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Abstract: Integrable quantum field theories can be regularized on the lattice while preserving
integrability. The resulting theories on the lattice are integrable lattice models. A prototype of such
a regularization is the correspondence between a sine-Gordon model and a six-vertex model on a
light-cone lattice. We propose an integrable deformation of the light-cone lattice model such that
in the continuum limit we obtain the TT̄-deformed sine-Gordon model. Under this deformation,
the cut-off momentum becomes energy dependent and the underlying Yang–Baxter integrability is
preserved. Therefore, this deformation is integrable but non-local: similar to the TT̄ deformation of
quantum field theory.
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1. Introduction
Understanding ultraviolet (UV) behavior of quantum field theory is a fundamental

question. Typical UV behavior includes the famous Landau pole, which indicates that UV
completion is needed; or asymptotic safety, which means the theory flows to a UV-fixed
point. Recently, a third paradigm was proposed and dubbed as asymptotic fragility [1,2].
The novel feature of this new behavior is that the UV theory is well-defined but is not local
in the usual sense. Therefore it is not a fixed point like CFT but some non-local theory.

Intriguingly, such non-local theories can be constructed by special irrelevant deforma-
tions of usual quantum field theories. The most-studied example of such deformations is
the TT̄ deformation [3,4]. It has been discovered that the deformation has many special
features. Most notably, it preserves integrability and is solvable in a certain sense. This
allows analytic computations for many physical quantities, especially when the original
theory is a CFT or integrable quantum field theory (IQFT).

Despite many developments, some basic and important questions remain open.
One outstanding question is that the precise nature of the non-locality is not completely
understood. This is reflected in the computation of correlation functions of local operators.
On the one hand, in a true gravity theory, these quantities are, in general, not well-defined
since they are not diffeomorphism invariant. On the other hand, the TT̄-deformed QFT
is simpler than coupling the theory to generic gravity theories, as the gravity theory it
couples to is quite simple. It is thus an open question whether one can make sense of
these quantities in the deformed theory and if so, how to compute them non-perturbatively.
Very recently, there has been progress in computing correlation functions using various
methods [5–9]. For CFTs, the deformed correlators are most conveniently written in mo-
mentum space. Performing a Fourier transform back to spacetime is subtle [5–7]. For IQFTs,
one can adapt the form factor bootstrap approach [8,9]. So far, an explicit result has been
obtained up to two-particle contributions. This result already exhibits some new features.
In particular, for one sign of the deformation parameter, the form factor expansion does not
converge, even at the two-particle level.

To proceed further requires a better understanding of the UV behavior of the de-
formed theories. To this end, we advocate another non-perturbative approach for studying
TT̄ deformation. A well-known approach to tame the UV divergences of a QFT is to put
the theory on a lattice. The lattice regularization not only removes UV divergences but
also builds a fruitful connection between quantum field theory and statistical mechanics.
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This approach is particularly suitable for integrable quantum field theories because lattice
regularization can be performed in an integrability-preserving way. The resulting theory on
the lattice is integrable and can be solved by the Bethe ansatz. One of the most well-known
examples is the lattice regularization of sine-Gordon theory for which the corresponding lat-
tice model is the six-vertex model [10–13]. The latter is intimately related to the Heisenberg
XXZ spin chain.

Given a lattice regularization of IQFT, a natural and intriguing question is how to
deform the underlying integrable lattice model in such a way that in the continuum limit
we obtain the TT̄-deformed quantum field theory. Such a deformation, if it exists, must
preserve integrability and should be non-local. Once this deformation is found, we can
gain more intuition about TT̄ deformation and can better understand what happens in the
behavior of UV. In addition, some physical quantities such as correlation functions can be
computed on the lattice using integrability techniques. By taking the continuum limit, one
can compute these quantities in the corresponding field theory non-perturbatively.

To find the deformation for the lattice model, we investigate the light-cone lattice
regularization of the sine-Gordon theory. This is a prototype of IQFTs; it is interesting
both classically and in the quantum regime. At the classical level, its equation of motion
leads to the famous sine-Gordon equation, which allows soliton solutions. Integrabil-
ity at the classical level is guaranteed by the Lax representation and the classical Yang–
Baxter equation. Soliton solutions can be found systematically by the inverse scattering
method. TT̄ deformation at the classical level has been investigated in various works: see,
for example, [14,15].

