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Calabi-Yau manifolds

• In this talk I want to discuss the role of Calabi-Yau manifolds in

geometry and physics, and discuss the geometry of Calabi-Yau

manifolds outside of the Kähler regime.

• For this talk, a Calabi-Yau manifold (or complex manifold that sup-

ports non-vanishing holomorphic n-form) will be a complex mani-

fold X with trivial canonical bundle. For some parts of this talk the

notion of a Calabi-Yau manifold can be weakened to c1(X) = 0,

but for simplicity, we’ll take the most restrictive definition.

• A very important class of Calabi-Yau manifolds are the Kähler

Calabi-Yau manifolds. These are the Calabi-Yau manifolds X ad-

mitting a hermitian metric whose associated (1,1) form ω satisfies

dω = 0. Such metrics are called Kähler metrics (and the associated

cohomology class [ω] ∈ H2(X,R) is called the Kähler class).
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Calabi Conjecture

• In 1976 I showed that, for a compact, Kähler Calabi-Yau manifold

(X,ω) there is a unique Kähler metric g′ on X, such that the

associated Kähler form ω′ has [ω′] = [ω] and

Ric(g′) = 0

• This was achieved by solving the complex Monge-Ampère equation

(ω′)n = eFωn

where F is any smooth function.

• These Ricci-flat Kähler metrics are now called Calabi-Yau metrics.

An important point is that they have holonomy contained in SU(n).
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Calabi-Yau manifolds

• In the early 1980s it was realized that Kähler Calabi-Yau three-folds

gave fundamental models in string theory, which is an approach to

unifying all the fundamental forces in physics (including gravity)

into a single Theory of Everything.

• The connection between Calabi-Yau manifolds and theoretical physic-

s has been very fruitful over the past 50 years. In this talk I would

like to discuss, among other things, some ideas from physics that I

hope will be helpful in improving our understanding of Calabi-Yau

manifolds beyond the Käher setting.
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Non-Kähler Calabi-Yau manifolds

• A first step to understanding Non-Kähler Calabi-Yau manifolds is

to understand to what extent they can be “uniformized”. Can they

be given some canonical geometry? Is there an analog of Ricci-flat

Kähler metrics on non-Kähler Calabi-Yau manifolds?

• A natural generalization of a Kähler metric, which exists on all

compact non-Kähler complex manifolds is a Gauduchon metric. A

metric g is Gauduchon if the associated (1,1) form α satisfies

∂∂(αn−1) = 0

• There is a stronger notion called a balanced metric, introduced by

Michelson. A metric g is balanced if the associated (1,1) form α

satisfies dαn−1 = 0. Such metrics do not always exist.
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Non-Kähler Calabi-Yau manifolds

• Michelson gave a sharp characterization of when balanced metrics

exist, and Alessandrini-Bassanelli showed that the existence of a

balanced metric is invariant under birational transformations.

• So balanced metrics should be useful for birational geometry.

• It is natural to ask if a version of the Calabi conjecture holds

for Gauduchon or balanced metrics. Namely, does a non-Kähler

Calabi-Yau manifold admit a Gauduchon, or balanced Chern Ricci-

flat metric? It was conjectured by Gauduchon that there should

always be a Chern Ricci-flat Gauduchon metric.

• Székelyhidi-Tosatti-Weinkove proved that the answer to this ques-

tion is “Yes”.
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Non-Kähler Calabi-Yau manifolds

• Székelyhidi-Tosatti-Weinkove showed that every compact Calabi-

Yau manifold admits a Gauduchon metric whose Chern-Ricci cur-

vature is zero.

• However, it is not clear how canonical this metric is. For example,

the moduli space is not expected to be finite dimensional even

modulo automorphisms.

• A natural way is to require the Ricci flat metric to be balanced.

We can also impose some further constraint, like minimizing some

energy (eg. Yang-Mills energy) on the metric.
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Non-Kähler Calabi-Yau manifolds

• Another approach to extending the notion of Calabi-Yau metric

beyond the Kähler regime is to look to string theory for motivation.

• Non-Kähler Calabi-Yau manifolds play an important role in string

theory, since they can be used to construct theories with flux-

es. Such theories are important for taking into account non-

perturbative effects. The flux will turn out to be determined by

the 3-form field H =
√
−1(∂ − ∂̄)ω, which is trivial in the Kähler

setting.

• The equations of motion for supersymmetric compactifications of

heterotic string theory were obtained independently by Hull and

Strominger. I would like to discuss these equations in some detail.

8



The Hull-Strominger system.

