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Abstract. We identify stable pairs and stable framed sheaves as epi-

morphisms and monomorphisms in the hearts of tilted t-structures under
appropriate conditions. We then identify the moduli spaces with the

corresponding Quot spaces. As a result, we obtain the projectivity of
the Quot spaces in absolute cases. In addition, we prove a formula in a

motivic Hall algebra, which relates together the Quot spaces under a tilt.

1. Introduction

Decorated sheaves are sheaves with additional structures. The most famous
moduli space of decorated sheaves is Grothendieck’s Quot scheme. However,
quite often, the Quot scheme is oversized. To bypass this issue, variants of
the Quot scheme are more suitable for some problems. One such variant is
the moduli space of stable pairs. It was used by Thaddeus [20] to calculate
the Verlinde numbers and by Pandharipande and Thomas [17] to study curve
counting on Calabi–Yau 3-folds. For a more recent application towards strange
duality, see [6, 7]. Here, we focus on two variants of quotient sheaves: stable
pairs and framed sheaves.

Let X be a nonsingular projective variety with a fixed polarization over an
algebraically closed field of characteristic 0. Let E0 be a fixed coherent sheaf on
X. Despite the overuse of the term, we call a sheaf equipped with a morphism

(E,α : E0 → E)

a pair. A family of stability conditions (Definition 4.1) is defined for pairs.
When the stability polynomial is large, a pair (E,α) is stable if and only if α
is generically surjective. In this case, we say that the pair is limit stable. Limit
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stable pairs are also known as quotient husks in Kollár’s work [13, Sec. 9]
where he studied them in a relative setting. We will identify stable pairs with
quotients in the heart of a certain tilt of the standard t-structure (Propositions
3.13 & 4.6).

For a fixed non-negative integerm, we define a torsion pair (T ,F) on Coh(X)
(see Lemma 3.1):

T = {E ∈ Coh(X) | dimE ≤ m},
F = {F ∈ Coh(X) | Hom(E,F ) = 0, ∀E ∈ T }.

Let Coh#(X) denote the heart of the tilted t-structure (see (3)) with respect
to the torsion pair above. Suppose E0 ∈ F , namely E0 has no subsheaves
of dimension ≤ m. Let P be a polynomial of degree m + 1. The moduli
space of quotients of E0 in Coh#(X) with Hilbert polynomial P is denoted as

Quot#(E0, P ) and is called the Quot space [2, Defn. 11.2, Prop. 11.6]. We will
prove the following result.

Theorem 1.1 (Theorem 3.8). The Quot space Quot#(E0, P ) is projective.

There is a notion that is dual to pairs: framed sheaves [11]. Again, let E0 be
a fixed coherent sheaf. A framed sheaf is defined as a coherent sheaf E together
with a map α:

(E,α : E → E0).

There is also a family of stability conditions (Definition 4.7) on framed sheaves.
We will identify stable framed sheaves with monomorphisms in a certain tilted
heart (Proposition 4.10) and prove the projectivity of the corresponding Quot
space (Theorem 4.9).

When X is a Calabu–Yau 3-fold, E0
∼= OX , and E has dimension 1, the

equivalence between stable pairs and quotients in a tilted heart has been ob-
tained by Bridgeland [4] and used to derive a wall-crossing formula between
the Donaldson–Thomas (DT) invariants and Pandharipande–Thomas (PT) in-
variants. As an immediate application of our results, we derive a formula in a
motivic Hall algebra, which relates together the classes of the moduli space of
limit stable pairs and the Quot scheme under certain assumptions (Theorem
5.6).

Over a nonsingular curve, stable pairs of the form (E,α : OX → E) have
been identified as epimorphisms in the corresponding tilted heart in [19]. A
variant of the result on framed sheaves has also been obtained there.

Finally, we discuss another potential application. Suppose that we have a
family of projective varieties parametrized by a smooth curve where the generic
fiber is smooth and the special fiber is singular. Then we have a relative
Quot space. If we can define an invariant on the Quot space over the generic
fiber, then we can define an invariant over the singular fiber, by using the
specialization map from the Quot space over the generic fiber to the one over
the special fiber. Sometimes, we can expect that the relative Quot space is



DECORATED SHEAVES AND MORPHISMS IN TILTED HEARTS 1075

projective over the base curve (see [15, Rmk. 4.6]). If this is the case, it is
easier to define the invariants.

We organize the paper as follows. In Section 2, we review some basic notions
about t-structures. In Section 3, we compare quotient husks and quotients in
a tilted heart and prove Theorem 1.1. In Section 4, we identify stable pairs
as epimorphisms and framed sheaves as monomorphisms in differently tilted
hearts. We also prove the projectivity of the corresponding Quot spaces. In
Section 5, we review the formalism of motivic Hall algebras and derive the
formula, which relates together the Quot spaces under a tilt.

2. t-structures and torsion pairs

In this section, we review the basic notions of t-structures, hearts, torsion
pairs, and tilts, and prove an observation important for us.

Definition 2.1. A t-structure τ on a triangulated category D is a pair of
strictly full subcategories (D≤0,D≥0) satisfying the following conditions:

(i) D≤0[1] ⊂ D≤0 and D≥0[−1] ⊂ D≥0;
(ii) Hom(F,G) = 0 for every F ∈ D≤0 and G ∈ D≥1;
(iii) for every object E ∈ D, there exists an exact triangle

τ≤0E → E → τ≥1E → (τ≤0E)[1]

with τ≤0E ∈ D≤0 and τ≥1E ∈ D≥1.

Moreover, the t-structure is bounded if D = ∪n,m∈ZD≤n ∩ D≥m.

Here, for n ∈ Z, D≤n := D≤0[−n] and D≥n := D≥0[−n]. Moreover, we let

D[a,b] := D≥a ∩ D≤b.(1)

The truncation functors τ≤n and τ≥n are defined as follows:

τ≤nE = τ≤0(E[n])[−n] and τ≥nE = τ≥0(E[n])[−n].
The full subcategory A := D≤0 ∩ D≥0 is called the heart of the t-structure,
which is an abelian category. The cohomology objects of an object E ∈ D with
respect to the heart A are

Hn
A(E) := (τ≤nτ≥nE)[n].

If A is the heart of coherent sheaves, we simply write Hn(E).

