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Abstract In this paper, we propose a mechanism to generate entanglement islands in quantum systems from a purely quantum
information perspective. More explicitly we show that, if we impose certain constraints on a quantum system by projecting out
certain states in the Hilbert space, it is possible that for all the states remaining in the reduced Hilbert space, there exist subsets
Ia whose states are encoded in the states of another subset Ra . Then, the subsets {Ia} are just the entanglement islands of the
corresponding subsets {Ra}. We call such a system self-encoded and find that the entanglement entropy in such systems should
be calculated by a new island formula. We give a comparison between our new island formula and island formula in gravitational
theories. Inspired by our mechanism, we propose a simulation of the AdS/BCFT correspondence and the island phases in this context
via a holographic CFT2 with a special Weyl transformation.

1 Introduction

The information paradox for evaporating black holes [1–5] is one of the most important mysteries in our understanding of nature.
It was expected that finding a solution to the information paradox could lead us to a window to understand the quantum theory
of gravity. The AdS/CFT correspondence [6–8] that equates asymptotically AdS gravitational theories to certain conformal field
theories with large central charges and strong coupling provides us a framework to study the quantum aspects of gravity. This is
called the holographic nature of gravity and is believed to be a general property for gravitational theories, which strongly indicates
that the quantum theory of gravity should be manifestly unitary. Nevertheless, a concrete understanding of how the information is
preserved during the black hole evaporation is not obvious at all. A major breakthrough on this problem is based on the study of
quantum entanglement structure of the holographic field theories. In the context of AdS/CFT, the Ryu–Takayanagi (RT) formula
[9–11] relates the entanglement entropy of any subregion in the boundary CFT to certain co-dimension two minimal (extremal)
surfaces in the bulk which are homologous to the corresponding boundary subregion. This formula was further refined to the quantum
extremal surface (QES) formula which included the quantum correction from bulk fields [12, 13].1

The authors of Ref. [19–22] applied the QES prescription to compute the entanglement entropy of the radiation from an evaporating
black hole after the Page time. Remarkably they found that the result deviates from Hawking’s calculations and is consistent with
unitary evolution. These computations further inspired the proposal of the so-called “island formula” [23–27], which is claimed to be
the formula to compute the entanglement entropy for regions in gravitational theories. The island formula has been extensively studied
in configurations consisting of a system on a fixed spacetime background (or non-gravitational system) and a system with dynamical
gravity (or in the context of AdS/BCFT [28]). The two systems are glued together at some surface with transparent boundary
conditions for matter fields, and hence, the radiation from a black hole in the gravitating region can enter the non-gravitational
system freely. In this setup, the non-gravitational system plays the role of a reservoir that absorbs the Hawking radiation.

In the following, we will encounter density matrices defined and their associated von Neumann entropy S(ρ) for different purposes
due to the gravitational effects. It will be useful to clarify their differences using different notations, which are listed below

• ρR: the density matrix for any region R in the “full quantum theory” including quantum gravity effects for which we do not have
the exact description yet;

• ρb
R: the density matrix for any region R by tracing out all the degrees of freedom outside R in semi-classical effective theory

description, which is a quantum field theory defined on a fixed (curved) spacetime. Although the spacetime could be curved, in
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Fig. 1 Schematics of the quantum
extremal surface X for a subregion
R in a quantum field theory
coupled to semi-classical gravity.
The region I in the gravitational
background bounded by X is the
island corresponding to the region
R in non-gravitational
background

this paper we classify this description as non-gravitational since the gravitational fluctuations are omitted. The associated von
Neumann entropy S(ρb

R) is also called the bulk entanglement entropy.
• ρ̃R: the density matrix for any region R computed by tracing out the degrees of freedom outside R. This definition is usually

well defined and equals to ρR when R is settled in a non-gravitational system. Nevertheless, it is just a intermediate concept in
the computation of the fine-grained or entanglement entropy [12, 13] when R is settled in a gravitational background. Here we
naively define

S(ρ̃R) � Area(X )

4G
+ S(ρb(R)) , (1)

where X is the boundary surface of R and the area term comes from gravitational fluctuations. Then the entanglement entropy for
regions in gravitational backgrounds is given by extremizing the above formula with respect to R (or X). In other words, when
generalizing ρ̃R from non-gravitational systems to gravitational backgrounds, ρ̃R is only considered to be a well-defined density
matrix for R when R is bounded by a quantum extremal surfaces (QES), in the sense that the computation of the fine-grained
entropy can be described by the gravitational replica trick with twist operators inserted at the boundary of R. Of course, for an
arbitrary R in (1), ρ̃R is not a density matrix, and S(ρ̃R) is defined by (1) with no further physical interpretation as a entanglement
entropy.

All the above density matrices reduce to the standard one in quantum information theory when applied to non-gravitational systems
with a factorizable Hilbert space.

Let us first review Hawking’s computation for the entanglement entropy of the Hawking radiation. We denote the reservoir that
collects the Hawking radiation asR, and it is the region far away from the black hole and thus can be considered as a non-gravitational
theory on a fixed spacetime. Since there are no gravitational fluctuations in R, the area term in (1) does not appear and we have
S(ρ̃R) � S(ρb

R). In Hawking’s calculation, it was believed that the semi-classical description is valid almost everywhere except
the near singularity region (which is a much larger area than the reservoir R) before the complete evaporation of the black hole.
Furthermore, assuming locality for the semi-classical description, it was taken for granted that the degrees of freedom at different
sites on a Cauchy surface where the effective theory lives should be independent from each other; hence, the Hilbert space enjoys
the factorization property; hence, Hawking’s calculation follows a standard definition of the reduced density matrix in quantum
information. In other words, it was expected that ρR � ρ̃R � ρb

R; hence [1],

Hawking′s calculation : S(ρR) � S(ρ̃R) � S(ρb
R) . (2)

This calculation gives a monotonically increasing entanglement entropy for the Hawking radiation, until the complete evaporation
of the black hole.

Nevertheless, unitarity requires the entanglement entropy for the Hawking radiation to follow the Page curve [2], which starts
to decrease after the Page time (when the black hole has roughly evaporated half of its mass); hence, Hawking’s calculation (2) is
not consistent with unitarity after the Page time. Also the Mathur/AMPS puzzle [4, 5] arises after the Page time near the horizon,
where the effective field theory description was believed to be valid. The island formula could be the answer to these problems, as it
considers the gravitational fluctuations outside the reservoir R. It claims that when computing S(ρR) we should not only consider
the degrees of freedom inside R, but also the degrees of freedom in any gravitational region I outside R. More explicitly, S(ρR) is
calculated by the entanglement entropy formula [12, 13] with the consideration of including certain island regions [20, 23–26]:

I sland f ormula I : S(ρR) �min{extX S(ρ̃I∪R)}
�min

{
extX

[
Area(X )

4G
+ S(ρb

I∪R)

]}
, (3)

Here X is the boundary of I , and the above prescription means to extremize a generalized entropy-like functional over all possible
I then minimize over all extrema. The I that solves the optimization problem in this formula is called the “entanglement island” of
R. In the first line, ρ̃I∪R is the intermediate reduced density matrix for I ∪ R calculated by (1). Note that, the area term for the
boundary surface of R does not appear as R is the non-gravitational reservoir.