• In the original proposal for compactification of superstring, Can-

delas, Horowitz, Strominger, and Witten constructed the metric

product of a maximal symmetric four-dimensional spacetime M

with a six-dimensional Calabi-Yau vacuum X as the ten-dimensional

spacetime.

• They identified the Yang-Mills connection with the SU(3) connec-

tion of the Calabi-Yau metric and set the dilaton to be a constant.

• Adapting my suggestion of using Donaldson-Uhlenbeck-Yau’s the-

orem on constructing Hermitian-Yang-Mills connections over stable

bundles, Witten and later Horava-Witten proposed to use higher

rank bundles for strong coupled heterotic string theory so that the

gauge groups can be SU(4) or SU(5).
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The Hull-Strominger system.

• At around the same time, Hull and Strominger independently ana-
lyzed the heterotic super-string background with spacetime super-
symmetry and non-zero torsion by allowing a scalar warp factor for
the spacetime metric.

• They considered a ten-dimensional spacetime that is a warped
product of a maximally symmetric four-dimensional spacetime M

and an internal space X; the metric on M ×X takes the form

g0 = e2D(y)
(
gµν(x) 0

0 gij(y)

)
, x ∈M, y ∈ X;

• There is also an auxiliary bundle over X equipped with a Hermitian-
Yang-Mills connection:

F ∧ ω2 = 0, F2,0 = F0,2 = 0. (1)

Here ω is the Hermitian form ω =
√
−1
2 gījdz

i ∧ dz̄j defined on the
internal space X.
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The Hull-Strominger system.

• In this system, the physically relevant quantities are

H = −
√
−1(∂̄−∂)ω, φ = −

1

2
log ‖Ω‖ +φ0, g0

ij = e2φ0 ‖Ω‖−1 gij.

for a constant φ0.

• In order for the ansatz to provide a supersymmetric configuration,
one introduces a Majorana-Weyl spinor ε so that

δψM =∇Mε−
1

8
HMNPγ

NP ε = 0,

δλ =γM∂Mφε−
1

12
HMNPγ

MNP ε = 0,

δχ =γMNFMNε = 0,

where ψM is the gravitino, λ is the dilatino, χ is the gluino, φ is
the dilaton and H is the Kalb-Ramond field strength obeying

dH =
α′

2
(trF ∧ F − trR ∧R), α′ > 0
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The Hull-Strominger system.

• In order to achieve spacetime super-symmetry, the internal six man-

ifold X must be a complex manifold with a non-vanishing holomor-

phic three-form Ω; and the anomaly cancellation demands that the

Hermitian form ω obey

√
−1∂∂̄ω =

α′

4
(trR ∧R− trF ∧ F ). (2)

• Super-symmetry requires

d∗ω =
√
−1(∂̄ − ∂) log ‖Ω‖ω .

• The last equation is equivalent to

d(‖Ω‖ω ω2) = 0 (3)

which was observed by J. Li and myself.
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The Hull-Strominger system.

• Equations (1), (2), and (3) compose a system, which is now called

the Hull-Strominger system in the literature:

d(‖ Ω ‖ω ω2) = 0;

F
2,0
h = F

0,2
h = 0; Fh ∧ ω2 = 0;

√
−1∂∂̄ ω =

α′

4

(
tr
(
Rω ∧Rω

)
− tr

(
Fh ∧ Fh

))
.

• This system gives a solution of a superstring theory with flux that

allows a non-trivial dilaton field and a Yang-Mills field. (It turns

out D(y) = φ and is the dilaton field.)

• Here ω is the Hermitian form and R is the curvature tensor of the

Hermitian metric ω; H is the Hermitian metric and F is its curvature

of a vector bundle E; tr is the trace of the endomorphism bundle

of either E or TX.
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Hull-Strominger system

d(‖ Ω ‖ω ω2) = 0 (4)

F
2,0
h = F

0,2
h = 0 Fh ∧ ω2 = 0 (5)

√
−1∂∂̄ ω =

α′

4

(
tr
(
Rω ∧Rω

)
− tr

(
Fh ∧ Fh

))
. (6)

• Equation (4) is a restricted holonomy equation, which can be

viewed as analogous to the Complex Monge-Ampère equation ap-

pearing in the Calabi conjecture.

• Equation (5) is the Hermitian-Yang-Mills equation studied by Don-

aldson, and Uhlenbeck-Yau in the Kähler case and Li-Yau in the

non-Kähler case.

• Equation (6) is the anomaly cancellation equation (α′ is a constan-

t). It is a highly nonlinear equation linking (4) and (5).
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Hull-Strominger system

• The Hull-Strominger system is a highly non-linear system of PDEs,
and we know very little about its solvability on a general compact
Calabi-Yau manifold.