Definition 2.2. Let D1 and D2 be a pair of triangulated categories equipped
with t-structures. An exact functor Φ: D1 → D2 is left (resp. right) t-exact

if Φ(D≥0
1 ) ⊂ D≥0

2 (resp. Φ(D≤0
1 ) ⊂ D≤0

2 ). The exact functor is t-exact if it is
both left and right t-exact.

Definition 2.3. Let A be an abelian category. A pair of additive subcategories
(T ,F) of A is a torsion pair if Hom(T ,F) = 0 and every object E ∈ A fits
into an exact sequence

(2) 0 → T → E → F → 0
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with T ∈ T and F ∈ F .

The subcategories T and F are closed under extensions. Moreover, T and
F are respectively closed under taking quotients and sub-objects. Note that if
(T ,F) is a torsion pair, then F = T ⊥ is the right orthogonal to T in A.

Example 2.4. Let X be a Noetherian scheme of dimension n. For any integer
0 ≤ d < n, we consider the full subcategory

T = Coh≤d(X) := {E ∈ Coh(X) | dimE ≤ d}.
Here and henceforward, we use dimE to denote the dimension of the support
of the sheaf E. (When d = 0, we simply write Coh0(X).) Since T is closed
under extension, (T , T ⊥) is a torsion pair in the abelian category Coh(X).

Let A ⊂ D be the heart of a t-structure and (T ,F) a torsion pair in A. We
can tilt the t-structure on D to obtain a new t-structure (D#,≤0,D#,≥0) on D
by setting

(3)
D#,≤0 := {E ∈ D≤1 | H1

A(E) ∈ T } and

D#,≥0 := {E ∈ D≥0 | H0
A(E) ∈ F}.

The heart of the resulting t-structure is the extension closure A# = ⟨F , T [−1]⟩.
Moreover, the shift A#[1] can be described as

A#[1] =
{
E ∈ D | H0

A(E) ∈ T , H−1
A (E) ∈ F , Hi

A(E) = 0 for i ̸= 0,−1
}
.

We refer to [9] for details about tilting.
The following observation is important for us.

Lemma 2.5. Let A be the heart of a bounded t-structure on a triangulated
category D and (T ,F) a torsion pair of A. Let A# be the corresponding tilted
heart.

(i) If E0 ∈ F , then a morphism α : E0 → E in A# is an epimorphism if and
only if α is a morphism in A with E ∈ F and the cokernel coker (α) taken
in A lies in T .

(ii) If E0 ∈ T , then a morphism β : E → E0 in A#[1] is a monomorphism if
and only if β is a morphism in A with E ∈ T and the kernel ker(β) taken
in A lies in F .

Proof. We only show (ii), as the proof of (i) is similar (cf. [4, Lem. 2.3]). Given
E0 ∈ T and a short exact sequence in A#[1]

0 → E
β−→ E0 → Q→ 0,

we have an exact sequence

(4) 0 → H−1
A (E) → 0 → H−1

A (Q) → H0
A(E)

β−→ E0 → H0
A(Q) → 0

by taking cohomology with respect to the original t-structure. Note that an
object F ∈ D lies in A#[1] ⊂ D precisely when H−1

A (F ) ∈ F , H0
A(F ) ∈ T and
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Hi
A(F ) = 0 for i ̸= 0,−1. It follows that Hi

A(E) = 0 for all i ̸= 0, and thus

E ∈ A ∩A#[1] = T . Moreover, ker(β) = H−1
A (Q) ∈ F .

For the converse, take a morphism β : E → E0 in A with E ∈ T , ker(β) ∈ F
and embed it in a distinguished triangle

(5) E
β−→ E0 → Q→ E[1].

Since T is closed under taking quotients and E0 ∈ T , the same long exact
sequence (4) then shows that H0

A(Q) ∈ T , H−1
A (Q) = ker(β) ∈ F and Hi

A(Q) =
0 for i ̸= 0,−1. Thus Q ∈ A#[1]. It follows that (5) defines a short exact
sequence in A#[1], and hence β is a monomorphism in A#[1]. □

3. Quot spaces and moduli of quotient husks

We construct a family of t-structures on the fibers of a projective morphism,
and compare the Quot space in the sense of [2, Sec. 11] with the moduli space
of quotient husks constructed by Kollár [13, Sec. 9].

Over a field k, let S be a k-scheme of finite type and

f : X → S

be a flat projective morphism with a fixed relatively ample line bundle. Let m
be a non-negative integer.

3.1. A family of tilted t-structures

On each fiber Xs for s ∈ S, let

Ts = {E ∈ Coh(Xs) | dimE ≤ m},
Fs = {F ∈ Coh(Xs) | Hom(E,F ) = 0,∀E ∈ Ts}.

Notice that Fs = T ⊥
s . Then, (Ts,Fs) defines a torsion pair of Coh(Xs) (see

Example 2.4). If we denote the standard t-structure on Db(Xs) as (D
≤0
s , D≥0

s ),
the tilted t-structure is defined by setting

(6)
D#,≤0

s = {E ∈ D≤1
s | H1(E) ∈ Ts} and

D#,≥0
s = {E ∈ D≥0

s | H0(E) ∈ Fs}.

The heart of the t-structure is A#
s = D#,≤0

s ∩D#,≥0
s .

We show that the family of t-structures defined above integrates over S (see
Lemma 3.3). Namely, they are pullbacks of a t-structure on X (see [2, Defn.
10.10]).

We have two full subcategories of Coh(X):

T = {E ∈ Coh(X) | ∀s ∈ S, dimEs ≤ m},
F = {F ∈ Coh(X) | Hom(E,F ) = 0, ∀E ∈ T }.

Here, Es is the derived pullback of E to the fiber Xs. The pair (T ,F) is the
relative version of the one in the introduction. We say objects in T have relative
dimension ≤ m over S for brevity.
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Lemma 3.1. For a fixed non-negative integer m, (T ,F) as defined above is a
torsion pair of Coh(X).

The proof is similar to the absolute case.

Proof. For any coherent sheaf E, the sum of subsheaves of dimension ≤ m has
dimension ≤ m. We can take its maximal subsheaf E′ whose support has a
relative dimension ≤ m over S. Then the quotient E/E′ belongs to F . □

The torsion pair (T ,F) induces the following tilted t-structure on Db(X):

(7)
D#,≤0 = {E ∈ D≤1 | H1(E) ∈ T } and

D#,≥0 = {E ∈ D≥0 | H0(E) ∈ F},

where (D≤0, D≥0) is the standard t-structure on Db(X).
We next recall the locality of t-structures following [18, p.119].