Between the island formula (3) and the Hawking’s formula (2), one should choose the one that gives the smaller S(ρR).
Remarkably, after the Page time (3) gives smaller S(ρR), which follows the Page curve. We call the system turns to the island phase
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Fig. 2 Three different descriptions for the same configuration

after the Page time. This implies that in the island phase the true reduced density matrix ρR may not be given by the standard
definition in quantum information, which is tracing out the degrees of freedom outside R, i.e.,

I sland phases : ρR �� ρ̃R . (4)

The doubly holographic setup discussed in [23] provides a special framework to explain the origin of the island formula. In this
scenario, the quantum field theory describing the Hawking radiation is assumed to be holographic. The corresponding bulk dual
gravitational theory (Fig. 2a) has a lower-dimensional effective description (Fig. 2b) in terms of the radiation bath coupled to a AdS2

gravitational theory where the entanglement islands could emerge. Furthermore, when the AdS2 gravity part is holographically
dual to a (0+1)-dimensional quantum dot, we arrived at the third picture of the same configuration, which is called the fundamental
description (Fig. 2c). In the doubly holographic framework, the entanglement entropy of a subsystem in the radiation bath is computed
through the usual (H)RT formula [9, 18] which is equivalent to the island prescription in the lower-dimensional effective description
(Fig. 2). The doubly holographic setup naturally encapsulates the idea of the island in the black hole interior being encoded in the
entanglement wedge of the radiation. Moreover, in a more general setup without assuming holography, the island formula has been
derived via gravitational path integrals where wormholes are allowed to exist as new saddles (called the replica wormholes) when
calculating the partition function on the replica manifold [26, 27]. For a subset of relevant works that may be related to this paper,
see [29–50]. Also, see [51, 52] for a detailed review on this topic2.

In all the configurations we have reviewed, gravitation plays a crucial role for the emergence of islands. It is tempting to believe
that entanglement islands only exist in gravitational backgrounds. Although the island formula for S(ρR) reproduces the Page curve,
it indicates that whenR admits an island I , the exact density matrix ρR is not calculated by (4) evenR is settled in a non-gravitational
background, rather it seems to be calculated by

ρR � ρ̃R∪ I , I is the centanglement island of R . (5)

Here the optimization is missing as I is the entanglement island bounded by the QES X , which is already the solution of the
optimization problem in (3).

This is quite surprising and counter-intuitive to our standard understanding of fundamental quantum information. The above
discussion leads us to the following question. Is gravitation essential for the emergence of entanglement islands? Or, is it possible
to understand the Island formula from a purely quantum information perspective? These are fundamental questions, and answering
them will be crucial to get a deeper understanding of the entanglement islands. Furthermore, if the island formula can be understood
from a purely quantum information perspective,3 it may lead us to a new research field of quantum information, where we may find
a way to create entanglement islands in the laboratory and discuss how to use them.

In this paper, we try to understand the above questions. In short, we are going to study the reduced density matrices for quantum
systems in a reduced Hilbert space, where the state of space-like-separated degrees of freedom becomes dependent on each other
and the factorization property does not hold anymore. We will get a new formula to compute the entanglement entropy for regions
in the reduced Hilbert space, which looks very similar to the island formula (3). This will give us new inspiration on understanding
the Island formula I from a pure quantum information perspective. More explicitly, in Sect. 2, we propose a mechanism for the
emergence of the entanglement islands in quantum systems and derive the formula, which we call the Island formula II , to compute
entanglement entropy in systems under this mechanism. In Sect. 3, we compare the Island formula II with the Island formula I (3)
in gravitational systems. In Sect. 4, we propose a simulation for the AdS/BCFT configurations via holographic CFT2 under a special
Weyl transformation. In Sect. 5, we summarize our results and discuss their implications.

2 On the other hand, there are still important criticisms [37–43] for the Island formula I which remain to be properly addressed (see also [53, 54] for
alternative viewpoint).
3 See [55–58], for example, which, in some sense, also attempted to study entanglement islands in quantum information without gravitation.
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2 Entanglement islands from Hilbert space reduction

2.1 Self-encoded quantum systems induced by constraints

For a generic quantum system when the Hilbert space of the total system is properly reduced following certain constraints, the
entanglement islands Ia for regions Ra could emerge in a natural way. In the following, we list the key features for the constraints
that induce entanglement islands.

• Firstly, the constraints should be understood as projecting out certain states in the Hilbert space such that, for all the states
remaining in the reduced Hilbert space, mappings from the states of a set of subregions {Ra} to the state of another set of
subregions {Ia} will emerge,

|i〉Ia � fRa (| j〉Ra
) , (6)

which we call the coding relations. More explicitly, let us begin with a quantum system with two sites I and R; hence, a general
basis of the Hilbert space can be written as |i〉I | j〉R. For the basis with j � 0, if we project out all the states |i〉I |0〉R with
i �� 0, then in the reduced Hilbert space if you grab a state and read theR factor to be |0〉R, you will immediately notice that the
I factor of this state should be |0〉I . The reason is that the states with other possible i are not in the reduced Hilbert space. This
effectively gives a mapping between the state of R and the state of I , which is the coding relation |0〉I � fR(|0〉R). Of course
we can perform more complicated Hilbert space reduction such that, given the state of Ra , one can determine the state of Ia
through the coding relation. The coding relations can be classified in two levels, which include the 1) the region correspondence
between{Ra , Ia} and 2) the state correspondence between {| j〉Ra

, |i〉Ia }for a given pair of {Ra , Ia}.
• Secondly, the constraints are not only imposed on the states, but also on the Hilbert space of the system. In other words, under
time evolution or the action of any allowed operators, the state of the system should always remain in the reduced Hilbert space,
rather than the original full Hilbert space. Operators that drive the system to a state outside the reduced Hilbert space are not
consistent with the constraints.

We call systems satisfying such kind of constraints the self-encoded systems. As was described above, the constraints are highly non-
trivial and result in highly non-local effects to the system, which destroy the independence between space-like-separated degrees of
freedom on a Cauchy surface. This will essentially change the way we calculate the reduced density matrix and related information
quantities like entanglement entropy. We will show that the new formula to calculate the entanglement entropy in self-encoded
systems is closely related to the island formula (3).

Before proceeding, we would like to briefly comment on the nature of the quantum channels incorporating the coding relations. By
virtue of being a quantum channel, such a coding relation must be a completely positive trace-preserving (CPTP) map. This ensures
that the coding relation maps a density matrix (with unit trace) to another density matrix even in the presence of an environment.
An example of such a coding relation is given by the so-called Petz recovery channel [59], which preserves relative entropies.