At the quantum level, it is known that TT̄ deformation modifies the S-matrix by
multiplying a simple and universal CDD (short for Castillejo–Dalitz–Dyson [16]) factor [3,4].
This affects the finite-volume spectrum of the model in a simple way. The spectrum of
the deformed sine-Gordon model can be calculated by the non-linear integral equation
(NLIE) approach. By comparing lattice calculations with the TT̄-deformed NLIE, we can
‘trace back’ the deformation to the lattice model. The answer is simple. We need to deform
the cut-off rapidity of the lattice model in an energy-dependent way. In the continuum
limit, we keep the mass scale fixed; then, the deformation of cut-off rapidity is equivalent
to deforming the lattice spacing in an energy-dependent way. This echoes the fact that TT̄
deformation amounts to deforming the radius in an energy-dependent way. Away from
the continuum limit, this deformation can be regarded as an integrable deformation of the
lattice model, which is interesting in its own right.

The rest of the paper is organized as follows. In Section 2, we review lattice regu-
larization of the sine-Gordon model. In Section 3, we discuss the TT̄ deformation of the
sine-Gordon model in the continuum limit. In Section 4, we propose the deformation of
the lattice model and show that in the continuum limit it indeed leads to the TT̄-deformed
sine-Gordon model. We also study the ground-state energy of the deformed finite lattice
model. We conclude in Section 5 and discuss future directions.

2. Lattice Regularization of IQFT
In this section, we review the light-cone lattice regularization of sine-Gordon model [10,12].

For a more detailed discussion, see, for example, [17].

2.1. Light-Cone Lattice Regularization
Let us consider a Minkowski spacetime in two dimensions. We denote the space and

time coordinates as x and y and define the light-cone coordinate as x± = y ± x. We take
the space direction to be compact with length L, as is shown in Figure 1.

The lattice spacing is denoted by a. The light-cone lattice is defined by

M = {x± = an±/
√

2, n± ∈ Z} . (1)

We take the spacial direction to have 2N sites, and L = Na.
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Figure 1. Light-cone lattice regularization of spacetime. The spacial direction is compact.

2.1.1. The Hilbert Space
Each spacetime point is associated with four links: two in the past and two in the

future. The Hilbert space at each point is denoted by Hi. The generic vector of a basis of Hi
is denoted by

|α2i−1, α2i⟩ ≡ |αLi , αRi ⟩ (2)

where the odd/even numbers refers to right/left moving states. Here, each αk has two
degrees of freedom, corresponding to a bare particle that moves towards or away from the
spacetime point. The total Hilbert space is

H = ⊗N
i=1Hi. (3)

The basis of H at a fixed time is given by

|α1, α2⟩ ⊗ · · · ⊗ |α2N−1, α2N⟩ = |α1, α2, · · · , α2N⟩ ∈ H. (4)

2.1.2. Dynamics on the Lattice
Now we define the dynamics on the lattice. We denote the S-matrix associated with

|α2i−1, α2i⟩ by S2i−1,2i. We define the left and right diagonal transfer matrices by UL and
UR, respectively, as

UL =VS12S34 · · · S2N−1,2N , (5)

UR =V−1S12S34 · · · S2N−1,2N ,

where V is the shift operator in the spacial direction by half lattice spacing a/2

V = P12P23 · · ·P2N−1,2N . (6)

Here, Pi,i+1 is the permutation operator. The transfer matrices (5) move by one lattice
spacing in the left upward and right upward directions. Using these operators, we can
define the Hamiltonian H and momentum operator P of the system:

e−iaH = URUL, e−iaP = URU−1
L . (7)

2.2. The Integrable Lattice Model
Now we define an integrable model on the lattice. We take the S-matrix at each site to be

Sjk(u) = PjkRjk(u) (8)
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where Pjk is the permutation operator and Rjk is the R-matrix of the XXZ spin chain. More
explicitly, the S-matrix is given by

