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1 Introduction

The black hole information paradox [1–4] refers to the conflict between two fundamental
principles of physics: general relativity and quantum mechanics. The paradox gained
significant attention when Stephen Hawking proposed in the 1970s that black holes could
emit radiation now known as Hawking radiation which would imply that black holes slowly
lose mass and eventually evaporate entirely [5, 6]. However, the radiation emitted by black
holes appears to be random and independent of the information initially contained within
them, which raises questions about the fate of the information that fell into the black hole.
On the other hand, quantum mechanics states that information cannot be destroyed, and it
must be conserved over time, which are the requirements of unitarity of quantum mechanics.
This implies that information about an object that falls into a black hole should somehow be
preserved rather than lost. This contradiction between the predictions of general relativity
and quantum mechanics is what constitutes the black hole information paradox.

The key to the paradox is that unitarity requires the fine-grained entropy1 of radiation
to satisfy the Page curve [18, 19] if a black hole is formed by a pure state, contradicting
Hawking’s calculation that the entropy of radiation should increase monotonically. The
entropy of radiation S(ρR), where ρR is the density matrix of radiation, should increase
to reach a maximum value and then decrease back to zero. At early time of black hole,
radiation starts such that the entropy increases. However, purity of the initial state should
be preserved under unitary process which ensures that the entropy should become zero when

1Here we are referring to the von Neumann entropy, which is a valid measure of entanglement between
systems, but it is only valid when the total system is pure. When the total system is mixed, many quantities are
proposed to replace the role of von Neumann entropy to measure entanglement, e.g. the reflected entropy [7],
the balanced partial entanglement [8–10] from partial entanglement entropy [11–17].
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Figure 1. At a fixed time slice, the spatial region (a Cauchy slice) containing a black hole is divided
into three subregions: I,B,R with X being the entangling surface between I and B. The left endpoint
of I refers to the singularity of the black hole and the right endpoint of R refers to the spatial infinity.

the black hole finally evaporates. The argument involves a critical point called the Page
time denoted by tPage at which stage the trend of the entropy of radiation turns, and we
call the transition as the Page transition.

In recent years, huge progress [3, 20–23] has been made which claims the entropy
of radiation should be calculated by the island formula. To be specific, we consider a
configuration at a fixed time slice as illustrated in figure 1. The spatial region is divided into
three subregions: I,B,R where I denotes the island2 which is located near the black hole,
and R represents a non-gravitational region3 where observers within collects the radiation
from the black hole horizon, and B is compliment of the other two. The entropy of radiation
should then be calculated by

S(ρR) = min
{

extX

[Area(X)
4G + Sbulk(ρ̃I∪R)

]}
(1.1)

where ρR denotes the reduced density matrix of R defined by tracing out degrees of freedom
on I ∪B in the complete quantum gravity description, and ρ̃I∪R denotes the reduced density
matrix of I∪R defined by tracing out degrees of freedom on B in the semi-classical description,
and X denotes the entangling surface between I and B. The condition ”extX” says that X
should be chosen such that the sum of two terms on the right-hand side should be extremized
under infinitesimal configuration perturbation of X, in which case X is called the quantum
extremal surface (QES). The condition “min” says that if there exists multiple QES’s, we
choose the one which minimizes the sum of terms on the right-hand side.

Does the island formula (1.1) satisfy the Page curve? One can argue [3, 4, 21, 22] that
the island formula can be understood as a competition of two saddle-point solutions of the
extremal condition in the gravitation path integral description: the vanishing island and
the non-vanishing island with X slightly deviated from the black hole horizon, then (1.1)
can be equivalently formulated into

S(ρR) = min{Sisland
R , Sno−island

R } (1.2)

The two terms on the right-hand side of (1.2) behave very differently as illustrated in figure 3.
Sno−island

R increases monotonically with time, which coincides with Hawking’s calculation,
2For island defined in other theories, one can see for example [24–27] for holographic BCFT, [28–31] for

holographic Weyl transformed CFT, and see [32–40] for an incomplete list of recent developments.
3Or in the semi-classical description where we can consider effective field theory in the curved spacetime.
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while Sisland
R decreases monotonically after the formation of X, which is slightly later than the

formation of black hole, capturing the thermodynamic properties of the black hole. These two
solutions are course-grained, i.e. the entropy of radiation as the fine-grained entropy is then
upper-bounded by the two solutions such that it does follow the property of the Page curve.
For more discussions about black hole information paradox, one is encouraged to consult [4].

Several comments can be made from the above description:

• Before tPage, the island does not contribute to S(ρR), but the island itself does exist.
To repraise, no island has been observed from the viewpoint of observers in R.

• After tPage, the island appears from the viewpoint of observers in R.

• The Page transition can now be understood as the emergence of the island from the
viewpoint of observers in R.

These comments are the starting points of the paper. Later we will see that motivated by
the ideas above, the Page transition can be understood via the notion of approximate quantum
error correction (AQEC) from quantum information theory, and more importantly, it is the
property of AQEC itself. In other words, there can be a Page transition, which exhibits the
emergence of an island from the viewpoint of some local observers, for a general class of
quantum systems which obey some criteria of AQEC. For relevant applications to black hole
information paradox via the language of quantum information, one can consult [41–47].

Roughly speaking, whether the island is visible for observers in R is related to the notion
of reconstruction inside the island. Parallely to the information paradox, a series of work [48–
51] constitutes a theorem, which we call the reconstruction theorem. The theorem is originally
proved for explaining the problem of bulk reconstruction in AdS/CFT, see for example [52] for
introduction, but the proof itself is based on notions of quantum information, and later we will
argue that it is applicable for the black hole reconstruction problem. What the theorem can do
is to translate the reconstruction criterion into several equivalent statements, and amazingly,
one of which is closely related to AQEC. Later in the paper we will directly examine that
the black hole evaporation explained by the island formula (1.1) can be interpreted as some
AQEC process. More importantly, this AQEC process is independent of whether a black hole
exists hence the process describing Page transition can be applied to more generic situations.
The rest of paper aims at solidating the claim more formally.

The paper is organized as follows. In section 2, we introduce some notions from quantum
information, namely quantum channel, (approximate) quantum error correction and the
reconstruction theorem, forming the basics for the paper. In section 3, which is the main part of
the paper, we examine the relation between black hole evaporation and approximate quantum
error correction. We end with section 4 where we give a proposal for our generalization
and discuss some related aspects. In appendix A we present a proof for the reconstruction
theorem for readers who are interested.
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2 Preliminaries

2.1 Notation

Before we begin, we need to clarify our notations and conventions. We use H to denote the
Hilbert space of a system in the relevant content, and the set of linear operators acting on
H is denoted as L(H). The set of density matrices in H is denoted as s(H) ⊂ L(H). If a
system is labeled by a letter, e.g. A, then we write HA as the corresponding Hilbert space and
|A| as the dimension of HA. States and operators on HA are also labeled with a subscript,
e.g. |ψ⟩A ∈ HA, OA ∈ L(HA). The product sign ⊗ denotes either tensor product for states,
e.g. |ψ⟩ ⊗ |ϕ⟩, or Kronecker product for operators, e.g. OA ⊗ IB where I is the identity. For
abbreviation, we will simplify them as |ψ⟩|ϕ⟩ and OA respectively, but sometimes we will
keep the sign explicit to remind the readers. Whether OA is an operator on HA or a larger
space should be distinguished by the states it acts on.