• The solvability of the Hull-Strominger system on a general non-
Kähler Calabi-Yau 3-fold is largely open. I conjecture that solvabil-
ity is equivalent to stability of the gauge bundle.

• More precisely, consider complex threefold (X,Ω) with a balanced
class τ = [‖Ω‖ω0ω

2
0] ∈ H

2,2
BC(X). Let E → X be a holomorphic

bundle which is degree zero and stable with respect to τ . Assume
the cohomological condition ch2(E) = ch2(X) ∈ H

2,2
BC(X). Then

the Hull-Strominger system should be solvable for a pair of metrics
(ω, h) on (X,E).

• In the following slides, I will describe the current state of knowl-
edge, and some work in progress.
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Calabi-Yau solutions.

• The Hull-Strominger system, given by

d(‖ Ω ‖ω ω2) = 0;

F
2,0
h = F

0,2
h = 0; Fh ∧ ω2 = 0;

√
−1∂∂̄ ω =

α′

4

(
tr
(
Rω ∧Rω

)
− tr

(
Fh ∧ Fh

))
,

generalizes the Calabi-Yau condition for a metric ωCY to a system
for a pair of metrics (ω, h).

• Indeed, if we take E = T1,0X to be the gauge bundle and set
ω = h = ωCY to be a Kähler Ricci-flat metric, then

dωCY = 0, ‖Ω‖ωCY = const, RωCY ∧ ω
2
CY = 0

which implies that ω = h = ωCY solves the system.

• In superstring theory, these are the solutions of Candelas-Horowitz-
Strominger-Witten.
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Li-Yau’s solution.

• Assume that Y is a Kähler Calabi-Yau threefold and ω is a Calabi-
Yau metric. Take V = C⊕rY ⊕ TY and H = H1 ⊕ ω, where H1 is a
standard constant metric on C⊕rY . Then (Y, ω, V,H) is a solution
which is called a reducible solution.

• For any small deformations ∂̄s of the holomorphic structure of C⊕rY ⊕
TY , J. Li and I derived a sufficient condition for the Hull-Strominger
system being solvable for (Y, ∂̄s): it is that the Kodaira-Spencer
class of the family ∂̄s at s = 0 satisfies a certain non-degeneracy
condition.

• We showed that this condition holds for

1. X ⊂ P4: a smooth quintic threefold;

2. X ⊂ P3 × P3: cut out by three homogeneous polynomials of bi-
degree (3,0), (0,3) and (1,1).

thereby constructing the first examples of regular irreducible solution
to the Hull-Strominger system with gauge group U(4) and U(5):
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Fu-Yau’s solution.

• Fu and I constructed solutions of the Hull-Strominger system on

a class of non-Kähler Calabi-Yau threefolds. These are T2-bundles

over K3-surfaces constructed by Calabi-Eckmann’s method.

• On these manifolds, there exist natural metrics:

ωu = euωK3 + iθ ∧ θ̄,

which satisfy the first equation of the Hull-Strominger system.

Here u is any function of K3 surface, θ is the connection 1-form

on the T2-bundle. Such ansatz were first considered by Dasgupta-

Rajesh-Sethi, Becker-Becker-Dasgupts-Green, and

Goldstein-Prokushkin.
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Fu-Yau’s solution.

• Under this ansatz Fu and I reduced the anomaly cancellation equa-

tion of the Hull-Strominger system to the following Monge-Ampere

equation:

4(eu −
α′

2
fe−u) + 4α′

detuīj
det gīj

+ µ = 0,

• Here f and µ are functions on K3 surface satisfying f ≥ 0 and∫
S µω

2
K3 = 0.

• This equation is more complicated than the equation in the Calabi

conjecture. For example, the estimate of volume form gives extra

complication. We obtained some crucial a priori estimates up to

third order derivatives and then used the continuity method to

solve the equation.
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Fu-Yau’s solution.

Fu and I obtained the following existence theorem on the Hull-Strominger

system:

Theory 1. (Fu-Y.) Let S be a K3 surface with a Calabi-Yau metric

ωS. Let ω1 and ω2 be anti-self-dual (1,1)-forms on S such that ω1
2π ,

ω2
2π ∈

H2(S,Z). Let X be a T2-bundle over S constructed (twisted) by ω1

and ω2. Let E be a stable bundle over S with the gauge group SU(r).

Suppose ω1, ω2 and c2(E) satisfy the topological constraint

α′(24− c2(E)) = −
(
Q

(
ω1

2π

)
+Q

(
ω2

2π

))
.

Then there exists a smooth function u on K3 surface and a Hermitian-

Yang-Mills metric H on E such that (π∗E, π∗H,X, ωu) is a solution to

the Hull-Strominger system.
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Fu-Yau’s solution.