2.2 The simplest case of two spins

Now, we give a explicit description of our mechanism for a system with the simplest coding relation and explicitly show how we
should compute the reduced density matrix and the entanglement entropy in the reduced Hilbert space. For brevity, we consider
static systems in two-dimensional spacetime with time reflection symmetry. We divide the system into three non-overlapping subsets
R ∪ I ∪ B.4

Firstly, let us review the computation of the reduced density matrix of R when the total system I ∪ B ∪ R is in a pure state
ρ � |�〉〈�|, where

|�〉 �
∑
i , j ,k

Ci jk |i〉I | j〉B |k〉R,
∑
i , j ,k

Ci jkC
∗
i jk � 1 . (7)

Here {|i〉}, {| j〉}, {|k〉} are the orthonormal bases of the Hilbert spaces HI , HB and HR . In ordinary quantum systems, the degrees
of freedom in different subsystems are independent in the sense that the Hilbert space of the total system is factorized,

H � HI ⊗ HB ⊗ HR . (8)

The reduced density matrix of the subsystem R is then given by tracing out the degrees of freedom of the complement I ∪ B while
setting boundary conditions for R with 〈kR| and |k′

R〉,
(ρR)kk′ �

∑
i , j

〈k|R〈i |I 〈 j |Bρ| j〉B |i〉I |k′〉R �
∑
i , j

ρ(i jk)(i jk′)

4 The denotations are chosen to match the black hole configurations [51], where R, I , and B are analogues of the black hole radiation in the non-gravitational
reservoir, the island in black hole interior, and the black hole degrees of freedom, respectively.
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Fig. 3 ρRi j in ordinary quantum
systems represented by
performing path integral with
certain boundary conditions for
the open edges at the region R

�
∑
i , j

Ci , j ,kC
∗
i , j ,k′ . (9)

As we can see, any matrix element of the reduced density matrix (ρR)kk′ is a summation of certain class of matrix elements of the
density matrix ρ of the total system, which is computed within the Hilbert space H. This implies a summation of all possibilities
outside R for a given set of boundary conditions on R. For a local observer who can only measure the observables inside R, the
state of R is exactly given by the reduced density matrix ρR. The entanglement entropy of R is then calculated by

SR ≡ S(ρR) � −Tr(ρR log ρR) . (10)

In quantum field theories, we use the path integral representation to compute the reduced density matrix [60, 61]. More explicitly, for
scenarios with time reflection symmetry, (ρR)i j for R can be computed by cutting R open and setting different boundary conditions
on the upper and lower edges, see Fig. 3. Then ρn

R is calculated by the replica trick via considering n copies of the manifold and
gluing them cyclically along the cuts present at R. Upon taking the limit n → 1, we get the entanglement entropy,

S(ρR) � S(ρ̃R) � − lim
n→1

∂n log tr(ρn
R). (11)

The above paragraphs reviewed the standard way to compute the reduced density matrix and entanglement entropy in an ordinary
quantum system. It is taken for granted that the degrees of freedom on the Cauchy slice are independent from each other and the
Hilbert space factorizes following (8). Now we consider the self-encoded systems where such factorization no longer holds. We
consider again a pure state of the system I ∪ B ∪ R, but the system is highly constrained such that for all the states in the reduced
Hilbert space the state of the region I is encoded in the state of R following a coding relation,

|i〉I � fR
(| j〉R)

. (12)

Compared with the generic coding relations (6), here we have only one pair of R and I . As a mapping, we require 1) all the states
in HR should be mapped to a unique state in HI , 2) all the states in HI should have images in HR.

The dimension of the reduced Hilbert space Hred decreases and Hred becomes a subspace of the original Hilbert space,

dimHred � dim(HB ⊗ HR) , Hred ⊂ HI ⊗ HB ⊗ HR . (13)

One of the direct and crucial consequences of the self-encoding property (12) is that some of the degrees of freedom become
dependent on each other; hence, Hred is no longer factorizable following (8). In this case, the state of I is determined by the state
of R and hence I does not add any independent degrees of freedom to the system.

To conduct an explicit calculation, let us consider the simplest configuration with two spins, where we can realize our previous
statements. We denote the two spins as I and R, respectively, and denote the spin up (down) state as |0〉 (|1〉). At the beginning, we
assume the system is in the pure state

ρ � |�〉〈�| , |�〉 �
√

2

2
(|0I 0R〉 + |1I 1R〉) . (14)

Firstly, let us consider the familiar scenario where the spin I is independent of R. The Hilbert space H is four-dimensional with the
following four orthonormal basis

H � {|0I 0R〉, |0I 1R〉, |1I 0R〉, |1I 1R〉} . (15)

The matrix elements of the reduced density matrix are given by

ρR 00 �〈0R0I |ρ|0I 0R〉 + 〈0R1I |ρ|1I 0R〉 � 1

2
, (16)

ρR 01 �〈0R0I |ρ|0I 1R〉 + 〈0R1I |ρ|1I 1R〉 � 0 , (17)

ρR 10 �〈1R0I |ρ|0I 0R〉 + 〈1R1I |ρ|1I 0R〉 � 0 , (18)

ρR 11 �〈1R0I |ρ|0I 1R〉 + 〈1R1I |ρ|1I 1R〉 � 1

2
. (19)
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Fig. 4 Illustration of the density
matrix ρI∪R for the two-spin
system before(LHS) and
after(RHS) the reduction in the
Hilbert space

The von Neumann entropy for ρR is then given by

S(ρR) � −Tr(ρR log ρR) � log 2 , (20)

which indicates that the two spins are maximally entangled with each other.
Then, we consider the new configuration with constraints on the system such that the state of the spin I is somehow totally

determined by R. The constraints may be imposed by requiring that the z component of the angular momentum should satisfy
Jz �� 0 all the time5. The constrains project out the states with {|0I 1R〉, |1I 0R〉} components, such that the four-dimensional Hilbert
space (15) reduces to the following two-dimensional one

Reduced : Hred � {|0I 0R〉, |1I 1R〉} . (21)

In this reduced Hilbert space, a coding relation emerges which indicates that the spin of I must be the same as R, i.e.,

Coding relation : |0〉I � fR
(|0〉R

)
, |1〉I � fR

(|1〉R
)
. (22)

Again, we consider the system to be in the state (14), which is now a vector evolving in the reduced Hilbert space (21) rather than
the four-dimensional one (15). Note that the two states |0I 1R〉, |1I 0R〉 are no longer basis of HI∪R, and the density matrix of the
total system becomes 2 × 2-dimensional, see Fig. 4.

Then how do we trace out the degrees of freedom for I in the reduced Hilbert space? It turns out that due to the constraints there
is no room to perform the trace operation for I; hence, concept ρ̃R is not a well-defined density matrix. More explicitly, when we
set boundary conditions for R, we are fixing the state of R. Since the state of I is totally determined by R following the coding
relation (22), we simultaneously set boundary conditions on I . The reduced density matrix ρR is then calculated by,

ρR 00 � 〈0R0I |ρ|0I 0R〉 � 1

2
, (23)

ρR 01 � 〈0I 0R|ρ|1I 1R〉 � 1

2
, (24)

ρR 10 � 〈1R1I |ρ|0I 0R〉 � 1

2
, (25)

ρR 11 � 〈1I 1R|ρ|1I 1R〉 � 1

2
, (26)

and eventually we get (see Fig. 4)

ρR � ρI∪R, and S(ρR) � 0 . (27)

One can further check that the von Neumann entropy for ρR is zero, and hence, ρR remains to be a pure state. This is expected,
as we have mentioned that the additional spin I does not add any independent degrees of freedom to the system. One may still be
confused about the way we compute ρR and ask why we have not traced out the degrees of freedom of I in (24) as we did in (17).
The reason is that the Hilbert space (21) is reduced such that the terms in (17) are no longer matrix elements of the density matrix
ρ. If we insist to compute following (17), then states outside the reduced Hilbert space will be involved, which is not allowed by
the constraints.

Though the two-spin system is extremely simple, we learn the following important lesson from it.

• The reduced density matrix and relevant entropy quantities not only depend on the state of the system, but also depend on the
Hilbert space where the state is embedded in.

