or the Borel singularities are
integral periods of the mirror Calabi-Yau threefolds [7–11],1 which are the central charges
of D-brane bound states in the type II superstring theory, corresponding to D6-D4-D2-D0
bound states in type IIA superstring or equivalently to D5-D3-D1-D(-1) bound states in type
IIB superstring, giving the first hint that the non-perturbative corrections in topological
string are related to D-branes.

Secondly, it was postulated and verified in [9, 10, 13]2 that the non-perturbative trans-
series are constrained by the holomorphic anomaly equations [16, 17], the same set of partial
differential equations that constrain the perturbative free energies. This idea was later further
developed and exploited to full extent, and the full non-perturbative trans-series in any
non-perturbative sector was solved in closed form [11, 18].

Finally, important progress have been made regarding the Stokes constants. Although
their exact calculation is still out of reach in generic scenarios,3 there has been accumulating
evidence [19–24] that the Stokes constant associated to each non-perturbative sector is
the Donaldson-Thomas invariant, the counting of stable bound states of D-branes. It also
elucidates further the nature of non-perturbative actions: they are not only D-brane central
charges, but the central charges of stable D-brane configurations.

Recently, these progress have been generalized [25] (see also [26, 27]) to refined free
energies in topological string F (t; ϵ1, ϵ2).4 The refined free energy is treated as an asymptotic
series in gs denoted as F (t, b; gs), where the parameters of Omega background ϵ1, ϵ2 are
related to gs via5

ϵ1 = ibgs, ϵ2 = −ib−1gs, (1.3)

with the fixed parameter b, and it returns to the unrefined free energy in the limit b → 1. For
the refined free energy F (t, b; gs), it was found that each non-perturbative sector with action
A splits to two whose actions are A/b and A b. The trans-series in such a non-perturbative
sector was also written down in closed form [25], as a trans-series solution to the refined
version of the holomorphic anomaly equations [31]. Finally, it was argued that in this case,
the Stokes constants can be identified with the motivic or refined DT invariants.

1See [2] for a possible conceptual understanding of this phenomenon, and also e.g. [12] for a similar
understanding in minimal string.

2See [14] also for important connection to another program of making non-perturbative completition to
topological string free energy, the TS/ST correspondence [15].

3Many Stokes constants can be obtained though in the special simplifying conifold limit [19].
4The Nekrasov-Shatashvili limit of the refined topological string is special, and the non-perturbative

corrections to free energies were studied in [28–30].
5Our convention differs from that in [25] by gs → igs.
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In this paper, we would like to study the non-perturbative corrections of another important
computable in refined topological string theory, the Wilson loops. They play the role of
eigenvalues in the quantum mirror curves [32] in the Nekrasov-Shatashvili limit of the
refined topological string, and they are encoded in the qq-character in the generic Omega
background [33]. Topological string on a local Calabi-Yau threefold engineers a 5d N = 1
SCFT, and when the latter has a gauge theory phase, the Wilson loops are naturally defined.
The notion of Wilson loops was extended to topological string on generic local Calabi-Yau
threefolds [34] as insertion of additional non-compact 2-cycles, and furthermore, holomorphic
anomaly equations for the generalized Wilson loops were written down in [35, 36].

The resurgent structures of refined Wilson loops in the Nekrasov-Shatashvili limit were
discussed in [30]. The NS Wilson loops in different representations are proportional to
each other [35], and one only needs to study those in the fundamental representation. The
generic refined Wilson loops in different representations are very different, and their resurgent
structures could potentially be very rich.

We follow the idea of [25, 27], and treat the perturbative refined Wilson loops, which have
similar expansions as refined free energies in terms of the Omega deformation parameters
ϵ1, ϵ2, as aymptotic series in gs with fixed deformation parameter b, which turn out also to
be of Gevrey-1 type, so that the resurgence theory can be used to study the non-perturbative
corrections. We find that rather than studying the Wilson loops in different representations,
it is more beneficial to consider the generating series of Wilson loops in all representations,
which can be regarded as the free energy of the topological string on a new threefold with
insertion of additional non-compact two-cycles in the original Calabi-Yau threefold. Although
a rigorous mathematical formulation is still lacking,6 the similarity with the topological
string free energy strongly implies that the resurgent structures of the two are also similar.
Indeed, we find that for refined Wilson loops, the non-perturbative actions are also integral
periods, with the caveat that they cannot be local flat coordinates (i.e. A-periods); the
non-perturbative series can be solved in closed form from holomorphic anomaly equations
for Wilson loops; the Stokes constants must be the same as those of refined free energy, and
therefore they are also identified with refined DT invariants.

The rest of the paper is structured as follows. We review the resurgent structure of
free energy of refined topological string in section 2, the definition and the calculation of
perturbative Wilson loops in section 3. We present our results of the resurgent structures of
Wilson loops in section 4. We show how to reduce to the unrefined limit and the NS limit
in section 4.2, and we are able to reproduce the results in [30] and in particular prove some
empirical observations, especially the one that the Stokes constants of NS Wilson loops and
those of NS free energies were identical, when the former were not vanishing. Two examples
of local P2 and local P1 × P1 are given in section 5.
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2 Free energies and non-perturbative corrections

2.1 Perturbative refined free energy

The refined topologial string theory is defined over the complexified Kahler moduli space of
Calabi-Yau threefold X in the A-model, or the complex structure moduli space of the mirror
Calabi-Yau threefold X∨ in the B-model. The perturbative free energy of refined topological
string theory is a formal power series in terms of two expansion parameter ϵ1, ϵ2 [31]

F(t; ϵ1, ϵ2) =
∑

n,g≥0
(ϵ1 + ϵ2)2n(ϵ1ϵ2)g−1F (n,g)(t). (2.1)

The coefficients F (n,g)(t) are sections of certain line bundles of the moduli space, parametrized
by flat coordinates t.

There are various ways to compute the coefficients of the refined free energy, includ-
ing instanton calculus [38], refined topological vertex [39], and blowup equations [40] (see
also [41] and [42, section 8]). But for our purpose, it is more suitable to use the refined
holomorphic anomaly equations (refined HAE) [31], as it generates directly the coefficients of
the perturbative series, and in addition, it is applicable over the entire moduli space.

In the framework of refined HAE, it is necessary to extend the free energies F (n,g)(t)
to non-holomorphic functions F (n,g), and the failure of the holomorphicity is described by
the refined HAE. The non-holomorphic functions F (n,g) obtained from the refined HAE
reduce to F (n,g) in appropriate holomorphic limits, which is equivalent to taking a local
patch of the associated line bundle, where t are the flat coordinates on that local patch. We
follow the convention in [11, 18] that we use Roman capital letters for the non-holomorphic
quantities obtained from HAE, and curly captical letters for their holomorphic limit. Note
the prepotential F (0,0) = F (0,0) = F0 is always holomorphic.

To explain the refined HAE, we need to introduce a few properties of the moduli space M.
The moduli space is Kahler, so that the metric is expressed in terms of a Kahler potential, i.e.

Gab̄ = ∂a∂b̄K, (2.2)

where ∂a = ∂za and the za are a set of global complex coordinates over the moduli space. A
set of covariant derivatives Da can then be introduced with the Levi-Civita connection,

Γa
bc = Gad̄∂bGcd̄. (2.3)

In addition, the moduli space is special Kahler (see e.g. [43] for more details of the special
geometry.), in the sense that in any local path of the moduli space, one can find a symplectic

– 4 –



J
H
E
P
0
6
(
2
0
2
5
)
0
2
7

basis — known as a choice of frame — of local flat coordinates as well as their conjugates,{
ta,

∂F0
∂ta

}
, a = 1, . . . ,

1
2 dimM, (2.4)

both of which are classical periods of the mirror Calabi-Yau threefold X∨, and they are related
to each other via the preptential F0 = F (0,0). We can then introduce the Yukawa coupling

Cabc(z) =
∂tℓ

∂za

∂tm

∂zb

∂tn

∂zc
· ∂

∂tℓ

∂

∂tm

∂

∂tn
F0 (2.5)

which, despite its definition, is independent of the choice of frame, and is usually a rational
function of z. We also introduce the propagators Sab defined by

∂c̄S
ab = e2KGad̄GbēC c̄d̄ē. (2.6)

which encode the non-holomorphic dependence. The non-holomorphic free energies F (n,g)

are functions of both za, Sab.
The refined topological string free energies then satisfy an infinitely set of partial

differential equations known as the refined HAE [31],

∂F (n,g)

∂Sab
= 1

2

DaDbF
(n,g−1) +

∑′

n′,g′≥0
DaF (n′,g′)DbF

(n−n′,g−g′)

 , n + g > 2, (2.7)

where
∑ ′ means excluding (n′, g′) = (0, 0) or (n, g). These infinitely many equations can

be encoded in a single master equation

∂

∂Sab
Z̃ = ϵ1ϵ2

2 DaDbZ̃, (2.8)

with the partition function

Z̃ = exp F̃ = exp
∑

n+g>0
(ϵ1 + ϵ2)2n(ϵ1ϵ2)g−1F (n,g). (2.9)

These equations are supplemented with the initial conditions that the free energy F (0,1) is
related to the propagator by

∂aF (0,1) = 1
2CabcS

bc + fa(z) (2.10)

while F (1,0) is given by

F (1,0) = − 1
24 log(f(z)∆(z)). (2.11)

Here fa(z) and f(z) are model-dependent holomorphic functions of za, and ∆(z) is the
discriminant, the equation of singular loci in the moduli space.