2.2 Quantum channel

We first introduce the notion of quantum channel. The content is based on [53] which readers
are encouraged to consult for more detailed discussions.

Definition 2.1. Given two systems A,B, a quantum channel N from A to B is a linear,
completely positive and trace-preserving (CPTP) map from density matrices to density
matrices:

N : s(HA) → s(HB)
ρA 7→ ρB

(2.1)

Linearity is to make sure that an ensemble maps to another ensemble with the same
probability distribution, i.e.

N (piρi) = piN (ρi) (2.2)

Trace-preserving ensures that an operator with unital trace gets mapped to another operator
with unital trace, and a map between operators is positive if it sends a positive semi-definite
operator to another positive semi-definite operator. Both properties should be required
because density matrices are semi-definite and have unital trace by definition. Instead of
positivity, we require a stronger condition called completely positivity:

N ⊗ IE : ρA ⊗ σE 7→ ρB ⊗ σE , ∀σE ∈ s(HE) (2.3)

is positive for any auxiliary system E. Practically speaking, completely positivity is to ensure
that the channel works suitably even though the system is coupled with environment, which
is usually the case in an actual computation process.

Two examples of quantum channel are useful in the paper:

• For any unitary U ∈ L(H), there exists a quantum channel NU from H to itself:

NU : s(H) → s(H)
ρ 7→ UρU † (2.4)
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• For any isometry V : HA → HB ⊗ HE , there exists a quantum channel NV from A to
B:

NV : s(HA) → s(HB)

ρA 7→ TrE

(
V ρAV

†
) (2.5)

where “isometry” means V †V = IA and V V † = ΠBE , i.e. projection onto V (HA) ⊂
HB ⊗ HE .

In fact, for any quantum channel N there exists an isometry V satisfying (2.5), which is
also called the isometric dilation of N , if a suitable auxiliary system E is chosen [53].

One important feature of quantum channel is that, the relative entropy monotonically
decreases under a quantum channel, which is described as follows,

Theorem 2.2. Let N be a quantum channel from system A to system B, then we have

S(ρ|σ) ≥ S(N (ρ)|N (σ)), ∀ρ, σ ∈ s(HA) (2.6)

where S(ρ|σ) is the relative entropy between ρ and σ (likewise for S(N (ρ)|N (σ))).

2.3 Approximate quantum error correction

Our next important notion is the quantum error correction (QEC), which is to protect
computing process against errors (or noise) which may affect the outcome of computation.
One basic idea is encoding the system into a larger one such that the original information
can be protected when the enlarged system is only partly affected. One is encouraged to
consult [54, 55] for a general introduction.

We now introduce one QEC example for comprehension: the three-qutrit code [56], to
illustrate the ideas of QEC. Suppose Alice wants to send Bob a state based on a qutrit:

|ψ⟩ = a0|0⟩ + a1|1⟩ + a2|2⟩ =
2∑

i=0
ai|i⟩ (2.7)

If Bob’s apparatus can not get access to one qutrit, then since the state is based on one
qutrit, he can no longer receive the information, i.e. the qutrit is erased from Bob’s viewpoint.
A better idea is that Alice should send a three-qutrit state instead of a single qutrit state:

|ψ̃⟩ =
2∑

i=0
ai |̃i⟩ (2.8)

where we define a set of new bases,

|0̃⟩ = 1√
3

(|000⟩ + |111⟩ + |222⟩)

|1̃⟩ = 1√
3

(|012⟩ + |120⟩ + |201⟩)

|2̃⟩ = 1√
3

(|021⟩ + |102⟩ + |210⟩).

(2.9)

which spans the three-dimensional subspace of the total three-qutrit space H, and we call it
the code subspace denoted by Hcode ⊂ H. Nows if Alice sends this alternative state |ψ̃⟩ to
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Bob, and we assume that Bob still can not get access to one of the three qutrits. Without
loss of generality, we assume that it is the third qutrit which is erased. Bob can access to the
first two qutrits, and he should implement the following operation U12 to the first two qutrits:

|00⟩ 7→ |00⟩ |11⟩ 7→ |01⟩ |22⟩ 7→ |02⟩
|01⟩ 7→ |12⟩ |12⟩ 7→ |10⟩ |20⟩ 7→ |11⟩
|02⟩ 7→ |21⟩ |10⟩ 7→ |22⟩ |21⟩ 7→ |20⟩

(2.10)

which “transforms” the new basis into the original basis as follows,

(U12 ⊗ I3) |̃i⟩ = |i⟩ ⊗ |χ⟩ (2.11)

where |χ⟩ = 1√
3(|00⟩ + |11⟩ + |22⟩). Therefore, when Bob applies U12 to |ψ̃⟩, he finds that

(U12 ⊗ I3) |ψ̃⟩ = |ψ⟩ ⊗ |χ⟩ (2.12)

i.e. Bob can apply U12 to |ψ̃⟩ then read the first qutrit to receive the original information
|ψ⟩! The process is what we mean by error correction: we encode our information into a
large system (|ψ⟩ 7→ |ψ̃⟩) then use U12 to recover the original information against the erasure
of the third qutrit. Note that there exists permutation symmetry between qutrits in Hcode,
which ensures that U23, U31 also exist, i.e. Bob can recover the original information against
the erasure of the first qutrit or the second qutrit as well.

Formally, we consider a logical space or code (sub)space Hcode which contains the true
degrees of freedom of the system, and a physical space Hphys describing the system redundantly
such that Hcode ⊂ Hphys, which we call the subspace description. Equivalently, if we regard
Hcode and Hphys as two independent spaces, i.e. Hcode is not regarded as the subspace of
Hphys, then the encoding process is manifested by an isometric coding:

V : Hcode → Hphys (2.13)

which can induce a quantum channel from the code space to the physical space. We call it
the encoding description. In the case of the three-qutrit code, the isometric coding is given by

|0̃⟩ 7→ 1√
3

(|000⟩ + |111⟩ + |222⟩)

|1̃⟩ 7→ 1√
3

(|012⟩ + |120⟩ + |201⟩)

|2̃⟩ 7→ 1√
3

(|021⟩ + |102⟩ + |210⟩).

(2.14)

which one can compare with (2.9) described by the subspace description.
After encoding, the protected information will go through some latent errors or noise, and

we still need to recover and decode the outcome to receive the information. The whole process
is illustrated in figure 2 where we use a quantum channel N to represent encoding and noise,
and another quantum channel R, which is called the recovery channel, to represent recovery
and decoding. If the whole process is qualified to be a good QEC code, we expect that

ρ̃ ≡ (R ◦ N )(ρ) ≈ ρ, ∀ρ ∈ s(Hcode) (2.15)

– 6 –
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Figure 2. Extracted from [53]. Quantum error correction can be realized by a series of quantum
channels, where N represents encoding and noise, and R represents recovery and decoding.