5 Perhaps it is easier to require Jz � 0 such that the reduced Hilbert space is Hred � {|0I 1R〉, |1I 0R〉}, which implies the spin of the two spins should
be opposite.
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Fig. 5 ρRi j , ρR j i , and Trρ2
R in

self-encoding quantum systems
with I encoded in R

It is worth mentioning that similar ideas have been used to clarify the ambiguity of the entanglement entropy in gauge theories
(see [62, 63] and especially [64]6). In gauge theories where the Hilbert space is usually redundantly labeled, the ambiguity of the
entanglement entropy can naturally be understood as arising from different choices of the Hilbert space where the state is embedded
in.

2.3 New island formula from Hilbert space reduction

Assuming that the self-encoding property can also be applied to QFT or gravity, we can generalize our discussion for the two-spin
system a bit more to a QFT7 or gravity in the path integral representation. Again we consider the simplest coding relation (12).
Unlike the two-spin system, in general the total system also includes a region B where the degrees of freedom are independent. To
compute the reduced density matrix for R in the path integral description, we cut R open and set boundary conditions for the upper
and lower edges at R. At the same time, we should simultaneously cut I open and impose certain boundary conditions on the I edges
following the coding relation (12). Like the two-spin system case we discussed previously, the essential reason behind is that, we
are doing computation in the reduced Hilbert space due to certain non-trivial constraints. See Fig. 5 for a illustration of the reduced
density matrix ρR i j .

Then we calculate the entanglement entropy via the replica trick, which glues the n copies of the density matrix cyclically.
Since certain boundary conditions are imposed on I as we set boundary conditions on R due to the constraints, when the boundary
conditions are settled such that we cyclically glue different copies of the system at R, the corresponding boundary conditions at I
following the codes (12) also imply that we simultaneously glue different copies at I . In other words, the cyclic gluing performed
on R induces the cyclic gluing on I (see Fig. 5). This results in an additional twist operator inserted at X , which is the boundary of
I . In this scenario, the region I is nothing but the so-called “entanglement island” in the literature. As in the two-spin system, if we
insist to trace out the degrees of freedom on I , then the calculation will involve states outside the reduced Hilbert space Hred , which
is not allowed by the constraints. In other words, the notations ρ̃R and S(ρ̃R) are ill defined in the reduced Hilbert space. But the
notation ρ̃R∪I can be well defined as the degrees of freedom outside R ∪ I are independent from R ∪ I . This is very similar to the
case of ρ̃R∪I in gravitational theory, which can be taken as a density matrix when I is the corresponding entanglement island of R,
see (5).

Let us denote

S̃A ≡ S(ρ̃A) , (28)

as the von Neumann entropy calculated by cyclically gluing only the region A in replica trick. In ordinary systems where the Hilbert
space is not reduced, we have the trivial relation S(ρA) ≡ SA � S̃R. Nevertheless, in the self-encoded configurations we currently
consider, this relation no longer holds. Based on the above discussions on the replica story, we arrive at the following crucial relation
for self-encoded systems,

SR � S̃R∪I . (29)

Furthermore, if I is settled on a gravitational background while R is settled in a non-gravitational bath, then when we apply the
replica trick for I ∪ R following [11, 12]; we will receive additional gravitational contribution for S̃R∪I , which is proportional to

6 At the final stage of this paper, professor Ling-yan Hung pointed out to us that a similar discussion on the two-spin system is already given in [64] from
the perspectives of what can be measured in an experiment.
7 In a QFT, placing a cutoff effectively discretizes the theory, enabling the application of finite-dimensional Hilbert space techniques.
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the area of the boundary X of I , since I is settled in a gravitational background. The non-gravitational part of S̃R∪I is just the bulk
entanglement entropy Sbulk(ρ̃R∪I ) which is calculated in a fixed curved background. Eventually we arrive at the following formula,

I sland f ormula I I : SR � S̃R∪I � Sbulk(ρ̃R∪I ) +
Area(X )

4G
, |i〉I � fR

(| j〉R)
, (30)

which exactly matches to the formula within the parenthesis in the island formula I in (3). For multiple pairs of coding regions {Ia ,
Ra}, the island formula II is then generalized to a series of equations for any Ra with non-empty Ia ,

I sland f ormula I I : SRa � Sbulk(ρ̃Ra∪Ia ) +
Area(Xa)

4G
, |i〉Ia � fRa

(| j〉Ra

)
. (31)

Note that the formulas (30) and (31) are based on the assumption that the system is self-encoded and we know the details of the
coding relations (6). If the assumed coding relation (6) is exactly the relation between the reservoir and its entanglement island,
which solves the optimization problem of the island formula I (3), then the island formulas I and II are essentially the same. In the
next section, we will give more discussion on their relationship.

2.4 Requirements for the Hilbert space reductions

The self-encoding constraints (12) are only one particular way to reduce the Hilbert space of the system. There are certainly other
ways to reduce the Hilbert space, among which one will be introduced in later sections where the eliminated degrees of freedom
are not localized in a definite spatial region. Nevertheless, not all reductions will essentially change the reduced density matrix and
some of them are not even well defined. Here we present the following four requirements for the type of Hilbert space reductions
which are interesting to us:

• first of all, the state |�〉 under consideration should remain in the reduced Hilbert space;
• secondly, when we impose boundary conditions for R, we should have a square matrix block in ρ from which the corresponding

element of the reduced density matrix can be computed by tracing out the matrix block;
• thirdly, if we compute the reduced density matrix ρR in the reduced Hilbert space, we require that the dimension of ρR is still

dimHR, such that the local observer in R feel nothing wrong with the Hilbert space of R. In other words, in the reduced Hilbert
space of the total system the state of R is allowed to be any state in HR .

The second requirement implies that, after the reduction in the Hilbert space, the degrees of freedom for the complement R̄ should
be preserved, no matter in which state the subsystem R is settled. For example, we can reduce the Hilbert space of the two-spin
system to be

HI∪R � {|0I 0R〉, |1I 0R〉, |1I 1R〉} , (32)

in which I is fixed to be the same as R when R is in the state |1R〉. On the other hand when R is in the state |0R〉, there is no
constraint on the spin I . In other words, the degrees of freedom of I differ depending on the state of R; hence, our second requirement
is not satisfied. This could be problematic, since when setting boundary conditions for R and computing the elements of ρR, we
will find that the matrix block is no longer a square matrix, which means that the degrees of freedom of I cannot be described in the
usual sense of a density matrix anymore. One should further study and define the physical meaning of density matrix blocks that
are not square. Nevertheless, this is beyond the scope of this paper and we will naively consider such reductions to be un-physical.
One necessary condition for the second requirement is that the dimension of the reduced Hilbert space should be an integer times
dim HR. As an explicit example, we consider a vector |a〉 in the Hilbert space of the two-spin system before reduction

|a〉 � 1√
3
(|0I 0R〉 + |1I 0R〉 + |1I 1R〉) , (33)

and the corresponding density matrix in the unreduced Hilbert space can be worked out as depicted on the left panel of Fig. 6. After
reducing the Hilbert space to HI∪R in (32) in which the degrees of freedom of I depend on the state in R, the density matrix can be
shown to be given in the form of the right panel of Fig. 6. The matrix elements in the orange area all vanish since the state |a〉 does
not contain any |0I 1R〉 component, which is the constraint from our first requirement. The matrix blocks enclosed by the purple
areas are not square which is different from density matrices before the reduction in Hilbert space. Thus, the reduced density matrix
after the reduction in the Hilbert space is not well defined in the usual way, and this is exactly the point of our second requirement.