• From Mukai’s theory on the stable vector bundle over K3 surface,
we know that a sufficient condition for the existence of a stable
bundle E with (r, c1(E) = 0, c2(E)) on K3 surface is given by the
inequality

2rc2(E)− 2r2 ≥ −2.

Thus, we can determine all (ω1, ω2, c2(E)) which satisfy topological
constraint in the theorem.

• Additionally, Fu and I generalized the Hull-Strominger system to
the higher dimensional case and derived the following equation:

√
−1∂∂̄u ∧ (ωn−1 − ρ ∧ ωn−2)− n∂∂̄u ∧ ∂∂̄u ∧ ωn−2 + µ

ωn

n!
= 0.

where ρ is a real (1,1)-form on X, µ is a smooth function on X

satisfying the integrable condition
∫
X µ

ωn

n! = 0. This equation is
now called the Fu-Yau equation in the literature. Further analytic
techniques in studying the Fu-Yau equation have been developed
by Phong-Picard-Zhang in recent years.
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Fu-Tseng-Yau’s solution.

• We can replace K3 surface by a non-compact ALE space.

• The simplest one is the Eguchi-Hanson space: blow up of C2/Z2

at the origin of the Z2 action σ(z1, z2) = (−z1,−z2). Alternatively,

it is T ∗P1.

• There is a Ricci-flat metric on it

ωEH =
i

2
(k(r2)∂∂̄r2 + k′(r2)∂r2 ∧ ∂̄r2),

where k =

√
1 + a4

r4 , r2 is the radius on C2, and a is the size of the

blow-up P1. On Eguchi-Hanson space, there is an anti-self dual

(1,1)-form. We can use this form to twist the torus and as U(1)

gauge fields.
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Fu-Tseng-Yau’s solution.

• We only need to satisfy the anomaly equation. Due to depen-

dence only on the radial coordinate for all quantities on C2/Z2, the

anomaly equation can be reduced to an ODE:

2(1 + s)
1
2v2v′+ 4αsv′2 −

3α

(1 + s)2
v2 +

2α2|n|2

(1 + s)
3
2

v′+
4α2|n|2

(1 + s)
5
2

v = 0,

where v(s) = eu(r2) and s = r4

a4.

• For α = α′

a2 sufficiently small, we can get a convergent solution:

eu =
∞∑
k=0

ak

(1 + r4

a4)
k
2

= 1−α
1

(1 + r4

a4)
3
2

+α2 |n|2

(1 + r4

a4)2
+α3(|n|2 + 9/7)

(1 + r4

a4)
7
2

+· · · .
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Fei-Picard-Huang’s solution.

• A class of compact non-Kähler Calabi-Yau 3-folds was constructed
by Calabi using vector cross product on R7 and triply periodic
minimal surfaces in R3. Calabi’s construction was later generalized
by A. Gray.

• These Calabi-Gray manifolds are total spaces of certain holomor-
phic fibrations, whose fibers are hyperkähler 4-manifolds (T4, K3
surfaces), and whose bases are triply periodic minimal surfaces in
R3.

• Compared to the Calabi-Eckmann case, the new feature in the
Calabi-Gray construction is that the complex structures on the
fibers are varying from point to point. In fact, my student T.
Fei identified the Calabi-Gray construction with pullbacks of the
twistor family of hyperkähler manifolds using holomorphic maps
from a Riemann surface to P1 coming from vanishing theta char-
acteristics. This observation allows him to generalize the Calabi-
Gray construction. Fei also showed that there is a natural balanced
metric on any generalized Calabi-Gray manifold.
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Fei-Picard-Huang’s solution.

• Moreover, Fei-Huang-Picard showed that the full Hull-Strominger

system can be solved on a large class of generalized Calabi-Gray

manifolds:

• First, they write down an ansatz solving the conformally balanced

equation based on the Fu-Yau method.

• Then, by carefully choosing the gauge bundle, they showed that the

Hull-Strominger system can be reduced to a linear elliptic equation

on a Riemann surface coupled with an algebraic equation, which

can be solved explicitly in many cases.

25



Fei-Picard-Huang’s solution.

• In particular, F-P-Z obtain solutions to the Hull-Strominger system

on generalized Calabi-Gray manifolds whose base (a Riemann sur-

face) can be of any genus greater or equal than 3. Therefore they

produce solutions on non-Kähler Calabi-Yau 3-folds with unbound-

ed topological types and Hodge numbers. Another nice feature of

their construction is that the solution metrics can be written down

explicitly.

• There is also a local version of the Fei-Huang-Picard construction.

