Wilson Loop Duality and OPE for Form Factors of 1/2-BPS Operators

2023 Theoretical Physics Seminar
Shing-Tung Yau Center of Southeast University

Benjamin Basso - LPENS

Based on recent work with Alexander Tumanov



Solving N=4 Super-Yang-Mills

Maximally supersymmetric Yang-Mills theory in 4 dimensions

Lots of symmetries: conformal invariance, supersymmetry, S-duality, ...

AdS/CFT correspondence: Duality with superstring theory on AdS5*S5

Integrability: The theory is believed to be “exactly solvable” in the large Nc (planar) limit

Wonderful laboratory for studying gauge/string duality and uncovering hidden structures in gauge theories

Lots of progress with correlation functions: exact spectrum of scaling dimensions and methods at higher points

Important developments in calculation of on-shell quantities such as scattering amplitudes



Scattering amplitudes / Wilson loops duality

Duality between amplitudes and null polygonal Wilson loops

P2
" log A, =logW,, "~

P1

Null momenta of amplitude map to null edges of WL

Bonus: two copies of conformal groups (original and dual) - combine into a Yangian (manifestation of integrability)

[Alday,Maldacena]
[Drummond,Korchemsky,Sokatchev]

Dual conformal symmetry put severe constraints on amplitudes [Brandhuber,Heslop, Travaglini

[Drummond,Henn,Korchemsky,Sokatchev]
[Drummond,Henn,Plefka]

 4- and 5-gluon amplitudes entirely fixed by dual conformal symmetry

* Finite part of n > 5 amplitudes not fixed by functions of 3n-15 cross ratios
(ratios of products of Mandelstam invariants / distances between cusps)



Progress report

e Duality is at the heart of many recent progress in scattering amplitudes

Amplituhedron/Grassmannian, Amplitude Function Bootstrap, TBA, Pentagon OPE, ...

* Function Bootstrap: Aim at constructing higher multiplicity amplitudes at higher loops in generic kinematics

 (Combine physical/structural requirements on solutions with known boundary data (collinear/Regge limit, ...)

* ©-point amplitudes through 7 loops

[Bern,Dixon,Smirnov]

. ] [Goncharov,Spradlin,Vergu,Volovich][Dixon,Drummond,Henn]

® 7—p0|nt amp“'tUdeS thr()ugh 4 IOOpS [Caron-Huot,Dixon,Drummond,Duhr,vonHippel,McLeod,Pennington]
[Caron-Huot,Dixon,Dulat,vonHippel,MclLeod,Papathanasiou]

[Golden,Spradlin]

_ : ' [Drummond,Papathanasiou,Spradlin]

° 8 pOInt amp“tUdeS thrOugh 3 lOOpS [Dixon,Drummond,MclLeod,Harrington,Papathanasiou,Spradlin]
[Dixon,Liu]

. . [Golden,MclLeod]

* n-point amplitudes through 2 loops (symbol) [Caron-Huot, He]
[Li,Zhang]

[Caron-Huot]

* Integrable Bootstrap: Aim at constructing amplitudes at finite coupling as a systematic (OPE) expansion

[Alday,Gaiotto,Maldacena,Sever,Vieira]
[BB,Sever,Vieira]
[Belitsky]



What about other on-shell observables?

Important class: Form factors of local operators - bridge between amplitudes and operators

Fo(pis--->Pn;q) = /d4fE e ' (p1, ..., pn|O(x)|0)

[Alday,Maldacena]
[Maldacena,Zhiboedov]

String Theory: T-duality, mapping UV into IR and vice versa [Brandhuber,Spence, Travaglini, Yang]

[Brandhuber,Gurdogan,Mooney, Travaglini,Yang]
[Bork][Sever,Tumanov,Wilhelm]