Definition 3.2. A t-structure (D≤0,D≥0) on Db(X) is S-local if, for every open
subset U ⊂ S, there is a t-structure on Db(f−1(U)) such that the restriction
functor Db(X) → Db(f−1(U)) is t-exact.

According to [18, Thm. 2.3.2], the t-structure (7) is S-local.

Convention. Given a morphism g : Y → Z of schemes, we use g∗ to denote
the derived pushforward functor and g∗ the derived pullback functor.

Let ϕ : T → S be a morphism and consider the cartesian square

(8)

XT := T ×S X X

T S.

ϕ′

f ′ f

ϕ

If the canonical morphism of functors ϕ∗f∗ → f ′∗ϕ
′∗ is an isomorphism, then

the cartesian square (8) is exact and the morphism ϕ is faithful with respect
to f : X → S. Since we assume f to be flat, (8) is exact and ϕ is faithful with
respect to f , according to [14, Cor. 2.23]. By [2, Thm. 5.7], there is a canonical
way to pullback the t-structure (7) to Db(XT ) for an arbitrary morphism ϕ.
In particular, we have the following. Let ϕ : T = {s} → S be the embedding of
a closed point and denote the pullback t-structure on the fiber XT = Xs as

(9) ((D#)≤0
s , (D#)≥0

s ).

Then, for a, b ∈ Z ∪ {±∞} and a ≤ b,

(D#)[a,b]s =
{
F ∈ Db(Xs) | ϕ′∗F ∈ (D#)[a,b]

}
,

where the subcategory (D#)[a,b] is defined by the tilted t-structure (7) as in
(1). We have to refer the reader to [2, Sec. 5] for the general construction of
the pullback t-structure, which is rather involved.
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Lemma 3.3. Suppose s is a (possibly non-closed) point of S. The pullback t-
structures (9) agree with those (6) defined fiberwise, namely, (D#)≤0

s = D#,≤0
s

and (D#)≥0
s = D#,≥0

s .

Proof. If s is a closed point, we can use [2, Thm. 5.7 (3)]. Let T = {s}
and ϕ be the closed embedding of {s} into S. Take a = −∞, b = 0, then

D
(−∞,0]
s = (D#)≤0

s and D(−∞,0] = D#,≤0. Let is : Xs → X be the inclusion of
the fiber Xs in X. We have

(D#)≤0
s = {F ∈ Db(Xs) | is∗F ∈ D#,≤0}

= {F ∈ Db(Xs) | F ∈ D≤1,H1(F ) ∈ T } = D#,≤0
s .

The other equality can be shown similarly.
For a non-closed point s, we can still apply [2, Theorems 5.3, 5.6, 5.7] and

obtain the result. □

Remark 3.4. Suppose X = S × Y → S is a trivial family with fiber Y over an
algebraic closed field k, the t-structure (7) may not be the pullback of the one
on Db(Y ), which is similar to (6). Namely, it is not constant in the sense of
[1, 18], as illustrated in the following example.

Example 3.5. Let Y = P1 and S = P1. Let ∆ ∼= P1 ⊂ X = S × Y be the
diagonal. Then O∆[−1] lies in the heart D#,≤0 ∩D#,≥0. However, it does not
lie in the heart of the pullback of the corresponding t-structure, according to
[18, Lem. 3.3.2].

3.2. Quotients and quotient husks

Let F0 ∈ F ⊂ Coh(X) be flat over S such that the restriction

F0s ∈ Fs.

Let T be an S-scheme and F0T denote the pullback of F0 to XT .

Definition 3.6. A family of epimorphisms in the tilted hearts of the family
of t-structures (6), parameterized by T , is a morphism F0T → F in Db(XT )
satisfying the following conditions:

(a) F is flat over T , i.e. the derived pullback Ft of F to a fiber Xt lies in the

tilted heart Coh#(Xt) of the induced t-structure on Db(Xt);

(b) The morphism F0t → Ft in Coh#(Xt) is an epimorphism for all t ∈ T .

Remark 3.7. In this setting, F is automatically a sheaf because its derived
pullback Ft to each fiber is a quotient of F0t in Coh#(Xt). By Lemma 2.5, it
must be a sheaf in Ft.

Let
Quot#

f
(F0, P ) : (S-Schemes)op → Sets

be the functor that sends an S-scheme T to the set of families of epimorphisms
in the tilted hearts Coh#(Xt) parametrized by T where the quotients have
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Hilbert polynomial P . If the family of t-structures universally satisfies openness
of flatness, a property which we will define and show in a moment, then the

functor Quot#
f
(F0, P ) is represented by an algebraic space Quot#f (F0, P ) locally

of finite presentation over S [2, Prop. 11.6].
We show the following at the end of the section.

Theorem 3.8. Let k be an algebraic closed field of characteristic 0 and f : X →
S = Spec k be a nonsingular projective scheme. Let P be a polynomial of degree

m+ 1. Then, the Quot space Quot#f (E0, P ) is projective.

We say that the family (9) of t-structures universally satisfies openness of
flatness (cf. [2, Defn. 10.4 & Rmk. 10.9]) if for every T → S and every T -perfect
complex E ∈ D(XT ), the set

{t ∈ T | Et ∈ Coh#(Xt)}

is open. For the definition of T -perfectness, see [2, Defn. 8.1].

Proposition 3.9. The family (9) universally satisfies openness of flatness.