We say N is reversible if R exists, and is exactly reversible if the equality holds in (2.15).
How do we know if a channel is exactly reversible or not? There is a theorem due to Petz
& Ohya [57] which can be demonstrated as follows,

Theorem 2.3. A quantum channel N : s(HA) → s(HB) is exactly reversible if and only if

S(ρ|σ) = S(N (ρ)|N (σ)), ∀ρ, σ ∈ s(HA) (2.16)

Furthermore, the Petz map:

Pσ,N : γ 7→ σ1/2N †
[
N (σ)−1/2 γN (σ)−1/2

]
σ1/2, ∀γ ∈ s(HB) (2.17)

is the recovery channel:
(Pσ,N ◦ N )(ρ) = ρ, ∀ρ ∈ s(HA) (2.18)

Practically, it is very hard for a quantum channel to be reversible exactly, so we need
a criterion for a channel to be reversible in an approximate sense. Due to theorem 2.2 and
theorem 2.3, we say that N is only approximately reversible if and only if

S(ρ|σ) − S(N (ρ)|N (σ)) < δ (2.19)

for some infinitesimal positive δ. The procedure described in figure 2 together with (2.19)
constitute the notion of approximate quantum error correction (AQEC), see [58] and also
earlier works [59–61].

2.4 The reconstruction theorem

The theorem in this section collects results from a series of work [48–51], and our setup is
essentially the same as the theorem 3.1 in [50]. Additional to notations in section 2.1, we use
Hcode to denote the code space of the system and the “tilde” symbol is used for states in the
code space, e.g. |ψ̃⟩ ∈ Hcode and for operators acting on Hcode, e.g. Õ ∈ L(Hcode).

Theorem 2.4. Given a finite-dimensional system H which is decomposed into two parts
H = HA ⊗ HĀ and a code space Hcode with condition dimHcode ≤ |A|, the isometric encoding
V : Hcode → H induces a quantum channel:

N : s(Hcode) → s(HA), ρ̃ 7→ ρA ≡ TrĀ

(
V ρ̃V †

)
(2.20)

then the following statements are equivalent:

– 7 –
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1. Given ρ̃ ∈ s(Hcode), we have4

S(ρA) = LA + S(ρ̃) (2.21)

where LA is some constant.

2. Given two density matrices ρ̃, σ̃ ∈ s(Hcode), we have

S(ρA|σA) = S(ρ̃|σ̃) (2.22)

3. For any operator Õ ∈ L(Hcode), there exists an operator OA ∈ L(HA) such that

OAV |ψ̃⟩ = V Õ|ψ̃⟩, ∀|ψ̃⟩ ∈ Hcode (2.23)

The theorem is originally proved for reinterpreting finite-dimensional holographic models
into a set of equivalent statements. In holographic theories [63], statement 1 and statement
2 correspond to the RT formula or the QES formula [64–67], and the JLMS formula [68]
respectively. The condition dimHcode ≤ |A| of the theorem says that if we expect the code
space is reconstructable from A, then A must contain at least the same information of the
code space such that the dimension of A is at least equal to the dimension of the code space.
By “the code space is reconstructable from A” we mean that if one manipulates some degrees
of freedom on a known region A, we are able to know how an unknown region, which is
the code space in this case, reacts. This statement indicates that there exists a dictionary
between operators on the two relevant regions, which is exactly the physical interpretation
of statement 3 in the theorem. In the context of holography, this interprets the so-called
GKP-W dictionary [69, 70] which relates bulk operators and boundary operators.

In the paper, we do not need the holographic interpretation of the theorem because we
expect that the island formula (1.1) describing the black hole evaporation holds generally, and
we will use the theorem to model the black hole evaporation without holographic description
in the next subsection. Essentially, the theorem itself is proved purely from the quantum infor-
mation perspective and is not necessarily related to holography. Nevertheless to say, readers
are encouraged to gain more insights from discussions involving holography. To this purpose,
we give a proof of a slightly different version of the reconstruction theorem in appendix A,
which is more closely related to holographic models like AdS3/CFT2 correspondence. For
a more accessible introduction, one can consult [52, 71].

3 Modeling black hole evaporation

In this section we argue that the reconstruction theorem is applicable to the black hole
evaporation. We first compare the theorem 2.4 with the island formula:

S(ρR) = min
{

extX

[Area(X)
4G + Sbulk(ρ̃I∪R)

]}
(3.1)

then we find that when a non-vanishing X is already specified, the island formula in the
island phase, i.e. S(ρR) = Sisland

R = Area(X)
4G + S(ρ̃I∪R) with a non-vanishing island I after the

4Here we drop the familiar coefficient 1
4GN

because it can be regarded absorbed by the area term.
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Page time, has the same form as (2.21) in statement 1. Motivated by this observation, we
can identify the region R in the formula as the region A in the theorem 2.4. What follows
is that, we can further regard the “semi-classical” space Hsc where ρ̃I∪R operates on as the
code space Hcode, and the “complete quantum gravity” space Hqg, which includes quantum
gravitational effects, as the physical space H in the theorem 2.4.

To verify if the above identification works, we notice that the only condition for theorem 2.4
is dim Hcode ≤ |A|, so we only need to verify the corresponding spaces satisfy the relation
as well. We first notice that Hqg contains more information than Hsc because the latter
is a semi-classical approximation of the former, i.e. Hsc ↪→ Hqg. When referring to setup
in figure 1, we notice that the spaces satisfy

Hqg
R ↪→ Hqg, Hsc

R ↪→ Hsc = Hsc
B ⊗ Hsc

I∪R (3.2)

where Hqg
R denotes partial contribution from degrees of freedom in R to the total space Hqg

(likewise for Hsc
R ), and we need to clarify our notation for “I ∪ R” which we use to denote

that degrees of freedom in I and degrees of freedom in R are not independent. The physical
interpretation of this constraint is that the radiation of black hole is “entangled” with the
island. An intuitive explanation is that when we discuss quantum theory in gravitational
background, vacuum fluctuates even in the region around the black hole horizon, which looks
“normal” as the usual spacetime when considering small enough region. If a pair of entangled
particles emerges, with one of which appearing inside the horizon and the other one appearing
outside, the inside particle will remain inside forever, which is believed to be the source of
the island I, while the outside particle will radiate outwards and then finally be observed by
observers in R. This correlation necessarily sets the number of degrees of freedom describing
I combined with R to be exactly equal to that of R:5

dim Hsc
I∪R = dim Hsc

R (3.3)

Besides, we only consider the non-gravitational degrees of freedom within the combined
space, which is due to the fact that the second term in the island formula is calculated in
the semi-classical regime. i.e. it is computed in the curved but non-gravitational background.
Therefore, the number of degrees of freedom describing R in the semi-classical description
is less than that in the complete quantum gravity description:

dim Hsc
R < dim Hqg

R (3.4)

then combining (3.3) and (3.4) implies

dim Hsc
I∪R < dim Hqg

R (3.5)

as required by the theorem 2.4 after making the following identifications:

H ∼ Hqg, Hcode ∼ Hsc
I∪R, HA ∼ Hqg

R

⇒ dim Hcode ≤ |A| ∼ dim Hsc
I∪R < dim Hqg

R

(3.6)

After verifying that the theorem 2.4 can be applied to the island formula, we now have
statement 1 in the theorem after (3.6), such that the following statements hold simultaneously
according to the theorem:

5We can regard such correlation between I and R as a coding relation [72].
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• (Statement A) Given ρ̃, σ̃ on Hsc: S(ρR|σR) = S(ρ̃I∪R|σ̃I∪R)

• (Statement B) Given ÕI∪R ∈ L(Hsc
I∪R): ∃OR ⇒ ORV |ϕ̃⟩ = V ÕI∪R|ϕ̃⟩

To convince the readers and also as a calculation warm-up, we now show how to derive
the statement A from the island formula (3.1) in the island phase, then the statement B
is straightforward from applying the theorem 2.4. The derivation basically follows [49, 68].
We start with

S(σR) = S(σ̃I∪R) + LX = S(σ̃I∪R) + (Trσ̃)LX (3.7)

where the constant LX denotes the area term and we use the fact that a density matrix has
unital trace, i.e. Trσ̃ = 1. We arbitrarily perturbate σ̃ to first order:

TrR (δσRK
σ
R) = TrI∪R

(
δσ̃I∪RK̃

σ
I∪R

)
+ (Trδσ̃)LX (3.8)

where Kσ
R is the modular Hamiltonian for the density matrix σR defined by Kσ

R ≡ − log σR

and likewise for K̃σ
I∪R, and we have used the fact that perturbation of the von Neumann

entropy S(ρ) with respect to the density matrix is given by

δS(ρ) ≡ S(ρ+ δρ) − S(ρ) ≈ −Tr (δρ log ρ) ≡ Tr (δρKρ) (3.9)

such that the l.h.s. of (3.7) becomes the l.h.s. of (3.8) and likewise for the first terms of
the r.h.s. of (3.7) and (3.8).