As the equations (2.7) are recursive in genus (n, g), the free energies F (n,g) can be
solved by direct integration up to an integration constant, which is independent of the
non-holomorphic propagator Sab, and which is purely holomorphic, known as the holomorphic
ambiguity. The holomorphic ambiguity is fixed by imposing the boundary conditions that at
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a conifold singularity of the moduli space, the free energies F (n,g)(tc) in the holomorphic limit
with the local flat coordinate tc (appropriately normalised) that vanishes at the singularity
satisfy the so-called gap condition [31, 44]

F(tc; ϵ1, ϵ2) =
(
− 1
12 + 1

24(ϵ1 + ϵ2)2(ϵ1ϵ2)−1
)
log(tc)

+ 1
ϵ1ϵ2

∑
n1,n2≥0

(2n1 + 2n2 − 3)!
t2n1+2n2−2
c

B̂2n1B̂2n2ϵ2n1
1 ϵ2n2

2 +O(t0
c), (2.12)

where
B̂n = (1− 21−n)Bn

n! (2.13)

and Bn denoting the Bernoulli numbers, and that the free energies are regular everywhere
else.7,8

Another important universal feature of the refined free energy is that near the large
radius point [31, 45], it has the integrality structure

F(t; ϵ1,2) =
∑
w≥1

∑
γ∈H2(X,Z)

∑
jL,R

(−1)2jL+2jRNγ
jL,jR

χjL(qw
L )χjR(qw

R)
w(2 sinh wϵ1

2 )(2 sinh wϵ2
2 )e

−wγ·t. (2.14)

generalising the Gopakumar-Vafa formula of unrefined free energy [46]. Here qL,R = eϵL,R

and ϵL,R = 1
2(ϵ1 ∓ ϵ2), and χj(q) is the character of su(2) of spin j ∈ 1

2Z≥0,

χj(q) =
q2j+1 − q−2j−1

q − q−1 . (2.15)

Nγ
jL,jR

are non-negative integer numbers, and they count the numbers of stable D2-D0 brane
bound states wrapping curve class γ ∈ H2(X,Z) with spins (jL, jR) in the little group
SU(2)L × SU(2)R in five dimensions, and they are known as the BPS invariants.

2.2 Non-perturbative corrections

It is more convenient to study non-perturbative corrections to asymptotic series with a single
expansion parameter. It is therefore suggested in [25, 27] to use the parametrisation9

ϵ1 = ibgs, ϵ2 = −ib−1gs (2.16)

to convert the refined free energy F (ϵ1, ϵ2) to a univariate power series in terms of the
string coupling gs,

F (b; gs) = F (ibgs,−ib−1gs) =
∑
g≥0

g2g−2
s Fg(b), (2.17)

7In particular, the free energies should be regular at a pure orbifold point. But in some models such as
massless local F0, a conifold singularity may be hidden inside the orbifold point so that gap also appears there.

8We only consider local Calabi-Yau. For topological string compact Calabi-Yau, there can be other types
of singularities such as K-point singularities.

9The conventions in [25, 27] are slightly different. We take in the majority of the paper the convention
in [25] which is more symmetric, and revert in section 4.2.2 to the convention in [27] which is more suitable
for taking the NS limit.
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where the coefficients Fg(b) are not only functions of the moduli t but also of the deformation
parameter b, given by

Fg(b) =
g∑

n=0
(−1)n(b − b−1)2nF (n,g−n). (2.18)

It is noted then in [25] that the HAE (2.7) can be re-cast as equations of the deformed
free energies Fg(b) := Fg(z, S, b)

∂Fg(b)
∂Sab

= 1
2

DaDbFg−1(b) +
g−1∑
h=1

DaFh(b)DbFg−h(b)

 , g ≥ 2. (2.19)

The initial condition is given by

F1(b) = F (0,1) − (b − b−1)2F (1,0) (2.20)

while at conifold points, the boundary condition (2.12) becomes [25]

Fg(tc, b) = cg(b)
t2g−2
c

+O(1), g ≥ 2, (2.21)

where the coefficients cg(b) are

cg(b) = −(2g − 3)!
g∑

m=0
B̂2mB̂2g−2mb2(2m−g). (2.22)

This gap condition reduces to the universal conifold behavior of the unrefined topological
string [47] in the limit b → 1.

The non-perturbative corrections to the refined free energies was studied in [25], based
on previous works [11, 18, 24], and right now a fairly good understanding has been obtained
for all the ingredients, including the non-perturbative action, the non-perturbative series,
as well as the Stokes constants, which we will quickly review here.

First of all, the non-perturbative actions were already systematically studied [6–11], in
the unrefined case. Note that actions of non-perturbative sectors appear as Borel singularities
of the perturbative free energies. It was found that the Borel singularities always appear
in pairs ±A, as the perturbative series is resonant in the sense that F(t;−gs) = F(t; gs).
Furthermore, they seem to appear not alone but always in sequences A, 2A, 3A, . . .. And
most importantly, it was argued that the action A is holomorphic, and it is in fact an integer
period of the mirror Calabi-Yau threefold X∨; equivalently, it coincides with the central
charge of a D-brane bound state in either type IIA superstring compactified on X or type
IIB superstring compactified on X∨. More concretely, the action A can be written as

Aγ = −ica ∂F0
∂ta

+ 2πdata + 4π2id0. (2.23)

Here (∂taF0, 2πta, 4π2i) is a frame-dependent basis of integer periods; γ = (ca, da, d0) are
integers, and they are the D-brane charges,10 so that Aγ equals the central charge Z(γ) of the

10These are D4-D2-D0 charges in type IIA, or D3-D1-D(-1) charges in type IIB, up to an integer linear
transformation. As X or X∨ is non-compact, there is no D6 or D5 brane charge.
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corresponding D-brane bound state, up to some overall factor. In the case of refined free energy
F(t, b; gs), it was found that [25, 27] each Borel singularity Aγ splits to two b−1Aγ and bAγ .

The non-perturbative series are more complicated, but they can still be written down
in closed form. One first notices that the non-perturbative series is much simpler in the
holomorphic limit of the so-called A-frame, where the action A is a local flat coordinate on
the moduli space, i.e. the coefficients ca vanish identically in (2.23). By studying the genus
expansion of the gap condition (2.21), as well as that of the refined GV formula (2.14), it
was argued in [25] that the non-perturbative series associated to the non-perturbative action
ℓb−1A or ℓbA has only one-term, and it is given respectively by

F (ℓ)
A,b = (−1)ℓ

ℓ

π

sin (πℓ/b2)e
−ℓA/(bgs), (2.24a)

F (ℓ)
A,1/b = (−1)ℓ

ℓ

π

sin (πℓb2)e
−ℓbA/gs . (2.24b)

Next, following the idea in [9, 10], it is postulated [25] that the non-perturbative series is
also a solution to the refined HAE (2.19), and more importantly, it can be solved exactly
as in [11, 18], where the simple solutions (2.24) are used analogously to the gap conditions
as boundary conditions to help fix holomorphic ambiguities. To write down the solution, it
is more convenient to use the non-perturbative partition function that encodes a sequence
of non-perturbative free energies

Zr(b) = exp
∞∑

ℓ=1
Cℓ
(
F

(ℓ)
b + F

(ℓ)
1/b

)
(2.25)

where C is a bookkeeping parameter for the non-perturbative sectors that can be set to
one, and that

F
(ℓ)
b = e−ℓA/(bgs) ∑

n≥0
gn

s F
(ℓ)
n,b, F

(ℓ)
1/b = e−ℓbA/gs

∑
n≥0

gn
s F

(ℓ)
n,1/b. (2.26)

In the holomorphic limit of the A-frame, (2.24) implies that the non-perturbative partition
function reads

Zr,A = exp

∑
ℓ≥1

Cℓ
(
F (ℓ)
A,b + F (ℓ)

A,1/b

) = 1 +
∑

n+m>0
Cn,m exp

(
−nA

bgs
− mbA

gs

)
(2.27)

where Cn,m can be read off from the expansion. This serves as the boundary conditions for
solving the refined HAE (2.19). Then in general, the non-perturbative partition function reads

Zr = 1 +
∑

n+m>0
Cn,m expΣn

b +mb (2.28)

where
Σλ =

∑
k≥1

(−λ)k

k! Dk−1G. (2.29)

The derivative is

D = gs(∂bA)
(
Sab − Sab

A

)
∂a (2.30)

– 8 –
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with Sab
A being the holomorphic limit of the propagator in the A-frame, and the function G is

G = DF (0) = A
gs

+
∑
g≥1

g2g−2
s DFg (2.31)

where we demand that DF0 = gsA in any frame. With this convention, (2.28) can also
be written as

Zr = 1
Z(0)

exp∑
ℓ≥1

(−C)ℓ

ℓ

(
π

sin(πℓb−2)e
−ℓb−1D + π

sin(πℓb2)e
−ℓbD

)Z(0) (2.32)

In other words, it is lifted from Zr,A by substituting D for A/gs. Here Z(0) is the perturbative
partition function

Z(0) = expF (0) = exp
∑
g≥0

g2g−2
s Fg(b). (2.33)

