A BMS-invariant free scalar model

Wei Song

Tsinghua University

Pengxiang Hao, WS, Xianjin Xie and Yuan Zhong, 2111.04701

& earlier work with Luis Apolo, Hongliang Jiang, Qiang Wen, Jianfei Xu and Yuan Zhong

Southeast University, December 8, 2021

The study of the AdS/CFT correspondence has been very fruitful. But more steps are necessary to understand our real world.

Non-AdS geometries

Non-CFT quantum systems

Question:

Will holography still work for asymptotically flat spacetime, and if so, how does it work?

Top down approach:

-BFSS matrix model

-TsT / $T\overline{T}$ deformation

Bottom up approach:

-glue AdS to flat space

-flat/celestrial CFT in 4d

-flat/BMSFT in 3d

. . .

The setup: flat holography in 3d

- Holographic entanglement entropy
- A free scalar model of BMSFT

Warmup: AdS_3 /*CFT*₂ from bottom up approach

Einstein gravity w/ negative c.c & the Brown-Henneaux boundary conditions	CFT ₂
Global AdS ₃	vacuum on the cylinder
Poincare AdS ₃	vacuum on the plane
Isometry group SL(2,R)x SL(2,R)	symmetry for the vacuum SL(2,R)x SL(2,R)
Asymptotic symmetry Virasoro <i>x</i> Virasoro	2d conformal symmetry Virasoro <i>x</i> Virasoro
Entropy for BTZ black holes	Cardy formula
HHRT formula	Entanglement entropy

[Bondi, van der Burg, Metzner, Sachs 62'] [Barnich-Compere 06', Bagchi-Gopakumar 09', Barnich-Troessaert, Bagchi 10'] Flat holography for 3d Einstein gravity From $AdS_3 : l = \frac{1}{\epsilon} \rightarrow \infty$

Asymptotic flat solutions of pure Einstein gravity in Bondi gauge

$$\begin{split} \mathrm{d} \mathrm{s}^2 &= \mathrm{P}(\phi) du^2 - 2 du dr + \big[J[\phi] + u \partial_{\phi} \mathrm{P}(\phi) \big] du d\phi + r^2 d\phi^2, \\ &\leftarrow \text{Bananos solutions} \\ \phi &\sim \phi + 2\pi \end{split}$$

Zero mode solutions: $ds^2 = Mdu^2 - 2dudr + Jdud\phi + r^2d\phi^2$

- M = -1, J = 0 global Minkovski spacetime, with isometry global AdS generators: $L_1, L_0, L_{-1}, M_1, M_0, M_{-1}$
- M > 0, Flat space cosmological solutions(FSC) with a Cauchy horizon BTZ with the inner horizon
- M < 0, conical defects

Alternative perspective: flat limit of AdS_3 gravity

The asymptotic symmetry generators includes superroations L_m and supertranslations M_n .

BMS₃ algebra with central extension,

$$[L_n, L_m] = (n - m)L_{n+m} + \frac{c_L}{12}(n^3 - n)\delta_{n+m,0}$$

$$[L_n, M_m] = (n - m)M_{n+m} + \frac{c_M}{12}(n^3 - n)$$

$$[M_n, M_m] = 0$$

For Einstein gravity, the gravitational anomaly $c_L = 0$, but $c_M = \frac{3}{G}$ For topologically massive gravity $c_L \neq 0$

$$c^+ - c^- \to c_L, \qquad c^+ + c^- \to \ell \ c_M$$

Asymptotic symmetry analysis suggests a holographic relation between the following theories:

- Three dimensional Einstein gravity with asymptotic flat boundary conditions imposed at null infinity
- Two dimensional quantum field theories with BMS invariance (BMSFT)

BMSFT: field theory invariant under BMS transformations

$$\tilde{\sigma} = f(\sigma), \quad \tilde{\tau} = f'(\sigma)\tau + g(\sigma), \qquad \sigma \sim \sigma + 2\pi$$