Both sides of (3.8) are now linear in the infinitesimal entries of δσ̃, which can be
integrated from zero to ρ̃:

TrR (ρRK
σ
R) = TrI∪R

(
ρ̃I∪RK̃

σ
I∪R

)
+ LX (3.10)

where the term “integration from zero to ρ̃” is to denote integrating the infinitesimal entries
of δσ̃ to be the entries of ρ̃. Now (3.10) implies

S(ρ̃I∪R|σ̃I∪R) − S(ρR|σR) = −TrR (ρRK
σ
R) + TrI∪R

(
ρ̃I∪RK̃

σ
I∪R

)
+ S(ρR) − S(ρ̃I∪R)

= 0
(3.11)

where the first equality makes use of the definition of the relative entropy and the second one
uses (3.7) and (3.10), completing our derivation to the first statement.

The statement A is exactly the criterion for the quantum channel N : s(Hsc
I∪R) → s(Hqg

R )
to be exactly reversible in the language of AQEC. The statement B says that the island I

is reconstructable from R. Combining the two we find that observers in R do “observe” the
island in this exactly-reversible case. But what if N is not exactly reversible? It is indeed
the case for the island formula before the Page time. As we have discussed, the following
two cases are possible when N is not exactly reversible:

• If S(ρ̃I∪R|σ̃I∪R) − S(ρR|σR) < δ, then there exist an operator OR such that ORV |ϕ̃⟩ ≈
V ÕI∪R|ϕ̃⟩, i.e. observers in R approximately observe the island.

• If S(ρ̃I∪R|σ̃I∪R) − S(ρR|σR) </δ, then we have ORV |ϕ̃⟩ ̸= V ÕI∪R|ϕ̃⟩, i.e. observers in R
do not observe the island.
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Figure 3. The vanishing island solution Sno−island
R and the non-vanishing island solution Sisland

R are
presented by the blue line and the red line respectively. The entropy of radiation S(ρR) follows the
Page curve presented by the orange line. ∆S, defined by the difference between Sisland

R and S(ρR), is
non-vanishing and monotonically decreasing before tPage, and then vanishes after tPage.

We can see that the difference of relative entropies S(ρ̃I∪R|σ̃I∪R) − S(ρR|σR) can be used
to characterize the appearance of OR, i.e. a phase transition from “phase without the
existence of OR” to “phase with the existence of OR”, at the critical point S(ρ̃I∪R|σ̃I∪R) −
S(ρR|σR) = δ. Could it describe the Page transition? If true, we expect that the black
hole evaporation satisfies

S(ρ̃I∪R(t)|σ̃I∪R(t)) − S(ρR(t)|σR(t))


> δ, if t < tPage

= δ, if t = tPage

≤ δ, if t > tPage

(3.12)

for some threshold value δ.

3.1 AQEC as a probe for the Page transition

Now we are ready to model black hole evaporation by proving that (3.12) holds. We rewrite
the island formula as

S(ρR) = min{Sisland
R , Sno−island

R } (3.13)

where Sisland
R = S(ρ̃I∪R) + LX and here I denotes the non-vanishing island solution. We

further define

∆S ≡ Sisland
R − S(ρR) (3.14)

Note that (3.14) is a function of time t via the state ρ(t) describing the black hole during
the evaporation process, and (3.14) is non-vanishing and monotonically decreasing before
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tPage, then vanishes after tPage:

∆S(t)

> 0, if t < tPage

= 0, if t ≥ tPage
,

dS(t)
dt

< 0, if t < tPage

= 0, if t ≥ tPage
(3.15)

as illustrated in figure 3. Now our strategy is to rewrite

∆Srel(ρ̃|σ̃) ≡ S(ρ̃I∪R|σ̃I∪R) − S(ρR|σR) (3.16)

in terms of ∆S such that the property of ∆S can be adopted. According to the defini-
tion (3.14) of ∆S:

S(ρR) = S(ρ̃I∪R) + LX − ∆S(ρ̃) (3.17)

from which we regard ∆S as the perturbation of the entropy of radiation around the non-
vanishing island solution. Since ∆S vanishes after tPage, ∆Srel also vanishes according to
our previous island phase calculation, then we only need to examine if

lim
t→t−

Page

∆Srel → 0 (3.18)

before the Page time. To verify, we start with

S(σR) = S(σ̃I∪R) + LX − ∆S(σ̃) (3.19)

and we perturbate σ̃ to first order:

TrR (δσRK
σ
R) = TrI∪R

(
δσ̃I∪RK̃

σ
I∪R

)
+ Trδσ̃LX − δ∆S(σ̃) (3.20)

where δ∆S(σ̃) ≡ ∆S(σ̃ + δσ̃) − ∆S(σ̃). Integrating δσ̃ from zero to ρ̃:

TrR (ρRK
σ
R) = TrI∪R

(
ρ̃I∪RK̃

σ
I∪R

)
+ LX −

∫ ρ̃

0
δ∆S(σ̃) (3.21)

and then expanding ∆Srel(ρ̃|σ̃):

∆Srel(ρ̃|σ̃) = −TrR (ρRK
σ
R) + TrI∪R

(
ρ̃I∪RK̃

σ
I∪R

)
+ S(ρR) − S(ρ̃I∪R)

=
∫ ρ̃

0
δ∆S(σ̃) − ∆S(ρ̃)

(3.22)

where the second equality uses (3.17) and (3.21). The final expression is positive which is
guaranteed by the theorem 2.2, and can be regarded as a sum of ∆S’s with different variables
because basically integration is an infinite sum of the integrand, with each terms vanishing at
tPage according to (3.15). We therefore conclude that the criterion (3.18) holds indeed.
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3.2 Threshold of the Page transition

In fact, different states result in different geometries in gravitational theory, hence we have
different geometric configurations for ρ̃ and σ̃ (i.e. X{ρ} ̸= X{σ} in figure 1 where the
superscript denotes which density matrix is associated) which may result in the non-vanishing
threshold value. During the verification in the last section we implicitly assume that the
Hilbert space factorization Hsc = Hsc

B ⊗Hsc
I∪R is the same for different density matrices, which

is not necessarily true. Meanwhile, if two density matrices give two hugely different Hilbert
space factorizations will make our derivation in the last section no longer valid.

Therefore, one additional constraint should be manually added:

• Two different density matrices which we choose to calculate the relative entropy should
correspond to black holes with the same macroscopic quantities.