Sjk(u) =


1 0 0 0
0 c(u) b(u) 0
0 b(u) c(u) 0
0 0 0 1


jk

(9)

with the Boltzmann weights

b(u) =
sinh κu

sinh κ(iπ − u)
, c(u) =

i sin κu
sinh κ(iπ − u)

. (10)

Here, κ is a parameter with a range 0 ≤ κ ≤ 1. We have chosen the normalization such
that for real u, the S-matrix is unitary

S†
jk(u)Sjk(u) = 1. (11)

Integrability of the S-matrix is guaranteed by the Yang–Baxter equation:

Sjk(u)Sik(u + v)Sij(v) = Sij(v)Sik(u + v)Sjk(v). (12)

Following the standard algebraic Bethe ansatz, we define the monodromy matrix:

Ma(u|{θi}) = Sa1(u + θ1)Sa2(u + θ2) · · · SaN(u + θN) (13)

and the transfer matrix:

T(u|{θi}) = Tr a Ma(u|{θi}) , (14)

where u is called the spectral parameter and {θi} are the inhomogeneities. For any choice
of {θi}, one can diagonalize this transfer matrix by the Bethe ansatz.

The crucial fact is that for a specific choice of the spectral parameter and inhomo-
geneities, the transfer matrix (14) is related to the shift operators UL and UR defined in (5).
To this end, we take the inhomogeneities to be

θi = (−1)i+1Θ/2, i = 1, 2, · · · , 2N. (15)

We denote the corresponding transfer matrix as T(u|Θ/2). The shift operators are
given by

UL(Θ) = T(Θ/2|Θ/2), U†
R(Θ) = T(−Θ/2|Θ/2). (16)

Using the Bethe ansatz, we can find the eigenvalues of T(u|{θi}) with any spectral
parameter and inhomogeneities, including the special choice (15). This allows us to diago-
nalize UL and UR, which in turn gives the eigenvalues of H and P in (7).

2.3. The Non-Linear Integral Equation
Now we discuss how to solve the integrable lattice model. By solving the lattice

model, we mean diagonalizing the transfer matrix T(u|Θ/2). This can be done by the Bethe
ansatz. Each eigenstate |{uk}⟩ of the transfer matrix is parameterized by M parameters
called ’rapidities’:

{uk} = {u1, u2, · · · , uM}. (17)

The rapidities satisfy the Bethe ansatz equations (BAE)

(
sinh κ(uj + Θ + iπ

2 ) sinh κ(uj − Θ + iπ
2 )

sinh κ(uj + Θ − iπ
2 ) sinh κ(uj − Θ − iπ

2 )

)N

= −
M

∏
k=1

sinh κ(uj − uk + iπ)

sinh κ(uj − uk − iπ)
, j = 1, . . . , M. (18)
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In terms of the rapidities, the eigenstates of the Hamiltonian and momentum are given by

eia(E±P)/2 = (−1)M
M

∏
j=1

sinh κ(Θ ± uj + iπ/2)
sinh κ(Θ ± uj − iπ/2)

. (19)

In principle, one needs to solve the Bethe equations and find the Bethe roots. In the
thermodynamic limit, this is not feasible. One nice method to find the spectrum with
N ≫ 1 is the non-linear integral equation approach. This method plays an important role
in establishing a relation between the integrable lattice model and the sine-Gordon model.

2.3.1. The Counting Function
In order to write down the non-linear integral equation, we define an important

quantity called the counting function. For later convenience, let us define the function

ϕν(u) = i log
(

sinh κ(iπν + u)
sinh κ(iπν − u)

)
. (20)

The counting function is given by

ZN(u) = N
[
ϕ1/2(u + Θ) + ϕ1/2(u − Θ)

]
−

M

∑
k=1

ϕ1(u − uk). (21)

In terms of the counting function, the BAE (18), or, more precisely, its logarithmic,
form becomes

ZN(uj) = 2π Ij, Ij ∈ Z+
1 + δ

2
(22)

where δ = 0, 1 for even and odd M values respectively. In other words, if M is even, Ij are
half of odd integers; if M is odd, Ij are integers. Ij is called the ’mode number’.