The holomorphic limit of the general results can be easily obtained. In an A-frame, the
derivative D vanishes in the holomorphic limit, and we recover (2.27). If we are not in a
A-frame, so that the coefficients ca do not vanish identically, we can shift the definition of
the prepotential F0 so that da, d0 all vanish. Then in the holomorphic limit, the derivative
D reduces to

D → −igsca ∂

∂ta
. (2.34)

and Σλ becomes

Σλ → F(t + iλgsc, b; gs)−F(t, b; gs). (2.35)

For instance, the one-instanton amplitude is

F (1)
b = π

sin(π/b2) exp [F(t + igsc/b)−F(t)] , (2.36a)

F (1)
1/b = π

sin(πb2) exp [F(t + ibgsc)−F(t)] . (2.36b)

where F(t) = F(t, b; gs).
Finally, it was conjectured [25] (see also [23, 24] as well as [19–22] for discussion in

unrefined case) that the Stokes constant Sγ(b) (resp. Sγ(1/b)) associated to ℓAℓ/b (resp. ℓbAℓ)
are all identical, and it is identified with the refined (or motivic) Donaldson-Thomas invariant.
More precisely, it is given by

Sγ(b) = Ω(γ,−e−πi/b2). (2.37)

The refined DT invariants Ω(γ, y) is a SU(2) character given by

Ω(γ, y) =
∑

j

χj(y)Ω[j](γ), (2.38)

– 9 –
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where the integers Ω[j](γ) count BPS multiplets due to the stable D-brane bound state of
charge j with angular momentum j ∈ Z≥0/2. For D2-D0 bound states, the refined DT
invariants are related to the BPS invariants Nγ

jL,jR
through

Ω(γ, y) =
∑

jL,jR

χjL(y)χjR(y)N
γ
jL,jR

=
∑

j

χj(y)Ω[j](γ) (2.39)

with
Ω[j](γ) =

∑
|jL−jR|≤j≤jL+jR

Nγ
jL,jR

, (2.40)

and they reduce to the genus zero Gopakumar-Vafa invariant nγ,0 wtih b = 1 and y = 1

nγ,0 = Ω(γ, 1). (2.41)

3 Perturbative Wilson loops in topological string

The refined topological string theory compactified on a local Calabi-Yau threefold X engi-
neers [48, 49] a 5d N = 1 SCFT T [X] in the Coulomb branch on the Omega background
S1 × R4

ϵ1,ϵ2 [38], such that the partition functions of the two theories are the same, once we
identify appropriately the moduli spaces as well the parameters ϵ1, ϵ2 of the two theories.

Some of these 5d SCFTs have a gauge theory phase. The simplest example is when the
Calabi-Yau threefold is the canonical bundle over P1 × P1, known as the local P1 × P1, and
the corresponding gauge theory is a 5d G = SU(2) SYM. In these cases, one can define the
vev Wr of the half-BPS Wilson loop operators Wr,

Wr = ⟨Wr⟩ , (3.1)

where the operator is given by [50, 51]

Wr = Trr T exp
(

i
∮

S1
dt(A0(t)− ϕ(t))

)
. (3.2)

Here T is the time-ordering operator, r is a representation of the gauge group. A0(t) =
A0(x⃗ = 0, t) is the zero component of the gauge field, and ϕ(t) = ϕ(x⃗ = 0, t) is the scalar field
that accompanies the gauge field. Both of them are fixed at the origin of R4 and integrated
along S1 to preserve half of the supersymmetry.

However, most of the 5d SCFTs are non-Lagrangian and they do not have a gauge theory
phase. Nevertheless, the definition of half-BPS Wilson loops can be generalized through
geometric engineering [34]. From the topological string point of view, the Wilson loops arise
from the insertion of a collection of non-compact 2-cycles J = {C1, C2, . . .} with infinite
volume intersecting with compact 4-cycles in X, and the partition function of the topological
string on the new threefold X̂ with insertion now reads

ZJ = Z∅ ·

1 + ∑
∅̸=I⊂J

WIMI

 , MI =
∏

Ci∈I

MCi
(3.3)
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Here Z∅ is the partition function without insertion, MCi
accounts for the infinite volume

of the inserted non-compact 2-cycle

MCi
= e−tCi

2 sinh(ϵ1/2) · 2 sinh(ϵ2/2) , (3.4)

where we have absorbed the momentum in R4 into the denominator so that the Wilson
loop is localised at the origin, and WI is the Wilson loop vev Wr, where the non-negative
intersection number of I with compact 4-cycles give the highest weight of the representation
r [34]. Obviously, this definition of Wilson loops can be generalised to non-Lagrangian SCFTs
without a gauge theory phase, such as the E0 theory engineered by local P2.

As proposed in [36], from the point of view of topological string, it is more convenient
to consider the so-called Wilson loop BPS sectors FI defined by

ZJ = exp
∑
I⊂J

FIMI , (3.5)

which are analogues of free energies of topological string without insertion. They are related
to the Wilson loop vevs by

WI =
∑

I=∪jIj ̸=∅

∏
j

FIj . (3.6)

The special case of F∅ is the refined topological string free energy without insertion. For
I ̸= ∅, the BPS sector FI has a GV-like formula

FI = (2 sinh(ϵ1) · 2 sinh(ϵ2))|I|−1 ∑
γ∈H2(X̂,I,Z)

∑
jL,jR

(−1)2jL+2jRNγ
jL,jR

χjL(qL)χjR(qR)e−γ·t.

(3.7)
Here |I| is the number of non-compact 2-cycles in I. The integers Nγ

jL,jR
count the numbers

of stable D2-D0 brane bound states wrapping compact 2-cycles γ in X̂ which intersect with
I. Their more rigorous mathematical definition will be discussed in [37]. The formula (3.7)
can be derived by applying the GV formula (2.14) on X̂ but keeping only the multi-wrapping
number w = 1 for curve classes that include the non-compact 2-cycles Ci as ingredients
for they are infinitely heavy. The GV-like formula for the BPS sectors then also indicate
the genus expansion

FI =
∑

n,g≥0
(ϵ1 + ϵ2)2n(ϵ1ϵ2)g+|I|−1F

(n,g)
I . (3.8)

The Wilson loop BPS sectors can be computed from their own set of HAEs [35, 36]

∂

∂Sab
F

(n,g)
I = 1

2
(
DaDbF

(n,g−1)
I +

∑′

I′⊂I,n′,g′≥0
DaF

(n′,g′)
I′ DbF

(n−n′,g−g′)
I\I′

)
. (3.9)

The summation
∑ ′ means exclusions of (I ′, n′, g′) = (∅, 0, 0) and (I, n, g). These equations

can be derived by assuming that the total free energy of topological string on X̂,

F̃ = F̃∅ +
∑
I⊂J

FIMI , (3.10)
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where the tilde means the genus zero part of the free energy F∅ is removed, also satisfies
the refined HAE (2.8).

We will be interested in the case that all non-compact 2-cycles Ci are birational, so that
FI only depends on the cardinality of I, and we can denote FI by F [m] with m = |I|. By
including infinitely many copies of Ci in J , we can formally write (3.5) as

Z∞ = Z∅ · exp
∞∑

m=1

1
m!F [m]Mm, (3.11)

by noticing that

lim
N→∞

(
N

m

)
F [m]Mm

C1 = lim
N→∞

1
m!F [m](NMC1)m =: lim

N→∞

1
m!F [m]Mm. (3.12)

The Wilson BPS sector F [m] has the genus expansion

F [m] =
∑

n,g≥0
(ϵ1 + ϵ2)2n(ϵ1ϵ2)g+m−1F (n,g)[m]. (3.13)

By similarly considering the total free energy,

F =
∞∑

m=0

1
m!M

mF [m] =
∑

n,g≥0
(ϵ1 + ϵ2)2n(ϵ1ϵ2)g−1

g∑
m=0

1
m!M

mF (n,g−m)[m], (3.14)

one can find that the components F (n,g)[m] are subject to the refined HAEs [35, 36],

∂

∂Sab
F (n,g)[m] = 1

2

DaDbF
(n,g−1)[m]+

∑′

m′,n′,g′

(
m

m′

)
DaF (n′,g′)[m′]DbF

(n−n′,g−g′)[m−m′]

 .

(3.15)
The summation

∑ ′ means exclusion of (m′, n′, g′) = (0, 0, 0) and (m, n, g). Analogous
to (2.19), the Wilson BPS sectors F [m] can be solved recursively from (3.15), with the
additional initial condition,

F (0,0)[1] = z−σ, σ ∈ Q, (3.16)

which is the model dependent classical Wilson loop, as well as the boundary condition that
the holomorphic limit F (n,g)[m] for m ≥ 1 is regular everywhere in the moduli space [36].

4 Non-perturbative corrections to Wilson loops

We would like to treat the Wilson loop BPS sectors F [m](ϵ1, ϵ2) (m ≥ 1) as univariate power
series in terms of gs using the parameterisation (2.16), i.e.