To be specific, when we calculate ∆relS, we can only choose density matrices from
s(Hmacro,{ℓ}) ⊂ s(Hsc) where the subscript “macro” denotes that the states within give the
same macroscopic quantities and “{ℓ}” collectively specifies all possible macroscopic quantities.
The constraint is natural because for observers localized in R, they should only observe the
macroscopic quantities while the microscopic details are still hidden inside the horizon. The
constraint results in the fact that the two density matrices we choose should approximately
give the same radius of black hole horizon, which further implies that X{ρ} ≈ X{σ} as the
QES is slightly deviated from the horizon. The other consequence is that the black holes
for two density matrices should be formed in the same time. As a counter example, two
same-size black holes with one of which being in the early time of evaporation while the other
being in the later time of evaporation have vastly different entropies of radiation, because
the former do not have island contribution while the latter does.

After carefully specifying which configuration we are considering in the above calculation,
one can perform a similar procedure in the last subsection to show that after tPage we have

∆Srel(ρ̃|σ̃) ≡ S(ρ̃{ρ}
I∪R|σ̃{σ}

I∪R)−S(ρ{ρ}
R |σ{σ}

R ) = δ1(ρ̃, σ̃)+δ2(ρ̃, σ̃), ρ̃, σ̃ ∈ s(Hmacro,{ℓ}) (3.23)

where

δ1(ρ̃, σ̃) ≡ S(ρ̃{ρ}
I∪R|σ̃{σ}

I∪R) − S(ρ̃{σ}
I∪R|σ̃{σ}

I∪R), (3.24)

δ2(ρ̃, σ̃) ≡
(
S(ρ̃{ρ}

I∪R) + L{ρ}
X

)
−

(
S(ρ̃{σ}

I∪R) + L{σ}
X

)
(3.25)

According to our constraint that X{ρ} ≈ X{σ}, δ1(ρ̃, σ̃) is an infinitesimal value. As for
δ2(ρ̃, σ̃), we recognize that the term inside round bracket is exactly what is extremized by
QES in (1.1). Therefore, δ2(ρ̃, σ̃) is only non-vanishing in second order of configuration
perturbation. The threshold value can now be chosen by maximizing δ1(ρ̃, σ̃)+δ2(ρ̃, σ̃) among
all ρ̃, σ̃ ∈ s(Hmacro,{ℓ}) and among all Hilbert spaces with different macroscopic quantities:

δ ≡ maxρ̃,σ̃,{ℓ} (δ1(ρ̃, σ̃) + δ2(ρ̃, σ̃)) , ρ̃, σ̃ ∈ s(Hmacro,{ℓ}) (3.26)

which concludes our proof for (3.12) to be held.
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4 Discussions

In the paper, we have verified that the black hole evaporation does satisfy the criterion (2.19)
of AQEC after the Page time hence the island emerges from the viewpoint of outside observers,
and we have also calculated the threshold value of AQEC criterion for black hole evaporation.
There are two aspects we would like to emphasize:

• Gravity plays “almost” no role.

• Our definition of the Page transition requires the notion of local observers.
The first statement may be a bit misleading. By it we mean that gravity only manifests

itself in two ways. The first one gives the area term in (1.1) while the statement 1 in
reconstruction theorem 2.4 allows arbitrary value of LA,6 i.e. it can vanish, which corresponds
to the non-gravitational cases. The other one is that the Hilbert space of I combined with R

has both gravitational and non-gravitational contributions while the second term in the island
formula (1.1) only consider the non-gravitational part. Recall that in using the reconstruction
theorem 2.4 we need to ensure that the dimension of the code space should be less than or
equal to |A|, and the latter constraint that only the non-gravitational part is considered is
not necessary for the theorem to be applicable to the black hole evaporation, because the
constraint (3.3) between I and R already ensures that the theorem 2.4 works.

The second statement requires the locality of observers. By “locality” we mean that
observers are only able to access degrees of freedom of some certain subregions, while any
other subregion which is space-like separated to the accessible subregion is blind to those
observers. For example, provided a density matrix ρ describing the whole system in the
setup of figure 1, observers located in R can only read or manipulate degrees of freedom
in R. Therefore, when observers located in R measure the state, they only observe the
reduce density matrix ρR ≡ TrR̄ρ rather than ρ. A consequence is that when observers in R

talk about von Neuman entropy, they can only refer to S(ρR) rather than S(ρ) of the total
state, and then according to the reconstruction theorem 2.4, observers located in R only
observe the existence of island when an island is needed to correctly calculate the entropy
S(ρR). In the case of black hole evaporation, what we focus on is the entropy of radiation,
which is only accessible to observers in R. Besides, the requirement for locality is manifest
when we try to use the statement 3 in the reconstruction theorem 2.4, where in the case of
black hole evaporation we have ∃OR ⇒ ORV |ϕ̃⟩ = V ÕI∪R|ϕ̃⟩ for any given ÕI∪R ∈ L(Hsc

I∪R).
The reconstruction from operators on R requires manipulation of degrees of freedom on R

hence the locality condition is necessary.
Motivated by these arguments, we make the following generalization,

Proposal 4.1. For a general system HI ⊗ HB ⊗ HR as in figure 1, if applying some
parameter-dependent constraints on I from R results in

S(ρ̃I∪R(s)|σ̃I∪R(s)) − S(ρR(s)|σR(s))


> δ, if s < sp

= δ, if s = sp

≤ δ, if s > sp

(4.1)

6It is pointed out in [73] that LA corresponds to the entropy of a maximally mixed state in gauge theories,
which applies to gravity with diffeomorphism being the corresponding gauge symmetry.
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for some threshold value δ, then the system possesses a transition which accounts for the
emergence of the island at the critical point s = sp, from the viewpoint of observers in R.

The parameter s characterizes the evolution of the system, and in the case of black hole
evaporation it corresponds to time t. The parameter-dependent constraints on I from R

are required to set |I ∪R| ≤ |R| as s evolves, with the condition that the less-than sign
only holds when other constraints are manually added, e.g. issues involving gravity. When
the condition (4.1) is satisfied due to such constraints, then according to the reconstruction
theorem 2.4 we have ∃OR ⇒ ORV |ϕ̃⟩ ≈ V ÕI∪R|ϕ̃⟩ for any given ÕI∪R ∈ L(HI∪R) only after
the critical point s = sp. Therefore, the system in this case, with or without gravity, exhibits
a transition from a vanishing island state to a non-vanishing island state, which can be
measured by calculating the von Neumann entropy over R.

It is explained that the constraint on I from R is the origin for the island in [30, 72],
where authors consider a coding relation |i⟩R ⇒ |f(i)⟩I which projects out certain states in
the original Hilbert space, resulting in Hilbert space reduction7 which claims to give a general
version of the island formula. To be specific, when one actually computes the gravitational
path integral by using the Replica trick [74] to calculate the black hole entropy of radiation,
the constraint on I from R sets the boundary conditions for I when the boundary conditions
for R are set. Therefore, additional gluing of I over replicas gives a twist operator asserted at
the location of X, which contributes the area term to the island formula. However, the claim
only discussed how the island modifies the entropy over a single time-slice. The mechanism
of a transition from non-island phase to island phase during the evolution of the system
was left as an unsolved problem, and authors in [30, 72] suspected that there should exist
more yet-to-known constraints to make the mechanism manifest. Our proposal 4.1 solves this
problem and the condition (4.1) is exactly the requirement for such transition to exist.
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A Proof of the reconstruction theorem

In this appendix we prove a slightly different version of the reconstruction theorem in
section 2.4. Besides that, instead of proving the three statements in theorem 2.4 to be
equivalent, we also enlarge the theorem to include five statements. For simplicity in notations,
we will use the subspace description that the code space is regarded as the subspace of the
physical space, i.e. Hcode ⊂ Hphys.

