RC-positivity and scalar-flat metrics on ruled surfaces

Jun Wang and Xiaokui Yang

Abstract. Let X be a ruled surface over a curve of genus g. We prove that X has a scalar-flat Hermitian metric if and only if $g \ge 2$ and m(X) > 2 - 2g where m(X) is an intrinsic number depends on the complex structure of X.

Contents

1.	Introduction	1
2.	Background materials	5
3.	Characterizations of complex manifolds with scalar-flat metrics	7
4.	Projective bundles with scalar-flat metrics	9
5.	Classification of ruled surfaces with scalar-flat Hermitian metrics	11
6.	Classification of minimal surfaces with scalar-flat Hermitian metrics	16
7.	Examples	17
Rei	ferences	19

1. Introduction

In his "Problem section", S.-T. Yau proposed the following classical problem ([Yau82, Problem 41]), which is investigated intensively in the last forty years.

Problem 1.1. Classify all compact Kähler surfaces with zero scalar curvature.

By the celebrated Calabi-Yau Theorem ([Yau78]), all Kähler surfaces with vanishing first Chern class (e.g. K3 surfaces) admit Kähler metrics with zero scalar curvature. Such metrics are usually called *scalar-flat* Kähler metrics and it is a special class of constant scalar curvature Kähler (cscK) metrics or extremal metrics. Obstructions to the existence of such metrics have been known since the pioneering works of S.-T. Yau [Yau74] and E. Calabi [Cal85]. For comprehensive discussions on this rich topic, we refer to [Yau74, Yau78, Fut83, BD88, Tian90, Sim91, Fuj92, LS93, LS94, Tian97, Don01, RS05, AP06, AT06, RT06, Ross06, CT08, Sto08, AP09, ACGT11, Sze14, Sze17] and the references therein.

This work was partially supported by China's Recruitment Program of Global Experts.

In this paper, we study the geometry of compact complex manifolds with scalar-flat Hermitian metrics (with respect to the Chern connection), which is a generalization of Problem 1.1. We begin with a characterization of compact complex manifolds with scalar-flat Hermitian metrics, which can be regarded as a Hermitian analogue of Kazdan-Warner-Bourguignon's classical work in Riemannian geometry, and we refer to [Bes86] and [Fut93] for more details.

Theorem 1.2. A compact complex manifold X admits a scalar-flat Hermitian metric if and only if X is Chern Ricci-flat, or both K_X and K_X^{-1} are RC-positive.

Recall that, a line bundle \mathscr{L} is called RC-positive if it has a smooth Hermitian metric h such that its curvature $-\sqrt{-1}\partial\overline{\partial}\log h$ has at least one positive eigenvalue everywhere. By using a remarkable theorem in [TW10] established by Tosatti-Weinkove (which is a Hermitian analogue of Yau's theorem [Yau78]), the anti-canonical bundle K_X^{-1} is RC-positive if and only if X has a smooth Hermitian metric ω such that its Ricci curvature $\operatorname{Ric}(\omega)$ has at least one positive eigenvalue everywhere. A complex manifold X is called *Chern Ricci-flat* if there exists a smooth Hermitian metric ω such that the Chern-Ricci curvature $\operatorname{Ric}(\omega) = -\sqrt{-1}\partial\overline{\partial}\log\omega^n = 0$. On the other hand, we proved in [Yang17, Theorem 1.4] that a line bundle \mathscr{L} is RC-positive if and only if its dual line bundle \mathscr{L}^* is not pseudo-effective. By taking this advantage, we can verify the RC-positivity of K_X or K_X^{-1} by adapting methods in differential geometry as well as algebraic geometry.

As a straightforward application of Theorem 1.2, we obtain

Corollary 1.3. Let X be a compact Kähler manifold. If X has a scalar-flat Kähler metric ω , then either X is a Calabi-Yau manifold, or both K_X and K_X^{-1} are RC-positive.

For instance, if X is the blowing-up of \mathbb{P}^2 along *m*-points $(m \leq 9)$, it is wellknown that the anti-canonical bundle K_X^{-1} is effective (e.g. [Fri98, p. 125-p. 129]) and so it is pseudo-effective. In this case, K_X can not be RC-positive and X has no scalar-flat Hermitian (or Kähler) metrics.

Corollary 1.4. Let $\mathbb{P}^2 \# m \overline{\mathbb{P}^2}$ be the blowing-up of \mathbb{P}^2 along m points. If X admits a scalar-flat Hermitian metric, then $m \geq 10$.

Indeed, it is proved by Rollin-Singer in [RS05, Theorem 1] (see also [Leb86, Leb91, LS93]) that: a complex surface X obtained by blowing-up \mathbb{P}^2 at 10 suitably chosen points admits a scalar-flat Kähler metric and any further blowing-up of X also admits a scalar-flat Käler metric.

A compact complex surface X is called a *ruled surface* if it is a holomorphic \mathbb{P}^1 -bundle over a compact Riemann surface C. It is well known that any ruled surface X can be written as a projective bundle $\mathbb{P}(\mathscr{E})$ where \mathscr{E} is a rank two vector bundle over C. Moreover, two ruled surfaces $\mathbb{P}(\mathscr{E})$ and $\mathbb{P}(\mathscr{E}')$ are isomorphic if and only if $\mathscr{E} \cong \mathscr{E}' \otimes \mathscr{L}$ for some line bundle \mathscr{L} over C. The existence of cscK metrics on ruled surfaces are extensively studied, and we refer to [Yau74, BD88, Tian90, Sim91, Fuj92, LS93, LS94, RS05, AP06, AT06, RT06, Ross06, Sto08, ACGT11, Sze14] and the references therein. A remarkable result (e.g. [AT06, BD88, ACGT11]) asserts that: A ruled surface $\mathbb{P}(\mathscr{E})$ admits a cscK metric if and only if \mathscr{E} is poly-stable.