It follows that WL cannot be closed when total momentum non zero ¢q = Z p; #0
i=1
Hint at duality between form factors and null periodic Wilson loops (with period q)

| ots of evidence Horizon

gathered for operators

in StreSS tensor Super— [Brandhuber,Spence, Travaglini,Yang] Boundary 0
I_t | _t [Brandhuber,Gurdogan,Mooney, Travaglini,Yang]
Mmu |p e [Penante,Spence, Travaglini,Wen] -

[Bork][Brandhuber,Penante, Travaglini,Wen]

New integrable

bootstrap (FFOPE) and

function bootstrap were

prOpOSGd tO determ|ne [Sever,Tumanov,Wilhelm]

i ini [Dixon,Gurdogan.McLeod, Wilhelm] 0.0 Holographic
ts form factors at finite / vt Folograpt
weak coupling [Guo,Wang, Yang] irection




What about other on-shell observables?

Important class: Form factors of local operators - bridge between amplitudes and operators

Fo(pis--->Pn;q) = /d% e ' (p1, ..., pn|O(x)|0)

[Alday,Maldacena]
[Maldacena,Zhiboedov]

String Theory: T-duality, mapping UV into IR and vice versa [Brandhuber,Spence, Travaglini, Yang]

[Brandhuber,Gurdogan,Mooney, Travaglini,Yang]
[Bork][Sever,Tumanov,Wilhelm]

It follows that WL cannot be closed when total momentum non zero ¢q = Z p; #0
i=1
Hint at duality between form factors and null periodic Wilson loops (with period q)

* More general operators? Horizon
. Expect Boundary ‘{;‘Y‘ 01
* Local operators to map to states (BC) at the horizon 2 ‘ 1io
* Integrable bootstrap should apply to all of them
0.0 Holographic

* Natural step: develop WL duality and OPE for half-BPS operators AGS direction



Plan

 Super form factors of half BPS operators
 Super Wilson loop duals
 FFOPE and integrable bootstrap

e (Conclusion



Super Form Factors and Super Wilson Loops



States and operators

On-shell state: gluons and super-partners (gauginos and scalars)

U A" + P yp

AY )\ are spinor helicity variables and 7= 1234

CPO have R-charge k and scaling dimension k

They may all be encoded in a single CPT invariant on-shell N = 4 superstate

T

[Brandhuber,Gurdogan,Mooney, Travaglini,Yang]
[Penante,Spence, Travaglini,Wen]

Lo.g*G™

are (Grassmann variables

Eigenstate with momentum p~“ = Oﬁapu = A"A" and super momentum qu — )\aﬁA

1/2-BPS operator: Chiral Primary Operator and its Q descendants 7 (6)

Stress-tensor supermultiplet (k=2): 7T2(0) = Tr¢(0)* + ... 4+ (0)* Tr L

laaQ% oy gb(O)k



Super form factors

[Penante,Spence, Travaglini,Wen]

« Super form factors are defined as the super-Fourier transform of matrix elements of 7;(z)
Frn(l,...;n5q,7) = /d4xd46’e_iq$_79<®1 . D, | Tr(2)]0)
* Unlike scattering amplitudes, for form factors the (super) momentum is generically non zero
qadzikf‘x‘?#@ 7“+=ikﬁﬁ?'#0 v&_zikﬁ“ﬁi‘:()
i=1 i=1 i=1

 Split R-indices with a = 1,2 for supercharges annihilating the operators and a’ = 3,4 for the remaining ones

« SUSY Ward identities put constraints on the super form factors which must take the form

(g =D, XA (T =T NS (3D Ay
N (12)(23) ... {(n1)

Fin X Wikn Where (ij) = eaBAf‘Af

»  MHV form factors correspond to terms with lowest fermionic degree W' = Poly?(F=2) (¢=12)



Tree level data

Explicit expressions for MHV tree form factors have been obtained for all half-BPS operators Tr ®(0)"

[Brandhuber,Gurdogan,Mooney, Travaglini,Yang]

S| m p | eSt exXam p | eS. [Penante,Spence, Travaglini,Wen]

W}EI‘:e?e)n Z (i5) 7 i ( cyclicwhen v~ =0 )

Higher-k form factors are given by higher polynomials in the Lorentz X R-invariant products

e an B o 1 -
<ZJ> — 6@5)‘73 >‘j n, -n; = §€ab77i 77?