F [m](b; gs) = F [m](ibgs,−ib−1gs) (4.1)

and consider the correponding non-perturbative corrections. In terms of genus components,
the asymptotic series F (α; gs)[m] reads

F [m](b; gs) =
∑
g≥0

g2g+2m−2
s Fg[m](b), (4.2)

where
Fg[m](b) =

g∑
n=0

(−1)n(b − b−1)2nF (n,g−n)[m]. (4.3)
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4.1 Solutions to non-perturbative corrections

From the derivation of the HAEs for Wilson loops (3.9) or (3.15), it is clear that instead of
considering the non-perturbative corrections of individual Wilson loop BPS sectors F [m], we
should study the corrections of the total free energy of X̂, which is the generating functions
of all F [m]. With the parametrisation (2.16), the total free energy reads

F (b; gs, M) =
∑
m≥0

1
m!M

mF [m](b; gs) =
∑
g≥0

g2g−2
s Fg(b;M) (4.4)

where

Fg(b;M) =
g∑

n=0
(−1)n(b − b−1)2n

(g−n∑
m=0

1
m!M

mF (n,g−n−m)[m]
)

. (4.5)

Now, the results on non-perturbative corrections in section 2.2 should also apply but with
the free energies F (b; gs) for X without insertion replaced by the free energies F (b; gs, M) for
X̂ with insertion, and for each BPS sector F [m], we only need to extract the corresponding
coefficients in the resulting generating series. We will examine the non-perturbative action
A, the non-perturbative series F (ℓ), and the Stokes constants S in turn.

As indicated by (2.23), without Wilson loop insertion, the non-perturbative action A
is given by integral periods, which are the complexified volumes of compact 2-cycles and
4-cycles in X, and they remain the same in the new threefold X̂ with insertion of additional
non-compact 2-cycles. Alternatively, the integral periods are closely related to the prepotential
F0(t) = F (0,0)(t) or equivalently the genus zero component of the total free energy F(b; gs), i.e.

F0(b) = F (0,0). (4.6)

For the threefold X̂ with Wilson loop insertion, the non-perturbative action should still be
related to the genus zero component of the total free energy F(b; gs, M). The genus zero
free energy is not changed after the Wilson loop insertion, as

F0(b;M) = F (0,0). (4.7)

Therefore, we conclude that the non-perturbative actions of Wilson loop BPS sectors are still
given by integral periods of the CY3 X without insertion, i.e. in the form of (2.23).

The non-perturbative series F (ℓ)(b; gs) with action ℓA (ℓ = 1, 2, . . .) for topological string
on the CY3 X without Wilson loop insertion is given by (2.28), which are functions of the
perturbative free energy F (b; gs) in (2.17). The non-perturbative series F (ℓ)(b; gs, M) for
topological string on the threefold X̂ with insertion should be given by the same formulas
but with F (b; gs) replaced by the generating series of Wilson loop BPS sectors, i.e. the
perturbative free energy F (b; gs, M) of X̂ given in (4.4). To find the non-perturbative
corrections in particular to the BPS sector F [m], we merely need to extract the coefficients
of Mm/m!, in other words

F (ℓ)[m](b; gs) =
∂m

∂Mm
F (ℓ)(b; gs, M)

∣∣∣
M=0

. (4.8)

The non-perturbative corrections reduce to the holomorphic limit in any frame with
the rules of substitution (2.34), (2.35). Note that in particular, in an A-frame, where the
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non-perturbative action A is a local flat coordinate, the non-perturbative corrections should
be (2.24a), (2.24b). Yet again both formulas only involve the genus zero free energy, which is
not changed by the Wilson loop insertion, and has no higher M powers. This implies that

F (ℓ)
A [m](b; gs) = 0, m ≥ 1, ℓ ≥ 1. (4.9)

In other words, Wilson loop BPS sectors have no non-perturbative corrections in the holo-
morphic limit of any A-frame.

In any frame other than an A-frame, the non-perturbative corrections in general do
not vanish in the holomorphic limit. To give an example, we consider the non-perturbative
correction F (1) with actions respectively A/b and bA for the generating function F (b; gs, M),
and they read

F (1)
b (t;M) = 1

2 sin(π/b2) exp (F(t + igsc/b;M)−F(t;M)) , (4.10a)

F (1)
1/b(dt;M) = 1

2 sin(πb2) exp (F(t + ibgsc;M)−F(t;M)) , (4.10b)

where F(t;M) is the shorthand for F(b; gs, M). The non-perturbative corrections to individual
BPS sectors F [m] (m ≥ 1) can be read off using Faà di Bruno’s formula, and we obtain

F (1)
b [m](t) = e(F(t+igsc/b)−F(t))

2 sin(π/b2)
∑

d(k)=m

m!
Πjkj !(j!)kj

Πj(F [j](t + igsc/b)−F [j](t))kj , (4.11a)

F (1)
1/b[m](t) = e(F(t+ibgsc)−F(t))

2 sin(πb2)
∑

d(k)=m

m!
Πjkj !(j!)kj

Πj(F [j](t + ibgsc)−F [j](t))kj . (4.11b)

where k = (k1, k2, . . .) is an integer partition of m with d(k) =
∑

j jkj . They have the
genus expansion

F (1)
b [m] = e−A/(bgs) ∑

n≥0
gn+m

s F (1)
b,n[m], F (1)

1/b[m] = e−bA/gs
∑
n≥0

gn+m
s F (1)

1/b,n[m]. (4.12)

Finally, the Stokes constant Sγ(b, M) for the generating function associated to the non-
perturbative action Aγ should in principle depend on both b and M . But as the insertion mass
M is infinitely heavy while the Stokes constant should be a finite number, the dependence of
the Stokes constant on M should drop out. In fact, the Stokes constants of the topological
string free energies are generally conjectured to be constants independent of the Kähler
moduli of the Calabi-Yau threefold [18, 19], the Stokes constants for the generating series,
which is the topological string free energy of the new threefold X̂, should also not depend
on the Kähler moduli, M included. We thus conjecture that

Sγ(b, M) = Sγ(b), (4.13)

which is conjectured to be given by the refined DT invariant, cf. (2.37). As the BPS sectors
are linear coefficients of the generating function as a power series of M , they all share the
same Stokes constant, given by (4.13).

Before we illustrate these results with examples, we discuss their implication in the two
special limits of the Omega background.
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4.2 Limiting scenarios

4.2.1 The unrefined limit

We first consider the unrefined limit, where

ϵ1 = igs, ϵ2 = −igs. (4.14)

This limit is obtained by simply taking

b → 1. (4.15)

In this limit, the refined free energy becomes the conventional free energy of unrefined
topological string

F (gs) = F (b = 1; gs) =
∑
g≥0

g2g−2
s F (0,g). (4.16)

Likewise, the generation function of the refined Wilson loop BPS sectors becomes that of
the unrefined Wilson loop BPS sectors

F (gs, M) = F (b = 1; gs, M) =
∑
m≥0

1
m!M

mF [m](b = 1; gs). (4.17)

In the non-perturbative sectors, the pair of Borel singularities A/b and bA merge and
become a single Borel singularity. The non-perturbative series associated to A is then the
b → 1 limit of the sum of the refined non-perturbative series F

(ℓ)
b and F

(ℓ)
1/b. For instance,

in the 1-instanton sector, the non-perturbative series for the unrefined string free energy
in the A-frame is, cf. (2.24)

F (1)
A = lim

b→1

(
F (1)
A,b + F (1)

A,1/b

)
= lim

x→0

 e−
A
gs

e−x

2 sin(πe−2x) +
e−

A
gs

ex

2 sin(πe2x)

 = e−A/gs(1 +A/gs),

(4.18)
while in a non-A-frame, the non-perturbative series is, cf. (2.36)

F (1) = lim
b→1

(
F (1)

b + F (1)
1/b

)
= lim

x→0

(
π

sin(πe−2x) exp(F(t + igsce−x)−F(t)) + (x ↔ −x)
)

=(1− icags∂taF(t + icgs) exp(F(t + icgs)−F(t))), (4.19)

where F(t) = F(t; gs) is the unrefined topological string given in (4.16) (taking appropriate
holomorphic limit). Both (4.18) and (4.19) agree with [18]. Note that in the unrefined case,
the leading exponent of the non-perturbative series is −1, i.e.