Proof. The proposition can be reduced to the case where T is an affine Noe-
therian scheme [2, Lem. 10.7]. Suppose we are given a T -perfect complex
E ∈ D(XT ). First, notice that E ∈ Db(XT ) [2, Lem. 8.3]. So, we assume
that E is a finite complex of coherent sheaves. For a point t ∈ T , we have the
following spectral sequence

Ep,q
2 = T orOT

−p (H
q(E), κ(t)) = Hp(Hq(E)

L
⊗ κ(t)) ⇒ Hp+q(Et),

see e.g. [10, (3.10), p.81]. Here, we use Hi to denote the cohomology sheaf of
a complex. Notice that Ep,q

2 = 0 unless p ≤ 0. Suppose there is a point t ∈ T

such that the derived restriction Et lies in Coh#(Xt). In particular, Hi(Et) = 0
unless i = 0, 1. Let n be the largest integer such that Hn(E) ̸= 0. We assume
n > 1. Then Hn(Et) = 0 implies that Hn(E) ⊗ κ(t) = 0. Thus, there is a
neighborhood U ⊂ T of t such that Hn(E)|XU

= 0. Inductively, we can shrink
U if necessary so that Hi(E)|XU

= 0 for all i > 1. (We take the liberty to
shrink the neighborhood U whenever necessary, without mentioning.) So, we
can assume Ep,q

2 = 0 for q ≥ 2 over U . The assumption that Et lies in the
tilted heart implies that H1(Et) ∈ Tt, that is, it has dimension ≤ m. Thus,
H1(E)⊗κ(t) ∈ Tt, which in turn implies that T or1(H1(E), κ(t)) ∈ Tt. This last
term is a subsheaf of H0(Et) ∈ Ft, therefore it has to be zero. Hence, H1(E) is
flat near t. Since H−1(Et) = 0, H−1(E)⊗ κ(t) = 0 and T or1(H0(E), κ(t)) = 0,
which implies H0(E) is flat near t. Therefore, for every u ∈ U , H0(Eu) ∼=
H0(E)⊗ κ(u), and since H0(Et) has no subsheaves of dimension ≤ m, neither
does H0(Eu). Hence, H0(Eu) lies in Fu. On the other hand, we can inductively
prove that for all i < 0 and u ∈ U , Hi(E) ⊗ κ(u) = 0. From the spectral

sequence, we have proven that for every u ∈ U , Eu ∈ Coh#(Xu). The family
of t-structures universally satisfies openness of flatness. □
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We next recall the notion of a quotient husk [13, Definitions 9.33 & 9.39].

Definition 3.10. A husk of a coherent sheaf F on a normal scheme Y is a
homomorphism q : F → E such that

(a) q is an isomorphism on all n-dimensional points, where n = dimF ;
(b) E is pure of dimension n.

A quotient husk of a fixed coherent sheaf E0 is a homomorphism q : E0 → E
such that it factors as E0 → F → E where the first arrow is an epimorphism
and the second arrow is a husk.

Definition 3.11. Let f : X → S be a morphism of schemes, and E0 be a
coherent sheaf on X. A quotient husk of E0 over S is a coherent sheaf together
with a morphism q : E0 → E such that

(a) E is pure and flat over S;
(b) the homomorphism qs : E0s → Es is a quotient husk on each fiber Xs.

Here, we say a sheaf E on X is pure over S if for every s ∈ S, the restriction
Es is pure of the same dimension.

We view a quotient husk over S as a family of quotient husks parametrized
by S. Let

QHusk
f
(E0, P ) : (S-Schemes)op → Sets

denote the moduli functor of quotient husks where E0 ∈ Coh(X) and P is a
fixed polynomial with rational coefficients. It sends an S-scheme T to the set
of families of quotient husks f∗TE0 → ET on XT such that when restricted to
each fiber Xt for t ∈ T , the Hilbert polynomial of Et is P . Then, we have the
following existence theorem on the moduli space of quotient husks [13, Thm.
9.42]:

Theorem 3.12 ([13]). The moduli functor QHusk
f
(E0, P ) is represented by

an algebraic space QHuskf (E0, P ), which is proper and separated over S.

The following proposition shows that a family of quotient husks is equivalent
to a family of epimorphisms with respect to the family of t-structures (6).

Proposition 3.13. Assume E0, E are two coherent sheaves flat over S, and
the restriction Es has (m + 1)-dimensional support, then a homomorphism
q : E0 → E of sheaves is a family of quotient husks if and only if it is a family
of quotients with respect to the family of t-structures (6).

Proof. Suppose q : E0 → E is a family of quotient husks, then for every point
s ∈ S, the restriction qs : E0s → Es is a quotient husk on Xs. In particular, Es

is a pure sheaf with (m+1)-dimensional support. This implies Es is contained
in Fs. The fact that qs is surjective at all (m+1)-dimensional points implies its
cokernel is supported in a locus of dimension m or less. Together with Lemma
2.5, this shows that qs is an epimorphism in Coh#(Xs).
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Conversely, if q is a family of quotients, then on each fiber, the homomor-
phism qs factors as E0s → Im(qs) → Es, where the first arrow is an epimor-
phism. By Lemma 2.5, the cokernel of qs is in Ts so it is supported in a locus
of dimension ≤ m. Therefore, the second arrow above has to be an isomor-
phism at all (m + 1)-dimensional points. Also, according to Lemma 2.5, Es

is contained in Fs and does not contain any subsheaf supported on a locus of
dimensionm or less. This implies Es is pure and E is pure over S. This finishes
the proof that qs is a quotient husk. □

Let E0 = F0, which is defined at the beginning of the subsection, and P
be a polynomial of degree m + 1. In particular, E0 ∈ F is flat over S such
that E0s ∈ Fs. Then, the functor Quot#

f
(E0, P ) is the same as the functor

QHusk
f
(E0, P ), that is, we have the following proposition.

Proposition 3.14. Given an S-scheme T ,

Quot#
f
(E0, P )(T ) = QHusk

f
(E0, P )(T ).

Proof. Suppose we are given an element αT : E0T → E in Quot#f (E0, P )(T ).

For t ∈ T , the restriction αt : E0t → Et lies in the heart Coh#(Xt) of the
pullback t-structure. By Lemma 2.5, Et ∈ Coh(Xt). Thus, E is a coherent
sheaf flat over T . On the other hand, αt has cokernel (taken in Coh(Xt)) in
Tt. Therefore, αT is a family of quotient husks.

Given a family of quotient husks αT : E0T → E, the restriction αt is a
quotient husk. By Proposition 3.13 and Lemma 2.5, E is flat over T and αt is
a quotient in Coh#(Xt). □

Now, we provide the proof of Theorem 3.8.

Proof of Theorem 3.8. By identifying the moduli functors, we know the Quot
space is isomorphic to the moduli space of quotient husks:

Quot#f (E0, P ) ∼= QHuskf (E0, P ).