From cylinder to plane: $x = e^{i\sigma}$, $y = i e^{in\sigma} \tau$

Generators n the plane:

$$l_n = -x^{n+1}\partial_x - (n+1)yx^n\partial_y$$

 $m_m = -x^{n+1}\partial_y$

States fall into representations of the centrally extended **BMS** algebra

$$[L_n, L_m] = (n - m)L_{n+m} + \frac{c_L}{12}(n^3 - n)\delta_{n+m,0}$$
$$[L_n, M_m] = (n - m)M_{n+m} + \frac{c_M}{12}(n^3 - n)$$
$$[M_n, M_m] = 0$$

12/13/21

BMSFT as the UR (ultra relativistic) limit of CFT_2 consistent with the bulk $\epsilon \propto \frac{1}{T}$

From CFT_2 : ultra relativistic limit on the cylinder $t \xrightarrow{\to}_{M} \epsilon \tau$, $\sigma \to \sigma$

$$L_n^+ - L_{-n}^- \to L_n, \qquad L_n^+ + L_{-n}^- \to \frac{M_n}{\epsilon},$$

$$c^+ - c^- \to c_L, \qquad c^+ + c^- \to \frac{c_M}{\epsilon}$$

Effectively the speed of light is going to zero, and the causal diamond becomes a strip

Galilean conformal algebra (GCA): non-relativistic limit $t \rightarrow t$, $\sigma \rightarrow \epsilon \sigma$ [Duval-Horvathy 09', Martelli-Tachikawa, 09']

BMS algebra is isomorphic to GCA, but lots of properties are different.

- Torus partition function for BMSFT is modular invariant. $(\tau, \sigma) \sim (\tau + i\bar{a}, \sigma - ia) \sim (\tau + i\bar{b}, \sigma - ib)$
- `Cardy' formula for BMSFT

$$S_{\bar{b}|b}(\bar{a}|a) = -\frac{\pi^2}{3} \left(c_{\rm L} \frac{b}{a} + c_{\rm M} \frac{(\bar{a}b - a\bar{b})}{a^2} \right).$$

Barnich Bagchi-Detournay-Fareghbal-Simón

reproduces the entropy of FSC

• Torus 1pf vs asymptotic structure constant w

Kraus-Moloney WS-Xu Bagchi-Nandi-Saha-Zodinmawia

Conformal bootstrap

Bagchi-Gary, 16' Chen-Hao-Liu-Yu, 20'

flat/BMSFT from bottom up approach

3d Einstein gravity in asy. flat spacetime	BMSFT
Global Minkovski	vacuum on the cylinder
Poincare	vacuum on the plane
Isometry group Poincare L_n , M_n , $n = 0, \pm 1$	symmetry for the vacuum $L_n, M_n, n = 0, \pm 1$
Asymptotic symmetry Generated by L_n , M_n	BMS symmetry Generated by L_n , M_n
Entropy for FSC black holes	Cardy formula
Holographic entanglement entropy	Entanglement entropy

Holographic entanglement entropy in AdS/CFT

Ryu-Takayanagi, Hubeny-Rangamani-Takayanagi

$$S_A = \min \frac{\operatorname{Area}(\gamma_A)}{4\mathrm{G}}$$

 γ_A : co-dimension 2 extremal surface homologous to ∂A

Well established in AdS/CFT, for Einstein Gravity

- Rindler method: Casini-Huerta-Myers (CHM)
- Generalized gravitational entropy
 Lewkowyzy-Madalcena, Dong-Lewkowyzy-Rangamani

Question: what is the holographic entanglement entropy in holographic dualities for non-AdS spacetimes?

Our approach: use the "proof" to "derive" the bulk picture

- Assumptions: flat holography exists.
 Asymptotic symmetry in gravity =symmetry of the dual field theory=BMS
- A new geometric picture: the swing surface

Casini-Huerta-Myers

Gravity side

Field theory side

WS-Wen-Xu, 17' Jiang-WS-Wen, 17' Apolo-Jiang-WS-Zhong 20' Apolo-Jiang-WS-Zhong, 20'

The new geometric picture:

holographic entanglement entropy is given by an extremal swing surface

swing surface: $\gamma_A = \gamma_+ \cup \gamma_- \cup \gamma$

ropes γ_{\pm} : null geodesics emanating from points in ∂A , along the modular flow direction

bench γ : extremal surface between γ_+ and γ_-

Consistency checks and related developments

Pure field theory calculation:

- Replica trick: 2pf of twist operators *Bagchi-Basu-Grumiller-Riegler*
- Generalized Rindler method: $S_{EE} \rightarrow S_{TH} \rightarrow S_{Generalized Cardy}$ Jiang-WS-Wen

Holographic calculation:

- Wilson lines in Chern-Simons formalism *Basu-Riegler*
- Rindler method *Jiang-WS-Wen*
- Generalized gravitational entropy argument Apolo-Jiang-WS-Zhong 20'

Flat limit from AdS₃ /Wigner contraction from CFT

Geodesic Witten diagrams Hijano-Rabideau, Hijano

Quantum energy conditions *Grumiller-Praekh-Riegler*

Entanglement 1st law vs the Einstein equation Godet-Marteau, Fareghbal-Shalamzari

Modular Hamiltonian wen 18', Apolo-Jiang-WS-Zhong 20'

✓ The setup: flat holography in 3d

✓ Holographic entanglement entropy

≻A free scalar model of BMSFT

BMSFT: field theory invariant under BMS transformations

$$\tilde{\sigma} = f(\sigma), \quad \tilde{\tau} = f'(\sigma)\tau + g(\sigma), \qquad \sigma \sim \sigma + 2\pi$$

From cylinder to plane: $x = e^{i\sigma}$, $y = i e^{in\sigma} \tau$

Generators n the plane:

$$l_n = -x^{n+1}\partial_x - (n+1)yx^n\partial_y$$

 $m_m = -x^{n+1}\partial_y$

States fall into representations of the centrally extended BMS algebra

$$[L_n, L_m] = (n - m)L_{n+m} + \frac{C_L}{12}(n^3 - n)\delta_{n+m,0}$$

$$[L_n, M_m] = (n - m)M_{n+m} + \frac{C_M}{12}(n^3 - n)$$

$$[M_n, M_m] = 0$$

12/13/21

A free scalar model of BMSFT

The action on the cylinder
$$S = \frac{1}{4\pi} \int d\tau \, d\sigma \, (\partial_{\tau} \phi)^2$$

is invariant under the BMS tranformations $\sigma \rightarrow \sigma' = \sigma + \varepsilon(\sigma)$ $\tau \rightarrow \tau' = \tau + \varepsilon'(\sigma)\tau + \tilde{\varepsilon}(\sigma).$

The transformation rule for the scalar:

$$\begin{split} \delta_{\varepsilon(\sigma)}\phi &= -\varepsilon(\sigma)\partial_{\sigma}\phi - \varepsilon(\sigma)'\tau\partial_{\tau}\phi,\\ \delta_{\tilde{\varepsilon}(\sigma)}\phi &= -\tilde{\varepsilon}(\sigma)\partial_{\tau}\phi. \end{split}$$

The Neother currents

$$\begin{split} &2\pi \boldsymbol{j}_{\varepsilon(\sigma)} = \big(\varepsilon(\sigma)T + \varepsilon'(\sigma)\tau M\big)d\sigma + \varepsilon(\sigma)Md\tau, \\ &2\pi \boldsymbol{j}_{\tilde{\varepsilon}(\sigma)} = \big(\tilde{\varepsilon}(\sigma)M\big)d\sigma. & T = -\partial_{\sigma}\phi\partial_{\tau}\phi \\ &M = -\frac{1}{2}\partial_{\tau}\phi\partial_{\tau}\phi. \end{split}$$
Conservation laws:

The classical Neother charges

form BMS algebra under Possion bracket with vanishing classical central charges.

BMS free scalar theory

The action on the cylinder is $S = rac{1}{4\pi} \int d\sigma d au (\partial_ au \phi)^2.$

The equation of motion $\ \ \partial_{ au}^2 \phi = 0.$

The classical solution to the equation of motion is given by

$$\phi(\sigma, au) = \sum_{n=-\infty}^{\infty} e^{-i\sigma n} \left(A_n + i au B_n
ight)$$

The reality condition then implies the adjoint relation

$$A_n^\dagger = A_{-n}, \quad B_n^\dagger = -B_{-n}$$

 This model is a building block of the string worldsheet theory at the tensionless limit

See e. g. Bagchi 13', Bagchi- Banerjee-Chakrabortty 20'