A Landau-Ginzburg model for these local solutions is developed by

Chen-Pantev-Sharpe.
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The Anomaly flow

• A geometric flow approach to the system was proposed by Phong-

Picard-Zhang. The flow of the pair (ω(t), h(t)) is determined by

h−1∂th = −
√
−1ΛωFh;

∂t(‖ Ω ‖ω ω2) =
√
−1∂∂̄ ω −

α′

4

(
tr
(
Rω ∧Rω

)
− tr

(
Fh ∧ Fh

))
,

with initial metric ω0 satisfying d(‖Ω‖ω0ω
2
0) = 0.

• For fixed ω, the flow of metrics h on the gauge bundle is the

Donaldson heat flow.

• The flow preserves the balanced condition d(‖Ω‖ω(t)ω(t)2) = 0.

• Fixed points solve the Hull-Strominger system.

27



The Anomaly flow

• The flow provides a path in the space of balanced metrics inside

an initial class [‖Ω‖ω(0) ω(0)2] ∈ H2,2(X).

• Short-time existence is known for initial metrics with |α′Rω| < 1.

• The analysis of this parabolic approach was recently developed in

works by Fei, Phong, Picard, and Zhang. The flow can be used

to recover several of the special ansatz solutions discussed in the

previous slides.

• A special case (α′ = 0) of the flow is ∂t(‖ Ω ‖ω ω2) =
√
−1∂∂̄ ω with

initial conformally balanced metric d(‖Ω‖ω(0)ω(0)2) = 0. Station-

ary points in this case are Kähler Ricci-flat. Thus the flow deforms

Calabi-Yau geometry with torsion towards torsion free Calabi-Yau

geometry.

28



Connecting Kähler and non-Kähler Calabi-Yau manifolds

• Having discussed its appearance in string compactifications with

non-trivial flux, we will next discuss motivation for non-Kähler ge-

ometry in topology and algebraic geometry.

• A fundamental open question is to understand the possible topo-

logical types of Kähler (or projective) Calabi-Yau threefolds. To

date, over 30,000 distinct Hodge diamonds have been constructed.

• To understand this landscape, it is conjectured that Calabi-Yau

threefolds with different topologies can be connected by an oper-

ation called a geometric transition.

• In the mathematics literature, this proposal was developed by Clemen-

s, Friedman and Reid (called “Reid’s Fantasy”). In the physics

literature, an analogous proposal was made by Candelas-Green-

Hubsch.
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Connecting Kähler and non-Kähler Calabi-Yau manifolds

• However, under these geometric transitions it is possible to pass

from Kähler to non-Kähler Calabi-Yau manifolds. This suggests

that understanding the non-Kähler geometry emerging from these

geometric transitions may shed light on the various topologies of

Kähler threefolds.

• I will explain below how the Hull-Strominger system is a natural

PDE which seems to respect these transitions. I hope that this

will help us to understand Reid’s Fantasy.
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Conifold transitions

• An example of a geometric transition is the conifold transition

Y → X0  Xt.

• This is defined as follows. Let Y be a smooth Kähler Calabi-Yau

threefold that contains a collection of mutually disjoint smooth

curves Ei isomorphic to P1 and having normal bundles isomorphic

to O(−1)⊕O(−1). By contracting these Ei, we obtain a singular

Calabi-Yau threefold X0 with l ordinary double points p1, . . . , pl:

ψ : Y \
⋃l
i=1Ei

∼= X0 \ {p1, · · · , pl}.
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Conifold transitions

We have the following facts:

• (Friedman) There is an infinitesimal smoothing of X0 if and only

if the fundamental classes [Ei] in H2(Y ; Ω2
Y ) satisfy a relation∑

i

ni[Ei] = 0

where ni 6= 0 for each i.

• (Kawamata, Tian) The infinitesimal smoothing can always be re-

alized by a real smoothing, i.e., X0 can be smoothed to a family

of smooth complex manifolds Xt.

• (Friedman) 1. π1(Xt) = π1(Y );

2. The canonical bundle of Xt is also trivial;

3. The ∂∂̄-lemma holds on Xt for general t (2017).
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Motivating non-Kähler geometry

• Let Y → X0  Xt be a conifold transition as just described. The

complex manifolds Xt have trivial canonical bundle. But in general,

Xt are non-Kähler.

• This is because if the curves [Ei] generate H2(Y,R), then contract-

ing them can produce a manifold Xt with zero second homology

H2(Xt,Z) = 0.