2.3.2. The Antiferromagnetic Vacuum
In the continuum limit that we discuss below, different solutions of the BAE correspond

to different physical states of the sine-Gordon theory. In particular, the ground state of the
sine-Gordon theory corresponds to the antiferromagnetic vacuum solution of the lattice
model. The total spin for the antiferromagnetic vacuum is zero. Therefore, we have M = N.
The mode numbers for the vacuum solution are chosen such that the BAE becomes

ZN(uj) = (N − 2j + 1)π, j = 1, 2, · · · , N. (23)

There is a unique solution to this choice of mode number, and all the Bethe roots are
real numbers and are distributed symmetrically with respect to the origin.

Excited states of the sine-Gordon model correspond to other solutions of the BAE of
the lattice model. For example, if one root is missing in (23), then we have N − 1 Bethe
roots. This is like a ‘hole’ in the Fermi sea and corresponds to the one-soliton state of the
sine-Gordon model. Similarly, two holes correspond to the two-soliton state and so on.

2.3.3. The Non-Linear Integral Equation
Using the contour deformation trick, we can rewrite (21) as an integral equation for

the counting function. For the detailed derivation, refer to [12,17]. The result is

ZN(u) = 2N arctan
(

sinh u
cosh Θ

)
− i

∫ ∞

−∞
dv G(u − v − iη) log

(
1 + eiZN(v+iη)) (24)

+ i
∫ ∞

−∞
dv G(u − v + iη) log

(
1 + e−iZN(v−iη))

where the parameter η is a small, real parameter such that 0 < η < πκ/2. The convolution
kernel G(u) is given by
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G(u) =
∫ ∞

−∞

dk
4π

sinh[πk(ξ − 1)/2]
sinh(πkξ/2) cosh(πk/2)

eiku (25)

The parameter ξ is related to κ as

κ = 1/(1 + ξ). (26)

2.3.4. Energy and Momentum
In terms of the Bethe roots, the energy and momentum of the antiferromagnetic

vacuum is given by

EN =
1
a

N

∑
j=1

[
ϕ1/2(Θ − uj) + ϕ1/2(Θ + uj)− 2π

]
, (27)

PN =
1
a

N

∑
j=1

[
ϕ1/2(Θ − uj)− ϕ1/2(Θ + uj)

]
.

Here the choice of branch for the logarithm for EN is made such that the contribution
of each real root is negative definite so that excitations such as holes will have positive
energies. Using the contour deformation trick, these can also be written in terms of the
counting function:

EN = − 1
a

2Im
∫ dv

2π

(
1

cosh(Θ − v − iη)
− 1

cosh(Θ + v + iη)

)
log
(
1 + eiZN(v+iη)) (28)

− N
a
(π + κπ),

PN = − 1
a

2Im
∫ dv

2π

(
1

cosh(Θ − v − iη)
+

1
cosh(Θ + v + iη)

)
log
(
1 + eiZN(v+iη))

Sometimes the constant piece in the energy is also denoted as Ebulk:

Ebulk = −N
a

π(1 + κ). (29)

In the continuum limit, this term diverges as N2, and it is discarded. What we call
the ’Casimir energy’ in the continuum limit is EN − Ebulk. Equivalently, we can define the
shifted energy ẼN such that in the continuum limit it directly gives the Casimir energy.
We have

ẼN =
1
a

N

∑
j=1

[
ϕ1/2(Θ − uj) + ϕ1/2(Θ + uj) + (κ − 1)π

]
(30)

To sum up, to find the energy of the antiferromagnetic vacuum of the lattice model, we
first solve Equation (24) to find the counting function ZN(u) and then compute the energy
and momentum by (28).

