#### Wilson Loop Duality and OPE for Form Factors of 1/2-BPS Operators

2023 Theoretical Physics Seminar Shing-Tung Yau Center of Southeast University

Benjamin Basso - LPENS

Based on recent work with Alexander Tumanov

# Solving N=4 Super-Yang-Mills

- Maximally supersymmetric Yang-Mills theory in 4 dimensions
- Lots of symmetries: conformal invariance, supersymmetry, S-duality, ...
- AdS/CFT correspondence: Duality with superstring theory on AdS5\*S5
- Integrability: The theory is believed to be "exactly solvable" in the large Nc (planar) limit
- Wonderful laboratory for studying gauge/string duality and uncovering hidden structures in gauge theories
- Lots of progress with correlation functions: exact spectrum of scaling dimensions and methods at higher points
- Important developments in calculation of on-shell quantities such as scattering amplitudes

# Scattering amplitudes / Wilson loops duality

• **Duality** between amplitudes and null polygonal Wilson loops

" 
$$\log A_n = \log W_n$$
"



- Null momenta of amplitude map to null edges of WL
- Bonus: two copies of conformal groups (original and dual) combine into a Yangian (manifestation of integrability)
- Dual conformal symmetry put severe constraints on amplitudes

[Alday,Maldacena]
[Drummond,Korchemsky,Sokatchev]
[Brandhuber,Heslop,Travaglini]
[Drummond,Henn,Korchemsky,Sokatchev]
[Drummond,Henn,Plefka]

- 4- and 5-gluon amplitudes entirely fixed by dual conformal symmetry
- Finite part of n > 5 amplitudes not fixed by functions of 3n-15 cross ratios (ratios of products of Mandelstam invariants / distances between cusps)

## Progress report

• Duality is at the heart of many recent progress in scattering amplitudes

Amplituhedron/Grassmannian, Amplitude Function Bootstrap, TBA, Pentagon OPE, ...

- Function Bootstrap: Aim at constructing higher multiplicity amplitudes at higher loops in generic kinematics
- Combine physical/structural requirements on solutions with known boundary data (collinear/Regge limit, ...)
  - 6-point amplitudes through 7 loops
  - 7-point amplitudes through 4 loops
  - 8-point amplitudes through 3 loops
  - n-point amplitudes through 2 loops (symbol)

Integrable Bootstrap: Aim at constructing amplitudes at finite coupling as a systematic (OPE) expansion

[Bern, Dixon, Smirnov]

#### What about other on-shell observables?

• Important class: Form factors of local operators - bridge between amplitudes and operators

$$F_{\mathcal{O}}(p_1,\ldots,p_n;q) = \int d^4x \, e^{-iqx} \langle p_1,\ldots,p_n | \mathcal{O}(x) | 0 \rangle$$

Boundary

- String Theory: T-duality, mapping UV into IR and vice versa
- It follows that WL cannot be closed when total momentum non zero  $q = \sum_{i=1}^{n} p_i \neq 0$
- Hint at duality between form factors and null periodic Wilson loops (with period q)
- Lots of evidence gathered for operators in stress tensor supermultiplet
- New integrable bootstrap (FFOPE) and function bootstrap were proposed to determine its form factors at finite / weak coupling

[Brandhuber,Spence,Travaglini,Yang]
[Brandhuber,Gurdogan,Mooney,Travaglini,Yang]
[Penante,Spence,Travaglini,Wen]
[Bork][Brandhuber,Penante,Travaglini,Wen]

[Sever, Tumanov, Wilhelm]
[Dixon, Gurdogan. McLeod, Wilhelm]
[Dixon, Gurdogan. Liu, McLeod, Wilhelm]
[Guo, Wang, Yang]



[Alday, Maldacena]

[Maldacena,Zhiboedov]

[Brandhuber, Spence, Travaglini, Yang]

[Bork][Sever,Tumanov,Wilhelm]

[Brandhuber, Gurdogan, Mooney, Travaglini, Yang]