2.5 Islands beyond spatial regions

Now we introduce a class of reductions where the reduced degrees of freedom in R̄ are not localized in a spatial subregion I . Let
us use two sets of parameters {ai } and {b j } to denote the states in the Hilbert space HR̄ as follows

|a1, a2 · · · an , b1, b2 · · · bm〉R̄ ∈ |Va ⊗ Vb〉 � HR̄ . (34)
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Fig. 6 Illustration of the density
matrices of |a〉 before(LHS) and
after(RHS) the reduction in the
Hilbert space

and a generic state for the entire system can be expressed by

|�〉 �
∑

a1,···an ,b1,···bm ,i

Ca1,···an ,b1,···bm ,i |a1, · · · an , b1, · · · bm〉R̄|i〉R . (35)

Here, for example, Va represents a vector space in which a generic vector can be specified by the set of parameters {ai }. It is not the
Hilbert space of any region, since a is not a subregion of R̄.

Now we reduce the Hilbert space following certain constraints. We assume that the state of R determines the parameters {ai } in
the following way

|a1, a2 · · · an , b1, b2 · · · bm〉R̄ � |�a(|i〉R), b1, b2 · · · bm〉R̄ , (36)

where �a is a vector in the space Va . This means that for any state |�〉 in the reduced Hilbert space, if the state |i〉R of the subregion
R is given, then the corresponding state of R̄ is partially determined with the parameters in the subspace Va fixed to be �a(|i〉R).
Hence, the dimension of the Hilbert space reduces to be dim(Vb) × dim(HR). In the reduced Hilbert space, a generic state |�〉 can
be expressed by

|�〉 �
∑

b1,b2···bm ,i

Cb1,b2···bm ,i |�a(|i〉R), b1, b2 · · · bm〉R̄|i〉R . (37)

Note that in the reduced Hilbert space the independent degrees of freedom are confined in the subspace Vb, which are usually
parameters characterizing the state of R̄, rather than a subset I inside R̄. Then the reduced density matrix is calculated by

(ρR)i j �
∑

b1,b2···bm
Cb1···bm ,iC

∗
b1···bm , j |�a(|i〉R), b1, · · · bm〉R̄〈�a(| j〉R), b1, · · · bm |R̄ , (38)

where we have only traced the independent degrees of freedom in Vb.
In this type of reductions (36), the reduced degrees of freedom in Va are not required to be mapped to the degrees of freedom

localized in any spatial region I inside R̄; hence, there could be no spatial region I that plays the role of an island. Rather, the island
is a subspace in the parameter space which characterize the Hilbert space.

3 Relation to the island formula I in gravitational theories

The main motivation for our mechanism comes from our gradually deepened understanding about the quantum information aspects
of gravity. Firstly, there is a basic puzzle of gravity that accompany the Bekenstein–Hawking formula, which is the fact that the
number of degrees of freedom in the black hole interior is divergent if we take the effective field theory of gravity as a quantum field
theory (with gravitational fluctuations), while the number indicated by the Bekenstein–Hawking entropy

SBH � Area(∂A)

4G
, (39)

is finite. If we introduce a UV cutoff to regularize the entropy, it is even more puzzling as we note that the Bekenstein–Hawking
entropy is independent from the UV cutoff. This puzzle is also a long-standing problem of interpreting the black hole entropy as the
entanglement entropy between the black hole interior and outside [65, 66]. Then a possible solution to this puzzle is as follows:

• The Hilbert space of the “quantum” gravity is a reduced space of the Hilbert space of the corresponding local quantum field
theory with gravitational fluctuations .8

8 The degree of the Hilbert space reduction directly affects the number of degrees of freedom in quantum gravity, which is further related to the cutoff scale
of the theory. Regarding the cutoff scale of quantum gravity, there have been discussions on the relation between Newton’s constant, the number of species
of particles, and the so-called gravity cutoff �, see [65, 67, 68] for original papers. A more tempting story is that the bulk entanglement entropy plus the
Bekenstein–Hawking entropy gives the renormalized entropy Area(A)

4G with a renormalized Newton constant. Nevertheless, such renormalization is only
successful for minimally coupled matter fields (see [66] for details), if gravity is coupled to non-minimally coupled matter fields, like gauge bosons; this
story is not well understood.
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Then, it is very interesting to ask whether the reduction in Hilbert space induces self-encoding property of gravity. According to our
discussion in the previous section, it seems that the self-encoding property is the only plausible interpretation for the emergence of
entanglement islands from the quantum information perspective. When entanglement entropy is calculated by the island formula I
in gravitational theories, it implies that the gravitational theory is self-encoded.

In fact the conjecture that gravitational theories could be self-encoded turns out to be one of the most important implications
from the developments in the quantum information aspects of quantum gravity in recent two decades. It was first conjectured in
several independent papers [69–73] that the state of the black hole interior is mapped to the state of the Hawking radiation after the
Page time; hence, they are not independent degrees of freedom. This solves the Mathur/AMPS puzzle [4, 5], as the monogamy of
entanglement only applies to independent degrees of freedom. This is nothing but the self-encoding property we have introduced.

This idea was sharpen in the double holography setup [23]. Given a region Ra in the non-gravitational bath, the corresponding
island region Ia could be included as part of the entanglement wedge of Ra . According to the “entanglement wedge reconstruction”
program [14, 74–81], the states and operators in the entanglement wedge (which includes Ia) of Ra can be reconstructed from
the information in Ra . In the more generic configurations without assuming holography, the pairs of {Ra , Ia} regions are both
subregions in gravitational theories, rather than on different sides of holography. The existence of reconstruction can also be justified
following the same line of argument for entanglement wedge reconstruction. More importantly, an explicit reconstruction of the
island region Ia can be derived via the Petz map [82–85] in some simple models of quantum gravity [27], and this reconstruction in
principle can be generalized to more generic gravitational theories.

Independently, in another series of papers [41, 86, 87] it was proposed that in gravitational theories all the information available
on a Cauchy slice is also available near its boundary, which means the physics in any bulk regions away from the boundary can be
reconstructed from the information in the near boundary region.

• In summary, these important works imply that gravitational theories are self-encoded in the sense of (6). More explicitly, the
regions Ra and Ia in the island formula I satisfy a coding relation (6), where the region correspondence {Ra , Ia} is determined
by the optimization procedure, and the state correspondence {| j〉Ra

, |i〉Ia } is implied by the reconstruction.

The above review implies that like the island formula II , the island formula I is also an result of the self-encoding property.
Nevertheless, an obvious difference between the island formula I (3) and II (31) is that in (3) there is an optimization procedure
which is missing in (31). Given a region Ra , the optimization procedure determines its island region Ia , which is indeed the first
level of the coding relation, which means the island formula I contains more information than the island formula II , due to the
special structure of spacetime wormholes in gravitational theories. Also, the Hilbert space reduction in gravity is not induced by any
external constraints; rather, it also seems to be a result of the wormhole structures which is an intrinsic property of gravity. All in all,
the Hilbert spaces of gravitational theories reduce in a special type of ways for some unknown intrinsic reason, which gives specific
coding relations and the mapping between Ra and Ia cannot be randomly chosen. In other words, when gravitation is introduced in
the system, (31) only makes sense when Ia is exactly the entanglement island of Ra .