2.4. The Continuum Limit
We have introduced the light-cone integrable lattice model and discussed its Bethe

ansatz solution. To make contact with the sine-Gordon theory, we need to take the contin-
uum limit. On the lattice, we have the lattice spacing a, which needs to be sent to zero. We
have the number of sites N, which needs to be sent to infinity. We also have the parameter
Θ, which plays the role of cut-off rapidity. In the continuum limit, we have the length of
the finite volume R and the renormalized mass scale m. It is clear that we have

R = aN . (31)
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In the continuum limit, we send a → 0 and N → ∞ with R being fixed and finite. The
cut-off rapidity Θ is related to the renormalized mass scale m. It turns out in the continuum
limit, we need to send Θ → ∞ such that

m ∼ e−Θ

a
(32)

is fixed and finite. More precisely, we shall take

Θ = log
(

4N
mR

)
(33)

and send N to infinity.
Plugging (33) into (24) and taking the limit N → ∞, we obtain

Z(u) = mR sinh u + 2Im
∫ ∞

−∞
dv G(u − v − iη) log

[
1 + eiZ(v+iη)]. (34)

This is exactly the NLIE for the sine-Gordon theory, which can be used to determine
the finite-volume energy spectrum. The NLIE can be solved numerically. Once we find the
counting function, the energy and momentum are given by

E(R) = − 2m Im
∫ ∞

−∞

dv
2π

sinh(v + iη) log
[
1 + eiZ(v+iη)], (35)

P(R) = − 2m Im
∫ ∞

−∞

dv
2π

cosh(v + iη) log
[
1 + eiZ(v+iη)].

The excited states are given by similar equations. We only need to modify the driving
terms, or, equivalently, deform the integration contour to encircle certain poles. The equa-
tion for excited states can be found, for example, in [18]. For our purpose, which is to
find a TT̄-like deformation on the lattice, it is sufficient to consider the ground state NLIE.
Generalization to excited states is straightforward.

3. TT̄-Deformation in the Continuum Limit
In this section, we give a brief review of TT̄ deformation. At the Lagrangian level, it is

defined as a family of models parametrized by the deformation parameter t
∂Lt

∂t
= TT̄t (36)

where TT̄ is a composite operator det Tµν that can be defined more carefully by point
splitting [19]. This deformation is particularly simple for IQFTs, as it amounts to deforming
the S-matrix by multiplying a CDD factor:

S(u, v) → S(u, v)SCDD(u, v). (37)

For the sine-Gordon model, the CDD factor is simply

SCDD(u, v) = eitm2 sinh(u−v). (38)

Multiplying the S-matrix with a CDD factor apparently preserves integrability because
the deformed S-matrix still satisfies the Yang–Baxter equation. In addition, the CDD factor
does not introduce new poles on the physical strip, and therefore, it does not modify the
IR physics. Since integrability is preserved, part of the integrability toolkit can be used.
In particular, for the sine-Gordon model, it has been shown that the deformed spectrum
can be found by the deformed NLIE [4]. For the ground state, the TT̄-deformed NLIE is
given by
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Z(u) =m sinh(u)[R + tE(R, t)] + m cosh(u) tP(R, t) (39)

+ 2Im
∫ ∞

−∞
dv G(u − v − iη) log

[
1 + eiZ(v+iη)].

where E(R, t) and P(R, t) are the deformed energy and the momentum, respectively. We
can recast the driving term in a more-instructive form and write the NLIE as

Z(u) =mRt sinh(u + φt) + 2Im
∫ ∞

−∞
dv G(u − v − iη) log

[
1 + eiZ(v+iη)]. (40)

The new parameters Rt and ut are defined as

Rt cosh φt = R + tE(R, t), (41)
Rt sinh φt = tP(R, t).

Given that the NLIE of the sine-Gordon model can be derived from the NLIE un-
derlying the lattice model by taking the continuum limit, a natural question is: Is there
a deformation of the integrable lattice model for which the continuum limit gives the
deformed NLIE (40)?

4. Integrable Deformation on the Lattice
In this section, we give an affirmative answer to the question we posed at the end the

previous section. Since TT̄ deformation is an irrelevant deformation, it changes the UV
physics. Therefore it is natural to suspect that it is somehow related to the UV cut-off in a
certain way. In our lattice model, the UV cut-off is related to the cut-off rapidity Θ and the
lattice spacing a. According to (32), they are not independent if we assume that the mass m
is not modified by the deformation.