Furthermore, in this set-up, QHuskf (E0, P ) is isomorphic to the moduli space
of limit stable pairs (E,α : E0 → E) [15, Lem. 2.10], whose projectivity is
obtained via a geometric invariant theoretic construction [15, Thm. 1.1]. □

Remark 3.15. Quotient husks are also known as limit stable pairs (see next
section). By carrying out a GIT construction [15, Rmk. 4.6], one would be
able to obtain the projectivity of the Quot space over a general base S in
characteristic 0.

Remark 3.16. Let R = C[[t]] and C = SpecR. Let η be its generic point and
0 its closed point. Let Xη be the generic fiber, and X0 be the central fiber.
It can be shown that derived categories and hearts over the subscheme Xη are
equivalent to quotients of the corresponding categories over the total space X.
However, because flat limits are not unique, we do not expect a specialization
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functor. But the valuative criteria [13, 9.31] of separatedness and properness
of the moduli space of quotient husks provide a specialization map on the level
of moduli spaces:

QHuskXη (ι∗ηE0) → QHuskX0(ι∗0E0).

4. Stable pairs and framed sheaves

For stable pairs with respect to a smaller stability condition, we can also
identify them as quotients in the heart of a tilted t-structure. On the other
hand, we study framed sheaves, which can be identified as monomorphisms in
a tilted heart.

Over an algebraically closed field k of characteristic 0, let X be a nonsingular
projective variety of dimension n with a fixed polarization OX(1). Let E0 ∈
Coh(X) be fixed. Let P ∈ Q[m] be a fixed polynomial of degree d, which is
used as a Hilbert polynomial.

Given a coherent sheaf E on (X,OX(1)), we denote its Hilbert polynomial by
PE , its multiplicity by rE and its reduced Hilbert polynomial by pE = PE/rE .

4.1. Stable pairs

Let δ ∈ Q[m] be a polynomial with a positive leading coefficient. We consider
homomorphisms of the form E0 → E.

Definition 4.1. A pair

(E,α : E0 → E)

with α ̸= 0 is δ-stable if E is pure and for every subsheaf F ⊂ E,

(i) pF + δ/rF < pE + δ/rE if imα ⊂ F ,
(ii) pF < pE + δ/rE otherwise.

We can replace the strong inequalities by weak inequalities to define δ-
semistability. Stability can be equivalently defined in terms of quotients.

Two δ-semistable pairs (E,α) and (E′, α) are isomorphic if there is an iso-
morphism ϕ : E → E′ such that α′ = ϕ ◦ α. Let

SE0
(P, δ) : (k-Schemes)op → Sets

denote the moduli functor of isomorphism classes of δ-semistable pairs. We
have the following existence result [15, Thm. 1.1].

Theorem 4.2 ([15]). There is a projective coarse moduli space SE0(P, δ) of S-
equivalence classes of δ-semistable pairs with Hilbert polynomial P . It contains
an open subscheme Ss

E0
(P, δ) as the fine moduli space of δ-stable pairs.

Here, S-equivalence is similar to the one in the theory of sheaves, see [15,
p.132].

Definition 4.3. When deg δ ≥ dimE, a δ-stable pair is called a limit stable
pair.
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This is the same as a quotient husk in the absolute setting [15, Lem. 2.10].
We next consider δ-stable pairs (E,α) with PE = P for a small δ:

deg δ < degP = d.

Let r = rE and

λ =
P + δ

r
.

We define two full subcategories of Coh(X):

T λ =

E ∈ Coh(X)

∣∣∣∣∣∣
dimE ≤ d and
∀ quotient sheaf E ↠ G,
dimG < d or pG > λ

 and(10)

Fλ =

E ∈ Coh(X)

∣∣∣∣∣∣
∀ nontrivial subsheaf F ⊂ E
with dimF ≤ d,
F is pure of dim. d and pF ≤ λ

 .(11)

Lemma 4.4. The pair (T λ,Fλ) forms a torsion pair of Coh(X).

Proof. Clearly, T λ and Fλ contain 0, and their hom-sets are abelian groups
such that the compositions are bilinear. To show that they are additive cate-
gories, it is enough to show they are closed under extensions and hence admit
finite coproducts.

Suppose E is an extension of E′′ by E′. Note that the inequality about
dimension is preserved under extensions. For E′′, E′ ∈ T λ, let G be a quotient
sheaf of E such that dimG ≥ d. We can form the following commutative
diagram of exact sequences.

0 0 0

0 F ′ F F ′′ 0

0 E′ E E′′ 0

0 G′ G G′′ 0

0 0 0

Since pG′ , pG′′ > λ, pG > λ. Therefore, E ∈ T λ.
For E′′, E′ ∈ Fλ, let F ⊂ E be a nontrivial subsheaf with dimension ≤ d.

We can also form a commutative diagram like the one above. The subsheaf
F is pure of dimension d, otherwise it would induce a nontrivial subsheaf of
dimension < d in either E′ or E′′, leading to a contradiction. Furthermore,
pF ≤ λ. Thus, E ∈ Fλ.
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It is clear that Hom(T λ,Fλ) = 0 by the inequalities of reduced Hilbert
polynomials.

For any E ∈ Coh(X), there exists T ⊂ E such that T ∈ T λ and E/T ∈ Fλ.
Indeed, we can take the torsion filtration of E: 0 ⊂ T0 ⊂ T1 ⊂ · · · ⊂ Tn = E
(see [12, Defn. 1.1.4]). Then Td/Td−1 is pure of dimension d. Consider the
Harder-Narasimhan filtration of Td/Td−1:

0 = H0 ⫋ H1 ⫋ · · · ⫋ Ht = Td/Td−1.

If all the reduced Hilbert polynomials pHi/Hi−1
are not larger than λ, let s = 0.

Otherwise, let s be the largest integer i such that pHi/Hi−1
> λ. Therefore, the

pre-image T of Hs ⊂ Td/Td−1 in Td has the desired property. □

Then, we denote the heart of the tilted t-structure as Cohλ,#(X).

Theorem 4.5. Suppose E0 ∈ Fλ is fixed. We further assume that δ is not
a critical value; namely, all δ-semistable pairs are δ-stable. Then, the Quot
space Quotλ,#(E0, P ), which parameterizes quotients of E0 with Hilbert polyno-

mial P in the heart Cohλ,#(X), is isomorphic to the moduli space Ss
E0

(P, δ) =
SE0

(P, δ) of δ-stable pairs. Furthermore, the Quot space is projective.

Similar to Theorem 3.8, the key to proving this theorem is identifying the
two moduli functors. It is enough to prove the following proposition.