• For example, #k(S3 × S3) for any k ≥ 2 can be given a complex

structure in this way (Friedman: k ≥ 103 and Lü-Tian: 2 ≤ k ≤
102).
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Motivating non-Kähler geometry

• Reid proposes that all Kähler Calabi-Yau threefolds fit into a single

universal moduli space in which families of smooth Calabi-Yau’s are

connected by conifold transitions and their inverses, even though

they are of different homotopy types.

• In fact, P. S. Green and Hübsch found that for a very large number

(perhaps all) of distinct Calabi-Yau threefolds, the relevant mod-

uli spaces join together to form a connected “web” by including

certain singular limit points. Then, Candelas, Green, and Hübsch

studied the geometry of these moduli spaces, especially near the

interfacing regions which correspond to conifolds. They showed

that the Weil-Petersson metric coincides with the point field limit

of the Zamolodchikov metric and all the distances in the web are

finite.
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Motivating non-Kähler geometry

• From the point of view of differential geometry and moduli space,
we would like to understand conifold transitions Y 99K X0  Xt
with metrics.

(Y, ωCY) ?

• If the threefold Xt emerging from a conifold transition is Kähler,
then according to my solution to the Calabi conjecture, there ex-
ists a unique Ricci-flat Kähler metric in each Kähler class of the
threefold. Such metrics, known as Calabi-Yau metrics, are the bed
rocks of geometric studies of Calabi-Yau threefolds.

• However, conifold transitions may leave the realm of Kähler ge-
ometry. To study this process, we need an analog of Calabi-Yau
metrics in the non-Kähler setting.

• We believe that Hull-Strominger system provides a natural candi-
date. Let me explain why.
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Conifold transitions with metrics

• Let (Y, ωCY) be a Kähler threefold with Kähler Ricci-flat metric.

• Let Y → X0  Xt be a conifold transition.

• We would like to understand this transition at the level of Rie-
mannian metrics. Since Xt may not be Kähler, we expect the
Calabi-Yau metric to break into a pair of Hermitian metrics

ωCY  (ωt, ht)

on the tangent bundle of the smoothing Xt solving the Hull-Strominger
system.

d(‖ Ωt ‖ωt ω2
t ) = 0;

F
2,0
ht

= F
0,2
ht

= 0; Fht ∧ ω
2
t = 0;

√
−1∂∂̄ ωt =

α′

4

(
tr
(
Rωt ∧Rωt

)
− tr

(
Fht ∧ Fht

))
.

• Note: if ωt = ht, then the system implies ωt is Kähler Ricci-flat.

36



Fu-Li-Yau metrics

The first equation of the system, d(‖Ω‖ωω2) = 0 has been solved by

Fu-Li-Yau.

Theory 2. (Fu-Li-Y.) Let Y be a smooth Kähler Calabi-Yau threefold

and let Y → X0 be a contraction of mutually disjoint (−1,−1)-curves.

Suppose X0 can be smoothed to a family of smooth complex manifolds

Xt. Then for sufficiently small t, Xt admits a smooth balanced metric.

Our construction provides a balanced metric on a large class of three-

folds. In particular, we have

Corollary 1. (Fu-Li-Y.) There exists a balanced metric on #k(S3×S3)

for any k ≥ 2.

37



Local Models

Small resolution
Local neighborhoods

of the node
Deformation

Description O(−1)⊕O(−1)→ P1 w2
1 + w2

2 + w2
3 + w2

4 = 0 w2
1 + w2

2 + w2
3 + w2

4 = t

Radii r2 = (1 + |z|2)(|u|2 + |v|2) r2 = |w1|2 + |w2|2 + |w3|2 + |w4|2

Neighborhoods
(0 < c < 1)

U(c) = {(z, u, v)|r2 < c} Vt(c) = {
∑
w2
i = t | r2 < c}

Candelas-de la
Ossa’s metrics

ωco = · · ·
ωco,0 = i∂∂̄f0(r2) ωco,t = i∂∂̄ft(r2)

�
�
�
�
�

E
E
E
E
E

J
J
J
J

####

P1

P1 S3












@
@
@
@
####

P1 S3

@
@
@
@

�

####

P1 S3

S3

- -
Contracting Smoothing

where

f0(r2) =
3

2
r

4
3,

ft(r
2) = 2−

1
3|t|

2
3

∫ cosh−1(r
2

|t| )

0
(sinh 2τ − 2τ)

1
3dτ.
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Sketch of the proof.

We need to construct a d-closed positive (2,2)-form on Xt for suffi-

ciently small t.

First Step. Constructing a Balanced Metric on the Conifold X0.

In this step we use the direct method. Let ω be a Kähler metric on

the threefold Y . Denote by ωco,0 the Candelas-de la Ossa metric on

a neighbourhood of the node. Near a (−1,−1)-curve Ei we glue ω2
co,0

onto ω2 directly to construct a d-closed positive (2,2)-form Ω0 on

X0,sm = X0 \ {pi}. This construction is very delicate.
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Second Step: Constructing Balanced Metrics on the smoothing.