• It also appears as the $\sqrt{T\overline{T}}$ deformation of CFT₂

```
Rodriguez-Tempo-Troncoso 21'
```

From cylinder to plane: $x = e^{i\sigma}$, $y = i e^{in\sigma} \tau$

BMS free scalar theory

The action on the plane is $S = rac{1}{4\pi}\int dy dx (\partial_y \phi)^2.$

The equation of motion $\partial_y^2 \phi = 0.$

The classical solution to the equation of motion is given by

$$\phi(\sigma, au) = \sum_{n=-\infty}^\infty x^{-n} \left(A_n + i y/x B_n
ight)$$

The reality condition then implies the adjoint relation

$$A_n^\dagger = A_{-n}, \quad B_n^\dagger = -B_{-n}$$

- The reality condition is inherited from the cylinder
- Canonical quantization on the cylinder ⇔ radial quantization on the plane
- State-operator correspondence can be set up by a careful prescription of analytic continuation.

Canonical quantization

After canonical quantization, we have the commutation relations

$$[A_n,B_m]=\delta_{n+m,0}, \quad [A_n,A_m]=[B_n,B_m]=0$$

Stress tensors are given by

$$T(x,y)=-:\partial_x\phi\partial_y\phi:,\quad M(x)=-rac{1}{2}:\partial_y\phi\partial_y\phi:,$$

The conserved charges on the plane

$$L_n=rac{1}{2\pi i}\ointig((n+1)x^nyM+x^{n+1}Tig)dx,\quad M_n=rac{1}{2\pi i}\oint dxx^{n+1}M.$$

generate the BMS transformations

$$l_n=-x^{n+1}\partial_x-(n+1)yx^n\partial_y,\quad m_n=-x^{n+1}\partial_y.$$

The vacuum

For CFT_2 , the vacuum is invariant under SL(2,R) imes SL(2,R)

For BMSFT, the vacuum is invariant under th Poincar'e subgroup

$$L_{\pm 1,\,0}|0
angle = M_{\pm 1,\,0}|0
angle = 0$$

Option I: the highest weight vacuum $|A_n|0
angle=0,\ n>0,\ B_m|0
angle=0,\ m\geq 0$

 $M_n|0
angle=0, \hspace{1em} L_n|0
angle=0, n\geq -1.$

BMS algebra with $c_L = 2, c_M = 0.$

Option II: the induced vacuum $|B_n|0_I
angle=0, \, orall n\in Z.$

$$L_0|0_I
angle=M_n|0_I
angle=0, \qquad orall n\in\mathbb{Z}.$$

Highest weight representation

Singlet: L_0 and M_0 can be diagonalized

Highest weight operator at the origin of the plane

 $[L_0, O] = \Delta O,$ $[M_0, O] = \xi O.$ Δ : conformal weight , ξ : boost charge

$$[L_n, O] = 0, \quad [M_n, O] = 0, \quad n > 0.$$

Local operators obtained from $O(x, y) = UO(0, 0)U^{-1}$. Subtleties:

1. non-unitarity

2. the action of L_0 and M_0 on the descendant operators are not simultaneously diagonal

The appearance of multiplets in descendants is a generic feature of BMS algebra.

Highest weight representation: multipletChen-Hao-Liu-Yu, 20'
Hao-WS-Xie-Zhong, 21'The action of M_0 is block diagonalHao-WS-Xie-Zhong, 21'

$$[L_0, O_a] = \Delta O_a, \qquad [M_0, O_a] = (\boldsymbol{\xi} O)_a, \quad a = 0, \dots r - 1$$
$$[L_n, O_a] = 0, \quad [M_n, O_a] = 0, \quad n > 0,$$

where O_a denotes the *a*-th component of the multiplet O,

$$oldsymbol{\xi}$$
 is a Jordon cell with rank r ,

$$oldsymbol{\xi} = egin{pmatrix} \xi & & \ 1 & \xi & \ & \ddots & \ddots & \ & & \ddots & \ddots & \ & & & 1 & \xi \end{pmatrix}_{r imes r}$$

r is called the rank of the multiplet. When r = 1 we get back the singlet.