Proposition 4.6. With assumptions and notation as in the previous theo-
rem and E having Hilbert polynomial P , α : E0 → E is an epimorphism in
Cohλ,#(X) if and only if (E,α : E0 → E) is a δ-stable pair.

Proof. Suppose that α is an epimorphism in Cohλ,#(X). By the assumption
E0 ∈ Fλ and Lemma 2.5, we know that α is a morphism in Coh(X) with
E ∈ Fλ and coker (α) ∈ T λ. Given a quotient q : E ↠ G in Coh(X), if
q ◦ α = 0, then G is a quotient of coker (α). Thus, pG > λ. If q ◦ α ̸= 0, let
F = ker q. Then pF ≤ λ. Since δ is not critical, this is a strict inequality.
Therefore, λ < (PG + δ)/rG. We have shown (E,α) is a δ-stable pair.

Conversely, suppose (E,α : E0 → E) is a δ-stable pair. Then, for every
subsheaf F ⊂ E, pF < λ. Thus, E ∈ Fλ. On the other hand, coker (α) has
dimension ≤ d. Given a quotient G of coker (α), it is also a quotient of E, and
the composition E0 → E → G is zero. Thus, pG > λ. Hence, coker (α) ∈ T λ.

Again, by Lemma 2.5, α is an epimorphism in Cohλ,#(X). □

4.2. Framed sheaves

Let τ ∈ Q[m] be another polynomial with a positive leading coefficient. We
have a notion that is dual to pairs: framed sheaves. They are homomorphisms
of the form

E → E0

where E0 is again fixed.
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Definition 4.7. A framed sheaf is a coherent sheaf E with Hilbert polynomial
PE = P , together with a nonzero framing α : E → E0. It is τ -stable if kerα is
zero or pure of dimension d, and for every nonzero subsheaf F ⊂ E of dimension
d,

(i) pF < pE − τ/rE if F ⊂ kerα,
(ii) pF − τ/rF < pE − τ/rE otherwise.

Two framed sheaves α : E → E0 and α′ : E′ → E0 are isomorphic if there is
an isomorphism ψ : E → E′ such that α′ ◦ ψ = α. Let

FE0
(P, τ) : (k-Schemes)op → Sets

denote the moduli functor of isomorphic classes of τ -semistable frame sheaves.
We have the following existence result [11, Thm. 0.1].

Theorem 4.8 ([11,12]). There is a projective coarse moduli space FE0
(P, τ) of

S-equivalence classes of τ -semistable framed sheaves with Hilbert polynomial P .
It contains an open subscheme F s

E0
(P, τ) as the fine moduli space of τ -stable

framed sheaves.

When deg τ ≥ d, the moduli space is isomorphic to a Quot scheme. (See
[11, Lem. 1.7] and the discussion immediately after its proof.) Therefore, we
again consider a small stability parameter τ :

deg τ < degP = d.

Now, we let

λ =
P − τ

r
.

Let Tλ and Fλ be as in (10) and (11), and let Cohλ,#(X) be the corresponding
tilted heart. Let

Quotλ,#[1](E0, PE0
− P ) : (k-Schemes)op → Sets

be the moduli functor of quotients of E0 with Hilbert polynomial PE0 − P in

the heart Cohλ,#(X)[1]. Let Quotλ,#[1](E0, PE0 −P ) denote the corresponding
Quot space.

Theorem 4.9. Suppose E0 ∈ T λ is fixed. We further assume that τ is not a
critical value; namely, all τ -semistable framed sheaves are τ -stable. The Quot

space Quotλ,#[1](E0, PE0 − P ) is isomorphic to the moduli space F s
E0

(P, τ) =
FE0

(P, τ) of τ -stable framed sheaves. In particular, the Quot space is projective.

The key is again to identify the two moduli functors, which is a variant of
[19, Lem. 5.5].

Proposition 4.10. With assumptions and notation as in the previous the-
orem and supposing E has the fixed Hilbert polynomial P , α : E → E0 is a
monomorphism in Cohλ,#(X)[1] if and only if (E,α : E → E0) is a τ -stable
framed sheaf.
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The proof is similar to that of Proposition 4.6. For completeness, we include
it here.

Proof. Suppose that α : E → E0 is a monomorphism in Cohλ,#(X)[1]. By the
assumption E0 ∈ T λ and Lemma 2.5, we know that α is a morphism in Coh(X)
with E ∈ T λ and ker(α) ∈ Fλ. Given a subsheaf F ⊂ E, pE/F > λ, because

E ∈ T λ. Then, pF − τ/rF < λ. If F ⊂ kerα, then pF ≤ λ, which is actually a
strict inequality, since we assume τ is not critical. Therefore, (E,α : E → E0)
is τ -stable.

Conversely, we assume that (E,α : E → E0) is τ -stable. First, τ -stability
implies that for any dimension d quotient sheaf Q of E, pQ−τ/rQ > λ or pQ >
λ. Therefore, E ∈ T λ. On the other hand, the τ -stability also implies that
if nonzero, ker(α) is pure of dimension d and has reduced Hilbert polynomial
≤ λ. Furthermore, ker(α) ∈ Fλ. Again by Lemma 2.5, α is a monomorphism

in Cohλ,#(X)[1]. □

Proof of Theorem 4.9. Proposition 4.10 identifies the moduli functor FE0
(P, τ)

with Quotλ,#[1](E0, PE0 −P ). Therefore, the corresponding moduli spaces are
isomorphic. The projectivity follows from that of FE0(P, τ) (Theorem 4.8). □

5. Change of Quot space under tilting

In this section, we prove a formula relating the moduli space of quotient
husks and Grothendieck’s Quot scheme, which parameterizes quotient sheaves
supported in dimension no more than one. We follow Bridgeland’s treatment
of Hall algebra identities in [4, Sec. 6].