F (1) = e−A/gs
∑
n≥0

gn−1
s F (1)

n , (4.20)

in constrast to the refined case (2.26).
In the case of Wilson loop BPS sectors, there are only Borel singularities A which are

not flat coordinates. The generating function of the non-perturbative series

F (1)(M) =
∑
m≥0

1
m!M

mF (1)[m] (4.21)
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is given by (4.19) with F(t) = F(t; gs) replaced by F(t; gs, M) given by (4.17) (taking
appropriate holomorphic limit); in other words,

F (1)(M) = (1− icags∂taF(t + icgs;M)) exp ((F(t + icgs;M)−F(t;M))) . (4.22)

The non-perturbative series for individual BPS sectors are the coefficients Mm/m!, and
they have the genus expansion

F (1)[m] = e−A/gs
∑
n≥0

gn+m−1
s F (1)

n [m]. (4.23)

4.2.2 The NS limit

Next, we would like to consider the Nekrasov-Shatashvili limit and recover the results in [30].
For this purpose, we choose a slightly different parametrisation, in accord with [27]

ϵ1 = iℏ, ϵ2 = −iαℏ. (4.24)

The advantage of this α-parametrisation is that the NS limit is obtained simply by taking
α → 0. The α-parametrisation is related to the b-parametrisation by

gs =
√

αℏ, b = 1/
√

α. (4.25)

The reparametrisation of the refined free energy is then

F (t; ϵ1, ϵ2) = F (t, α; ℏ) =
∑
g≥0

ℏ2g−2Fg(t, α) (4.26)

where
Fg(t, α) =

g∑
n=0

(−1)nαg−n−1(1− α)2nF (n,g−n)(t). (4.27)

The genus components are related to those in the b-parametrisation by

Fg(b) = α1−gFg(α). (4.28)

In particular, the genus zero component is proportional to the prepotential

F0(α) = α−1F0(b) = α−1F (0,0). (4.29)

In the NS limit with α → 0, we find that

F (t, α; ℏ) = α−1ℏ−2FNS(t; ℏ) +O(α0), (4.30)

where FNS(t; ℏ) is the NS free energy given by

FNS(t; ℏ) =
∑
g≥0

ℏ2g(−1)gF (g,0)(t). (4.31)

The perturbative series F (t, α; ℏ) should be promoted to the full trans-series with
non-perturbative corrections. In the b-parametrisation, the non-perturbative actions, or
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equivalently Borel singularities, are located at A/b and bA where A are integral periods, and
the exponential suppressing factors in the non-perturbative corrections are respectively

e−A/(bgs), e−bA/gs . (4.32)

In the α-parametrisation, they become

e−A/ℏ, e−A/(αℏ), (4.33)

and the Borel singularities are now instead located at A and A/α [27]. In the NS limit with
α → 0, the second singularity runs away to infinity and we are left with the first singularity.

To find the non-perturbative series associated to this Borel singularity, we should take the
refined non-perturbative series for the Borel singularity A/b in the b-parametrisation, convert
it to the α-parametrisation, and finally take the α → 0 limit. As both the perturbative and
non-perturbative refined series should scale at the same rate in the last step, for otherwise
there will be no finite non-perturbative corrections to the NS free energy, (4.30) indicates
that the non-perturbative refined series should have the asymptotics ∼ O(α−1), and the
non-perturbative NS series is the coefficient of α−1 in the leading term; more concretely,

F (ℓ)(t, α; ℏ) = α−1ℏ−2F
(ℓ)
NS(t; ℏ) +O(α0), α → 0. (4.34)

For instance, if the action A is a local flat coordinate, the associated non-perturbative
refined series in the ℓ-instanton sector in the b-parametrisation is given by (2.24a), which
is converted to the α-parametrisation as

F (ℓ)
A,b = (−1)ℓ

ℓ

π

sin(πℓα)e
−ℓA/ℏ. (4.35)

In the small α limit, we find

F (ℓ)
A,b ∼ α−1 (−1)ℓ

ℓ2 e−ℓA/ℏ ⇒ F (ℓ)
NS,A = ℏ2 (−1)ℓ

ℓ2 e−ℓA/ℏ, (4.36)

which agrees with [30].
More generically if the A is not a local flat coordinate, the non-perturbative refined

series in the generic ℓ-instanton sector in the b-parametrisation are given by (2.28) with the
boundary condition (2.27). To derive the NS limit, we require several modifications. We drop
the part F (ℓ)

A,1/b associated to the Borel singularities ℓbA which will run away to infinity. On
the other hand, we use a more generic boundary condition in order to compare with [30],

Zr,A = exp

∑
ℓ≥1

τℓF
(ℓ)
A,b

 = 1 +
∑
n>0

Cn(τ) exp
(
−nA

bgs

)
, (4.37)

where τℓ are constants that parametrize the boundary condition. The generic non-perturbative
component of the refined partition function is

Zr = 1 +
∑
n>0

Cn(τ) expΣnb−1 , (4.38)
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from which the non-perturbative free energies are obtained

Fr =
∑
ℓ≥1

F (ℓ) = logZr = log
(
1 +

∑
n>0

Cn(τ) expΣnb−1

)
. (4.39)

To find the NS limit of the non-perturbative free energies, we convert Fr to the α-parametrisa-
tion, and then take the α → 0 limit. To further match with the convention in [30], we
also need the rescaling

D → gsD, G(b) → g−1
s G(α), (4.40)

where G(α = 0) is the same G in [30]. We find that F (ℓ) in the α → 0 limit indeed has the
correct asymptotics ∼ O(α−1), and the leading coefficients agree with NS non-perturbative
series in [30]. For instance, we find11

F
(1)
NS = ℏ2τ1e−G/ℏ, (4.41a)

F
(2)
NS = ℏ2

(
−τ2

4 + τ2
1

DG

2

)
e−2G/ℏ, (4.41b)

F
(3)
NS = ℏ2

(
τ3
9 − τ1τ2

DG

2 + τ3
1

(
(DG)2

2 − ℏD2G

6

))
e−3G/ℏ. (4.41c)

Notice also that according to (2.37), the Stokes constants of the NS free energies are,

SNS
γ = Ω(γ,−1) (4.42)

and they are the same as the Stokes constants of the conventional free energy of unrefined
topological string up to a sign [23], if the spins of different BPS states of a fixed D-brane
configuration only differ by multiples of two.

We then consider the Wilson loops. With the α-parametrisation, the generating series
of the Wilson loop BPS sectors reads

F (t, α; ℏ, M) =
∑
m≥0

Mm

m! F [m](t, α; ℏ)

=
∑
m≥0

Mm

m!
∑
g≥0

ℏ2g+2m−2
g∑

n=0
(−1)nαg−n+m−1(1− α)2nF (n,g−n)[m]. (4.43)

In the NS limit with α → 0

F (t, α; ℏ, M) ∼ α−1ℏ−2 ∑
m≥0

(
(αℏ2M)m

m! FNS[m] +O(αm+1)
)

, (4.44)

where
FNS[m] =

∑
g≥0

ℏ2g(−1)gF (g,0)[m]. (4.45)

11If we are to have numerical Stokes constants, the non-perturbative series in the A-frame in [30] should
have an additional factor of ℏ2, which implies that in the generic expressions of the non-perturbative series,
the boundary parameters τℓ should also be scaled by a factor of ℏ2.
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Therefore in the limit α → 0, each refined BPS sector F [m](t, α; ℏ) has the asymptotics
αm−1, and the NS limit FNS[m] is the coefficient of the leading term. It implies that non-
perturbative corrections to the NS BPS sectors FNS[m](t; ℏ) can be obtained by taking the
coefficient of the leading αm−1 term of the non-perturbative corrections to the fully refined
BPS sectors F [m](t, α; ℏ). Alternatively, (4.44) suggests that we define the generating series
of the NS BPS sectors

FNS(t; ℏ) → FNS(t; ℏ, M) =
∑
m≥0

Mm

m! FNS[m](t; ℏ). (4.46)

As the non-perturbative corrections to the NS free energy FNS(t; ℏ) are functions of the free
energy itself, the non-perturbative corrections to the generating series (4.46) is obtained by
the same expression but with the NS free energy replaced by the NS generating series. The
non-perturbative corrections to individual NS BPS sectors are extracted as coefficients of
Mm/m!. For instance, from (4.41), we immediately get

F
(1)
NS [1] =−ℏτ1DFNS[1]e−G/ℏ, (4.47a)

F
(2)
NS [1] = ℏ

(
τ2
2 DFNS[1]+τ2

1

(
−DGDFNS[1]+

1
2ℏD2FNS[1]

))
e−2G/ℏ, (4.47b)

F
(3)
NS [1] = ℏ

(
−τ3

3 DFNS[1]+τ1τ2
(3
2DGDFNS[1]−

1
2ℏD2FNS[1]

)
+τ3

1

(
− 3
2(DG)2DFNS[1]+

1
2ℏD2GDFNS[1]+ℏDGD2FNS[1]−

1
6ℏ

2D3FNS[1]
))

e−3G/ℏ,

(4.47c)

In order to compare with [30], we need to study the Wilson loop vev w in the NS limit,
which is related to the first BPS sector by

expw = F [1] (4.48)

This relation is promoted to the trans-series and we have

exp
(
w +

∑
ℓ≥1

Cℓw(ℓ)
)
= FNS[1] +

∑
ℓ≥1

CℓF
(ℓ)
NS [1]. (4.49)

Using again the Faà di Bruno’s formula, we find

w(ℓ) =
∑

d(k)=ℓ

(−1)|k|(|k| − 1)!
∏
j≥1

1
kj !
(
F

(j)
NS [1]/FNS[1]

)kj

. (4.50)

For instance,

w(1) = −ℏτ1Dwe−G/ℏ, (4.51a)

w(2) = ℏ
(

τ2
2 Dw + τ2

1

(
− DGDw + 1

2ℏD2w
))

e−2G/ℏ, (4.51b)

w(3) = ℏ
(
−τ3

3 Dw + τ1τ2
(3
2DGDw − 1

2ℏD2w
)

+τ3
1

(
− 3

2(DG)2Dw + 1
2ℏD2GDw + ℏDGD2w − 1

6ℏ
2D3w

))
e−3G/ℏ, (4.51c)

which agree with [30].
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Two important features of the resurgent structures of the Wilson loop vevs were discovered
in [30]: the Borel singularities are integral periods which are not local flat coordinates, and
that the Stokes constants, if they are not vanishing, are the same as those of the NS free
energy. And they were presented as independent results from those of the NS free energies.
It is clear now that they are directly related, as both the NS Wilson loop and the NS free
energy are parts of the same generating series, which enjoys the uniform resurgent structure.