General formula at higher k is most easily obtained by using BCFW-like recursion relations (given later on)



Mapping to dual coordinates

* @Gain insight into dual Wilson loop by performing transformation to dual coordinates

(xiv ‘92)
* (Super) momenta map to (super) coordinates of the cusps of a null polygon (Pis 70i)
MY = 2 — af) Aot = 074 — 674 ‘
(jS—h 973—1)
* Alternatively one may specify the null polygon using (super) momentum twistors IDrummond, Henn Korchemsky,Sokatchey]
[Hodges]
Ai AP
2 = ,uf‘ — )\ial‘?d -~ ]P)3|4
77;4 Aiaer?A
 With non-local transformations
< (A Dpd 4+ G+ i — Dpd + (@ — Li)us a4 liu+Dnlt 4+ G+ 11— Dnd + (i — Li)ng

(i — 14) (35 + 1) (i — 14) (35 + 1)



Dual superconformal symmetry

Similarly to amplitudes, MHV form factors exhibit dual super-conformal symmetry

Precisely, they are invariant under an SL(2|2) subgroup of transformations acting on the dual variables

( )\? ) | a=1,2
Zi = a with
T; a=1,2

MHYV form factors may be expressed in terms of SL(2|2) R-invariants

[12_, ({i5)n} + cyclic)
(i§) (jk) (ki)

(ijk) =

Tree form factors for k = 3 may be written concisely for any any number of points

n—1

Wers, =y (lii+1)

1=2



m = 2 Amplituhedron

 R-invariants are subject to 4-term identity ~ (123) + (341) = (412) + (234)

* [t may be understood geometrically as
an equivalence relation for two ’
triangulations of a square

 One may see n-pt form factors as area of a convex n-gon where each tile is associated with an R-invariant

Same structure

n—1
tree . observed recently
W _ — (122 —|— 1) for correlation functions
k=3,n
5 [Caron-Huot,Coronado,Muhlmann]
g P

 Form factors provide a realisation of the m=2 Amplituhedron (geometric reformulation of scattering amplitudes)



Higher-charge form factors

Higher-charge form factors were conjectured to satisfy BCFW-like recursion relations [Penante,Spence, Travaglini,Wer

They relate form factors with different k and n

Wi (L) = Wity (1, .o on = 1) + (n = In )WY (1,0 ,n — 1)

This relation has a simple geometrical interpretation for k = 3

General solution for any k can be written concisely

1
(k—2)!

—2

[l/tree .

[Wtree}

Higher-charge form factors are higher-degree polynomials in R-invariants

Formula is also known in the context of the m=2 Amplituhedron where k-2 plays the role of helicity degree



Super Wilson loop dual

 (Can one recover this data from actual Wilson loop calculation? Precise Wilson loop dual?

 TJotal momentum is non zero: we should consider a periodic Wilson loop

 Futhermore, must be a super Wilson loop since MHV form factors depend on Grassmann variables



Dual operator

* Null polygonal super Wilson loop

1
W, = FTT [ ane f dt151(t1)V126 f dt2E2(t2) N VAR }

&

* Super-connection integrated along light-like edges

. ~. _ 1
Ei = ;" Asa T 1A Yam; . )‘a ir1DaaPabh; 77z
2<ZZ _|_ > & [Caron-Huot]

[Mason,Skinner]

 Supplemented by vertex insertion at the cusp

NNty (i — i+ Dnin?
(ii 4+ 1) (i — 1) (5 + 1)

Viit1 = 1 + @ap + — (same thing)?