5.1. The stack of pairs

We first modify the stack of sheaves with sections, which was constructed in
[4, Sec. 2.3]. LetX be a nonsingular projective variety over C and E0 ∈ Coh(X)
be fixed. We denote by M the stack of coherent sheaves on X. It is an Artin
stack, locally of finite type over C. There is another stack M(E0) with a
morphism q : M(E0) → M parameterizing pairs (E,α : E0 → E). Indeed, the
objects of M(E0) lying over a scheme S are pairs (E,α) consisting of an S-flat
coherent sheaf E on S ×X together with α : E0S → E where E0S denotes the
pullback of E0 under the projection S×X → X. Let f : T → S be a morphism
of schemes and fX = f× idX . Given an object (F, β) lying over T , a morphism
θ : (F, β) → (E,α) lying over f is an isomorphism θ : f∗XE → F on T ×X with
θ ◦ f∗Xα = β ◦ κ, where the morphism κ : f∗XE0S → E0T denotes the canonical
isomorphism of pullbacks. The morphism q of stacks is defined by forgetting
the data of the morphism α in the obvious way.

By an easy modification of the argument of [4, Lem. 2.4], we have the fol-
lowing lemma.

Lemma 5.1. The stack M(E0) is an Artin stack, and the morphism q is
representable and of finite type.
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The following lemma is a result of the fibers of the morphism q.

Lemma 5.2. Let E0 ∈ Coh(X) be fixed. There is a stratification of M by
locally closed substacks Mr ⊂ M such that the objects of Mr(C) are E ∈
Coh(X) with hom(E0, E) = r. The pullback of q : M(E0) → M to Mr is a
locally trivial fibration in the Zariski topology, with fiber Cr.

Proof. Let S be a scheme. Given an S-flat coherent sheaf E on S × X, we
write hom(E0S , E) for the set-valued covariant funtor on (S-Schemes)op, which
associates to any S-scheme f : T → S the set Hom(f∗XE0S , f

∗
XE) of OT×X -

linear morphism. By a standard limit argument (cf. [8, (8.5.2), (8.8.2), (8.9.1),
(11.2.6)]), we may assume that S is Noetherian. According to the results of
Grothendieck (see [16, Thm. 5.8] and references therein), there is a coherent
sheaf G(E0S , E) on S such that the funtor hom(E0S , E) is represented by the
linear scheme

Spec (SymOS
G(E0S , E)).

Then, the remaining proof is essentially the same as in [4, Lem. 2.5]. □

5.2. Motivic Hall algebra

We now recall the notion of motivic Hall algebras. We refer to [4, 5] for a
more detailed discussion.

We denote the subcategory Coh≤1(X) of Coh(X) by C. This corresponds
to an open and closed substack C ⊂ M by the usual abuse of notation. There
exists a stack C(2) of short exact sequences in the category C. It comes with
three distinguished morphisms a1, a2, and b : C(2) → C. These morphisms cor-
respond to sending a short exact sequence 0 → A1 → B → A2 → 0 to the
sheaves A1, A2, and B respectively. We remark that (a1, a2) is of finite type
[5, Lem. 4.2].

The motivic Hall algebra, denoted by H(C), is the relative Grothendieck
group K(St/C) over the stack C. By definition, it is defined to be the complex
vector space spanned by isomorphism classes of symbols [X → C] where X is
an Artin stack of finite type over C with affine geometric stabilizers, modulo
three relations: the scissor relations for finite disjoint stacks, geometric bijection
relations and Zariski fibration relations (see [5, Defn. 3.10]).

It is equipped with a noncommutative product ∗ given explicitly by the rule

[X1
f1−→ C] ∗ [X2

f2−→ C] = [Z b◦h−−→ C],
where h is defined by the Cartesian diagram

Z C(2) C.

X1 ×X2 C × C

h b

(a1,a2)

f1×f2

The unit is given by 1 = [SpecC → C], which corresponds to the zero object in
C and the product ∗ is associative [5, Thm. 4.3].
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On the other hand, there is a natural grading on H(C) by the monoid ∆
consisting of classes of sheaves supported in dimension ≤ 1. More precisely, let
N1(X) denote the abelian group of cycles of dimension one modulo numerical
equivalence. We define the monoid by

∆ = {(β, n) ∈ N1(X)⊕ Z | β > 0 or β = 0 and n ≥ 0}
(cf. [4, Sec. 2.1]). There are open and closed substacks Cγ ⊂ C, the stacks of
objects of class γ ∈ ∆. Thus elements of H(C) are naturally graded by the
monoid ∆. An element [f : X → C] is homogeneous of degree γ ∈ ∆ if f factors
through the substack Cγ .

5.3. Laurent subsets

Let us summarize Section 5.2 and 6.1 of [4]. A subset S ⊂ ∆ is Laurent if
for all β ∈ N1(X), the collection {n ∈ Z | (β, n) ∈ S} is bounded below. Let Φ
denote the set of all Laurent subsets.

For the ∆-graded Hall algebra H(C), we can use Φ to define a new algebra,
denoted by H(C)Φ. Elements of this new algebra are of the form a =

∑
γ∈S aγ

where S ∈ Φ and aγ ∈ H(C)γ ⊂ H(C). There is a natural topology and product
∗ on H(C)Φ induced by projection operators (see [5, Sec. 5.2]).

To define a stability condition, we fix an ample divisor H on X. Given a
class γ = (β, n) ∈ ∆, we define the slope by µ(γ) = n(β ·H)−1 ∈ (−∞,∞]. In
particular, if β = 0, µ(γ) = ∞, otherwise µ(γ) ∈ Q.

Given an interval I ⊂ (−∞,∞], define SS(I) ⊂ C to be the full subcategory
consisting of zero objects together with those one-dimensional sheaves whose
Harder-Narasimhan factors all have slope in I (see [4, Sec. 6.1]). We write
SS(I) = SS(≥ µ) if I = [µ,∞]. Then the following lemma follows from Lemmas
5.3, 6.2, and (31) of [4].

Lemma 5.3. In H(C)Φ, the subcategory SS([µ,∞)) defines an invertible ele-
ment 1SS([µ,∞)).

5.4. Identities in the Laurent Hall algebra

Let T = Coh0(X) = SS(∞). Consider the torsion pair (T ,F∩C) of C, where
F = T ⊥. Then C# = ⟨F ∩ C, T [−1]⟩ is the tilt of C.