The free scalar model

Primary operators should satisfy the following OPE

$$T(\tilde{x}, \tilde{y})\mathbf{O}(x, y) \sim \frac{\Delta \mathbf{O}}{(\tilde{x} - x)^2} + \frac{2(\tilde{y} - y)\boldsymbol{\xi}\mathbf{O}}{(\tilde{x} - x)^3} - \frac{\partial_x \mathbf{O}}{\tilde{x} - x} - \frac{(\tilde{y} - y)\partial_y \mathbf{O}}{(\tilde{x} - x)^2},$$
$$M(\tilde{x}, \tilde{y})\mathbf{O}(x, y) \sim \frac{\boldsymbol{\xi}\mathbf{O}}{(\tilde{x} - x)^2} + \frac{\partial_y \mathbf{O}}{\tilde{x} - x}.$$

• Primary singlets:

The vacuum $|0\rangle \sim 1$, $\Delta = \xi = 0$ vertex operator $V_{\alpha} =: e^{\alpha \phi}:$, $\Delta = 0$, $\xi = -\frac{\alpha^2}{2}$

• Primary multiplet (rank 2): $O_0 = i\partial_x \phi$, $O_1 = i\partial_y \phi$, $\Delta = 1$, $\xi = 0$.

Quasi-pramary multiplets

$$egin{aligned} T(x',y')\mathbf{O}(x,y) &\sim \cdots + rac{\Delta \mathbf{O}}{(x'-x)^2} - rac{2(y'-y)\xi\mathbf{O}}{(x'-x)^3} + rac{\partial_x\mathbf{O}}{x'-x} - rac{(y'-y)\partial_y\mathbf{O}}{(x'-x)^2}, \ M(x',y')\mathbf{O}(x,y) &\sim \cdots + rac{\xi\mathbf{O}}{(x'-x)^2} + rac{\partial_y\mathbf{O}}{x'-x}. \end{aligned}$$

From general analysis one may expect that T and M form a

rank 2 multiplet with Δ =2, ξ =0.

In the free scalar model, however, there is an extra level 2 quasi-primary

$$K\equiv -rac{1}{2}:\partial_x\phi\partial_x\phi:$$

so that $\mathbf{T} = \{2M, T, K\}$ is a rank 3 multiplet, with $\Delta = 2$, $\xi = 0$.

The staggered module

Due to the existence of the extra quasi-primary operator at level 2, states are now organized by an enlarged BMS module, named staggerred module.

Similar structure also appears in logarithmic CFTs [Gaberdiel-Kausch, Rohsiepe, 96']

The vacuum module

states with $\Delta = 2$ form a quasi-primary multiplet, from left to right: $|M\rangle$, $|T\rangle$, $|K\rangle$; states with $\Delta = 3$ from left to right: $L_{-1}|M\rangle$, $L_{-1}|T\rangle$, $M_{-1}|K\rangle$, $L_{-1}|K\rangle$. The four states at level 3 split into two multiplets: a singlet $L_{-1}|T\rangle - 3M_{-1}|K\rangle$, and a triplet consisting of $L_{-1}|M\rangle$, $L_{-1}|T\rangle + M_{-1}|K\rangle$ and $L_{-1}|K\rangle$.

The O module

states with $\Delta = 1$: $|O_0\rangle$, $|O_1\rangle$; states with $\Delta = 2$: $L_{-1}|O_0\rangle$, $L_{-1}|O_1\rangle$; states with $\Delta = 3$: $L_{-1}^2|O_0\rangle$, $L_{-1}^2|O_1\rangle$. states with $\Delta = 1$: $|O_0\rangle$, $|O_1\rangle$; states with $\Delta = 3$: $M_{-2}|O_0\rangle$, $L_{-2}|O_0\rangle$, $L_{-2}|O_1\rangle$, $|KO_1\rangle$.

Correlation functions

Singlets:
$$\langle \prod_{k=1}^{n} V_{\alpha_k}(x_k, y_k) \rangle = \exp\{\sum_{i < j}^{n} (-\alpha_i \alpha_j) \frac{y_i - y_j}{x_i - x_j}\}, \qquad \sum_k \alpha_k = 0$$

Multiplets:

 $egin{array}{rll} \langle O_1 O_1
angle &=& -rac{1}{x^{2\Delta}} rac{2y}{x} \ \langle O_0 O_1
angle &=& rac{1}{x^{2\Delta}} \ \langle O_0 O_0
angle &=& 0 \end{array}$

Consistent with general discussions.