#### What about other on-shell observables?

Important class: Form factors of local operators - bridge between amplitudes and operators

$$F_{\mathcal{O}}(p_1,\ldots,p_n;q) = \int d^4x \, e^{-iqx} \langle p_1,\ldots,p_n | \mathcal{O}(x) | 0 \rangle$$

Boundary

- String Theory: T-duality, mapping UV into IR and vice versa
- It follows that WL cannot be closed when total momentum non zero  $q = \sum_{i=1}^{n} p_i 
  eq 0$
- Hint at duality between form factors and null periodic Wilson loops (with period q)
- More general operators?
- Expect
  - Local operators to map to states (BC) at the horizon
  - Integrable bootstrap should apply to all of them
- Natural step: develop WL duality and OPE for half-BPS operators



[Alday,Maldacena]

[Maldacena,Zhiboedov]

[Brandhuber, Spence, Travaglini, Yang]

[Bork][Sever,Tumanov,Wilhelm]

[Brandhuber, Gurdogan, Mooney, Travaglini, Yang]

#### Plan

- Super form factors of half BPS operators
- Super Wilson loop duals
- FFOPE and integrable bootstrap
- Conclusion

# Super Form Factors and Super Wilson Loops

## States and operators

- On-shell state: gluons and super-partners (gauginos and scalars)
- They may all be encoded in a single CPT invariant on-shell N = 4 superstate

$$\Phi(\lambda, \tilde{\lambda}, \tilde{\eta}) = G^+ + \Psi_A \tilde{\eta}^A + \Phi_{AB} \tilde{\eta}^A \tilde{\eta}^B + \ldots + \tilde{\eta}^1 \ldots \tilde{\eta}^4 G^-$$

- $\lambda^{lpha}\,, ilde{\lambda}^{\dot{lpha}}\,$  are spinor helicity variables and  $ilde{\eta}^{A=1,2,3,4}\,$  are Grassmann variables
- Eigenstate with momentum  $p^{\alpha\dot{\alpha}}=\sigma_{\mu}^{\alpha\dot{\alpha}}p_{\mu}=\lambda^{\alpha}\tilde{\lambda}^{\dot{\alpha}}$  and super momentum  $q^{\alpha A}=\lambda^{\alpha}\tilde{\eta}^{A}$
- 1/2-BPS operator: Chiral Primary Operator and its Q descendants  $\mathcal{T}_k(\theta) = e^{ heta_{A}Q^{lpha_A}} \cdot \operatorname{Tr} \phi(0)^k$
- Stress-tensor supermultiplet (k=2):  $\mathcal{T}_2(\theta) = \operatorname{Tr} \phi(0)^2 + \ldots + (\theta)^4 \operatorname{Tr} \mathcal{L}$
- CPO have R-charge k and scaling dimension k

[Brandhuber, Gurdogan, Mooney, Travaglini, Yang] [Penante, Spence, Travaglini, Wen]

[Nair]

## Super form factors

ullet Super form factors are defined as the super-Fourier transform of matrix elements of  $\,\mathcal{T}_k(x)$ 

$$\mathcal{F}_{k,n}(1,\ldots,n;q,\gamma) = \int d^4x d^4\theta e^{-iqx-\gamma\theta} \langle \Phi_1 \ldots \Phi_n | \mathcal{T}_k(x) | 0 \rangle$$

Unlike scattering amplitudes, for form factors the (super) momentum is generically non zero

$$q^{\alpha\dot{\alpha}} = \sum_{i=1}^{n} \lambda_i^{\alpha} \tilde{\lambda}_i^{\dot{\alpha}} \neq 0 \qquad \gamma^{\alpha+} = \sum_{i=1}^{n} \lambda_i^{\alpha} \tilde{\eta}_i^{a'} \neq 0 \qquad \gamma^{\alpha-} = \sum_{i=1}^{n} \lambda_i^{\alpha} \tilde{\eta}_i^{a} = 0$$