For the Grothendieck’s Quot scheme Quot(E0) and the moduli space of quo-
tient husks (or limit stable pairs, Proposition 3.14) QHusk(E0), we introduce1

Quot(E0)≤1 := Quot(E0) ∩ C and

QHusk(E0)≤1 := QHusk(E0) ∩ C if E0 ∈ F ,
which parameterize quotients of E0 supported in dimension ≤ 1. By the same
argument of [4, Lem. 2.6], we can view Quot(E0)≤1 and QHusk(E0)≤1 as open
substacks of the moduli stack C(E0). In particular, the C-valued points are

1The condition E0 ∈ F implies that if α : E0 → E is an epimorphism in Coh(X)#, then

E ∈ F ⊂ Coh(X) by Lemma 2.5.
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morphisms E0 → E, which are epimorphisms in the categories C and C#,
respectively. The morphisms

Quot(E0)≤1 → C and QHusk(E0)≤1 → C,
which are the restrictions to Quot(E0)≤1 and QHusk(E0)≤1 of q : C(E0) → C,
define elements Q≤1 and Q#

≤1 of H(C)Φ by a similar argument to [4, Lem. 5.5].

Given a substack i : N → C, we write 1N := [N → C] in H(C). Pulling
back the morphism q : C(E0) → C to N ⊂ C produces a stack N (E0) with a

morphism N (E0) → N and hence an element 1E0

N := [N (E0) → C] in H(C).
By abuse of notation, we use the same symbol for an open substack of C and
the corresponding full subcategory of C defined by its C-valued points.

Following [4], we establish the torsion pair and Quot space identities in the
next two lemmas.

Lemma 5.4. The following identities hold in the Laurent Hall algebra H(C)Φ.
(a) 1SS(≥µ) = 1T ∗ 1SS([µ,∞)).

(b) limµ→−∞

(
Q≤1 ∗ 1SS(≥µ) − 1E0

SS(≥µ)

)
= 0.

(c) limµ→−∞

(
Q#

≤1 ∗ 1SS([µ,∞)) − 1E0

SS([µ,∞))

)
= 0 if E0 ∈ F .

The proof of Lemma 5.4 is essentially the same as in [4, Prop. 6.5], noticing
the boundedness of the Quot scheme and the moduli space of stable pairs. We
point out that the geometric bijection relations plays an essential role, and we
need the assumption E0 ∈ F of (c) to use Lemma 2.5 instead of [4, Lem. 2.3].

Lemma 5.5. Assume that E0 is locally free. There is an identity

1E0

SS(≥µ) = 1E0

T ∗ 1E0

SS([µ,∞)) in H(C)Φ.

Proof. We have Cartesian squares

Y X C(2) C

T (E0)× SS([µ,∞))(E0) T × SS([µ,∞))(E0) C × C.

p j b

(a1,a2)

(q,id) (i,q)

Then, 1E0

T ∗1E0

SS([µ,∞)) is represented by the composite morphism b◦j◦p : Y → C.
Note that, by Lemma 5.2, the morphism of stacks q : T (E0) → T is a Zariski
fibration, with fiber over a sheaf T being the vector space Hom(E0, T ). By
pulling back, the same is true for the map p.

Since the morphism (a1, a2) satisfies the iso-fibration property of [5, Lem.
A.1], the groupoid of S-valued points of X is as follows. The objects are short
exact sequences of S-flat sheaves on S ×X,

(12) 0 → T → E
γ−→ F → 0,

such that T and F define flat families of sheaves on X lying in the subcate-
gories T and SS([µ,∞)), respectively, together with a map α : E0S → F . The
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morphisms are isomorphisms of short exact sequences commuting with the map
α.

Recall that by Lemma 5.4 (a), b ◦ s : Z → SS(≥ µ) induces an equivalence
on C-valued points. On the other hand, consider a Cartesian diagram

W SS(≥ µ)(E0) ⊂ C(E0)

Z SS(≥ µ) ⊂ C.

h

q

b◦s

Since b ◦ s is a geometric bijection, so is h as well. Thus, the element 1E0

SS(≥µ)

can be represented by the morphism q ◦ h.
The groupoid of S-valued points of W can be represented by the short exact

sequences (12) with a map δ : E0S → E. Setting α = γ ◦ δ defines a morphism
of stacks W → X . It is easy to see that this is a Zariski fibration, with fiber
over a C-valued point of X represented by a sequence (12) with a map α being
a vector space for Hom(E0, T ). Indeed, we have a long exact sequence

0 → Hom(E0, T ) → Hom(E0, E) → Hom(E0, F ) → Ext1(E0, T )

on X. Since the support of T has dimension zero, so does that of E∨
0 ⊗ T . For

a locally free sheaf E0, we get

Ext1(E0, T ) ∼= H1(X,E∨
0 ⊗ T ) = 0

due to the dimension. Since W → X has the same fibers Hom(E0, T ) as the
map p : Y → X , the result follows from the Zariski relation [W → X → C] =
[Y → X → C]. □

We are now in a position to give the formula relating Quot(E0)≤1 and
QHusk(E0)≤1.

Theorem 5.6. Assume that E0 ∈ F and it is locally free. There is an identity

Q≤1 ∗ 1T = 1E0

T ∗ Q#
≤1 in H(C)Φ.

Proof. By Lemma 5.4 (a) and Lemma 5.5, the expression (b) of Lemma 5.4
can be rewritten

Q≤1 ∗ 1T ∗ 1SS([µ,∞)) − 1E0

T ∗ 1E0

SS([µ,∞)) → 0 as µ→ −∞.

Multiplying (c) of Lemma 5.4 on the left by 1E0

T gives

1E0

T ∗ Q#
≤1 ∗ 1SS([µ,∞)) − 1E0

T ∗ 1E0

SS([µ,∞)) → 0 as µ→ −∞.

Thus,

1E0

T ∗ Q#
≤1 ∗ 1SS([µ,∞)) −Q≤1 ∗ 1T ∗ 1SS([µ,∞)) → 0 as µ→ −∞.

By Lemma 5.3, we can multiply the inverse of 1SS([µ,∞)) and deduce the result.
□
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Remark 5.7. In [21], Toda studied the higher rank DT/PT correspondence,
via stable objects in the derived category of coherent sheaves. He applied the
integration map to the moduli stacks. According to Behrend’s result [3], the
integrations are related to higher rank DT and PT invariants. The invariants
are defined using the virtual fundamental classes, whose existence is guaranteed
by the symmetric obstruction theories.

The moduli space of quotient husks/limit stable pairs can also be viewed
as a version of the higher rank PT moduli space. Over a Calabi–Yau 3-fold,
we can also apply the integration map. However, the question of whether the
result is a deformation invariant remains, due to the absence of a result on a
virtual fundamental class at the moment.
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