4.1. The Proposal
The key idea is to deform the choice of inhomogeneities, which are related to the

momenta of the ‘bare particles’. In the undeformed case, we take the inhomogeneities as
in (15). Consider the following choice of the inhomogeneities:

θn(t) = (−1)n+1(Θ + σ(t)
)
+ µ(t). (42)

where σ(t) and µ(t) depend on the deformation parameter t. Ignoring µ(t), which is a
global shift for all particles, we see that this modification amounts to changing the cut-off
rapidity from Θ to Θ + σ(t). By straightforward computation, we arrive at the following
deformed NLIE on the lattice:

Z(t)
N (u) = 2N arctan

(
sinh

(
u + µ(t)

)
cosh

(
Θ + σ(t)

))+ 2Im
∫ ∞

−∞
dv G(u − v − iη) log

[
1 + eiZ(v+iη)] (43)

Taking the continuum limit as before—namely, taking Θ = log(4N/mR) and sending
N → ∞—we obtain the following deformed NLIE:

Z(t)(u) = m(Re−σ(t)) sinh
(
u + µ(t)

)
+ 2Im

∫ ∞

−∞
dv G(u − v − iη) log

[
1 + eiZ(v+iη)]. (44)

Comparing this equation with the NLIE of the TT̄-deformed sine-Gordon theory (40),
we find that they become the same if we make the following identification:

Rt = Re−σ(t), φt = µ(t) . (45)

This leads to the following choices for σ(t) and µ(t):

σ(t) = log
(

R
Rt

)
, µ(t) = arcsinh

(
tP
Rt

)
(46)
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where

Rt =
√

R2 + 2tRE + t2(E2 − P2) (47)

and E and P are the deformed energy and momentum, respectively. The following com-
ments are in order.
1. It is obvious that such a deformation is integrable since we did not modify the

Ř-matrix of the lattice model (9) and it still satisfies the Yang–Baxter equation.
2. As we discussed before, if keeping the mass scale m fixed, deforming Θ is equivalent

to deforming the lattice spacing a in an energy-dependent way. Therefore, we can
interpret the TT̄ deformation as putting the integrable theory on a dynamical lattice.
The deformed lattice spacing is at ∼ aRt/R. This is consistent with the dynamical
change of the coordinate point of view [2,14].

3. The nature of non-locality is clear from this proposal. In order to deform the cut-off
rapidity at each spacetime point, we need to know the energy and momentum of the
whole system, which are global quantities.
From the third point, the deformations σ(t) and µ(t) depend on energy and momen-

tum. At the same time, the energy and momentum also depend on these deformations.
Therefore, we need to calculate these quantities in a self-consistent way. The deformed
NLIE and thermodynamic Bethe ansatz-like equation in the continuum limit has been
investigated in several works [4,20]. In what follows, we show that even at finite N, the
deformed lattice model can also be solved in a consistent manner.

4.2. Free Fermion Point
For simplicity, we consider the free fermion point κ = 1/2 of the DDV equation.

At this point, the theory is free. Both analytical and numerical analysis become simpler.

4.2.1. Undeformed Case
For the undeformed theory, the counting function is given by

ZN(u) = 2N arctan
(

sinh u
cosh Θ

)
(48)

The Bethe equation for the antiferromagnetic vacuum is

ZN(uj) = (N − 2j + 1)π, j = 1, 2, · · · , N. (49)

The Bethe roots can be found explicitly:

uj = arcsinh
[

cosh Θ cot
(
(2j − 1)π

2N

)]
, j = 1, 2, . . . , N . (50)

The momentum and energy can be computed straightforwardly by using (27) and (30).
In particular, for κ = 1/2, we have

ẼN =
1
a

N

∑
j=1

[
ϕ1/2(Θ − uj) + ϕ1/2(Θ + uj)−

π

2

]
(51)

=
1
a

N

∑
j=1

(
2 arctan

(
sinh Θ
cosh uj

)
− π

2

)

Plugging the Bethe roots (50) into (51), we obtain

ẼN =
1
a

N

∑
j=1

2 arctan

 sinh Θ√
1 + cosh2 Θ cot2[(2j − 1)π/(2N)]