In the following, we aim to classify ruled surfaces with scalar-flat Hermitian metrics. Let \mathscr{E} be a rank two vector bundle over a smooth curve C. One can define a number $m(\mathscr{E})$ (e.g. [Fri98, p. 122]) which is equal to the *minimal degree* of $\mathscr{E} \otimes \mathscr{L}$ if there exists a **sheaf extension** of $\mathscr{E} \otimes \mathscr{L}$:

$$0 \to \mathcal{O}_C \to \mathscr{E} \otimes \mathscr{L} \to \mathscr{F} \to 0$$

for some line bundle \mathscr{L} . It is obvious that $m(\mathscr{E}) = m(\mathscr{E} \otimes \widetilde{\mathscr{L}})$ for any line bundle $\widetilde{\mathscr{L}}$. Hence, we can define an intrinsic number m(X) for a ruled surface $X: m(X) = m(\mathscr{E})$ if X can be written as $\mathbb{P}(\mathscr{E})$. It is obvious that m(X) is independent of the choices of \mathscr{E} . Let's explain the geometric meaning of m(X)by the example $X = \mathbb{P}(\mathscr{L} \oplus \mathcal{O}_C) \to C$ where \mathscr{L} is a line bundle. In this case, $m(X) = -|\deg(\mathscr{L})| \leq 0$. As another application of Theorem 1.2, we obtain

Theorem 1.5. Let X be a ruled surface over a smooth curve C of genus g. Then X has a scalar-flat Hermitian metric if and only if $g \ge 2$ and m(X) > 2 - 2g.

In particular, we have

Corollary 1.6. Let $\mathscr{L} \to C$ be a line bundle over a smooth curve of genus gand $X = \mathbb{P}(\mathscr{L} \oplus \mathcal{O}_C)$. Then X has a scalar-flat Hermitian metric if and only if $g \geq 2$ and $|\deg(\mathscr{L})| < 2g - 2$.

For instance, if C is a smooth curve of degree d > 4 in \mathbb{P}^2 , then the genus of C is $g = \frac{1}{2}(d-1)(d-2)$ and the degree of $\mathcal{O}_C(1)$ is d < 2g-2. Hence, $X = \mathbb{P}(\mathcal{O}_C(1) \oplus \mathcal{O}_C)$ has scalar-flat Hermitian metrics. Note also that, in Corollary 1.6, if deg(\mathscr{L}) = 0, the vector bundle $\mathscr{L} \oplus \mathcal{O}_C$ is poly-stable and $X = \mathbb{P}(\mathscr{L} \oplus \mathcal{O}_C)$ admits scalar-flat Kähler metrics; however, when $0 < |\deg(\mathscr{L})| < 2g-2$, it has no scalar-flat Kähler metrics. Moreover, we construct such examples in higher dimensional ruled manifolds.

Proposition 1.7. Let C be a smooth curve with genus $g \ge 2$ and \mathscr{L} be a line bundle over C. Suppose $\mathscr{E} = \mathscr{L} \oplus \mathcal{O}_C^{\oplus(n-1)}$ and $X = \mathbb{P}(\mathscr{E}^*) \to C$ is the projective bundle. If $0 < \deg(\mathscr{L}) < \frac{2g-2}{n-1}$, then $\mathbb{P}(\mathscr{E}^*)$ can not support scalar-flat Kähler metrics, but it does admit scalar-flat Hermitian metrics.

As motivated by previous results, we propose the following question.

Question 1.8. Let X be a compact Kähler manifold. Suppose X has a scalar-flat Hermitian metric. Are there any geometric conditions on X which can guarantee the existence of scalar-flat Kähler metrics?

Finally, we classify minimal compact complex surfaces with scalar-flat Hermitian metrics.

Theorem 1.9. Let X be a minimal compact complex surface. If X admits a scalar-flat Hermitian metric, then X must be one of the following

- (1) an Enriques surface;
- (2) a bi-elliptic surface;
- (3) a K3 surface;
- (4) a 2-torus;
- (5) a Kodaira surface;
- (6) a ruled surface X over a curve C of genus $g \ge 2$ and m(X) > 2 2g;
- (7) a class VII₀ surface with $b_2 > 0$.

Remark 1.10. It is proved that surfaces in (1) to (6) all have scalar-flat Hermitian metrics. On the other hand, since class VII_0 surfaces with $b_2 > 0$ are not completely classified, we do not prove each class VII_0 surface with $b_2 > 0$ can support scalar-flat Hermitian metrics. Non-minimal surfaces with scalar-flat Hermitian metrics will also be studied in the sequel.

The rest of the paper is organized as follows. In Section 3, we give a characterization of compact complex manifolds with scalar-flat Hermitian metrics and prove Theorem 1.2. In Section 5, we classify ruled surfaces with scalar-flat Hermitian metrics and establish Theorem 1.5. In Section 6, we classify minimal complex surfaces with scalar-flat Hermitian metrics and obtain Theorem 1.9. In Section 7, we give some precise examples with scalar-flat Hermitian metrics (Proposition 1.7).

Acknowledgements. The first author would like to thank his advisor Professor Jian Zhou for his guidance. The second author is very grateful to Professor K.-F. Liu and Professor S.-T. Yau for their support, encouragement and stimulating discussions over years. We would also like to thank Professors S. Sun, A. Futaki, G. Szekelyhidi, V. Tosatti, W.-P. Zhang and X.-Y. Zhou for some helpful discussions.

2. Background materials

2.1. Scalar curvature and total scalar curvature on complex manifolds. Let (\mathscr{E}, h) be a Hermitian holomorphic vector bundle over a complex manifold X with Chern connection ∇ . Let $\{z^i\}_{i=1}^n$ be the local holomorphic coordinates on X and $\{e_{\alpha}\}_{\alpha=1}^r$ be a local frame of \mathscr{E} . The curvature tensor $R^{\mathscr{E}} \in \Gamma(X, \Lambda^{1,1}T_X^* \otimes \text{End}(\mathscr{E}))$ has components

(2.1)
$$R_{i\overline{j}\alpha\overline{\beta}}^{\mathscr{E}} = -\frac{\partial^2 h_{\alpha\overline{\beta}}}{\partial z^i \partial \overline{z}^j} + h^{\gamma\overline{\delta}} \frac{\partial h_{\alpha\overline{\delta}}}{\partial z^i} \frac{\partial h_{\gamma\overline{\beta}}}{\partial \overline{z}^j}.$$

(Here and henceforth we sometimes adopt the Einstein convention for summation.) If (X, ω_g) is a Hermitian manifold, then (T_X, g) has Chern curvature components