Theorem A.1. Given a finite-dimensional system H which is decomposed into two parts
H = HA ⊗ HĀ, and a code subspace Hcode ⊆ H which is decomposed as Hcode = Ha ⊗ Hā

with conditions |a| ≤ |A| and |ā| ≤
∣∣∣Ā∣∣∣, then we can make the following decomposition

7In the language of QEC, such Hilbert space reduction is exactly the encoding V : Hcode → H with Hcode

being the Hilbert space after reduction and V being the embedding mapping.
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HA = HA1 ⊗ HA2 ⊕ HA3 and HĀ = HĀ1
⊗ HĀ2

⊕ HĀ3
with |a| = |A1| and |ā| =

∣∣∣Ā1
∣∣∣.

We write the orthonormal basis of Ha as |̃i⟩a, i = 1, . . . , |a| and |j̃⟩ā, j = 1, . . . , |ā| for Hā.
Similarly, we use |i⟩A1 , |j⟩Ā1

for orthonormal basis of HA1 ,HĀ1
respectively. The following

statements are equivalent:

1. Define |ĩj⟩ ≡ |̃i⟩a|j̃⟩ā, there exists a unitary operator UA ∈ L(HA) and a set of
orthonormal states |χj⟩A2Ā ∈ HA2Ā such that

|ĩj⟩ = UA

(
|i⟩A1 |χj⟩A2Ā

)
(A.1)

Similarly, there exists a unitary operator UĀ ∈ L(HĀ) and a set of orthonormal states
|χ̄i⟩Ā2A ∈ HĀ2A such that

|ĩj⟩ = UĀ

(
|j⟩Ā1

|χ̄i⟩Ā2A

)
(A.2)

2. Define ρ̃ ≡
∑

i,j pij |ĩj⟩⟨ĩj| as the density matrix on Hcode where pij satisfies
∑

ij pij = 1,
then for ρ̃A ≡ TrĀρ̃ and ρ̃a ≡ Trāρ̃, we have the following relation

S(ρ̃A) = LA + S(ρ̃a) (A.3)

Likewise for ρ̃Ā ≡ TrAρ̃ and ρ̃ā ≡ Traρ̃, we have

S(ρ̃Ā) = LĀ + S(ρ̃ā) (A.4)

and more importantly,
LA = LĀ (A.5)

3. Given two density matrices ρ̃, σ̃ on Hcode, their reduced density matrices ρ̃A ≡
TrĀρ̃, ρ̃a ≡ Trāρ̃, σ̃A ≡ TrĀσ̃, σ̃a ≡ Trāσ̃ satisfy

S(ρ̃A|σ̃A) = S(ρ̃a|σ̃a) (A.6)

and likewise for ρ̃Ā ≡ TrAρ̃, ρ̃ā ≡ Traρ̃, σ̃Ā ≡ TrAσ̃, σ̃ā ≡ Traσ̃,

S(ρ̃Ā|σ̃Ā) = S(ρ̃ā|σ̃ā) (A.7)

4. Given any state |ϕ̃⟩ ∈ Hcode and an operator Õa ∈ L(Ha), we have

⟨ϕ̃|[Õa, XĀ]|ϕ̃⟩ = 0, ∀XĀ ∈ L(HĀ) (A.8)

Likewise for an operator Õā ∈ L(Hā),

⟨ϕ̃|[Õā, XA]|ϕ̃⟩ = 0, ∀XA ∈ L(HA) (A.9)

5. For any operator Õa ∈ L(Ha), there exists an operator OA ∈ L(HA) such that

OA|ψ̃⟩ = Õa|ψ̃⟩, ∀|ψ̃⟩ ∈ Hcode (A.10)

Likewise for any operator Õā ∈ L(Hā), there exists an operator OĀ ∈ L(HĀ) such that

OĀ|ψ̃⟩ = Õā|ψ̃⟩, ∀|ψ̃⟩ ∈ Hcode (A.11)
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Figure 4. A time slice for AdS3/CFT2. The boundary region is divided in two parts: subregion A

represented by red solid line, and its complementary Ā represented by black solid line. RT curve γA is
represented by the red dashed line, and the entanglement wedges of A and Ā are denoted by a and ā
respectively.

Comparing to the theorem 2.4, we can see that this theorem further divides the code
subspace into two parts: a, ā, with a being reconstructable from A and ā being reconstructable
from Ā. In describing holography as in figure 4, Hcode is the Hilbert space of AdS3 and H is
the Hilbert space of CFT2. If the CFT2 is divided into two subregions: A, Ā, the so-called
subregion duality tells us that there exists a RT curve γA which divides the bulk region into
two which correspond to the entanglement wedges of boundary subregions, denoted by a, ā.
Furthermore, a, ā are reconstructable from A, Ā respectively.

The additional statement 1 in the theorem is analogous to (2.11) in the three-qutrit
example, which reminds us that we are doing QEC. The additional statement 4 also have its
holographic interpretation, which is related to a puzzle called radial commutativity. Radial
commutativity states that all local boundary operators should commute with bulk operators,
and it is a puzzle because the statement seems to imply that all bulk operators should
be trivial according to the time slice axiom [52] which is a variational version of Schur’s
lemma. However, this implication only holds when the local boundary operators and the
bulk operators act on the same Hilbert space. As implicitly indicated in the statement 4, the
commutation relations for bulk operators hold for the subspace Hcode while the boundary
operators are defined on H, hence solving the puzzle.

Our proof will be given as follows: (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1) which put the first
four statements in an equal footing, then we prove (1) ⇒ (5) ⇒ (4) to include statement
(5). The proof is based on [49, 50, 56]. One can analogously prove the theorem 2.4 by
considering only the “a” part of the code space.

Proof. • (1) ⇒ (2): Given (A.1) and (A.2), acting U †
A, U

†
Ā

on |ĩj⟩ gives

U †
AU

†
Ā

|ĩj⟩ = |i⟩A1

(
U †

Ā
|χj⟩A2Ā

)
= |j⟩Ā1

(
U †

A|χ̄i⟩Ā2A

)
(A.12)
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Compare the last two results we find that there must exists |χ⟩A2Ā2
, |χ̄⟩A2Ā2

which
satisfy

U †
Ā

|χj⟩A2Ā = |j⟩Ā1
|χ⟩A2Ā2

, U †
A|χ̄i⟩Ā2A = |i⟩A1 |χ̄⟩A2Ā2

(A.13)

which further implies

U †
AU

†
Ā

|ĩj⟩ = |i⟩A1 |j⟩Ā1
|χ⟩A2Ā2

= |j⟩Ā1
|i⟩A1 |χ̄⟩A2Ā2

(A.14)

i.e. in fact we have |χ⟩A2Ā2
= |χ̄⟩A2Ā2

such that (A.1) can be simplified as

|ĩj⟩ = UAUĀ

(
|ij⟩A1Ā1

|χ⟩A2Ā2

)
(A.15)

where |ij⟩A1Ā1
≡ |i⟩A1 |j⟩Ā1

, then for ρ̃ ≡
∑

i,j pij |ĩj⟩⟨ĩj| we have

ρ̃ = UAUĀ

(
ρA1Ā1

⊗ χA2Ā2

)
U †

AU
†
Ā

(A.16)

where we define

ρA1Ā1
≡

∑
i,j

pij |ij⟩A1Ā1
⟨ij|A1Ā1

, χA2Ā2
≡ |χ⟩A2Ā2

⟨χ|A2Ā2
(A.17)