- Split R-indices with a = 1,2 for supercharges annihilating the operators and a' = 3,4 for the remaining ones
- SUSY Ward identities put constraints on the super form factors which must take the form

$$\mathcal{F}_{k,n} = \frac{\delta^{(4)}(q - \sum_{i} \lambda_{i} \tilde{\lambda}_{i}) \delta^{(2|2)}(\gamma^{+} - \sum_{i} \lambda_{i} \tilde{\eta}_{i}^{+}) \delta^{(2|2)}(\sum_{i} \lambda_{i} \tilde{\eta}_{i}^{-})}{\langle 12 \rangle \langle 23 \rangle \dots \langle n1 \rangle} \times W_{k,n} \quad \text{where} \quad \langle ij \rangle = \epsilon_{\alpha\beta} \lambda_{i}^{\alpha} \lambda_{i}^{\beta}$$

• MHV form factors correspond to terms with lowest fermionic degree  $W_{k,n}^{\mathrm{MHV}} = \mathrm{Poly}^{2(k-2)}(\tilde{\eta}_i^{a=1,2})$ 

#### Tree level data

- Explicit expressions for MHV tree form factors have been obtained for all half-BPS operators  $\operatorname{Tr}\Phi(0)^k$
- Simplest examples:

[Brandhuber, Gurdogan, Mooney, Travaglini, Yang] [Penante, Spence, Travaglini, Wen]

$$W_{k=2,n}^{\text{tree}} = 1$$

$$W_{k=3,n}^{\rm tree} = \sum_{1\leqslant i < j \leqslant n} \langle ij \rangle \, \tilde{\eta}_i^- \cdot \tilde{\eta}_j^- \qquad \qquad \text{(cyclic when } \gamma^- = 0 \quad \text{)}$$

• Higher-k form factors are given by higher polynomials in the Lorentz × R-invariant products

$$\langle ij\rangle = \epsilon_{\alpha\beta}\lambda_i^{\alpha}\lambda_j^{\beta} \qquad \qquad \tilde{\eta}_i^- \cdot \tilde{\eta}_j^- = \frac{1}{2}\epsilon_{ab}\tilde{\eta}_i^a\tilde{\eta}_j^b$$

• General formula at higher k is most easily obtained by using BCFW-like recursion relations (given later on)

### Mapping to dual coordinates

- Gain insight into dual Wilson loop by performing transformation to dual coordinates
- (Super) momenta map to (super) coordinates of the cusps of a null polygon

$$\lambda_i^{\alpha} \tilde{\lambda}_i^{\dot{\alpha}} = x_i^{\alpha \dot{\alpha}} - x_{i-1}^{\alpha \dot{\alpha}} \qquad \lambda_i^{\alpha} \tilde{\eta}^A = \theta_i^{\alpha A} - \theta_{i-1}^{\alpha A}$$



Alternatively one may specify the null polygon using (super) momentum twistors

[Drummond, Henn, Korchemsky, Sokatchev] [Hodges]

$$\mathcal{Z}_{i} = \begin{pmatrix} \lambda_{i}^{\alpha} \\ \mu_{i}^{\dot{\alpha}} \\ \eta_{i}^{A} \end{pmatrix} = \begin{pmatrix} \lambda_{i}^{\alpha} \\ \lambda_{i\alpha} x_{i}^{\alpha \dot{\alpha}} \\ \lambda_{i\alpha} \theta_{i}^{\alpha A} \end{pmatrix} \in \mathbb{P}^{3|4}$$

With non-local transformations

$$\tilde{\lambda}_{i}^{\dot{\alpha}} = \frac{\langle ii+1\rangle\mu_{i-1}^{\dot{\alpha}} + \langle i+1i-1\rangle\mu_{i}^{\dot{\alpha}} + \langle i-1i\rangle\mu_{i+1}^{\dot{\alpha}}}{\langle i-1i\rangle\langle ii+1\rangle} \qquad \tilde{\eta}_{i}^{A} = \frac{\langle ii+1\rangle\eta_{i-1}^{A} + \langle i+1i-1\rangle\eta_{i}^{A} + \langle i-1i\rangle\eta_{i+1}^{A}}{\langle i-1i\rangle\langle ii+1\rangle}$$