(2.2)
$$R_{i\overline{j}k\overline{\ell}} = -\frac{\partial^2 g_{k\overline{\ell}}}{\partial z^i \partial \overline{z}^j} + g^{p\overline{q}} \frac{\partial g_{k\overline{q}}}{\partial z^i} \frac{\partial g_{p\overline{\ell}}}{\partial \overline{z}^j}.$$

The Chern-Ricci curvature $\operatorname{Ric}(\omega_g)$ of (X, ω_g) is represented by $R_{i\overline{j}} = g^{k\ell}R_{i\overline{j}k\overline{\ell}}$. The *(Chern) scalar curvature s* of (X, ω_g) is given by

(2.3)
$$s = \operatorname{tr}_{\omega_g} \operatorname{Ric}(\omega_g) = g^{i\overline{j}} R_{i\overline{j}}.$$

The total (Chern) scalar curvature of ω_g is

(2.4)
$$\int_X s\omega_g^n = n \int \operatorname{Ric}(\omega_g) \wedge \omega_g^{n-1},$$

where n is the complex dimension of X.

- (1) A Hermitian metric ω_g is called a Gauduchon metric if $\partial \overline{\partial} \omega_g^{n-1} = 0$. It is proved by Gauduchon ([Gau77]) that, in the conformal class of each Hermitian metric, there exists a unique Gauduchon metric (up to constant scaling).
- (2) A projective manifold X is called uniruled if it is covered by rational curves.

2.2. Positivity of line bundles. Let (X, ω_g) be a compact Hermitian manifold, and $\mathscr{L} \to X$ be a holomorphic line bundle.

(1) \mathscr{L} is said to be *positive* (resp. *semi-positive*) if there exists a smooth Hermitian metric h on \mathscr{L} such that the curvature form $R^{\mathscr{L}} = -\sqrt{-1}\partial\overline{\partial}\log h$ is a positive (resp. semi-positive) (1, 1)-form.

- (2) \mathscr{L} is said to be *nef*, if for any $\varepsilon > 0$, there exists a smooth Hermitian metric h_{ε} on \mathscr{L} such that $-\sqrt{-1}\partial\overline{\partial}\log h_{\varepsilon} \geq -\varepsilon\omega_q$.
- (3) \mathscr{L} is said to be *pseudo-effective*, if there exists a (possibly) singular Hermitian metric h on \mathscr{L} such that $-\sqrt{-1}\partial\overline{\partial}\log h \ge 0$ in the sense of distributions. (See [Dem] for more details.)
- (4) \mathscr{L} is said to be \mathbb{Q} -effective, if there exists some positive integer m such that $H^0(X, \mathscr{L}^{\otimes m}) \neq 0$.
- (5) \mathscr{L} is called *unitary flat* if there exists a smooth Hermitian metric h on \mathscr{L} such that the curvature of (\mathscr{L}, h) is zero, i.e. $-\sqrt{-1}\partial\overline{\partial}\log h = 0$.
- (6) The Kodaira dimension $\kappa(\mathscr{L})$ of \mathscr{L} is defined to be

$$\kappa(\mathscr{L}) := \limsup_{m \to +\infty} \frac{\log \dim_{\mathbb{C}} H^0(X, \mathscr{L}^{\otimes m})}{\log m}$$

and the Kodaira dimension $\kappa(X)$ of X is defined as $\kappa(X) := \kappa(K_X)$ where the logarithm of zero is defined to be $-\infty$.

2.3. **Positivity of vector bundles.** The points of the projective bundle $\mathbb{P}(\mathscr{E}^*)$ of $\mathscr{E} \to X$ can be identified with the hyperplanes of \mathscr{E} . Note that every hyperplane \mathscr{V} in \mathscr{E}_z corresponds bijectively to the line of linear forms in \mathscr{E}_z^* which vanish on \mathscr{V} . Let $\pi : \mathbb{P}(\mathscr{E}^*) \to X$ be the natural projection. There is a tautological hyperplane subbundle \mathscr{S} of $\pi^*\mathscr{E}$ such that $\mathscr{S}_{[\xi]} = \xi^{-1}(0) \subset \mathscr{E}_z$ for all $\xi \in \mathscr{E}_z^* \setminus \{0\}$. The quotient line bundle $\pi^*\mathscr{E}/\mathscr{S}$ is denoted $\mathcal{O}_{\mathscr{E}}(1)$ and is called the *tautological line bundle* associated to $\mathscr{E} \to X$. Hence there is an exact sequence of vector bundles over $\mathbb{P}(\mathscr{E}^*)$, $0 \to \mathscr{S} \to \pi^*\mathscr{E} \to \mathcal{O}_{\mathscr{E}}(1) \to 0$. A holomorphic vector bundle $\mathscr{E} \to X$ is called *ample* (resp. *nef*) if the line bundle $\mathcal{O}_{\mathscr{E}}(1)$ is ample (resp. *nef*) over $\mathbb{P}(\mathscr{E}^*)$. (**Caution**: In general, $\mathbb{P}(\mathscr{E})$) and $\mathbb{P}(\mathscr{E}^*)$ are not isomorphic! $\mathcal{O}_{\mathscr{E}}(1)$ is the tautological line bundle of $\mathbb{P}(\mathscr{E}^*)$, and $\mathcal{O}_{\mathscr{E}^*}(1)$ is the tautological line bundle of $\mathbb{P}(\mathscr{E})$.) A Hermitian holomorphic vector bundle (\mathscr{E}, h) over a complex manifold X is called *Griffiths positive* if at each point $q \in X$ and for any nonzero vector $v \in \mathscr{E}_q$, and any nonzero vector $u \in T_q X, \mathbb{R}^{\mathscr{E}}(u, \overline{u}, v, \overline{v}) > 0$.

2.4. **RC-positive line bundles.** Let's recall that

Definition 2.1. A line bundle \mathscr{L} is called *RC-positive* if it has a smooth Hermitian metric *h* such that its curvature $R^{(\mathscr{L},h)} = -\sqrt{-1}\partial\overline{\partial}\log h$ has at least one positive eigenvalue everywhere.