1
2

W, =0 (up to gauge transformation)

» Defined such as to be annihilated by super-translations | %aa + Z AL

(9772

 For MHV form factors of half-BPS operators we may restrict ourselves to the SU(2) subsector witha, b =1, 2



Dual state

The super Wilson loop takes care of the external state in FF

W, <~ H(I) 7,777@

To represent the local operator we must plck a dual state

(1,...,n|Tro(0)* +...]0) & (Fr|W,|0)
Requirements: dual state must carry the right R-charge and be annihilated by (super) translations in dual space
<Jrk|7jdoz:0 <Fk|Qaa:O

This is because these symmetries are redundancies of the dual description

Simplest choice: State composed of (k-2) zero-momentum scalar particles (Fi| = (¢12(0) ... 0"(0)]

In particular, the dual state for k = 2 (stress tensor multiplet) is the vacuum state



Tree level check

« We may perform a simple check of this conjecture at weak coupling: &, = (9(92)

n—1
Wiee = (¢2(0) ... 0" (0)] ][ Vii1/0)

e Basic tree matrix element | SC;‘;rQSA?ﬁcle
'\
(¢"2(0)|pab(x)]0) = €ap & \/
* [t immediately leads to corner vertex
Wtree _ nz_:l<¢ ("7 ) ‘O nz_:l ngn’?—l—l | <Z — 11+ 1>777€L777,b-
e i=1 Vit i—1 <” +1) I (1 — 17) (it + 1)

* |t agrees perfectly with the tree form factor data



Tree level check

« We may perform a simple check of this conjecture at weak coupling: &, = (9(92)

Wtrze _ <¢12

n

Basic tree matrix element

(¢!

Similarly at higher k. E.g.

n—1
20) ][ Viir1l0)
1=1

*(0)|¢ab(2)|0) = €ap

Wtree .

l\Dlr—\

[Wtree}

N

Production of 2 scalar state




Loop diagrams

 We may also perform a check at one loop
 Two main class of diagrams

 Tst class: exchange diagrams

L5 : l .
] °
4 by - S
i 1W \/ ~~~~~ ;/
’I \~
' 4 ~
4
X Lj—1 oo cee

* They generate long-range corrections to the corner vertex V.1 — V;




Loop diagrams RN
» We may also perform a check at one loop Fi; = FP Box |4
 Two main class of diagrams T | -
 71st class: exchange diagrams I "

:Lr. b l :
] °
Lg— ~
1W \, ~~~~~ ;/
- S
' 4 ~
4
X Lj—1 oo cee

* They generate long-range corrections to the corner vertex V.1 — V;

 One-loop result is a sum of R-invariants dressed by transcendentality-2 functions (box integrals)

1loop
k 3.n E tree ..TL)XFZ'J'
[Penante,Spence, Travaglini,Wen]

 Match precisely known form-factor result obtalned with generalized unitarity method Brandhuber, Penante Travaglini, Wen



Loop diagrams

 2nd class diagrams - contain IR divergences

 These divergences are dual to the UV divergences of the local operators

 Half-BPS operators are protected: we observe complete cancellation among these diagrams



Loop diagrams

2nd class diagrams - contain IR divergences

These divergences are dual to the UV divergences of the local operators
Half-BPS operators are protected: we observe complete cancellation among these diagrams

Self-energy diagrams are needed for a complete cancellation



Loop diagrams

k = 3 (one scalar state) is special

Fewer diagrams are contributing and cancellation may seem incomplete
But new diagrams become available at the same time

Wrapping diagrams with particles winding around the periodic direction are needed

i
e




Form Factor OPE and Integrable Bootstrap



Operator Product Expansion

* Null Wilson loop picture allows us to develop OPE for scattering amplitudes

[Alday,Gaiotto,Maldacena,Sever,Vieira]
[BB,Sever,Vieira]

A

AdS radial Dual string

direction

 |dea: Write WL as a sum over a complete basis of eigenstates of the string / flux tube ending on two null edges

Building blocks:

L o 2 1. Spectrum of flux tube
P1 — — E e (w)P(Ohb)P(ZMO) eigenstates
(0 2. Pentagon transitions
between flux-tube states
P2 Integrability allows us
_ to determine both data
The state is produced/absorbed by bottom/top pentagon at finite coupling

Pentagon transitions are akin to the structure constants for the usual OPE



Operator Product Expansion

* Null Wilson loop picture allows us to develop OPE for scattering amplitudes

[Alday,Gaiotto,Maldacena,Sever,Vieira]
[BB,Sever,Vieira]

A

AdS radial Dual string

direction

 |dea: Write WL as a sum over a complete basis of eigenstates of the string / flux tube ending on two null edges

Building blocks:

L o 2 1. Spectrum of flux tube
P1 — — E e (w)P(Ohb)P(ZMO) eigenstates
(0 2. Pentagon transitions
between flux-tube states
P2 Integrability allows us
_ _ . _ . o to determine both data
Interpretation: OPE provides a systematic expansion around the collinear limit at finite coupling

Key advantage: non-diagrammatic - OPE is valid at any value of the coupling constant



Operator Product Expansion

The more gluons we scatter the more pentagons we need

Z 6—7’1E(¢1)—...—Tn_5E(¢n—5)P(O‘wl)P(wl|¢2)P(¢2‘¢3) e P(wn—f)‘())
W1,...

Form factors may be addressed similarly using periodic Wilson loops

Main difference: WL produces a state that is contracted with the dual state (~ boundary state)

[Sever,Tumanov,Wilhelm]

Pentagon sequence ends at the top with the so-called form factor transitions

Amplitude for absorption
of the flux-tube state
by the half-BPS operator

FF transitions provide a complete description of form factors in collinear limit



Integrable bootstrap axioms

Two-body form factor transition  Fy(u,v) = (Flo(u)p(v))
2d flux-tub
Srmatrix

Main axioms (true at any value of the coupling constant):

l. Watson equation Fpo(u,v) = Spe(u, v)Fpe(v, u)

crossing move

Il. Crossing relation F¢¢(u27, v) = Fyp(v, u) il
V

1. Kinematical axiom Fys(u,u) =0 (Fermi exclusion for identical particles)

Similar axioms were studied for the form factors of the stress tensor multiplet (k=2) [Sever, Tumanov, Wilhelm]

Difference is that stress tensor produces SU(4) singlets while interested here in symmetric product irreps



BES kernel and its relatives

Explicit solution for stress tensor makes use of a particular kernel which encodes the coupling constant

[Sever, Tumanov,Wilhelm]

Kernel belongs to a family of kernels which show up in studies of scattering amplitudes

[BB,Dixon,Papathanasioul]
Tilted BES kernel is defined as a semi-infinite matrix (i, j >1)

O

B - cosaK., sinaK., YR dt J;(2gt)J;(2gt)
K(a) = 2cos « snaKe cosaK.. Ki; = 2(—1) / ; &1
) i 0
BES kernel controlling the cusp anomalous dimension Kpes = K(a = 7/4) [Beisert Eden, Staudacher]
“Octagon” kernel is defined similarly Koct = K(a = 0)

[Coronado]
[Belitsky,Korchemsky]

This kernel also plays a role in study of correlation functions of large charge operators [Kostov,Petkova,Serban]



Solution at finite coupling

Relevance of these kernels is that they allow us to define quantities obeying the axioms we are interested In

[Sever,Tumanov,Wilhelm]

A “general solution” may be written for any value of the deformation parameter (tilt angle) BB, Tumanoy]

Schematically

Plal(ylp) = — LOU=) ) @)] a (0)
g?T'(% + iu)D (% — v)

2
It is designed in a way such that a number of properties are immediately obeyed (such as the Watson eq.)

The crossing axiom depends however sensitively on the choice of the deformation parameter