We glue the Candelas-de la Ossa metric ω2
co,t on the deformation to

Ω0 to get a real d-closed 4-form Φt. Φt can be decomposed as

Φt = Φ3,1
t + Φ2,2

t + Φ1,3
t .

For t sufficiently small, Φ2,2
t is positive definite. Let ωt be the hermitian

form on Xt such that (ωt)2 = Φ2,2
t . We use ωt as our background

metric on Xt.
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We shall modify the form Φ2,2
t to make it both closed and positive

definite. Since Φt is d-closed on Xt,

∂̄tΦ
2,2
t = −∂tΦ1,3

t .

On the other hand, we can prove that H1,3
∂̄

(Xt,C) = 0. Therefore there

is a (1,2)-form νt on Xt such that i∂̄tνt = −Φ1,3
t . So i∂t∂̄tνt = −∂tΦ1,3

t .

We let µt be a (1,2)-form on Xt such that

i∂t∂̄tµt = −∂tΦ1,3
t = ∂̄tΦ

2,2
t and µt ⊥ωt ker ∂t∂̄t.

We then define

Ωt = Φ2,2
t + θt + θ̄t, θt = i∂tµt.
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Clearly Ωt is d-closed and is positive for sufficiently small t if

lim
t→0
‖ θt ‖2C0= 0.

In fact, we can prove

Proposition 1. (Fu-Li-Y.) If κ > −4
3, then

lim
t→0

(tκ ‖ θt ‖2C0) = 0.

This fact is the key point in M.-T. Chuan’s paper on existence of

Hermitian-Yang-Mills metrics under conifold transitions.
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The Hull-Strominger system through conifold transitions.

• By Fu-Li-Yau’s result, the first equation in the system

d(‖ Ωt ‖ωt ω2
t ) = 0

can be solved for a Hermitian metric ωt. We now consider the

Hermitian-Yang-Mills equation with respect to ωt.

• M.-T. Chuan has constructed Hermitian-Yang-Mills metrics ht solv-

ing

Fht ∧ ω
2
t = 0

on holomorphic bundles Et → Xt which are deformations of a bun-

dle E → Y which is stable with respect to (Y, ωCY) and holo-

morphically trivial in a neighborhood of the contracted (−1,−1)

curves.
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The Hull-Strominger system through conifold transitions.

• The most natural setting to consider conifold transitions is when

the holomorphic bundle E in the Hull-Strominger system is the

tangent bundle T1,0X. However, this is not holomorphically trivial

near the (−1,−1) curves, so Chuan’s theorem does not apply.

• In ongoing joint work with T. Collins and S. Picard, we are con-

structing a Hermitian metric ht on T1,0Xt such that the pair (gt, ht)

of metrics on T1,0Xt satisfy

d(‖ Ωt ‖ωt ω2
t ) = 0, Fht ∧ ω

2
t = 0, (7)

and such that both metrics (gt, ht) are perturbations of the Kähler

Ricci-flat Candelas-de la Ossa metrics gco,t in a neighborhood U of

the deformation of a node, e.g. for C > 0, δ > 0 then

‖gco,t − gt‖L∞(U∩Xt,gco,t) ≤ C|t|
δ

‖gco,t − ht‖L∞(U∩Xt,gco,t) ≤ C|t|
δ.
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The Hull-Strominger system through conifold transitions.

• To complete the program of solving the Hull-Strominger system

through conifold transitions, it remains to understand the anomaly

cancellation equation. We expect to construct a solution of the full

Hull-Strominger system by perturbing around the solution (gt, ht)

of (7).

• The key point is that both (gt, ht) are approximately equal to the

Kähler Ricci-flat metric gco,t near the nodes and converge back to

the Calabi-Yau metric on the central fiber. Thus, we can solve the

anomaly cancellation equation using perturbation techniques.
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The Hull-Strominger system through conifold transitions.

Geometrically, we expect that solutions of the Hull-Strominger sys-

tem on the pair (X,T1,0X) can provide a “canonical metric” which

is continuous, in an appropriate sense, through conifold transitions.

Note that, when X is Kähler, such a solution of the Hull-Strominger

system is just the Calabi-Yau metric, as I discussed before. Thus, if

the picture is correct, it would show that the Hull-Strominger system

is the correct generalization of the Calabi-Yau equation to non-Kähler

manifolds.
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Moduli space

• An important future direction is to understand the moduli space

of solutions to the Hull-Strominger system.