More general correlation functions involving multiplets can be determined by requiring that the vacuum is invariant under the global symmetries generated by $L_0, L_1, L_{-1}, M_0, M_1, M_{-1}$

$$\begin{aligned} q &= k_1 + k_2 + 1 - r, \\ \text{or } q &= 0 \\ k_i &= 0, \cdots r - 1 \\ \text{Spf:} & \langle \mathcal{O}_{k_1}(x_1, y_1) \mathcal{O}_{k_2}(x_2, y_2) \rangle = \begin{cases} 0 & \text{for } q < 0 \\ d_r |x_{12}|^{-2\Delta_1} e^{2\xi_1 \frac{y_{12}}{x_{12}}} \frac{1}{q!} \left(\frac{2y_{12}}{x_{12}}\right)^q, \text{ otherwise} \\ \frac{y_{12}}{x_{12}} + \xi_{12} \frac{y_{12}}{x_{12}} + \xi_{12} \frac{y_{23}}{x_{23}} \right), \\ \text{Spf:} & \langle \mathcal{O}_i \mathcal{O}_j \mathcal{O}_k \rangle = A_{ijk} B_{ijk} C_{ijk} \\ A_{ijk} &= \exp\left(\xi_{123} \frac{y_{12}}{x_{12}} + \xi_{312} \frac{y_{31}}{x_{31}} + \xi_{231} \frac{y_{23}}{x_{23}}\right), \\ B_{ijk} &= |x_{12}|^{-\Delta_{123}} |x_{23}|^{-\Delta_{231}} |x_{31}|^{-\Delta_{312}}, \\ B_{ijk} &= |x_{12}|^{-\Delta_{123}} |x_{23}|^{-\Delta_{231}} |x_{31}|^{-\Delta_{312}}, \\ C_{ijk} &= \sum_{a=0}^{r_1-1} \sum_{b=0}^{r_2-1} \sum_{c=0}^{r_3-1} c_{ijk}^{(abc)} \frac{(q_i)^a (q_j)^b (q_k)^c}{a! b! c!}, \\ q_i &= \partial_{\xi_i} \ln A_{ijk}. \end{cases}$$

The **Hilbert space** is spanned by $|\vec{i}, \vec{j}; \alpha\rangle = A_{-1}^{i_1} A_{-2}^{i_2} \cdots B_{-1}^{j_1} B_{-2}^{j_2} \cdots |\alpha\rangle$ The **Torus partion function** on the torus defined by $spatial \, circle: \quad (au, \sigma) \sim (au, \sigma + 2\pi)$ $thermal\,circle: \quad (au,\sigma)\sim (au-2\pi ib,\sigma-2\pi ia)$ is given by $Z(a,b) \equiv Tr \, e^{-2\pi a (L_0 - rac{c_L}{24}) - 2\pi b (M_0 - rac{c_M}{24})} = \sqrt{rac{2}{|b|} rac{1}{\eta^2(ia)}}$ which is manifestly modular invariant $Z(a,b) = Z(\frac{1}{a}, -\frac{b}{a^2})$

12/13/21

More to be understood

- Further understanding of primary multiplets and staggered module
- The model has central charges $c_L = 2$, $c_M = 0$, whereas the dual of Einstein gravity has $c_L = 0$. model of BMSFT with $c_L = 0$?
- Supersymmetric version
- Interpretation of the primary multiplets and staggered module in the holographic dual
- Implications on tensionless strings

Summary and discsussion

- Finding holographic duality for non-AdS spacetime is very challenging
- Some progress can be made in the bottom-up approach based on asymptotic symmetries
- Geometric picture of holographic entanglement entropy becomes a swing surface in the examples of *flat*₃ /BMSFT and (W)AdS/WCFT dualities.
- A free scalar model of BMSFT can be studied explicitly. Novel features including highest weight multiplets and staggered module appear appear in the model.
- Further study is needed to understand the putative duality, or to kill it.

Thank you!