In [Yang17, Theorem 1.4], we obtained an equivalent characterization for RC-positive line bundles.

Theorem 2.2. Let \mathscr{L} be a holomorphic line bundle over a compact complex manifold X. The following statements are equivalent.

- (1) \mathscr{L} is RC-positive;
- (2) the dual line bundle \mathscr{L}^* is not pseudo-effective.

Hence, we obtain

Corollary 2.3. A line bundle \mathscr{L} is unitary flat if and only if neither \mathscr{L} nor \mathscr{L}^* is RC-positive.

Proof. It is easy to see that \mathscr{L} is unitary flat if and only if both \mathscr{L} and \mathscr{L}^* are pseudo-effective (e.g. [Yang17a, Theorem 3.4]). Hence, Corollary 2.3 follows from Theorem 2.2.

By using Theorem 2.2, the classical result of [BDPP13, Theorem] and Yau's theorem [Yau78], we obtain in [Yang17, Corollary 1.9] that

Theorem 2.4. A projective manifold X is uniruled if and only if K_X^{-1} is RCpositive, i.e. X has a smooth Hermitian metric ω such that the Ricci curvature $\operatorname{Ric}(\omega)$ has at least one positive eigenvalue everywhere.

3. Characterizations of complex manifolds with scalar-flat metrics

In this section, we shall prove Theorem 1.2. Let ω be a smooth Hermitian metric on a compact complex manifold X. For simplicity, we denote by $\mathscr{F}(\omega)$ the total (Chern) scalar curvature of ω , i.e.

$$\mathscr{F}(\omega) = \int_X s\omega^n = n \int_X \operatorname{Ric}(\omega) \wedge \omega^{n-1}.$$

Note that, when X is not Kähler, the total scalar curvature differs from the total scalar curvature of the Levi-Civita connection of the underlying Riemannian metric (e.g. [LY17]). Let \mathscr{W} be the space of smooth Gauduchon metrics on X. We obtained in [Yang17a, Theorem 1.1] a complete characterization on the image of the total scalar curvature function $\mathscr{F} : \mathscr{W} \to \mathbb{R}$ following [Gau77, Mi82, La99] (see also some special cases in [Tel06, Gau77, HW12]). By Theorem 2.2, we obtain the following result.

Theorem 3.1. The image of the total scalar function $\mathscr{F} : \mathscr{W} \to \mathbb{R}$ has exactly four different cases:

(1) $\mathscr{F}(\mathscr{W}) = \mathbb{R}$ if and only if both K_X and K_X^{-1} are RC-positive;

- (2) $\mathscr{F}(\mathscr{W}) = \mathbb{R}^{>0}$ if and only if K_X^{-1} is RC-positive but K_X is not RC-positive;
- (3) $\mathscr{F}(\mathscr{W}) = \mathbb{R}^{<0}$ if and only if K_X is RC-positive but K_X^{-1} is not RC-positive;
- (4) $\mathscr{F}(\mathscr{W}) = \{0\}$ if and only if X is Ricci-flat; or equivalently, neither K_X nor K_X^{-1} is RC-positive.

Proof. We obtained in [Yang17a, Theorem 1.1] that the image of the total scalar function $\mathscr{F} : \mathscr{W} \to \mathbb{R}$ has exactly four different cases:

- (1) $\mathscr{F}(\mathscr{W}) = \mathbb{R}$, if and only if neither K_X nor K_X^{-1} is pseudo-effective;
- (2) $\mathscr{F}(\mathscr{W}) = \mathbb{R}^{>0}$, if and only if K_X^{-1} is pseudo-effective but not unitary flat;
- (3) $\mathscr{F}(\mathscr{W}) = \mathbb{R}^{<0}$, if and only if K_X is pseudo-effective but not unitary flat;
- (4) $\mathscr{F}(\mathscr{W}) = \{0\}$, if and only if K_X is unitary flat.

By [TW10, Corollary 2], K_X is unitary flat if and only if X is Ricci-flat, i.e. there exists a Hermitian metric ω on X such that $\operatorname{Ric}(\omega) = 0$. Hence Theorem 3.1 follows from Theorem 2.2 and Corollary 2.3.

Remark 3.2. It is easy to see that Theorem 3.1 also holds for Bott-Chern classes ([Yang17a, Theorem 3.4])

As an application of Theorem 3.1, we establish Theorem 1.2, that is,

Theorem 3.3. Let X be a compact complex manifold. Then X admits a scalarflat Hermitian metric if and only if X is Ricci-flat, or both K_X and K_X^{-1} are RC-positive.

Proof. If X has a scalar-flat Hermitian metric ω , in the conformal class of ω , there exists a Gauduchon metric $\omega_f = e^f \omega$. Then the total scalar curvature s_f of the Gauduchon metric ω_f is

(3.1)
$$s_f = n \int_X \operatorname{Ric}(\omega_f) \wedge \omega_f^{n-1} = n \int_X \left(\operatorname{Ric}(\omega) - n\sqrt{-1}\partial\overline{\partial}f \right) \wedge \omega_f^{n-1}$$

Since ω_f is Gauduchon, i.e. $\partial \overline{\partial} \omega_f^{n-1} = 0$, an integration by part yields

$$s_f = n \int_X \operatorname{Ric}(\omega) \wedge \omega_f^{n-1}$$
$$= n \int_X \operatorname{Ric}(\omega) \wedge e^{(n-1)f} \omega^{n-1}$$
$$= \int_X e^{(n-1)f} \cdot \operatorname{tr}_{\omega} \operatorname{Ric}(\omega) \cdot \omega^n.$$

Since ω has zero scalar curvature, i.e. $\operatorname{tr}_{\omega}\operatorname{Ric}(\omega) = 0$, we deduce that the total scalar curvature s_f of the Gauduchon metric ω_f is zero. By Theorem 3.1, we conclude that either X is Ricci-flat, or both K_X and K_X^{-1} are RC-positive.