## Dual superconformal symmetry

- Similarly to amplitudes, MHV form factors exhibit dual super-conformal symmetry
- Precisely, they are invariant under an SL(2|2) subgroup of transformations acting on the dual variables

$$z_i = \left( \begin{array}{c} \lambda_i^{lpha} \\ \eta_i^a \end{array} \right) \qquad {
m with} \qquad a=1,2$$

• MHV form factors may be expressed in terms of SL(2|2) R-invariants

$$(ijk) \equiv \frac{\prod_{a=1}^{2} (\langle ij \rangle \eta_{k}^{a} + \text{cyclic})}{\langle ij \rangle \langle jk \rangle \langle ki \rangle}$$

• Tree form factors for k = 3 may be written concisely for any any number of points

$$W_{k=3,n}^{\text{tree}} = \sum_{i=2}^{n-1} (1ii + 1)$$

# m = 2 Amplituhedron

• R-invariants are subject to 4-term identity (123) + (341) = (412) + (234)

 It may be understood geometrically as an equivalence relation for two triangulations of a square



One may see n-pt form factors as area of a convex n-gon where each tile is associated with an R-invariant

$$W_{k=3,n}^{\rm tree} = \sum_{i=2}^{n-1} (1ii+1) \qquad \qquad \qquad 1 \qquad \qquad \\ \sum_{i=2}^{\text{Same structure observed recently for correlation functions}} \\ \text{[Caron-Huot,Coronado,Muhlmann]}$$

• Form factors provide a realisation of the m=2 Amplituhedron (geometric reformulation of scattering amplitudes)

## Higher-charge form factors

• Higher-charge form factors were conjectured to satisfy BCFW-like recursion relations

[Penante, Spence, Travaglini, Wer

They relate form factors with different k and n

$$W_{k,n}^{\text{tree}}(1,\ldots,n) = W_{k,n-1}^{\text{tree}}(1,\ldots,n-1) + (n-1n1)W_{k-1,n-1}^{\text{tree}}(1,\ldots,n-1)$$

- This relation has a simple geometrical interpretation for k = 3
- General solution for any k can be written concisely

$$W_{k,n}^{\text{tree}} = \frac{1}{(k-2)!} \left[ W_{3,n}^{\text{tree}} \right]^{k-2}$$

- Higher-charge form factors are higher-degree polynomials in R-invariants
- Formula is also known in the context of the m=2 Amplituhedron where k-2 plays the role of helicity degree

# Super Wilson loop dual

- Can one recover this data from actual Wilson loop calculation? Precise Wilson loop dual?
- Total momentum is non zero: we should consider a periodic Wilson loop



• Futhermore, must be a super Wilson loop since MHV form factors depend on Grassmann variables

## Dual operator

Null polygonal super Wilson loop

$$W_n = \frac{1}{N_c} \operatorname{Tr} \left[ \cdots \mathcal{V}_{n1} e^{i \int_0^1 dt_1 \mathcal{E}_1(t_1)} \mathcal{V}_{12} e^{i \int_0^1 dt_2 \mathcal{E}_2(t_2)} \cdots \mathcal{V}_{n1} \cdots \right]$$

Super-connection integrated along light-like edges

$$\mathcal{E}_{i} = p_{i}^{\alpha\dot{\alpha}}A_{\dot{\alpha}\alpha} + i\tilde{\lambda}_{i}^{\dot{\alpha}}\bar{\psi}_{\dot{\alpha}}\eta_{i}^{a} + \frac{i}{2\langle ii+1\rangle}\tilde{\lambda}_{i}^{\dot{\alpha}}\lambda_{i+1}^{\alpha}D_{\dot{\alpha}\alpha}\phi_{ab}\eta_{i}^{a}\eta_{i}^{b}$$

Supplemented by vertex insertion at the cusp

$$\mathcal{V}_{ii+1} = 1 + \phi_{ab} \left[ \frac{\eta_i^a \eta_{i+1}^b}{\langle ii+1 \rangle} + \frac{\langle i-1i+1 \rangle \eta_i^a \eta_i^b}{\langle i-1i \rangle \langle ii+1 \rangle} \right] + \frac{1}{2} \text{ (same thing)}^2$$