• There is promising preliminary work by Svanes-de la Ossa in the

physics literature, and Garcia-Fernandez, Rubio, Tipler in the math-

ematics literature.

• Some of the difficulties here include understanding the regime

where the Hull-Strominger system is elliptic, and proving unique-

ness theorems modulo automorphisms in certain topological class-

es determined by a solution to the system (e.g. balanced classes,

string classes).
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Generalized Transitions Another direction I am considering with T.

Collins and S. Picard is constructing solutions of the Strominger system

through “generalized” conifold transitions. Namely, if one contracts

a chain an (−1,−1) curves, then we can obtain singular Calabi-Yau

manifolds with singularities modeled on

{x2 + y2 + zp + wp = 0} ⊂ C4.

These affine varieties admit Calabi-Yau metrics due to Collins-Székelyhidi,

generalizing the Candelas- de la Ossa metric on the conifold (which

is the p = 2 case). They also admit natural smoothings. We are

currently considering the generalization of my work with Fu and Li to

construct balanced metrics through these generalized transitions.
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Symplectic conifold transitions: Smith-Thomas-Yau.

• There is a symplectic version of Clemens-Friedman’s conifold tran-

sition for complex manifolds. In Clemens-Friedman, the contrac-

tion of a rational curve, CP1 (and the inverse operation of res-

olution) is naturally a complex operation. The smoothing of a

conifold singularity by S3 on the other hand is naturally a sym-

plectic operation. The condition that Friedman gave is necessary

to ensure that the smoothed out Calabi-Yau has a global complex

structure.

• But instead of the complex structure, we can ask to preserve

the symplectic structure throughout the conifold transition. This

would be the symplectic mirror of the Clemens-Friedman’s coni-

fold transition. In this case, we would collapse disjoint Lagrangian

three-spheres, and replace them by symplectic two-spheres. Such a

symplectic transition was proposed by Smith, Thomas, and myself

in 2002.
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Locally, there is a natural symplectic form in resolving the singularity

by a two-sphere. But there may be obstructions to patching the local

symplectic forms to get a global one. In Smith-Thomas-Yau, we wrote

down the condition (analogous to Friedman’s complex condition) that

ensures a global symplectic structure. This symplectic structure how-

ever may not be compatible with a genuine complex structure.

The resulting real six-manifold would be symplectic and have c1 = 0.

But its third Betti number may be zero. Hence, such a manifold would

generally be non-Kähler, and is called a sympletic Calabi-Yau.
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Smith-Thomas-Yau used such symplectic conifold transitions to con-

struct many real six-dimensional symplectic Calabi-Yaus. We showed

that if such a conifold transition collapsed all disjoint three-spheres,

then the resulting space is a manifold that is diffeomorphic to con-

nected sums of CP3. This mirrors the complex case, where after

the collapsed of all disjoint rational curves gives a connected sums

of S3 × S3

It is known that six-dimensional symplectic Calabi-Yaus come in all dif-

ferent topological types. For example, Fine-Panov (2013) constructed

an infinite collection of six-dimensional symplectic Calabi-Yaus for any

given finitely-presented fundamental group.
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SYZ mirror of non-Kähler Calabi-Yaus.

Symplectic Calabi-Yaus can also be considered from the perspective

of Strominger-Yau-Zaslow (SYZ) mirror symmetry.

Recall that the SYZ mirror of a Kähler Calabi-Yau threefolds with a

T3-fibration is found by applying three T-dualities on the torus fibra-

tion. This viewpoint was clarified in much detail in the work of Gross-

Siebert. Extending the SYZ idea, we can consider applying T-dualities

on complex non-Kähler Calabi-Yau spaces that are torus fibration. In

doing so, we can find interesting mirrors that are symplectic Calabi-Yau

manifolds.
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In this non-Kähler SYZ mirror symmetry context, there are also equa-

tions from physics that let us study the geometry of the mirror pairs.

The equations come from supersymmetry conditions of Type IIA and

IIB string theory. The relevant Type IIB equations are similar to the

Hull-Strominger system though the Hermitian-Yang-Mills bundles are

now replaced by D5-brane and orientifold 5-brane source charges.

In particular, for six-dimensional manifolds and in the semi-flat limit,

Lau-Tseng-Yau (2015) related the symplectic, non-Kähler, supersym-

metry conditions of type IIA strings to those of complex, non-Kähler,

supersymmetry conditions of type IIB strings by means of SYZ and

Fourier-Mukai transform. In dimensions eight and higher, we also

found a mirror pair system of equations - a symplectic system and a

complex system for non-Kähler Calabi-Yaus - that are dual to each

other under SYZ mirror symmetry.
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