On the other hand, suppose either X is Ricci-flat, or both K_X and K_X^{-1} are RC-positive, by Theorem 3.1 again, we know X has a Gauduchon metric ω_G with zero total scalar curvature. By a conformal perturbation method, it is easy to see that there exists a Hermitian metric ω with zero scalar curvature (e.g. [Yang17a, Lemma 3.2]). Indeed, let s_G be the scalar curvature of ω_G . It is well-known (e.g.[Gau77] or [CTW16, Theorem 2.2]) that the following equation

(3.2)
$$s_G - \operatorname{tr}_{\omega_G} \sqrt{-1} \partial \overline{\partial} f = 0$$

has a solution $f \in C^{\infty}(X)$ since ω_G is Gauduchon and its total scalar curvature $\int_X s_G \omega_G^n$ is zero. Let $\omega = e^{\frac{f}{n}} \omega_G$. Then the scalar curvature s of ω is,

$$s = \operatorname{tr}_{\omega}\operatorname{Ric}(\omega) = -\operatorname{tr}_{\omega}\sqrt{-1}\partial\partial\log(\omega^{n})$$
$$= -e^{-\frac{f}{n}}\operatorname{tr}_{\omega_{G}}\sqrt{-1}\partial\overline{\partial}\log(e^{f}\omega_{G}^{n})$$
$$= -e^{-\frac{f}{n}}\left(s_{G} - \operatorname{tr}_{\omega_{G}}\sqrt{-1}\partial\overline{\partial}f\right)$$
$$= 0.$$

The proof of Theorem 1.2 is completed.

The proof of Corollary 1.3. It is a special case of Theorem 1.2 since Kähler manifolds with unitary flat K_X are Kähler Calabi-Yau.

Corollary 3.4. Let X be a compact Kähler manifold. Suppose X has a scalarflat Hermitian metric, or a Gauduchon metric with zero total scalar curvature. If K_X or K_X^{-1} is pseudo-effective, then X is a Kähler Calabi-Yau manifold.

4. Projective bundles with scalar-flat metrics

In this section, we prove the following result.

Theorem 4.1. Let \mathscr{E} be a nef vector bundle of rank $r \geq 2$ over a smooth curve C with genus $g \geq 2$ and $X = \mathbb{P}(\mathscr{E})$. If $0 \leq \deg(\mathscr{E}) < 2g - 2$, then both K_X and K_X^{-1} are RC-positive. In particular, X has scalar-flat Hermitian metrics.

Let's recall some elementary settings. Suppose $\dim_{\mathbb{C}} Y = n$ and $r = \operatorname{rank}(\mathscr{E})$. Let π be the projection $\mathbb{P}(\mathscr{E}^*) \to Y$ and $\mathscr{L} = \mathcal{O}_{\mathscr{E}}(1)$. Let (e_1, \dots, e_r) be the local holomorphic frame on \mathscr{E} and the dual frame on \mathscr{E}^* is denoted by (e^1, \dots, e^r) . The corresponding holomorphic coordinates on \mathscr{E}^* are denoted by

 (W_1, \cdots, W_r) . If $(h_{\alpha\overline{\beta}})$ is the matrix representation of a smooth metric $h^{\mathscr{E}}$ on \mathscr{E} with respect to the basis $\{e_{\alpha}\}_{\alpha=1}^{r}$, then the induced Hermitian metric $h^{\mathscr{L}}$ on \mathscr{L} can be written as $h^{\mathscr{L}} = \frac{1}{\sum h^{\alpha\overline{\beta}}W_{\alpha}\overline{W}_{\beta}}$. The curvature of $(\mathscr{L}, h^{\mathscr{L}})$ is

(4.1)
$$R^{\mathscr{L}} = \sqrt{-1}\partial\overline{\partial}\log\left(\sum h^{\alpha\overline{\beta}}W_{\alpha}\overline{W}_{\beta}\right)$$

where ∂ and $\overline{\partial}$ are operators on the total space $\mathbb{P}(\mathscr{E}^*)$. We fix a point $p \in \mathbb{P}(\mathscr{E}^*)$, then there exist local holomorphic coordinates (z^1, \dots, z^n) centered at point $q = \pi(p) \in Y$ and local holomorphic basis $\{e_1, \dots, e_r\}$ of \mathscr{E} around q such that

(4.2)
$$h_{\alpha\overline{\beta}} = \delta_{\alpha\overline{\beta}} - R^{\mathscr{E}}_{i\overline{j}\alpha\overline{\beta}} z^i \overline{z}^j + O(|z|^3)$$

Without loss of generality, we assume p is the point $(0, \dots, 0, [a_1, \dots, a_r])$ with $a_r = 1$. On the chart $U = \{W_r = 1\}$ of the fiber \mathbb{P}^{r-1} , we set $w^A = W_A$ for $A = 1, \dots, r-1$. By formula (4.1) and (4.2)

(4.3)
$$R^{\mathscr{L}}(p) = \sqrt{-1} \sum R^{\mathscr{L}}_{i\overline{j}\alpha\overline{\beta}} \frac{a_{\beta}\overline{a}_{\alpha}}{|a|^2} dz^i \wedge d\overline{z}^j + \omega_{\rm FS}$$

where $|a|^2 = \sum_{\alpha=1}^r |a_{\alpha}|^2$ and $\omega_{\text{FS}} = \sqrt{-1} \sum_{A,B=1}^{r-1} \left(\frac{\delta_{AB}}{|a|^2} - \frac{a_B \overline{a}_A}{|a|^4} \right) dw^A \wedge d\overline{w}^B$ is the Fubini-Study metric on the fiber \mathbb{P}^{r-1} .

Lemma 4.2. If \mathscr{E} is Griffiths-positive, then $\mathcal{O}_{\mathscr{E}^*}(-1)$ is RC-positive.

Proof. It follows from formula (4.3). Indeed, by (4.3), the induced metric on $\mathcal{O}_{\mathscr{E}^*}(-1)$ over $\mathbb{P}(\mathscr{E})$ has curvature form

$$R^{\mathcal{O}_{\mathscr{E}^*}(-1)} = -\left(\sqrt{-1}\sum R^{\mathscr{E}^*}_{i\overline{j}\alpha\overline{\beta}}\frac{a_{\beta}\overline{a}_{\alpha}}{|a|^2}dz^i \wedge d\overline{z}^j + \omega_{\rm FS}\right).$$

On the other hand, $R^{\mathscr{E}^*} = -\left(R^{\mathscr{E}}\right)^t$ and so

$$R^{\mathcal{O}_{\mathscr{E}^*}(-1)} = \sqrt{-1} \sum R^{\mathscr{E}}_{i\overline{j}\alpha\overline{\beta}} \frac{a_{\alpha}\overline{a}_{\beta}}{|a|^2} dz^i \wedge d\overline{z}^j - \omega_{\rm FS}.$$

Hence, $\mathcal{O}_{\mathscr{E}^*}(-1)$ is RC-positive if $(\mathscr{E}, h^{\mathscr{E}})$ is Griffiths-positive.