- Defined such as to be annihilated by super-translations  $\left[\mathcal{Q}_{\alpha a}+\sum_{i=1}^n\lambda_{\alpha}^i\frac{\partial}{\partial\eta_i^a}\right]W_n=0$  (up to gauge transformation)
- For MHV form factors of half-BPS operators we may restrict ourselves to the SU(2) subsector with a, b = 1, 2



[Caron-Huot] [Mason,Skinner]

#### **Dual state**

The super Wilson loop takes care of the external state in FF

$$W_n \Leftrightarrow \prod_{i=1}^n \Phi(\lambda_i, \tilde{\lambda_i}, \tilde{\eta_i})$$

To represent the local operator we must pick a dual state

$$\langle 1, \dots, n | \operatorname{Tr} \phi(0)^k + \dots | 0 \rangle \qquad \Leftrightarrow \qquad \langle \mathcal{F}_k | W_n | 0 \rangle$$



• Requirements: dual state must carry the right R-charge and be annihilated by (super) translations in dual space

$$\langle \mathcal{F}_k | \mathcal{P}_{\dot{\alpha}\alpha} = 0 \qquad \langle \mathcal{F}_k | \mathcal{Q}_{\alpha a} = 0$$

- This is because these symmetries are redundancies of the dual description
- Simplest choice: State composed of (k-2) zero-momentum scalar particles

$$\langle \mathcal{F}_k | = \langle \phi^{12}(0) \dots \phi^{12}(0) |$$

• In particular, the dual state for k = 2 (stress tensor multiplet) is the vacuum state

#### Tree level check

• We may perform a simple check of this conjecture at weak coupling:  $\,\mathcal{E}_i = \mathcal{O}(g^2)$ 

$$W_{n,k}^{\text{tree}} = \langle \phi^{12}(0) \dots \phi^{12}(0) | \prod_{i=1}^{n-1} \mathcal{V}_{ii+1} | 0 \rangle$$

Basic tree matrix element

$$\langle \phi^{12}(0)|\phi_{ab}(x)|0\rangle = \epsilon_{ab}$$



It immediately leads to

$$W_{k=3,n}^{\text{tree}} = \sum_{i=1}^{n-1} \langle \phi^{12}(0) | \mathcal{V}_{ii+1}^{(\eta^2)} | 0 \rangle = \sum_{i=1}^{n-1} \left[ \frac{\eta_i^a \eta_{i+1}^b}{\langle ii+1 \rangle} + \frac{\langle i-1i+1 \rangle \eta_i^a \eta_i^b}{\langle i-1i \rangle \langle ii+1 \rangle} \right]$$

• It agrees perfectly with the tree form factor data

#### Tree level check

• We may perform a simple check of this conjecture at weak coupling:  $\mathcal{E}_i = \mathcal{O}(g^2)$ 

$$W_{n,k}^{\text{tree}} = \langle \phi^{12}(0) \dots \phi^{12}(0) | \prod_{i=1}^{n-1} \mathcal{V}_{ii+1} | 0 \rangle$$

Basic tree matrix element

$$\langle \phi^{12}(0)|\phi_{ab}(x)|0\rangle = \epsilon_{ab}$$

• Similarly at higher k. E.g.

$$\Rightarrow W_{4,n}^{\text{tree}} = \frac{1}{2} \left[ W_{3,n}^{\text{tree}} \right]^2$$



- We may also perform a check at one loop
- Two main class of diagrams
- 1st class: exchange diagrams



• They generate long-range corrections to the corner vertex  $|\mathcal{V}_{ii+1}| o |\mathcal{V}_{ij}|$ 

- We may also perform a check at one loop
- Two main class of diagrams
- 1st class: exchange diagrams











- They generate long-range corrections to the corner vertex  $|\mathcal{V}_{ii+1}| o |\mathcal{V}_{ij}|$
- One-loop result is a sum of R-invariants dressed by transcendentality-2 functions (box integrals)

$$W_{k=3,n}^{1-\text{loop}} = \sum_{i,j} \text{tree}(1\dots ij \dots n) \times F_{ij}$$