The crossing axiom relevant for the pentagon (closed) Wilson loop requires alpha = pi/4 [BB,Sever,Vieiral

P(ulv) = Plo=m/4 (y|v)

0
Its pole at u = v defines a natural 1-pt function / integration measure pu(u) = Resy—y P(u[0)



Solution at finite coupling

Relevance of these kernels is that they allow us to define quantities obeying the axioms we are interested In

[Sever,Tumanov,Wilhelm]

A “general solution” may be written for any value of the deformation parameter (tilt angle) BB, Tumanoy]

Schematically

Plal(ylp) = — LOU=) ) @)] a (0)
g?T'(% + iu)D (% — v)

2
It is designed in a way such that a number of properties are immediately obeyed (such as the Watson eq.)

The crossing axiom depends however sensitively on the choice of the deformation parameter

The crossing axiom relevant for the zig-zag (periodic) Wilson loop requires alpha =0

Q(ulv) = P~ (ulv)

(

v(u) = Resy—y Q(u]v)

Its pole at u = v defines a new 1-pt function / integration measure



General solution

General (factorized) solution for absorption of k-2 scalars by the half-BPS operator Tr ¢"

(Frlo(ur), ..., dp(ur—2))

||
—

Q(uj|u;)

It may be shown to verify all the bootstrap axioms
All the complicated coupling constant dependence resides in the two-body form factor

1pt form factor is absorbed in the measure used to integrate over the (k-2)-scalar phase space

1 dul duk 2
/dPS: (k—z)!/ (2m)F 2 HW‘“@

It combines the two measures derived from the pentagon P and the “octagon” Q



Simplest example

Exact representation for the collinear limit of the 3pt form factor of the k=3 operator

du ) —TE (U
W3 s(u1,u2,us) = %\//L(u)u(u) glop(w)=TE()

Dots stand for subleading terms in the collinear limit  ug ~ e °T = 0

The OPE time and space variables parametrize the Mandelstam invariants

pooS12 1 = 528 1 o — 531 _ ~
ST 2 T 1 4e?r P2 T 14 e20 fe2r S T (1 +e27)(1 + €20 4 e—27)

All ingredients (energy, momentum, measures) are known to all loops

They may be used to bootstrap the 3pt form factor through 6 loops BB, Dixon, Tumanov; in preparation]



Higher charge example

Exact representation may also be obtained for higher-charge operators. E.g. 4pt k=4

du duq dus - - _ _ P(ulvy)P(u|vs)
W :/ ulviu ezalp(u)—l—zagp(ul,g) TlE(u) TQE(’(LLQ) I
e 2(2m)? Vi(wy(u P(v1|v2)Q(va|v1)

They depend on more kinematic invariants ...

... and result in more integrals / pentagons / flux-tube particles

Arguably harder to study but here again ingredients are known at any value of the coupling constant

They may used to put constraints on form factors of higher-charge operators at higher loops



Summary

Form factors of half-BPS ops admit a dual description in terms of null Wilson loops

Unlike for scattering amplitudes the Wilson loops here are infinite and periodic

Local operators are expected to map to on-shell states in the dual picture

Most natural choice for half-BPS operators are states made out of zero-momentum scalars

This picture may be checked explicitly through one loop at weak coupling

It may also be used to motivate and develop the OPE approach for calculating form factors at finite coupling

Solution may be found to all loops using integrability building blocks such as the tilted BES kernel



Outlook

Can we use Wilson loop picture to calculate non-MHV form factors?

This may naively be done by considering more general super Wilson loop operators - would be nice to check it
Form factors of non-protected operators?

Any local operator should admit a dual description

Precise dictionary is still largely unknown

One may hope to make progress for simplest non-protected operator: Konishi operator K = eapcp It qSAB » P
Its form suggests to look for a dual R-singlet state

Can we make sense of it? Can we bootstrap its form factors using integrability?

May bridge the gap between integrable structures governing spectral problem and scattering amplitudes