5 Examples

5.1 Example: local P2

We consider the local P2, i.e. the total space of the canonical bundle of P2, in this section.
Local P2 is a basic Calabi-Yau manifold, but with rich geometric structure, and it has been
discussed in great detail in the literature. We follow the convention in [10, 52] where its
moduli space is parametrized by the global complex coordinate z such that the large radius
singularity, the conifold singularity, and the orbifold singularity are located respectively at
z = 0, z = −1/27 and z = ∞.

The periods in local P2 are annihilated by the Picard-Fuchs operator [53]

L = (1 + 60z)∂z + 3z(1 + 36z)∂2
z + z2(1 + 27z)∂3

z . (5.1)

Near the large radius point, the flat coordinate and its conjugate are (see e.g. [18])

tLR = − log(z) + 6z4F3

(
1, 1,

4
3 ,

5
3; 2, 2, 2;−27z

)
, (5.2a)

∂F (0,0)
LR

∂tLR
= 1

3
√
2π

G3,2
3,3

(
2
3 , 1

3 ; 1
0, 0, 0

; 27z

)
− 4π2

9 , (5.2b)

while near the conifold point, the flat coordinate and its conjugate are

tc =− 3
2πi

∂F (0,0)
LR

∂tLR
, (5.3a)

∂F (0,0)
c

∂tc
=− 2πi

3 tLR. (5.3b)

We will inspect the non-perturbative corrections for Wilson loop BPS sectors. More
specifically, we consider the loci in the moduli space near the large radius point z = 0 and
near the conifold point z = −1/27.

We first study the location of Borel singularities, i.e. the singular points of the Borel
transform. We evaluate the perturbative BPS sectors F [1] and F [2] in the holomorphic limit
of the large radius frame, where tLR is the flat coordinate, near respectively the large radius
point z = 0 and the conifold point z = −1/27. The Borel singularities of F [1] and F [2] are
plotted respectively in figures 1 and figures 2. The plots are similar for the two BPS sectors.
Near the large radius point, the visible Borel singularities are located at b−1AγLR (we take
b > 1 so that b−1A is smaller than bA) with the charge vectors

γLR = ±(−3, 0, 0), and, ±(−3, 1, 0), ±(−3,−1,−1), (5.4)
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(a) z = −10−6
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Figure 1. Borel singularities of refined Wilson loop BPS sectors F [1](b; gs) for local P2 with b = 2
up to g = 50 in the large radius frame, respectively (a) near the large radius point z = 0 and (b) near
the conifold point z = −1/27. The red dots are approximate singularities from numerical calculations,
which would accumulate to branch cuts. The branch points (black dots) on the imaginary axis are
b−1A±(−3,0,0)LR , and those in the four quadrants are b−1A±(−3,1,0)LR and b−1A±(−3,−1,−1)LR .
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Figure 2. Borel singularities of refined Wilson loop BPS sectors F [2](b; gs) for local P2 with b = 2
up to g = 50 in the large radius frame, respectively (a) near the large radius point z = 0 and (b) near
the conifold point z = −1/27. The red dots are approximate singularities from numerical calculations,
which would accumulate to branch cuts. The branch points (black dots) are the same as in figure 1.
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Figure 3. Borel singularities of refined free energies F [0](b; gs) for local P2 with b = 2 up to g = 50
in the large radius frame, respectively (a) near the large radius point z = 0 and (b) near the conifold
point z = −1/27. The red dots are approximate singularities from numerical calculations. The branch
points (black dots) on the imaginary axis are b−1A±(−3,0,0)LR , and those away from the imaginary
axis are b−1A±(0,1,n)LR(n = −1, 0, 1, 2).

and we use the notation that

AγLR = −ci∂tLRF
(0,0)
LR + 2πdtLR + 4π2id0, γLR = (c, d, d0). (5.5)

Near the conifold points, the visible Borel singularities are located at b−1AγLR with

γLR = ±(−3, 0, 0). (5.6)

For comparison, we also give the location of Borel singularities for the free energies12 F [0] in
figures 3. Near the large radius point, the Borel singularities are located at b−1AγLR with

γLR = ±(−3, 0, 0)LR, ±(0, 1, n), n = 0,±1,±2, . . . . (5.7)

Near the conifold point, the Borel singularities are located at b−1A±(−3,0,0)LR . In contrast to
the free energies, the Borel singularities of Wilson loop BPS sectors never coincide with the
flat coordinate up to a constant, i.e. the coefficient c in the charge vector γLR does not vanish.

We also evaluate the perturbative BPS sectors F [1] and F [2] in the holomorphic limit
of the conifold frame, where tc is the flat coordinate. Similarly, we focus on the loci near
respectively the large radius point z = 0 and the conifold point z = −1/27. The Borel
singularities are shown in figures 4 and figures 5 respectively. In both examples, we find that
near the large radius point with z < 0 (we take b > 1 so that b−1A is smaller than bA), the
visible Borel singularities are as usual located at b−1Aγc with charge vectors

γc = ±(−3, 0,±n), n = 1, 2, 3 . . . . (5.8)
12The constant map contributions to free energies are removed.
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Figure 4. Borel singularities of refined Wilson loop BPS sectors F [1](b; gs) for local P2 with b = 2
up to g = 50 in the conifold frame, respectively (a) near the large radius point with z < 0, (c) near
the conifold point, and (c) with z > 0. The red dots are approximate singularities from numerical
calculations. The branch points (black dots) are (a) b−1A±(−3,0,n)c(n = −1, 0, 1, 2), (b) b−1A±(−3,1,0)c ,
b−1A±(−3,−1,1)c and (c) b−1A±(−3,0,0)c (horizontal), b−1A±(−3,−1,0)c respectively.
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Figure 5. Borel singularities of refined Wilson loop BPS sectors F [2](b; gs) for local P2 with b = 2
up to g = 50 in the conifold frame, respectively (a) near the large radius point with z < 0, (b) near
the conifold point z = −1/27, and (c) with z > 0. The red dots are approximate singularities from
numerical calculations. The branch points (black dots) are the same as in figure 4.

Near the conifold point, the visible Borel singularities are located at b−1A±(−3,±1,0). Here
we denote by Aγc

Aγc = −c′i∂tcF (0,0)
c + 2πd′tc + 4π2id′0, γc = (c′, d′, d′0), (5.9)

and the two charge conventions γLR and γc are related to each other via the relationship

γc =

0 −3 0
1
3 0 0
0 0 1

 γLR, γLR =

 0 3 0
−1

3 0 0
0 0 1

 γc. (5.10)

In addition, we also consider the loci at z > 0, and we find visible Borel singularities

γc = ±(−3, 1, 0), ±(−3, 0, 0), (5.11)
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Figure 6. Comparison for local P2 between numerical results (red dots) of 1
πiS · µ0,1,2 extracted

from the large order asymptotics of Fg[1] up to g = 50 in the large radius frame at b = 2 with error
bars (vertical bars, virtually invisible) and trans-series solutions from HAE (solid line). Richardson
transformation of degree 10 is used to improve the numerics. The horizontal axis is modulus z.

as shown in figures 4 (c), 5 (c). We find yet again that none of the Borel singularities coincide
with the flat coordinate up to a constant, i.e. the coefficient c′ in γc does not vanish.

Next, we study the non-perturbative series. We focus on the 1-instanton sector, and check
the coefficients of the non-perturbative series (4.10) in the generic refined case, and (4.22) in
the unrefined limit with b = 1. In the generic refined case, the 1-instanton non-perturbative
series can be written as

F (1)[m] = gm
s e−Ã/gs(µ0 + µ1gs + µ2g2

s + . . .) (5.12)

with Ã being either b−1A or bA. Compared with the form of perturbative series (4.2), standard
resurgence analysis predicts the large order asymptotics of the perturbative coefficients

Fg[m] ∼ S
πi

Γ(2g + m − 2)
Ã2g+m−2

(
µ0 +

µ1Ã
2g + m − 3 + µ2Ã

(2g + m − 3)(2g + m − 4) + . . .

)
. (5.13)

where Ã is the dominant Borel singularity, the closest to the origin, and we have taken into
account that both ±Ã sectors contribute equally to the asymptotic formula. In the unrefined
limit with b = 1, the 1-instanton non-perturbative series can be written as

F (1)[m] = gm−1
s e−Ã/gs(µ0 + µ1gs + µ2g2

s + . . .) (5.14)

and the large order asymptotics should be modified to

Fg[m] ∼ S
πi

Γ(2g + m − 1)
Ã2g+m−1

(
µ0 +

µ1Ã
2g + m − 2 + µ2Ã

(2g + m − 2)(2g + m − 3) + . . .