Match precisely known form-factor result obtained with generalized unitarity method

• 2nd class diagrams - contain IR divergences



- These divergences are dual to the UV divergences of the local operators
- Half-BPS operators are protected: we observe complete cancellation among these diagrams

• 2nd class diagrams - contain IR divergences



- These divergences are dual to the UV divergences of the local operators
- Half-BPS operators are protected: we observe complete cancellation among these diagrams
- Self-energy diagrams are needed for a complete cancellation



• k = 3 (one scalar state) is special



- Fewer diagrams are contributing and cancellation may seem incomplete
- But new diagrams become available at the same time
- Wrapping diagrams with particles winding around the periodic direction are needed



# Form Factor OPE and Integrable Bootstrap

## **Operator Product Expansion**

Null Wilson loop picture allows us to develop OPE for scattering amplitudes

[Alday,Gaiotto,Maldacena,Sever,Vieira] [BB,Sever,Vieira]



• Idea: Write WL as a sum over a complete basis of eigenstates of the string / flux tube ending on two null edges



- The state is produced/absorbed by bottom/top pentagon
- Pentagon transitions are akin to the structure constants for the usual OPE

#### **Building blocks**:

- 1. Spectrum of flux tube eigenstates
- 2. Pentagon transitions between flux-tube states

Integrability allows us to determine both data at finite coupling

## **Operator Product Expansion**

Null Wilson loop picture allows us to develop OPE for scattering amplitudes

[Alday,Gaiotto,Maldacena,Sever,Vieira] [BB,Sever,Vieira]



• Idea: Write WL as a sum over a complete basis of eigenstates of the string / flux tube ending on two null edges



- Interpretation: OPE provides a systematic expansion around the collinear limit
- Key advantage: non-diagrammatic OPE is valid at any value of the coupling constant

#### **Building blocks**:

- 1. Spectrum of flux tube eigenstates
- 2. Pentagon transitions between flux-tube states

Integrability allows us to determine both data at finite coupling

# **Operator Product Expansion**

The more gluons we scatter the more pentagons we need



$$\sum_{\psi_{1,\dots,1}} e^{-\tau_{1}E(\psi_{1})-\dots-\tau_{n-5}E(\psi_{n-5})} P(0|\psi_{1}) P(\psi_{1}|\psi_{2}) P(\psi_{2}|\psi_{3}) \dots P(\psi_{n-5}|0)$$

- Form factors may be addressed similarly using periodic Wilson loops
- Main difference: WL produces a state that is contracted with the dual state (~ boundary state)
- Pentagon sequence ends at the top with the so-called form factor transitions

[Sever, Tumanov, Wilhelm]

$$\langle \mathcal{F}_k |$$
  $\rangle = \sum_{\psi} e^{-\tau E(\psi)} P(0|\psi) \times \mathcal{F}_k(\psi)$ 

Amplitude for absorption of the flux-tube state by the half-BPS operator

FF transitions provide a complete description of form factors in collinear limit

# Integrable bootstrap axioms

- Two-body form factor transition  $F_{\phi\phi}(u,v) = \langle \mathcal{F} | \phi(u) \phi(v) \rangle$
- Main axioms (true at any value of the coupling constant):
- I. Watson equation  $F_{\phi\phi}(u,v) = S_{\phi\phi}(u,v) F_{\phi\phi}(v,u)$
- II. Crossing relation  $F_{\phi\phi}(u^{2\gamma},v)=F_{\phi\phi}(v,u)$
- III. Kinematical axiom  $F_{\phi\phi}(u,u)=0$  (Fermi exclusion for identical particles)







• Similar axioms were studied for the form factors of the stress tensor multiplet (k=2)

[Sever, Tumanov, Wilhelm]

• Difference is that stress tensor produces SU(4) singlets while interested here in symmetric product irreps

#### BES kernel and its relatives

Explicit solution for stress tensor makes use of a particular kernel which encodes the coupling constant