We give some more comments on describing the black hole evaporation process in terms of Hilbert space reduction. From the
formation to the Page time, the Hawking radiation R admits no islands, which indicates all the degrees of freedom outside R are
(totally) independent from R. After the page time, R admits a island I in the black hole interior. This is a phase transition from the
fact that R determines (almost) nothing to R totally determines I . We propose that this sudden change is a result of the large central
charge limit.

4 A simulation of Hilbert space reduction via Weyl transformation

In the previous section, we have reviewed the clues demonstrating that gravitational theory has a reduced Hilbert space featured
by finite cutoff, and show the possibility that this reduction induces the self-encoding property of gravity and the emergence of
entanglement islands. Inspired by these clues, as well as the double holography [23] setup, here we propose a prescription to simulate
a configuration where island phases are extensively studied, i.e., the AdS/BCFT correspondence [28]. We start from the vacuum
state of the holographic CFT2; then, we introduce the finite cutoff to the theory by imposing a special Weyl transformation to half of
the system x < 0. In order to apply the island formula I on this Weyl transformed system, we assume that the x < 0 of the theory is
coupled to AdS2 gravity. Furthermore, if we assume that the scalar field that characterizes the Weyl transformation is dynamical, the
coupled AdS2 gravity may be induced by the dynamics of the scalar field. We will discuss the entanglement structure, application
of the island formula I , and the emergence of entanglement islands in this configuration and find that the main features of the
AdS/BCFT configuration are perfectly captured by the Weyl transformed CFT.

Note that a similar prescription was earlier proposed independently in [88] with a different motivation, as well as some technical
differences from our prescription.
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4.1 Finite cutoff from Weyl transformation in CFT2

Let us start from the vacuum state of a holographic CFT2 on a Euclidean flat space9

ds2 � 1

δ2

(
dτ 2 + dx2) . (42)

Here δ is an infinitesimal constant representing the UV cutoff of the boundary CFT. The theory is invariant under the Weyl
transformation of the metric

ds2 � e2ϕ(x)
(
dτ 2 + dx2

δ2

)
. (43)

This effectively changes the cutoff scale in the following way

δ ⇒ e−ϕ(x)δ . (44)

The entanglement entropy of a generic intervalR � [a, b] in the CFT after the Weyl transformation picks up additional contributions
from the scalar field ϕ(x) as follows [89–91]

SR � c

3
log

(
b − a

δ

)
+
c

6
ϕ(a) +

c

6
ϕ(b) . (45)

This formula can be achieved by performing the Weyl transformation on the two-point function of the twist operators.
For our purpose to study entanglement islands, we perform a specific Weyl transformation on a holographic CFT2 that corresponds

to Poincaré AdS3, such that the metric becomes AdS2 in the x < 0 region and remains flat in the x > 0 region. Such a Weyl
transformation can be easily found to be10

ϕ(x) �
{

0 , if x > 0 ,

− log
(

2|x |
δ

)
+ κ . , if x < 0 ,

(46)

where κ is an undetermined constant. The corresponding metric at x < 0 after the Weyl transformation becomes

ds2 � e2κ

4

(
dτ 2 + dx2

x2

)
, x < 0 . (40)

As expected, the above metric is AdS2 up to an overall coefficient (the length scale is given by eκ/2). Note that, in order to get a
AdS2 metric independent of δ, we need to choose a scalar field depending on δ which goes to infinity when δ → 0. The specific
choice (45) for the scalar field is made to simulate the entanglement structure for the AdS/BCFT correspondence, where the effective
theory description can be taken as an AdS2 gravity coupled to a CFT2 bath. Also the cutoff scale in the x < 0 region is no longer
infinitesimal; rather, the cutoff scale is bounded from below and depends on the position x.

Before we go ahead, we give a physical interpretation for the Weyl transformation, as well as the entropy formula (44). Before
the Weyl transformation, the UV cutoff of the CFT is a uniform infinitesimal constant δ. The Weyl transformation is indeed a
position-dependent scale transformation that changes the cutoff scale from δ to some finite scale. Such a non-uniform cutoff would
definitely dramatically reduce the Hilbert space as the UV degrees of freedom, as well as the small scale entanglement structure, are
erased by the Weyl transformation. After the Weyl transformation, the formula (44) tells us that the entanglement entropy is just the
original one subtracting two constants11 which are totally determined by the scalar field at the two endpoints. More importantly the
subjected constant is independent from the position of the other endpoint. Hence, we conclude that given a particular point x, the
Weyl transformation at x effectively excludes all the small distance entanglement across x below the cutoff scale, which is captured
by the constant c

6 |ϕ(x)|, while keeping the long distance entanglement structure above the cutoff scale unaffected.

4.2 Weyl transformed CFT vs AdS/BCFT

The AdS/BCFT [28] correspondence is a widely used setup where entanglement islands emerge. The basic statement is that the
holographic CFT2 with a boundary corresponds to the AdS3 bulk with a end of world (EoW) brane which extends in the bulk and

9 Here the overall factor 1
δ2 is inspired by AdS/CFT, and Eq. (41) acts as the boundary metric corresponding to the dual AdS3 geometry,

ds2 � 
2

z2 (−dt2 + dx2 + dz2) , (41)

with the cutoff settled at z � δ.
10 Note that at x � 0 the scalar field (45) is not smooth or even continuous. The entropy formula (44) only depends on the scalar field at the endpoints, so
we think this is not a problem as long as we do not talk about the intervals ending at x � 0. We can also redefine the scalar field in the neighborhood of
x � 0 to retain smoothness there.
11 We require that the two endpoints are not close enough to give a negative entanglement entropy following (44).
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Fig. 7 Holographic entanglement
entropy in the AdS/BCFT setup:
(left) For an interval R � [a, ∞]
in the BCFT, the RT surface has
the disconnected topology and
lands on the EoW brane at a′ � a.
(right) For R � [a, b], the
connected(disconnected) RT
surfaces are shown by the blue
dashed(solid) curves. The position
where ER anchors on Q is
determined by extremizing the
length of ER, which gives a′ � a
and b′ � b. The dashed vertical
line denotes the ρ � 0 slice

anchors on the boundary of the CFT. In the AdS3 bulk, the EoW brane satisfies Neumann boundary condition and its position is
determined by its tension. In this setup, it is more convenient to use another set of coordinates (t , ρ, y) to describe the AdS3 bulk
geometry,

x � y tanh ρ , z � −ysech ρ . (47)

The bulk metric in these coordinates is given by the standard Poincaré slicing, as follows

ds2 � dρ2 + cosh2 ρ
−dt2 + dy2

y2 � −dt2 + dx2 + dz2

z2 ,

where the AdS3 radius is set to be unity. In the Poincaré slicing12 described by the (t , ρ, y) coordinate chart the EoW brane is
situated at a constant ρ � ρ0 slice [92], where ρ0 is determined by the tension T of the EoW brane,

ρ0 � arctanhT . (48)

It is easy to see that the metric on the EoW brane is exactly AdS2 up to an overall constant. The key property in the AdS/BCFT setup
is that the RT surface ER of a boundary region R is also allowed to be anchored on the EoW brane Q [28, 92] (see Fig. 7). This was
confirmed in [93] via a direct computation of the correlation functions of twist operators in BCFTs with large central charge. Hence,
new configurations for the RT surfaces that anchors on Q arise in AdS/BCFT. The island formula in double holography setups is
reproduced by considering these new configurations of the RT surfaces when applying the RT formula to calculate the holographic
entanglement entropy.