Now the reduced density matrix ρ̃A ≡ TrĀρ̃ becomes

ρ̃A = TrĀ

[
UAUĀ

(
ρA1Ā1

⊗ χA2Ā2

)
U †

AU
†
Ā

]
= TrĀ

[
UA

(
ρA1Ā1

⊗ χA2Ā2

)
U †

A

]
= UATrĀ

(
ρA1Ā1

⊗ χA2Ā2

)
U †

A

= UA (ρA1 ⊗ χA2)U †
A

(A.18)

where ρA1 ≡ TrĀ1
ρA1Ā1

= ∑
i pi|i⟩A1⟨i|A1 , pi ≡

∑
j pij and χA2 ≡ TrĀ2

χA2Ā2
. We then

can calculate the corresponding entropy by using (A.18):

S(ρ̃A) = S
(
UA (ρA1 ⊗ χA2)U †

A

)
= S (ρA1 ⊗ χA2) = S(ρA1) + S(χA2) (A.19)

where the second equality makes use of the fact the von Neumann entropy is invariant
under unitary transformations. Notice that ρ̃a ≡ Trāρ̃ = ∑

i pi |̃i⟩a⟨̃i|a has exactly the
same eigenvalues as ρA1 = ∑

i pi|i⟩A1⟨i|A1 such that

S(ρA1) = −
∑

i

pi log pi = S(ρ̃a) (A.20)

Therefore, after identifying S(χA2) as LA we obtain

S(ρ̃A) = LA + S(ρ̃a) (A.21)

and likewise for ρ̃Ā ≡ TrAρ̃ and ρ̃ā ≡ Traρ̃, we have

S(ρ̃Ā) = LĀ + S(ρ̃ā) (A.22)

where LĀ = S(χĀ2
), χĀ2

≡ TrA2χA2Ā2
. Notice that χA2Ā2

= |χ⟩A2Ā2
⟨χ|A2Ā2

is a pure
state on A2Ā2 by definition, then we know that S(χĀ2

) = S(χA2), or equivalently,

LA = LĀ (A.23)
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• (2) ⇒ (3): this part follows the same idea in [49, 68]. Before we start, we recall how
von Neumann entropy varies when we perturb the density matrix:

δS(ρ) ≡ S(ρ+ δρ) − S(ρ) ≈ −Tr (δρ log ρ) (A.24)

Now we can proceed. Given a density matrix σ̃ on Hcode and its reduced density
matrices σ̃A, σ̃a, using (A.3) we have

S(σ̃A) = Tra (σ̃aLA) + S(σ̃a) (A.25)

where we use Traσ̃a = 1 and promote LA to an operator of the form LAIa ∈ L(Ha).
Now we expand in terms of σ̃ in first order:

TrA

(
δσ̃AK̃

σ
A

)
= Tra

[
δσ̃a

(
K̃σ

a + LAIa

)]
(A.26)

where K̃σ
A = − log σ̃A and K̃σ

a = − log σ̃a are modular Hamiltonians. Both sides are
linear in δσ̃ such that we can integrate it to ρ̃:

TrA

(
ρ̃AK̃

σ
A

)
= Tra

[
ρ̃a

(
K̃σ

a + LAIa

)]
= Tra

(
ρ̃aK̃

σ
a

)
+ LA (A.27)

Now with (A.3) we find that

S(ρ̃A|σ̃A) = TrA

(
ρ̃AK̃

σ
A

)
− S(ρ̃A)

= Tra

(
ρ̃aK̃

σ
a

)
+ LA − (LA + S(ρ̃a))

= Tra

(
ρ̃aK̃

σ
a

)
− S(ρ̃a)

= S(ρ̃a|σ̃a)

Similarly, we also have

S(ρ̃Ā|σ̃Ā) = S(ρ̃ā|σ̃ā) (A.28)

• (3) ⇒ (4): The relative entropy vanishes if and only if the two density matrices coincide,
so if provided (A.7), we are given a condition that

ρ̃Ā = σ̃Ā ⇔ ρ̃ā = σ̃ā (A.29)

Let us consider a state |ϕ̃⟩ ∈ Hcode and a Hermitian operator Õa ∈ L(Ha), we can
construct a new state |ψ̃⟩ as follows,

|ψ̃⟩ ≡ eiÕas|ϕ̃⟩ (A.30)

for some real constant s. We now define two density matrices on Hcode:

σ̃ ≡ |ψ̃⟩⟨ψ̃|, ρ̃ ≡ |ϕ̃⟩⟨ϕ̃| (A.31)
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then we have

σ̃ā = Tra|ψ̃⟩⟨ψ̃|

= Tra

[
eiÕas|ϕ̃⟩⟨ϕ̃|e−iÕas

]
= Tra|ϕ̃⟩⟨ϕ̃|
= ρ̃ā

By condition (A.29), we must have

ρ̃Ā = σ̃Ā (A.32)

which further implies

TrĀ (ρ̃ĀXĀ) = TrĀ (σ̃ĀXĀ) , ∀XĀ ∈ L(HĀ) (A.33)

⇒ TrAĀ

(
|ϕ̃⟩⟨ϕ̃|XĀ

)
= TrAĀ

(
|ψ̃⟩⟨ψ̃|XĀ

)
(A.34)

⇒ ⟨ϕ̃|XĀ|ϕ̃⟩ = ⟨ψ̃|XĀ|ψ̃⟩ (A.35)

For infinitesimal λ, we expand the right-hand side of the last result in first order to
obtain

⟨ϕ̃|[Õa, XĀ]|ϕ̃⟩ = 0, ∀XĀ ∈ L(HĀ) (A.36)

Notice that the above derivation requires Õa to be Hermitian, but any operator can be
rewritten as a complex linear combination of Hermitian operators as follows,

Õa = Õa + Õ†
a

2 + i
Õa − Õ†

a

2i (A.37)

where Õa+Õ†
a

2 and Õa−Õ†
a

2i are both Hermitian. Therefore, it is suffice to derive our result
by using Hermitian operators only.
Similarly, if we start with (A.6), we will obtain

⟨ϕ̃|[Õā, XA]|ϕ̃⟩ = 0, ∀XA ∈ L(HA) (A.38)

for any operator Õā ∈ L(Hā).