[Sever, Tumanov, Wilhelm]

Kernel belongs to a family of kernels which show up in studies of scattering amplitudes

[BB,Dixon,Papathanasiou]

*Tilted BES kernel* is defined as a semi-infinite matrix (i, j >1)

$$\mathbb{K}(\alpha) = 2\cos\alpha \begin{bmatrix} \cos\alpha \,\mathbb{K}_{\circ\circ} & \sin\alpha \,\mathbb{K}_{\circ\bullet} \\ \sin\alpha \,\mathbb{K}_{\bullet\circ} & \cos\alpha \,\mathbb{K}_{\bullet\bullet} \end{bmatrix}$$

$$\mathbb{K}(\alpha) = 2\cos\alpha \begin{bmatrix} \cos\alpha \,\mathbb{K}_{\circ\circ} & \sin\alpha \,\mathbb{K}_{\circ\bullet} \\ \sin\alpha \,\mathbb{K}_{\bullet\circ} & \cos\alpha \,\mathbb{K}_{\bullet\bullet} \end{bmatrix} \qquad \mathbb{K}_{ij} = 2(-1)^{ij+j} \int_{0}^{\infty} \frac{dt}{t} \frac{J_{i}(2gt)J_{j}(2gt)}{e^{t}-1}$$

BES kernel controlling the cusp anomalous dimension

$$\mathbb{K}_{\mathrm{BES}} = \mathbb{K}(\alpha = \pi/4)$$

[Beisert, Eden, Staudacher]

"Octagon" kernel is defined similarly

$$\mathbb{K}_{\mathrm{oct}} = \mathbb{K}(\alpha = 0)$$

This kernel also plays a role in study of correlation functions of large charge operators

[Coronado] [Belitsky,Korchemsky] [Kostov,Petkova,Serban]

# Solution at finite coupling

- Relevance of these kernels is that they allow us to define quantities obeying the axioms we are interested in
- A "general solution" may be written for any value of the deformation parameter (tilt angle)

[Sever, Tumanov, Wilhelm] [BB, Tumanov]

Schematically

$$P^{[\alpha]}(u|v) = \frac{\Gamma(iu - iv)}{g^2 \Gamma(\frac{1}{2} + iu)\Gamma(\frac{1}{2} - iv)} e^{-\kappa_{\alpha}(u) \cdot [1 + \mathbb{K}(\alpha)]^{-1} \cdot \kappa_{\alpha}(v)}$$

- It is designed in a way such that a number of properties are immediately obeyed (such as the Watson eq.)
- The crossing axiom depends however sensitively on the choice of the deformation parameter
- The crossing axiom relevant for the pentagon (closed) Wilson loop requires alpha = pi/4

[BB,Sever,Vieira]

$$P(u|v) = P^{[\alpha=\pi/4]}(u|v)$$

• Its pole at u = v defines a natural 1-pt function / integration measure

$$\mu(u) = \frac{\imath}{\mathrm{Res}_{v=u} P(u|v)}$$

# Solution at finite coupling

- Relevance of these kernels is that they allow us to define quantities obeying the axioms we are interested in
- A "general solution" may be written for any value of the deformation parameter (tilt angle)

[Sever, Tumanov, Wilhelm] [BB, Tumanov]

Schematically

$$P^{[\alpha]}(u|v) = \frac{\Gamma(iu - iv)}{g^2 \Gamma(\frac{1}{2} + iu)\Gamma(\frac{1}{2} - iv)} e^{-\kappa_{\alpha}(u) \cdot [1 + \mathbb{K}(\alpha)]^{-1} \cdot \kappa_{\alpha}(v)}$$