Lemma 4.3. If \mathscr{E} is a nef vector bundle over a smooth curve C. Then for any ample line bundle \mathscr{A} over C and any $k \ge 0$, $\mathcal{O}_{\mathscr{E}^*}(-k) \otimes \pi^*(\mathscr{A})$ is RC-positive.

Proof. It is easy to see that $\operatorname{Sym}^{\otimes k} \mathscr{E} \otimes \mathscr{A}$ is an ample vector bundle over C. By [CF90], $\operatorname{Sym}^{\otimes k} \mathscr{E} \otimes \mathscr{A}$ has a smooth Griffiths-positive metric. In particular, by Lemma 4.2, the dual tautological line bundle

(4.4)
$$\mathcal{O}_{\mathrm{Sym}^{\otimes k}\mathscr{E}^*\otimes\mathscr{A}^*}(-1)$$

is RC-positive. More precisely, the base curve C direction is a positive direction of the curvature tensor of $\mathcal{O}_{\text{Sym}^{\otimes k}\mathscr{E}^*\otimes\mathscr{A}^*}(-1)$. On the other hand, we have the following commutative diagram

where $\nu_k : \mathscr{E} \to \operatorname{Sym}^{\otimes k} \mathscr{E}$ is the *k*-th Veronese map, $f = \operatorname{Identity}$ and *i* is an isomorphism. It is easy to see that $\mathcal{O}_{\mathscr{E}^*}(-k) \otimes \pi^*(\mathscr{A})$ is RC-positive, i.e., the induced curvature has a positive direction along the base *C* direction. \Box

The proof of Theorem 4.1. By using the projection formula on $X = \mathbb{P}(\mathscr{E})$,

$$K_X = \mathcal{O}_{\mathscr{E}^*}(-n) \otimes \pi^*(K_C \otimes \det \mathscr{E}^*),$$

where $\pi : X \to C$ is the projection. If $\deg(\mathscr{E}) < 2g - 2 = \deg(K_C)$, then $\deg(K_C \otimes \det \mathscr{E}^*) > 0$ and so $K_C \otimes \det \mathscr{E}^*$ is ample. By Lemma 4.3, K_X is RC-positive. On the other hand, by Theorem 2.4, it is easy to see that K_X^{-1} is RC-positive. Hence, by Theorem 1.2, X has scalar-flat Hermitian metrics. \Box

5. Classification of ruled surfaces with scalar-flat Hermitian metrics

In this section, we classify ruled surfaces with scalar-flat Hermitian metrics and prove Theorem 1.5. It is well-known that any ruled surface X can be written as a projective bundle $\mathbb{P}(\mathscr{E})$ where \mathscr{E} is a rank two vector bundle over a smooth curve C with genus g. Moreover, two ruled surfaces $\mathbb{P}(\mathscr{E})$ and $\mathbb{P}(\mathscr{E}')$ are isomorphic if and only if $\mathscr{E} \cong \mathscr{E}' \otimes \mathscr{L}$ for some line bundle \mathscr{L} over C. Since \mathscr{E} has rank two and $X \cong \mathbb{P}(\mathscr{E}) \cong \mathbb{P}(\mathscr{E}^*)$, we shall use projection formulas

$$K_X = \mathcal{O}_{\mathscr{E}}(-2) \otimes \pi^*(K_C \otimes \det \mathscr{E}), \quad \pi : \mathbb{P}(\mathscr{E}^*) \to C$$

and

$$K_X = \mathcal{O}_{\mathscr{E}^*}(-2) \otimes \pi^*(K_C \otimes \det \mathscr{E}^*), \ \pi : \mathbb{P}(\mathscr{E}) \to C$$

alternatively.

When $g = 0, C \cong \mathbb{P}^1$ and each rank two vector bundle can be written as $\mathscr{E} = \mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}(b)$. We can write a ruled surface over \mathbb{P}^1 as $X = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(-k) \oplus \mathcal{O}_{\mathbb{P}^1})$.

Proposition 5.1. Let $X = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(-k) \oplus \mathcal{O}_{\mathbb{P}^1})$ be a Hirzebruch surface. Then the anti-canonical line bundle K_X^{-1} is effective and X has no scalar-flat Hermitian metrics.

Proof. Let $\mathscr{E} = \mathcal{O}_{\mathbb{P}^1}(k) \oplus \mathcal{O}_{\mathbb{P}^1}$ and $X = \mathbb{P}(\mathscr{E}^*)$. We have $K_X^{-1} = \mathcal{O}_{\mathscr{E}}(2) \otimes \pi^*(\mathcal{O}_{\mathbb{P}^1}(2-k))$. By the direct image formula (e.g. [Laz04, p.90]), we have

$$\begin{aligned} H^{0}(X, K_{X}^{-1}) &= H^{0}(X, \mathcal{O}_{\mathscr{E}}(2) \otimes \pi^{*}(\mathcal{O}_{\mathbb{P}^{1}}(2-k)) \\ &= H^{0}(\mathbb{P}^{1}, \operatorname{Sym}^{\otimes 2} \mathscr{E} \otimes \mathcal{O}_{\mathbb{P}^{1}}(2-k)) \\ &= H^{0}(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(k+2) \oplus \mathcal{O}_{\mathbb{P}^{1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{1}}(2-k)) \\ &\neq 0 \end{aligned}$$

for any k. Therefore, K_X^{-1} is effective and K_X is not RC-positive. By Theorem 1.2, X has no scalar-flat Hermitian metrics.

Theorem 5.2. Let $X = \mathbb{P}(\mathscr{E}^*) \to C$ be a projective bundle over an elliptic curve C where $\mathscr{E} \to C$ is a rank two vector bundle. Then the K_X is not RC-positive and X has no scalar-flat Hermitian metrics.