For example, the entanglement entropy of the region R :� [a, ∞) may be computed through the length of the RT curve ER
homologous to R and anchored on the EoW brane. After determining the location on the brane by extremizing the length of ER
(see the left panel in Fig. 7), the holographic entanglement entropy is given by

SR � Area(ER)

4G
� c

6
log

(
2a

δ

)
+
c

6
ρ0 . (49)

Note that the area term Area(ER)
4G captures the bulk entanglement entropy term in the Island formula I , while the area term AreaX

4G
is ignored by taking the gravity theory settled on the EoW brane to be the induced gravity by partial reduction on the ρ0 > ρ > 0
region. This choice is necessary to compare with the configuration of the holographic Weyl transformed CFT2 later. For the choice
R :� [a, b] there are two possible saddles for the RT surface, one is a connected geodesic that anchored on the two endpoints of R,
while the other consists of two disconnected geodesics which also anchor on the EoW brane Q (see the right panel in Fig. 7). The
holographic entanglement entropy is simply given by

SR �
⎧⎨
⎩

c
3 log

( b−a
δ

)
, if a > b

(
1 − 2

√
e2ρ0 + e4ρ0 + 2e2ρ0

)
,

c
6 log

( 2a
δ

)
+ c

6 log
( 2b

δ

)
+ c

3ρ0 . , if 0 < a < b
(

1 − 2
√
e2ρ0 + e4ρ0 + 2e2ρ0

)
.

(50)

In both left and right panels in Fig. 7, the portion of the brane Q (marked red) lying in the entanglement wedge of R is interpreted
as the island region from a doubly holographic point of view.

Now we return to the Weyl transformed CFT and compare with the version of island formula in the AdS/BCFT or doubly
holographic setup. The physical interpretation for Weyl transformation is more intuitive when the CFT is holographic; hence, the
entanglement structure has a geometric interpretation. Before we perform the Weyl transformation, the vacuum state of the CFT is
dual to Poincaré AdS3 (40). And according to the RT formula the entanglement entropy for any interval is given by the length of the
minimal bulk geodesic homologous to this interval. The integral computing the length of the RT surface represents the collection of

12 A convenient choice for a polar coordinate is θ � arccos(sech ρ), which determines the angular position of the brane from the vertical.
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Fig. 8 Cutoff sphere at x � x0 in
the bulk dual geometry for a Weyl
transformed CFT. For a minimal
surface anchored at x0, the portion
inside the cutoff sphere is
excluded

Fig. 9 Cutoff brane as the
common tangent line of all the
cutoff spheres and its comparison
with the EoW brane in the
AdS/BCFT scenario

the entanglement at all the scales [94]. In this context, the Weyl transformation adjusts the cutoff scale by adjusting the position of
the cutoff point on the RT curve, where we stop integrating the length of the RT curve. According to the formula (44), for any RT
surface anchored at the site x0 on the boundary, we need to push the cutoff point on the RT surface from z � δ to certain position
in the bulk, such that the length of the RT surface is reduced by certain constant |ϕ(x0)|. In other words, the cutoff points for all
the RT curves anchored at (δ, x0) form a sphere in the bulk. Interestingly, for static configurations, the cutoff sphere in the AdS3

background is a circle in flat background,

(x − x0)
2 +

(
z − |x0|e−κ

)2 � |x0|2e−2κ , (51)

with the center being (|x0|e−κ , x0) and the radius r � |x0|e−κ . One may consult Appendix A for the derivation. The formula (44)
then can be understand as follows: When we integrate the length of the RT surface, we only integrate up to the cutoff sphere (see
Fig. 8).

The Weyl transformation (45) then adjusts the cutoff scale in the region x < 0. In some sense, this pushes the cutoff point from
z � δ into the bulk on the cutoff spheres. Here we define the cutoff brane:

• Cutoff Brane: the common tangent line of all the cutoff spheres. For the specific Weyl transformation characterized by (45), the
cutoff brane is depicted by (see appendix A for details)

ρ � κ , . (52)

This reminds us of the EoW brane in the AdS/BCFT setup, which is also settled at a constant ρ slice. When we calculate the
holographic entanglement entropy for some boundary region R at x > 0, we also consider all the possible configurations where the
homologous surfaces anchor on the cutoff brane; then, the RT surface is the one with the minimal length.13 Then the cutoff brane
indeed plays the same role as the EoW brane Q in AdS/BCFT,14 see Fig. 9. When we set κ � ρ0, then the holographic calculation
for SR is exactly the same as the calculation in AdS/BCFT, which we have just reviewed.

On the other hand, the SR can also be calculated via the Island formula I in Weyl transformed CFT2, and we will find configurations
with islands which give smaller entanglement entropy than the non-island configurations. This is a result of the finite cutoff introduced
by the Weyl transformation. In the following, we will see that the calculation exactly coincides with the holographic results.

13 The fact that the RT surface anchors on the cutoff brane can also be understood as minimizing the length of all homologous surfaces that anchors on all
possible cutoff spheres.
14 We may also consider the case of an EoW brane with an intrinsic Einstein–Hilbert term in an AdS2 background, similar to the Dvali–Gabadadze–Porrati
(DGP) gravity [95]. However, as discussed in [31, 96], one can fine tune the brane tension to cancel the curvature contributions from the DGP term and
hence keep the position of the brane fixed. In the cutoff brane picture, adding a DGP like term is therefore tantamount to a convenient choice of the Weyl
factor ϕ(x) corresponding to the same generalized entanglement entropy in the two perspectives.
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Fig. 10 Two configurations in a
Weyl transformed CFT2 where the
island formula may be realized:
(left) The entanglement entropy of
R � [a, ∞) in the region x > 0
admits a minimal saddle by
including the island I � (−∞,
−a′]; (right) R � [a, b] acquires
the island I � [−b′, −a′]

Firstly, let us consider R to be the semi-infinite region x > a (see the left figure in Fig. 10) and apply the Island formula I and
(44) to calculate the entanglement entropy. The entanglement entropy calculated by the island formula is given by

SR � min

{
c

3
log

a + a′

δ
− c

6
log

(
2a′

δ

)
+
c

6
κ

}
, (53)

where we have admitted the region I � (−∞, −a′] as the island corresponding to R. The entropy in Eq.(53) has a minimal saddle
point

SR � c

6
log

(
2a

δ

)
+
c

6
κ , a′ � a . (54)

This result is smaller than the entanglement entropy in the non-island phase; hence, the entanglement island emerges. Note that the
area term Area(X )

4G does not appear since we assume that the gravitational theory on the x < 0 region is a induced gravity (see also
[88]).