)
. (5.15)

We consider two different cases. The first is the BPS sectors near the conifold point in
the large radius frame. The dominant Borel singularities are the pair of γLR = ±(−3, 0, 0) as
shown in figures 1 (b), 2 (b). The large order asymptotics formula (5.13) (formula (5.15) in
the unrefined limit) can be used to extract the non-perturbative coefficients µ0, µ1, µ2, . . .,
and we compare these numerical results with our prediction from sections 4.1 and 4.2.1 in
figures 6, 7 for generic b, and in figures 8, 9 in the unrefined limit. The numerical results and
the theoretical predictions match perfectly, as long as we choose the Stokes constants

S±(−3,0,0)LR(b) = 1, (5.16)
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Figure 7. Comparison for local P2 between numerical results (red dots) of 1
πiS · µ0,1,2 extracted

from the large order asymptotics of Fg[2] up to g = 50 in the large radius frame at b = 2 with error
bars (vertical bars, virtually invisible) and trans-series solutions from HAE (solid line). Richardson
transformation of degree 10 is used to improve the numerics. The horizontal axis is modulus z.
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Figure 8. Comparison for local P2 between numerical results (red dots) of 1
πiS · µ0,1,2 extracted

from the large order asymptotics of Fg[1] up to g = 100 in the large radius frame at b = 1 with error
bars (vertical bars, virtually invisible) and trans-series solutions from HAE (solid line). Richardson
transformation of degree 15 is used to improve the numerics. The horizontal axis is modulus z.
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Figure 9. Comparison for local P2 between numerical results (red dots) of 1
πiS · µ0,1,2 extracted

from the large order asymptotics of Fg[2] up to g = 100 in the large radius frame at b = 1 with error
bars (vertical bars, virtually invisible) and trans-series solutions from HAE (solid line). Richardson
transformation of degree 15 is used to improve the numerics. The horizontal axis is modulus z.
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Figure 10. Comparison for local P2 in the conifold frame at b = 2 with large positive z between
numerical results (red dots) of 1

πi S · µ0,1,2 for A±(−3,1,0)c extracted from the large order asymptotics
of Fg[1] up to g = 50 with error bars (vertical bars, virtually invisible) and trans-series solutions
from HAE (solid line). Richardson transformation of degree 5 is used to improve the numerics. The
horizontal axis is modulus z.
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Figure 11. Comparison for local P2 in the conifold frame at b = 2 with large positive z between
numerical results (red dots) of 1

πi S · µ0,1,2 for A±(−3,1,0)c extracted from the large order asymptotics
of Fg[2] up to g = 50 with error bars (vertical bars, virtually invisible) and trans-series solutions
from HAE (solid line). Richardson transformation of degree 5 is used to improve the numerics. The
horizontal axis is modulus z.

corresponding to the spin 0 BPS state of D4 brane wrapping P2 in type IIA superstring.
Similarly, we consider the BPS sectors at z > 0 in the conifold frame. Depending on the

actual value of z, the two pairs of Borel singularities γc = ±(−3, 1, 0) and γc = ±(−3, 0, 0)
compete in dominance, as shown in figure 4 (c), 5 (c). If z ≳ 4 × 10−6, the pair of
γc = ±(−3, 1, 0)c is dominant (closer to the origin). The comparison between the numerical
results of µ0, µ1, µ2 from large order asymptotics and theoretical predictions are plotted in
figures 10, 11. Here we have chosen the Stokes constants

S±(−3,1,0)c(b) = S±(3,1,0)LR(b) = 1, (5.17)

where we have used the charge vector relations (5.10), and they correspond to the spin 0
BPS states of D4 brane wrapping P2 together with a D2 brane wrapping P1 ⊂ P2.

Finally, if 0 < z ≲ 4 × 10−6, the pair of γc = ±(−3, 0, 0)c is dominant, and the plots
for µ0, µ1, µ2 are given in figures 12, 13 (in the unrefined limit). Here we have chosen the
Stokes constants

S±(−3,0,0)c(b) = S±(0,1,0)LR(b) = 3χ1/2(−e−πi/b2), (5.18)

corresponding to the well-known spin 1/2 BPS states of a single D2 brane wrapping P1 ⊂ P2.
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(a) µ0 (b) µ1 (c) µ2

Figure 12. Comparison for local P2 in the conifold frame at b = 1 with small and positive z between
numerical results (red dots) of 1

πi S · µ0,1,2 for A±(−3,0,0)c extracted from the large order asymptotics
of Fg[1] up to g = 100 with error bars (vertical bars, virtually invisible) and trans-series solutions
from HAE (solid line). Richardson transformation of degree 5 is used to improve the numerics. The
horizontal axis is modulus z.

(a) µ0 (b) µ1 (c) µ2

Figure 13. Comparison for local P2 in the conifold frame at b = 1 with small and positive z between
numerical results (red dots) of 1

πi S · µ0,1,2 for A±(−3,0,0)c extracted from the large order asymptotics
of Fg[2] up to g = 100 with error bars (vertical bars, virtually invisible) and trans-series solutions
from HAE (solid line). Richardson transformation of degree 5 is used to improve the numerics. The
horizontal axis is modulus z.

5.2 Example: local P1 × P1

Similar to section 5.1, we consider the example of refined topological string theory on local
P1 × P1, i.e. the total space of the canonical bundle of P1 × P1, with the constraint that the
two P1s have the same volume, also known as the massless limit. This theory has also been
discussed in detail in the literature. It has a one dimensional moduli space with three singular
points of large radius, conifold, and orbifold types [52], and we take the convention that it
is parametrized by the global complex coordinate z, such that the three singular points are
located at z = 0, z = 1/16, and z = ∞ respectively.13

The periods of the theory are annihilated by the Picard-Fuchs operator [53]

L = (1− 36z)∂z + z(3− 64z)∂2
z + z2(1− 16z)∂3

z . (5.19)

13Note that in the case of massless local F0, the orbifold point at z = ∞ has a conifold singularity
superimposed upon it so that the free energies satisfy the gap conditions at both the conifold point and the
orbifold point.
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Figure 14. Borel singularities of refined Wilson loop BPS sectors F [1](b; gs) for local P1 × P1

with b = 2 up to g = 50 in the large radius frame, respectively (a) near the large radius point
z = 0 and (b) near the conifold point z = 1/16. The red dots are approximate singularities
from numerical calculations, which would accumulate to branch cuts. The branch points (black
dots) on the imaginary axis are b−1A±(−2,0,0)LR , and those away from the imaginary axis are
b−1A±(−2,1,0)LR , b−1A±(−2,2,−1)LR , b−1A±(−2,3,−2)LR .

Near the large radius point, the flat coordinate and its conjugate are (see e.g. [54])

tLR =− log(z)− 4z4F3(1, 1, 3
2 , 3

2 ; 2, 2, 2; 16z),

∂F (0,0)
LR

∂tLR
=1

π
G3,2

3,3

(
1
2 , 1

2 ; 1
0, 0, 0

; 16z

)
− π2, (5.20a)

while near the conifold point, the flat coordinate and its conjugate are

tc =
1
πi

∂F (0,0)
LR

∂tLR
,

∂F (0,0)
c

∂tc
=− πitLR. (5.21a)

As in section 5.1, we first inspect the non-perturbative corrections for Wilson loop BPS
sectors, which can be calculated effectively using the algorithm in [36]. For simplicity, we
focus on the range between the large radius point z = 0 and the conifold point z = 1/16.

Let us study the location of Borel singularities first. We evaluate the perturbative BPS
sectors F [1] and F [2] in the holomorphic limit of the large radius frame, where tLR is the flat
coordinate, near respectively the large radius point z = 0 and the conifold point z = 1/16.
The Borel singularities of F [1] and F [2] are plotted in figure 14 and figure 15. These two
plots are similar. Near the large radius point, the visible Borel singularities are located at
b−1AγLR (we take b > 1 so that b−1A is smaller than bA) with the charges

γLR = ±(−2, 0, 0),±(−2,±(1 + n),−n), n = 0, 1, 2, . . . . (5.22)
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Figure 15. Borel singularities of refined Wilson loop BPS sectors F [2](b; gs) for local P1 × P1 with
b = 2 up to g = 50 in the large radius frame, respectively (a) near the large radius point z = 0 and
(b) near the conifold point z = 1/16. The red dots are approximate singularities from numerical
calculations, which would accumulate to branch cuts. The branch points (black dots) are the same as
in figure 14.
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Figure 16. Borel singularities of refined free energies F [0](b; gs) for local P1 × P1 with b = 2 up
to g = 50 in the large radius frame, respectively (a) near the large radius point z = 0 and (b) near
the conifold point z = 1/16. The red dots are approximate singularities from numerical calculations.
The branch points (black dots) are (a) b−1A±(0,1,n)LR (n = −1,−2, 0, 1, 2) and (b) b−1A±(−2,0,0)LR

respectively.
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Figure 17. Borel singularities of refined Wilson loop BPS sectors F [1](b; gs) for local P1 × P1

with b = 2 up to g = 50 in the conifold frame, respectively (a) very close to the large radius point
and (b) away from it toward the conifold point. The red dots are approximate singularities from
numerical calculations. The branch points (black dots) are (a) b−1A±(0,1,n)LR (n = −2,−1, 0, 1, 2)
and (b) b−1A±(−2,0,0)c (horizontal), b−1A±(−2,±1,0)c (slight away), b−1A±(−2,0,±1)c (further away)
respectively.

Near the conifold point, the visible Borel singularities are located at b−1A±(−2,0,0)LR . For
comparison, we also give the same plots for the free energies14 F [0] in figure 16. The visible
Borel singularities are located at b−1AγLR with

γLR = ±(0, 1, n), n = 0,±1,±2, . . . , (5.23)

near the large radius point and at b−1A±(−2,0,0)LR near the conifold point. The same as local
P2, the Borel singularities of Wilson loop BPS sectors never coincide with the flat coordinate
up to a constant, i.e. the first coefficient in the charge vector γLR does not vanish.