• (4) ⇒ (1): Before our proof, we outline our strategy. We first introduce two auxiliary
systems R, R̄ with |R| = |a| ,

∣∣∣R̄∣∣∣ = |ā| and a state |ϕ⟩ ∈ HR⊗HR̄⊗Hcode ⊆ HR⊗HR̄⊗H
defined by

|ϕ⟩ ≡ 1√
|R|

∣∣∣R̄∣∣∣
∑
i,j

|i⟩R|j⟩R̄|ĩj⟩ (A.39)

Next we introduce a set of orthonormal states |χj⟩A2Ā ∈ HA2Ā and |χ⟩R̄A2Ā ≡
1√
|R̄|

∑
j |j⟩R̄|χj⟩A2Ā, then we define a state |ϕ′⟩ ∈ HR ⊗ HR̄ ⊗ H by

|ϕ′⟩ ≡ 1√
|R|

∣∣∣R̄∣∣∣
∑
i,j

|i⟩R|j⟩R̄|i⟩A1 |χj⟩A2Ā = 1√
|R|

∑
i

|i⟩R|i⟩A1 |χ⟩R̄A2Ā (A.40)
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These two states corresponds to two pure density matrices ρ ≡ |ϕ⟩⟨ϕ|, ρ′ ≡ |ϕ′⟩⟨ϕ′|. To
prove that there exists a unitary operator UA ∈ L(HA) such that

|ĩj⟩ = UA

(
|i⟩A1 |χj⟩A2Ā

)
(A.41)

we can instead define ρR̄RĀ = TrAρ then try to prove that

TrAρ
′ = ρR̄RĀ (A.42)

which tells us that ρ′, ρ are both purifications of ρR̄RĀ. Two different purifications differ
by a unitary transformation, i.e. there exist a unitary UA ∈ L(HA) such that

|ϕ⟩ = UA|ϕ′⟩ ⇒ |ĩj⟩ = UA

(
|i⟩A1 |χj⟩A2Ā

)
(A.43)

which will end the proof.
We digress a bit to mention a useful statement. It is possible to find an alternative
operator which acts on different space but still does the same work as the original
one. To be more specific, consider a bipartite system XY with an arbitrary state
|ψ⟩ ∈ HX ⊗ HY which is in general of the form

|ψ⟩ = Cab|a⟩X |b⟩Y (A.44)

where |a⟩X , |b⟩Y represents bases in respective spaces and Einstein summation is under-
stood. Suppose we have operators OX ∈ HX , OY ∈ HY which satisfy

OX |ψ⟩ = OY |ψ⟩ (A.45)

i.e. they are identical when acting on states in |ψ⟩ ∈ HX ⊗ HY . We would like to see
how the components of the two operators are related. We further assume that

OX |a⟩X = Oca
X |c⟩X , OY |b⟩Y = Odb

Y |d⟩X (A.46)

where Oca
X , O

db
Y are constants. We then have

OX |ψ⟩ = CabOca
X |c⟩X |b⟩Y

= OY |ψ⟩ = CabOdb
Y |a⟩X |d⟩Y = CcaOba

Y |c⟩X |b⟩Y

After modifying dummy indices, we obtain

Oca
XC

ab = CcaOba
Y (A.47)

or in matrix notation
OXC = COT

Y (A.48)

This result tells us that how we can find a new operator which acts on the complementary
space but does the same work as the given one.
Now back to our business. Given (A.8) for an arbitrary operator Õa ∈ L(Ha), we have:

⟨ĩj|[Õa, XĀ]|ĩj⟩ = 0, ∀XĀ ∈ L(HĀ) (A.49)
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By the statement we just mentioned, we can find an alternative operator OR which
satisfies

OR|ϕ⟩ = Õa|ϕ⟩ (A.50)

such that
⟨ϕ|[OR, XĀ]|ϕ⟩ = 0 (A.51)

We can further introduce an operator acting on different space in the above equality:

⟨ϕ|[OR, XĀYR̄]|ϕ⟩ = 0, ∀YR̄ ∈ HR̄ (A.52)

because YR̄ commutes with both OR and XĀ. It implies that

TrR̄RĀ (ρR̄RĀ[OR, XĀYR̄]) = Tr (ρ[OR, XĀYR̄])
= ⟨ϕ|[OR, XĀYR̄]|ϕ⟩
= 0

where we define ρ = |ϕ⟩⟨ϕ| and ρR̄RĀ = TrAρ. Rearranging left-hand side gives

TrR̄RĀ (ρR̄RĀORXĀYR̄) = TrR̄RĀ (ρR̄RĀXĀYR̄OR)
= TrR̄RĀ (ORρR̄RĀXĀYR̄)

which further implies

[ρR̄RĀ, OR ⊗ IR̄Ā] = 0, ∀Õa ∈ L(Ha) (A.53)

It constraints ρR̄RĀ to be of the form

ρR̄RĀ = IR ⊗MR̄Ā (A.54)

where MR̄Ā is an operator to be determined. We note that

ρR̄Ā = TrRρR̄RĀ = |R|MR̄Ā ⇒ MR̄Ā = 1
|R|

ρR̄Ā (A.55)

such that
ρR̄RĀ = ρR ⊗ ρR̄Ā, ρR ≡ 1

|R|
IR (A.56)

As for ρ′, we can directly compute its trace over A:

ρ′ = 1
|R|

∑
i,j

(|i⟩R⟨j|R) ⊗ (|i⟩A1⟨j|A1) ⊗ χ (A.57)

⇒ TrAρ
′ = ρR ⊗ TrA2χ (A.58)

where χ ≡ |χ⟩R̄A2Ā⟨χ|R̄A2Ā. If we compare it with (A.56), we find that condition (A.42)
now reduces to

TrA2χ = ρR̄Ā (A.59)

i.e. χ is a purification of ρR̄Ā by introducing A2. Now our goal becomes proving that
purifying ρR̄Ā by A2 is possible, which is true as long as |A2| ≥ rank(ρR̄Ā).
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Notice that (A.56) tells us that

rank(ρR̄RĀ) = rank(ρR)rank(ρR̄Ā) = |R| rank(ρR̄Ā) (A.60)

Since ρ can be regarded as a purification of ρR̄RĀ, we must have

|A| ≥ rank(ρR̄RĀ) = |R| rank(ρR̄Ā) (A.61)

Also by assumption |A| = |A1| |A2| and |R| = |a| = |A1|, we further have

|A1| |A2| ≥ |A1| rank(ρR̄Ā) ⇒ |A2| ≥ rank(ρR̄Ā) (A.62)

Therefore, it is possible to purify ρR̄Ā by subsystem A2, which concludes our proof, and
we can prove (A.2) in exactly the same way.

• (1) ⇒ (5): here we give a constructive proof. For any operator Õa ∈ L(Ha), it is defined
by what it can do to the basis, i.e.

Õa |̃i⟩a ≡ Oji
a |j̃⟩a (A.63)

where Oji
a are some constants. We then introduce another operator OA1 ∈ L(HA1) by

using the same coefficients:
OA1 |i⟩A1 ≡ Oji

a |j⟩A1 (A.64)

which can always be done because we assume |A1| = |a|. Finally, given (A.1) we define

OA ≡ UAOA1U
†
A (A.65)

which satisfies:

OA|ĩj⟩ = UAOA1U
†
AUA

(
|i⟩A1 |χj⟩A2Ā

)
= UAOA1

(
|i⟩A1 |χj⟩A2Ā

)
= Oki

a UA

(
|k⟩A1 |χj⟩A2Ā

)
= Oki

a |k̃j⟩
= Õa|ĩj⟩

which further implies (A.10), and the same procedure works for (A.11).

• (5) ⇒ (4): the proof is straightforward. Given (A.10), we have

⟨ϕ̃|[Õa, XĀ]|ϕ̃⟩ = ⟨ϕ̃|[OA, XĀ]|ϕ̃⟩ = 0, ∀XĀ ∈ L(HĀ) (A.66)

where the last equality holds because OA and XĀ acts on different spaces. The same
procedure works for (A.9).
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