− π

2

 (52)
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4.2.2. Deformed Bethe Roots
To simplify the analysis, we consider the case for which the total momentum of the

state PN = 0. In fact, since we are considering the ground state, the zero momentum
condition is automatically satisfied. In this case, the integrable deformation for the lattice
model for finite N simply requires changing the cut-off rapidity Θ to

Θ → Θt ≡ Θ + σ(t), σ(t) = − log
(

Rt

R

)
= − log

(
R + tẼ(t)

N
R

)
. (53)

Here, Ẽ(t)
N is the deformed energy:

Ẽ(t)
N =

1
a

N

∑
j=1

[
ϕ1/2(Θt − uj(t)) + ϕ1/2(Θt + uj(t))−

π

2

]
. (54)

The deformed Bethe equation takes the same form:

Z(t)
N (uj) = (N − 2j + 1)π, j = 1, 2, · · · , N. (55)

with

Z(t)
N (u) = 2N arctan

(
sinh u

cosh Θt

)
. (56)

The deformed Bethe roots uj(t) then take the same form as the undeformed case with
Θ replaced by Θt:

uj(t) = arcsinh
[

cosh Θt cot
(
(2j − 1)π

2N

)]
, j = 1, 2, . . . , N . (57)

Now plugging (57) back to (54), we see that (54) can be viewed as an equation for Ẽ(t)
N .

This equation is rather complicated and in general can only be solved numerically.

4.2.3. Large N Analysis
To see the large N behavior, it is more convenient to use an alternative integral

expression for (54). Using the contour integration trick, we can write it as

Ẽ(t)
N = −2N

R

∫ ∞

−∞

dv
2π

4 sinh Θt cosh v
cosh(2Θt)− cosh(2v)

log
[

1 + e−2Narctanh
(

cosh v
cosh Θt

)]
(58)

In the continuum limit, we take Θ = log 4N
mR with N → ∞. It is straightforward to

check that (58) becomes

E(R, t) = −2m
∫ ∞

−∞

dv
2π

cosh v log
[
1 + e−mRt cosh v

]
(59)

which is exactly the expression for the deformed energy. To see how this happens in more
detail, let us define the integrand as

fN(v) = −2N
R

4 sinh Θt cosh v
cosh(2Θt)− cosh(2v)

log
[

1 + e−2Narctanh
(

cosh v
cosh Θt

)]
(60)

with Θ = log 4N
mR . The function fN(v) depends on the parameters m, R and t. For finite N,

the function fN(v) is different for even and odd values of N. The plot of fN(v) for several
even values of N is given in Figure 2. The shaded area is the contribution in the continuum
limit. There are additional contributions from the upper plane at finite values of N. As N
increases, these contributions are pushed towards infinity, as is shown in the figure.
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Figure 2. Plot of fN(v) with m = 1, R = 0.05, t = 0 at N = 2, 10, 100.

Similarly, for odd values of N, the plot of fN(v) is given in Figure 3. Again, the red
shaded part is the contribution in the continuum limit. There are extra contributions at
finite values of N on the lower half plane, which is pushed toward infinity as N increase.

- 20 - 10 10 20

- 20

- 15

- 10

- 5

N=3

N=11

N=101

Figure 3. Plot of fN(v) with m = 1, R = 0.05, t = 0 at N = 3, 11, 101.

4.2.4. Finite N Analysis
Now we consider the deformed lattice model for finite N. In this case, our perspective

is to study the integrable deformation of the lattice model instead of the field theory.
Our goal is to describe the method of finding the deformed ground-state energy and also
study some of its features.

To this end, let us consider the simplest case N = 2, which is already sufficient for
exhibiting the main features. There are two Bethe roots:

u1(t) = −u2(t) = u(t) = arcsinh(cosh Θt) (61)

The energy is given by

Ẽ(t)
2 =

1
a

4 arctan

 sinh Θt√
cosh2 Θt + 1

− π

 (62)

For the lattice model, we can simply take the lattice spacing a = 1. The deformation of
Θt is given by:

Θt = Θ + σ(t), e−σ(t) = 1 + t Ẽ(t)
2 . (63)
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(Notice that, strictly speaking, the deformation parameter t for the lattice model is
slightly different from the one for field theory: it is related to the field theory one by
tlattice = tQFT/(aN). We take a = 1 according to our convention).