Similarly when we consider R to be an interval [a, b] inside the region x > 0 and include the corresponding island I � [−b′,
−a′] (see the right figure in Fig. 10), the Island formula I will give15

SR � min

{
c

3
log

a + a′

δ
+
c

3
log

b + b′

δ
− c

6
log

(
2a′

δ

)
− c

6
log

(
2b′

δ

)
+
c

3
κ

}
, (55)

which has the saddle point

SR � c

6
log

(
4
ab

δ2

)
+
c

3
κ , a′ � a , b′ � b . (56)

Then we compare the entanglement entropy (56) in island phase with the one in the non-island phase, which is given by

SR � c

3
log

(
b − a

δ

)
. (57)

We find that when

0 < a < b
(

1 − 2
√
e2κ + e4κ + 2e2κ

)
, (58)

the entanglement entropy (56) calculated by the island formula is smaller; hence, the configuration enters the island phase.
If we set κ � ρ0, the cutoff brane for the holographic Weyl transformed CFT overlaps with the EoW brane in the AdS/BCFT

setup. Obviously, in both of the setups the calculations for the entanglement entropy via the Island formula I are exactly the same.

5 Discussion

In this paper, we refined the concept of self-encoding property and relate it directly to the emergence of entanglement islands and
island formulas. Recent developments on replica wormholes in gravitational theories indicated that the self-encoding property, as
well as the island formula I , is a result of the emergence of spacetime wormholes, which is an intrinsic property of gravitational
theories. On the other hand, we proposed a new mechanism that induces self-encoding properties in non-gravitational systems from
a purely quantum information perspective. More explicitly, we can impose certain external constraints on the system and hence
reduce the Hilbert space of the entire system in a proper way, such that certain coding relations emerge in the reduced Hilbert
space. We showed explicitly how the self-encoding property changes the way we compute the reduced density matrix and how the
island formula II arises when we compute the entanglement entropy in self-encoded systems. Given the self-encoding property with
explicit coding relations, the island formulas I and II are actually the same. The difference between the two formulas is whether the
self-encoding property comes from intrinsic spacetime wormholes or external constraints.

15 Here we need to assume that the entanglement entropy for two disjoint intervals in the holographic Weyl transformed CFT exhibits similar phase transitions
as the RT formula [93, 97], under certain sparseness conditions on the spectrum and OPE coefficients of bulk and boundary operators and large c limit. We
leave this for future investigation.
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The self-encoding property may shed new light on our understanding of quantum gravity. The effective theory of a (quantum)
gravity may be understand as a reduced Hilbert space of a quantum field theory coupled to gravity. In configurations where quantum
effects of gravity are not significant, this field theory could be understood as a field theory in curved geometric background with
sub-leading gravitational fluctuations. The Hilbert space reduction should be consistent with the self-encoding property determined
by the wormhole structures. In [57], the authors introduced a non-isometric mapping which projected out lots of state in the Hilbert
space, which they call the null states; hence, the Hilbert space is tremendously reduced to match the dimension of the Hilbert space
of the “fundamental description.” We believe that their non-isometric mapping plays a similar role as the Hilbert space reduction we
have discussed which leads to the self-encoding property. The self-encoding property of gravity makes the Hilbert not factorizable,
as was pointed out in [40], but according to our discussion, this is consistent with the island formula.

We used a special Weyl transformation on a holographic CFT2 to simulate the Hilbert space reduction in 2d gravity, which
introduces a finite cutoff scale to the theory. On the field theory side, we assumed that the Weyl transformed part of the CFT
is coupled to an AdS2 gravity; hence, the island formula I applies. On the AdS3 gravity side, we introduce the so-called cutoff
spheres and cutoff branes to give a geometric description for the Weyl transformation. We find that the entanglement entropy
calculated by the island formula I on the CFT side coincides with the RT formula on the gravity side. Indeed, this simulation
exactly captures the main features of the AdS/BCFT configurations. Note that, following this idea, the authors in [98] simulated the
AdS/BCFT configuration including the first order fluctuation of the EoW brane by adjusting the Weyl transformation accordingly.
Furthermore, in the fluctuating brane configuration, the correspondence between the entanglement wedge cross section and the
so-called balanced partial entanglement entropy [99] is tested under this simulation. More interestingly, it was shown in [100] that
the Weyl transformation characterized by (45) is the one that optimizes the path integral computation for the reduced density matrix
of the x > 0 region in the sense of [90]. The scalar field indeed describes the metric of the x < 0 region after the Weyl transformation,
which indicates that the AdS2 geometry induced by the Weyl transformation is a saddle point of certain theory of the scalar field. If
we consider the scalar field to be dynamical, this theory is indeed the gravitational theory coupled to the x < 0 region, which supports
our assumption that the x < 0 region is coupled to an AdS2 gravity. In other words, the path integral optimized purification for
intervals or half lines in CFT2 are states in island phases. This new perspective implies that the path integral optimized purifications
are self-encoded; hence, it explains the emergence of “negative mutual information” in such states [91]. It will also be interesting to
consider other Weyl transformations to simulate other generalized version of AdS/BCFT, for example, the wedge holography [101].
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The cutoff spheres and their common tangent

The AdS3 metric in Poincaré coordinates (t, x, z) is given by

ds2 � −dt2 + dx2 + dz2

z2 . (59)

In the light-cone coordinates

U � x + t

2
, V � x − t

2
, ρ � 2

z2 , (60)

the length of the geodesic connecting two space-like-separated points is [102]

LAdS(U1, V1, ρ1,U2, V2, ρ2)

� 1

2
log

[
ρ2(ρ2 + X ) + ρ1(ρ2Y (2ρ2 + X ) + X ) + (ρ1 + ρ2ρ1Y )2

2ρ1ρ2

]
, (61)

where

Y �2(U1 −U2)(V1 − V2) ,

X �
√

ρ2
1 + 2ρ2ρ1(ρ1Y − 1) + (ρ2 + ρ1ρ2Y )2.

(62)

We look for the set of points (0, x, z) whose geodesic distance from a fixed point (0, x0, δ) is a constant |φ(x0)|� log( 2|x0|
δ

) − κ .
The equation that x and z should satisfy can be obtained straightforwardly by applying Eq. (61):

1

2
log

[
ρ2(ρ2 + X ) + ρ1(ρ2Y (2ρ2 + X ) + X ) + (ρ1 + ρ2ρ1Y )2

2ρ1ρ2

]
� log(

2|x0|
δ

) − κ , (63)
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Fig. 11 A generic cutoff sphere at
−x with radius r � xe−κ is
centered in the bulk at the point
(x , xe−κ ). The tangent from
x � 0 shown by red line acts as a
cutoff brane which is equivalent to
the EoW brane in the AdS/BCFT
scenario

which, after taking the limit δ → 0, can be simplified to be,

(x − x0)
2 +

(
z − |x0|e−κ

)2 � |x0|2e−2κ , (64)

which is a circle at (x0, |x0|e−κ ) with radius r � |x0|e−κ .
In Fig. 11, a generic cutoff sphere at the point −x (x>0) with radius r � xe−κ is depicted. The tangent to the cutoff sphere from

x � 0 is shown by the red line. We may obtain the angle θ0 of the tangent line with the vertical as follows

tan

(
π

4
− θ0

2

)
� r

|x | � e−κ . (65)

Hence, the hyperbolic angle ρ for the tangent line is obtained as

ρ � arccosh

(
1

cos θ0

)
� κ , (66)

which confirms our claim that the cutoff brane obtained from the common tangent line of all the cutoff spheres is equivalent to the
end-of-the-world brane in the AdS/BCFT setup.
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