Proof. We divide the proof into three different cases.

Case 1. Suppose \mathscr{E} is indecomposable and deg $\mathscr{E} = 0$. A well-known result of Atiyah asserts that an indecomposable vector bundle over an elliptic curve is semi-stable and so \mathscr{E} is semi-stable (e.g. [Tu93, Appendix A]). On the other hand, a semi-stable vector bundle over a curve is nef if deg(\mathscr{E}) ≥ 0 (e.g. [Laz04, Theorem 6.4.15]). Hence \mathscr{E} is nef. By using the projection formula,

(5.1)
$$K_X^{-1} = \mathcal{O}_{\mathscr{E}}(2) \otimes \pi^* (K_C^{-1} \otimes \det \mathscr{E}^*) = \mathcal{O}_{\mathscr{E}}(2) \otimes \pi^* (\det \mathscr{E}^*)$$
we deduce K_X^{-1} is nef.

Case 2. Suppose \mathscr{E} is indecomposable and $\deg(\mathscr{E}) \neq 0$. There exists an étale base change $f: C' \to C$ of degree k where k is an integer such that 2|k, and C' is also an elliptic curve. Suppose $X' = \mathbb{P}(f^*\mathscr{E}^*)$, then we have the commutative diagram

$$\begin{array}{ccc} X' & \xrightarrow{f'} & X \\ \pi' & & & & & \\ C' & \xrightarrow{f} & C. \end{array}$$

Let ℓ be an integer defined as

(5.2)
$$\ell = \frac{\deg(f^*\mathscr{E})}{2} = \frac{k \deg(\mathscr{E})}{2},$$

and \mathscr{F} be a line bundle over Y such that $\deg(\mathscr{F}) = -\ell$. Now we set

$$\widetilde{\mathscr{E}} = f^* \mathscr{E} \otimes \mathscr{F},$$

then $\deg(\widetilde{\mathscr{E}}) = 0$. Since \mathscr{E} is indecomposable, it is semi-stable. Therefore $f^*\mathscr{E}$ is semi-stable (e.g. [Laz04, Lemma 6.4.12]) and so $\widetilde{\mathscr{E}}$ is semi-stable. Therefore, $\widetilde{\mathscr{E}}$ is nef since $\deg(\widetilde{\mathscr{E}}) = 0$. By projection formula again, we have

$$K_{X'}^{-1} = \mathcal{O}_{\widetilde{\mathscr{E}}}(2) \otimes \pi^*(\det \widetilde{\mathscr{E}}).$$

We deduce $K_{X'}^{-1}$ is nef. Hence K_X^{-1} is nef.

Case 3. If $\mathscr E$ is decomposable, then there exits a line bundle $\mathscr L$ such that

$$\mathscr{E} = \mathscr{L} \oplus (\mathscr{L}^{-1} \otimes \det \mathscr{E}).$$

By the projection formula (5.1) again, we have

$$H^{0}(X, K_{X}^{-1}) = H^{0}(X, \mathcal{O}_{\mathscr{E}}(2) \otimes \pi^{*}(\det \mathscr{E}^{*})) \cong H^{0}(C, \operatorname{Sym}^{\otimes 2}\mathscr{E} \otimes \det \mathscr{E}^{*}))$$

$$= H^{0}(C, (\mathscr{L}^{2} \otimes \det \mathscr{E}^{*}) \oplus \mathcal{O}_{C} \oplus (\mathscr{L}^{-2} \otimes \det \mathscr{E}))$$

$$\neq 0$$

So K_X^{-1} is effective.

In summary, we conclude that the anti-canonical line bundle K_X^{-1} is pseudoeffective, i.e. K_X is not RC-positive. By Theorem 1.2, X has no scalar-flat Hermitian metrics.

Finally, we deal with ruled surfaces over curves of genus $g \geq 2$. For a rank two vector bundle \mathscr{E} over a curve C, in general, it is not clear whether \mathscr{E} has an extension by \mathcal{O}_C :

$$(5.3) 0 \to \mathcal{O}_C \to \mathscr{E} \to \mathscr{F} \to 0$$

where \mathscr{F} is a coherent sheaf over C. However, one can obtain such an extension for $\mathscr{E} \otimes \mathscr{L}$ where \mathscr{L} is some suitable line bundle. This enables us to make the following definition (see [Fri98, p.121-p.124] for more details).

Definition 5.3. Let \mathscr{E} be a rank two vector bundle over a smooth curve C. The number $m(\mathscr{E})$ is defined to be the minimal degree of $\mathscr{E} \otimes \mathscr{L}$ where there exists a sheaf extension of $\mathscr{E} \otimes \mathscr{L}$:

$$(5.4) 0 \to \mathcal{O}_C \to \mathscr{E} \otimes \mathscr{L} \to \mathscr{F} \to 0$$

for some line bundle \mathscr{L} over C.

It is easy to see that for a sufficiently ample line bundle \mathscr{L} , $H^0(C, \mathscr{E} \otimes \mathscr{L}) \neq 0$ and a global section of $\mathscr{E} \otimes \mathscr{L}$ gives an extension (5.4). Hence, $m(\mathscr{E})$ is welldefined. It is obvious that $m(\mathscr{E}) = m(\mathscr{E} \otimes \widetilde{\mathscr{L}})$ for any line bundle $\widetilde{\mathscr{L}}$. Nagata proved in [Nag70, Theorem 1] (see also [Fri98, p. 123]) that

Theorem 5.4. $m(\mathscr{E}) \leq g$.

(Note that, in [Fri98, p. 123], the notion $e(\mathscr{E})$ is exactly $-m(\mathscr{E})$.)

As we pointed out before, any ruled surface X can be written as a projective bundle $\mathbb{P}(\mathscr{E})$ and two ruled surfaces $\mathbb{P}(\mathscr{E})$ and $\mathbb{P}(\mathscr{E}')$ are isomorphic if and only if $\mathscr{E} \cong \mathscr{E}' \otimes \mathscr{L}$ for some line bundle \mathscr{L} , then we can define m(X) by $m(\mathscr{E})$ for any ruled surface $X = \mathbb{P}(\mathscr{E})$.