Plugging (63) into (62), we obtain an equation for Ẽ(t)
2 . For fixed values of Θ and t, the

resulting equation can be solved numerically, which gives us the deformed energy. Below,
we present the results for N = 2 with two different choices of Θ. Note that if we consider
the continuum limit, we must take Θ ∼ log N. However, if we simply consider the lattice
model, Θ can be an independent parameter.

We find the deformed energy numerically for various values of N and Θ. There are
two qualitatively different behaviors. For t > 0, the deformed energy for different values
of N and Θ has the same behavior: it approaches zero. On the other hand, the behavior
for t < 0 is more interesting. For small values of Θ, the behavior is given in Figure 4a: it
decreases quickly and then approaches a stable value. For sufficiently large values of Θ,
the behavior changes and becomes the one given in Figure 4b: it quickly goes down to a
minimum and then increases and approaches some stable value. For larger values of N, we
find similar behavior.

4
t

N=2, Θ=1

(a)

4
t

N=2, Θ=2

(b)

Figure 4. Deformed spectrum for N = 2 with different values of Θ. The horizontal axis is the

deformation parameter t, while the vertical axis is the deformed ground-state energy Ẽ(t)
2 . The blue

and red dots denote the values for positive and negative values of t, respectively. (a) Deformed
energy with N = 2, Θ = 1. (b) Deformed energy with N = 2, Θ = 2.

5. Conclusions and Discussions
In this paper, we proposed a lattice approach to TT̄ deformation for the integrable

quantum field theory. We proposed an integrability-preserving but non-local deformation
for the light-cone lattice model for which the continuum limit leads to the TT̄-deformed
sine-Gordon model. The key observation is that TT̄ deformation can be obtained from the
lattice model by deforming the cut-off rapidity, or equivalently, the lattice spacing, in an
energy-dependent way. This is reminiscent of dynamical or field-dependent coordinate
transformation in the field theory.

Our proposal at the current stage can be well-criticized as being somewhat ad hoc
because we need to deform the cut-off rapidity in a very specific way. Nevertheless, we
believe this is a useful first step to gain deeper insights. In fact, this criticism also applies
to the dynamical change of the coordinate point of view of TT̄ deformation of quantum
field theory [14]. However, in quantum field theory, the situation is better because there are
other equivalent formulations. For example, by coupling the field theory to a JT-like gravity,
one can obtain the dynamical change of coordinates in a more natural way by integrating
out the gravity degrees of freedom [2,21]. Therefore, an important question is whether
we have similar formulations on the lattice: namely, can we reformulate our proposal to
make the lattice dynamical by coupling it to certain lattice gravity? This idea is similar to
putting integrable lattice models on a random lattice, which in the continuum limit results
in coupling the corresponding field theory to Liouville gravity: see, for example, [22].

Another important point is that a given quantum field theory can have different
lattice regularizations. For example, one can implement the standard lattice QFT by dis-
cretizing fundamental fields, similar to the method for lattice QCD (see, for example, the
books [23,24]). This is the standard method for putting QFTs on a lattice, but it breaks
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integrability. In order to have more analytic control over the discretized theory, we would
like to preserve integrability. Even under this strict requirement, the discretization is not
unique. An alternative discretization of the sine-Gordon model was proposed in [25,26],
which relates the discretized sine-Gordon theory to the XYZ spin chain. Given that TT̄
deformation is quite universal for 2d quantum field theories, it is a natural question to ask
whether we can obtain the TT̄-deformed QFT by performing other deformations on differ-
ent lattice regularizations. There should be some universal features for the deformations
of all these regularizations. From the current work, we suspect that the dynamical lattice
space picture might play a role in other lattice regularizations as well.

Finally, it would be interesting to use our proposal to compute deformed correlation
functions. In the current context, some expectation values of local operators and current
operators have been computed [27,28]. It is therefore interesting to compute the correspond-
ing deformed expectation values using our prescription. The results can be compared with
other approaches as cross checks.
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