- It is designed in a way such that a number of properties are immediately obeyed (such as the Watson eq.)
- The crossing axiom depends however sensitively on the choice of the deformation parameter
- The crossing axiom relevant for the zig-zag (periodic) Wilson loop requires alpha = 0

$$Q(u|v) = P^{[\alpha=0]}(u|v)$$

• Its pole at u = v defines a new 1-pt function / integration measure

$$\nu(u) = \frac{\imath}{\mathrm{Res}_{v=u}Q(u|v)}$$

#### General solution

• General (factorized) solution for absorption of k-2 scalars by the half-BPS operator  ${
m Tr}\,\phi^k$ 

$$\langle \mathcal{F}_k | \phi(u_1), \dots, \phi(u_{k-2}) \rangle = \prod_{i < j}^{k-2} \frac{1}{Q(u_j | u_i)}$$

- It may be shown to verify all the bootstrap axioms
- All the complicated coupling constant dependence resides in the two-body form factor
- 1pt form factor is absorbed in the measure used to integrate over the (k-2)-scalar phase space

$$\int dPS = \frac{1}{(k-2)!} \int \frac{du_1 \dots du_{k-2}}{(2\pi)^{k-2}} \prod_{i=1}^{k-2} \sqrt{\mu(u_i)\nu(u_i)}$$

• It combines the two measures derived from the pentagon P and the "octagon" Q

# Simplest example

• Exact representation for the collinear limit of the 3pt form factor of the k=3 operator

$$W_{3,3}(u_1, u_2, u_3) = \int \frac{du}{2\pi} \sqrt{\mu(u)\nu(u)} e^{i\sigma p(u) - \tau E(u)} + \dots$$



- Dots stand for subleading terms in the collinear limit  $u_3 \approx e^{-2\tau} \to 0$
- The OPE time and space variables parametrize the Mandelstam invariants

$$u_3 = \frac{s_{12}}{q^2} = \frac{1}{1 + e^{2\tau}} \qquad u_1 = \frac{s_{23}}{q^2} = \frac{1}{1 + e^{2\sigma} + e^{-2\tau}} \qquad u_2 = \frac{s_{31}}{q^2} = \frac{e^{2\sigma}}{(1 + e^{2\tau})(1 + e^{2\sigma} + e^{-2\tau})}$$

- All ingredients (energy, momentum, measures) are known to all loops
- They may be used to bootstrap the 3pt form factor through 6 loops

# Higher charge example

• Exact representation may also be obtained for higher-charge operators. E.g. 4pt k=4

$$W_{4,4} = \int \frac{du \, du_1 du_2}{2(2\pi)^2} \sqrt{\mu(\mathbf{u})\nu(\mathbf{u})} e^{i\sigma_1 p(u) + i\sigma_2 p(u_{1,2}) - \tau_1 E(u) - \tau_2 E(u_{1,2})} \frac{P(u|v_1)P(u|v_2)}{P(v_1|v_2)Q(v_2|v_1)} + \dots$$

- They depend on more kinematic invariants ...
- ... and result in more integrals / pentagons / flux-tube particles
- Arguably harder to study but here again ingredients are known at any value of the coupling constant
- They may used to put constraints on form factors of higher-charge operators at higher loops

### Summary

- Form factors of half-BPS ops admit a dual description in terms of null Wilson loops
- Unlike for scattering amplitudes the Wilson loops here are infinite and periodic
- Local operators are expected to map to on-shell states in the dual picture
- Most natural choice for half-BPS operators are states made out of zero-momentum scalars
- This picture may be checked explicitly through one loop at weak coupling
- It may also be used to motivate and develop the OPE approach for calculating form factors at finite coupling
- Solution may be found to all loops using integrability building blocks such as the tilted BES kernel

#### Outlook

- Can we use Wilson loop picture to calculate non-MHV form factors?
- This may naively be done by considering more general super Wilson loop operators would be nice to check it
- Form factors of non-protected operators?
- Any local operator should admit a dual description
- Precise dictionary is still largely unknown
- One may hope to make progress for simplest non-protected operator: Konishi operator  $\mathcal{K} = \epsilon_{ABCD} \operatorname{Tr} \phi^{AB} \phi^{CD}$
- Its form suggests to look for a dual R-singlet state
- Can we make sense of it? Can we bootstrap its form factors using integrability?
- May bridge the gap between integrable structures governing spectral problem and scattering amplitudes

### Thanks!