We also evaluate the perturbative BPS sectors F [1] and F [2] in the holomorphic limit
of the conifold frame, where tc is the flat coordinate, respectively very close to the large
radius point, and away from it toward the conifold point. The Borel singularities are plotted
respectively in figures 17 and figures 18. In both examples, the visible Borel singularities
are located at b−1Aγc with

γc = ±(−2, 0, n), n = 0,±1,±2, . . . , (5.24)

near the large radius point, and at b−1Ac with

γc = ±(−2, 0, 0), ±(−2,∓1, 0),±(−2, 0,±1), (5.25)

near the conifold point (we take b > 1 so that b−1A is smaller than bA). Similarly, none
of the Borel singularities coincide with the flat coordinate up to a constant, i.e. the first

14The constant map contributions to free energies are removed.
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Figure 18. Borel singularities of refined Wilson loop BPS sectors F [2](b; gs) for local P1 × P1 with
b = 2 up to g = 50 in the conifold frame, respectively (a) very close to the large radius point and (b)
away from it toward the conifold point. The red dots are approximate singularities from numerical
calculations. The branch points (black dots) are the same as in figure 17.

coefficient in the charge vector γc does not vanish. Note that we have used two types of
charge vectors γLR and γc defined respectively in (5.5) and (5.9) , which are related to each
other in the case of local P1 × P1 by

γc =

0 −2 0
1
2 0 0
0 0 1

 γLR, γLR =

 0 2 0
−1

2 0 0
0 0 1

 γc. (5.26)

Next, we study the non-perturbative series. We focus on the 1-instanton sector as section
in 5.2. The large order asymptotics of the perturbative coefficients are the same as (5.13)
and (5.15). We consider two cases, the BPS sectors near the conifold point in the large radius
frame, as well as in the conifold frame. The dominant Borel singularities are respectively
γLR = ±(−2, 0, 0) and γc = ±(−2, 0, 0), as shown in the plots of figures 14 (b), 15 (b)
and figures 17 (b), 18 (b). we compare these numerical results of µ0, µ1, µ2, . . . extracted
from perturbative data using the large order formulas with the theoretical prediction from
sections 4.1 and 4.2.1 in figures 19, 20, 21, 22 for generic b, and in figures 23, 24, 25, 26
for the unrefined limit b = 1.

Finally, we note that the numerical results and the theoertical prediction can match very
well, as shown in the above figures, only if we have taken the Stokes constant associated
to A±(−2,0,0)LR to be

S±(−2,0,0)LR(b) = 1, (5.27)

and the Stokes constant associated to A±(−2,0,0)c to be

S±(−2,0,0)c(b) = 2χ1/2(−e−πi/b2). (5.28)
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Figure 19. Comparison for local P1 ×P1 between numerical results (red dots) of 1
πi S ·µ0,1,2 extracted

from the large order asymptotics of Fg[1] up to g = 50 in the large radius frame at b = 2 with error
bars (vertical bars, virtually invisible) and trans-series solutions from HAE (solid line). Richardson
transformation of degree 10 is used to improve the numerics. The horizontal axis is modulus z.
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Figure 20. Comparison for local P1 ×P1 between numerical results (red dots) of 1
πi S ·µ0,1,2 extracted

from the large order asymptotics of Fg[2] up to g = 50 in the large radius frame at b = 2 with error
bars (vertical bars, virtually invisible) and trans-series solutions from HAE (solid line). Richardson
transformation of degree 10 is used to improve the numerics. The horizontal axis is modulus z.
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Figure 21. Comparison for local P1 ×P1 between numerical results (red dots) of 1
πi S ·µ0,1,2 extracted

from the large order asymptotics of Fg[1] up to g = 50 in conifold frame at b = 2 with error bars
(vertical bars) and trans-series solutions from HAE (solid line). Richardson transformation of degree
10 is used to improve the numerics. The horizontal axis is modulus z.

The Borel singularities A±γ1 with γ1 = (2, 0, 0)LR are associated to the spin 0 BPS state of
D4 brane wrapping P1 × P1 in type II superstring, and the refined DT-invariant is

Ω(γ1, y) = 1. (5.29)

The Borel singularities A±γ2 with γ2 = (−2, 0, 0)c = (0, 1, 0)LR are associated to the spin
1/2 BPS state of D2 brane wrapping either P1 in type IIA superstring, and the refined
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Figure 22. Comparison for local P1 ×P1 between numerical results (red dots) of 1
πi S ·µ0,1,2 extracted

from the large order asymptotics of Fg[2] up to g = 50 in conifold frame at b = 2 with error bars
(vertical bars) and trans-series solutions from HAE (solid line). Richardson transformation of degree
10 is used to improve the numerics. The horizontal axis is modulus z.
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Figure 23. Comparison for local P1 ×P1 between numerical results (red dots) of 1
πi S ·µ0,1,2 extracted

from the large order asymptotics of Fg[1] up to g = 100 in the large radius frame at b = 1 with error
bars (vertical bars, virtually invisible) and trans-series solutions from HAE (solid line). Richardson
transformation of degree 10 is used to improve the numerics. The horizontal axis is modulus z.
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Figure 24. Comparison for local P1 ×P1 between numerical results (red dots) of 1
πi S ·µ0,1,2 extracted

from the large order asymptotics of Fg[2] up to g = 100 in the large radius frame at b = 1 with error
bars (vertical bars, virtually invisible) and trans-series solutions from HAE (solid line). Richardson
transformation of degree 10 is used to improve the numerics. The horizontal axis is modulus z.

DT-invarint is

Ω(γ2, y) = 2χ1/2(y). (5.30)

Therefore the Stokes constants agree with the refined DT-invariants, in accord with our
prediction from section 4.1.
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Figure 25. Comparison for local P1 ×P1 between numerical results (red dots) of 1
πi S ·µ0,1,2 extracted

from the large order asymptotics of Fg[1] up to g = 100 in the conifold frame at b = 1 with error
bars (vertical bars, virtually invisible) and trans-series solutions from HAE (solid line). Richardson
transformation of degree 10 is used to improve the numerics. The horizontal axis is modulus z.
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Figure 26. Comparison for local P1 ×P1 between numerical results (red dots) of 1
πi S ·µ0,1,2 extracted

from the large order asymptotics of Fg[2] up to g = 100 in the conifold frame at b = 1 with error
bars (vertical bars, virtually invisible) and trans-series solutions from HAE (solid line). Richardson
transformation of degree 10 is used to improve the numerics. The horizontal axis is modulus z.

6 Conclusion

In this paper, we study the resurgent structures of refined Wilson loops in topological string
theory on a local Calabi-Yau threefold. The refined Wilson loops are treated as asymptotic
series in gs with deformation parameter b, using the parametrisation (2.16). We find that
they are very similar to those of refined free energies. The non-perturbative actions are
integral periods, but they cannot be local flat coordinates or equivalent A-periods in the
B-model. The non-perturbative trans-series can be solved in closed form from the holomorphic
anomaly equations for Wilson loops, and finally, the Stokes constants are identified with
refined DT invariants.

There are many interesting open problems related to this work. First of all, Wilson loop
is a concept borrowed from 5d N = 1 gauge theory, related to topological string via geometric
engineering [48]. Here we consider Wilson loops in 5d gauge theories, which are codimension
four defects. Defects of other codimensions and of other natures exist. One other important
type of defects in 5d gauge theories is codimension two defects, and their partition functions
play the role of wave-functions in quantum mirror curve. It is argued in [27] with the simple
example of topological string on C3 or the resolved conifold that the Borel singularities of
these wave-functions should correspond to BPS states of 3d/5d coupled systems. Similarly it
was found that the Borel singularities of wave-functions of quantum Seiberg-Witten curves of
4d N = 2 gauge theories correspond to BPS states of 2d/4d coupled systems. It would be
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interesting to generalise these results to the generic setup in topological string, and to also
find out the non-perturbative series associated to these BPS states of the coupled systems.

Second, there has been now convincing evidence that the Stokes constants of both the
refined free energies and the refined Wilson loops are the refined DT invariants. It would be
certainly nice to work out a rigorous proof. Another interesting direction is to use Stokes
constants to help with the calculation of DT invariants, or to study the stability walls. In
this regard, Wilson loops can sometimes yield more information than free energies, as shown
by the Borel singularities of charge vectors (5.22), which should correspond to non-trivial
BPS states15 for local P1 × P1. The explicit calculation of Stokes constants associated to
these singularities, and beyond, is numerically challenging, but the results in [19] in the
special conifold limit could be a promising start.

Third, the evaluation of either the refined free energy or the refined Wilson loops depends
on a choice of frame. It has been observed in [11, 18] and also in this paper that the calculation
of Stokes constants is independent of this choice. This is natural as the DT invariants, which
are conjectured to identify with the Stokes constants, know nothing of the frame. It would
nevertheless be reassuring if one can find a proof of this observation.

Finally, the DT invariants which are conjectured to coincide with Stokes constants
are counting of stable bound states of D-branes, either D6-D4-D2-D0 branes in type IIA
superstring, or D5-D3-D1-D(-1) banes in type IIB superstring.16 It was suggested in [13]
that NS5 brane effects may be found after the resummation of D-brane effects. It might
be interesting to verify this idea, given that we now have a good understanding of the
non-perturbative series for the D-branes.
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