One can see that the definition of $m(\mathscr{E})$ is related to stability of coherent sheaves. If $m(\mathscr{E}) > 0$, then \mathscr{E} is stable. Indeed, for any rank one sub-sheaf \mathscr{L} of \mathscr{E} , we have the short exact sequence:

$$0 \to \mathscr{L} \to \mathscr{E} \to \mathscr{F} \to 0.$$

Since $\mathscr E$ is torsion free, $\mathscr L$ is torsion free and we know $\mathscr L$ is a line bundle. Therefore,

$$0 \to \mathcal{O}_C \to \mathscr{E} \otimes \mathscr{L}^{-1} \to \mathscr{F} \otimes \mathscr{L}^{-1} \to 0.$$

By the definition of $m(\mathscr{E})$, we have $\deg(\mathscr{E} \otimes \mathscr{L}^{-1}) \ge m(\mathscr{E}) > 0$ which is equivalent to $\deg \mathscr{L} < \frac{\deg \mathscr{E}}{2}$. This implies \mathscr{E} is stable. Conversely, if \mathscr{E} is stable, by a similar argument, we can conclude $m(\mathscr{E}) > 0$. Hence, we obtain a fact pointed out in [Fri98, Proposition 12, p. 123].

Proposition 5.5. If \mathscr{E} is a rank two vector bundle over a Riemann surface C, then \mathscr{E} is stable if and only if $m(\mathscr{E}) > 0$.

The proof of Theorem 1.5. Let X be a ruled surface which can support scalarflat Hermitian metrics. We can write $X = \mathbb{P}(\mathscr{E}_o)$ for some rank 2 vector bundle \mathscr{E}_o over a smooth curve C. Note that, since \mathscr{E}_o has rank 2, $\mathscr{E}_o \cong \mathscr{E}_o^* \otimes \det \mathscr{E}_o$ and so $X \cong \mathbb{P}(\mathscr{E}_o) \cong \mathbb{P}(\mathscr{E}_o^*)$. By Proposition 5.1 and Theorem 5.2, we know the genus $g(C) \ge 2$. On the other hand, by the above discussion, we can write $X = \mathbb{P}(\mathscr{E})$ where $\deg(\mathscr{E}) = m(X)$ and \mathscr{E} has an extension

$$(5.5) 0 \to \mathcal{O}_C \to \mathscr{E} \to \mathscr{F} \to 0.$$

Hence, $\deg(\mathscr{E}) = \deg(\mathscr{F}) = m(X)$.

(1). If $m(X) = \deg \mathscr{F} \leq 2 - 2g$, $X \cong \mathbb{P}(\mathscr{E}^*) \cong \mathbb{P}(\mathscr{E})$ has no scalar-flat Hermitian metrics. Indeed, we consider $X = \mathbb{P}(\mathscr{E}^*)$. By the exact sequence (5.5), we have

$$0 \to H^0(C, \mathcal{O}_C) \to H^0(C, \mathscr{E}) \to \cdots$$

Therefore, $H^0(C, \mathscr{E}) \neq 0$. By the Le Potier isomorphism ([LeP75]), we have

$$H^0(\mathbb{P}(\mathscr{E}^*), \mathcal{O}_{\mathscr{E}}(1)) \cong H^0(C, \mathscr{E}) \neq 0.$$

Hence, $\mathcal{O}_{\mathscr{E}}(1)$ is effective and so it is pseudo-effective. On the other hand, since $\deg(\mathscr{E}) \leq 2-2g = -\deg(K_C)$, we deduce $K_C^{-1} \otimes \det \mathscr{E}^*$ is semi-positive. By the projection formula $K_X^{-1} = \mathcal{O}_{\mathscr{E}}(2) \otimes \pi^*(K_C^{-1} \otimes \det \mathscr{E}^*)$, we know K_X^{-1} is pseudo-effective. By Theorem 2.2, K_X is not RC-positive. By Theorem 1.2, X has no scalar-flat Hermitian metrics.

(2). If $2 - 2g < m(X) = \deg(\mathscr{E}) = \deg(\mathscr{F}) \leq 0$, we know $0 \leq \deg(\mathscr{E}^*) < 2g - 2$. Since \mathcal{O}_C and \mathscr{F}^* are nef, by the dual exact sequence of (5.5),

$$0 \to \mathscr{F}^* \to \mathscr{E}^* \to \mathcal{O}_C \to 0,$$

we deduce \mathscr{E}^* is nef with $0 \leq \deg(\mathscr{E}^*) < 2g - 2$. By Theorem 4.1, $X \cong \mathbb{P}(\mathscr{E}^*)$ can support scalar-flat Hermitian metrics.

(3). If $0 < m(X) = \deg(\mathscr{E}) = \deg(\mathscr{F}) < 2g - 2$, by the exact sequence (5.5), \mathscr{E} is nef with $0 < \deg(\mathscr{E}) < 2g - 2$. By Theorem 4.1, $X \cong \mathbb{P}(\mathscr{E})$ admits scalar-flat Hermitian metrics. Note that $\mathbb{P}(\mathscr{E}) \cong \mathbb{P}(\mathscr{E}^*)$.

(4). Suppose $m(X) \geq 2g - 2$. By Theorem 5.4, $m(X) \leq g$. Hence, in this case, we have g = 2 and $m(X) = \deg(\mathscr{E}) = 2$. We work on $X = \mathbb{P}(\mathscr{E})$. By Proposition 5.5, \mathscr{E} is a stable vector bundle and $\deg(\mathscr{E}) = 2$. By ([Laz04, Theorem 6.4.15]), we know \mathscr{E} is an ample vector bundle over a smooth curve. According to [CF90], \mathscr{E} has a smooth Griffiths-positive metric. By using Lemma 4.2, $\mathcal{O}_{\mathscr{E}^*}(-1)$ is RC-positive. By the projection formula again, we have

$$K_X = \mathcal{O}_{\mathscr{E}^*}(-2) \otimes \pi^*(K_C \otimes \det \mathscr{E}^*).$$

Since $\deg(K_C) = \deg(\mathscr{E}) = 2$, we know $K_C \otimes \det \mathscr{E}^*$ and $\pi^*(K_C \otimes \det \mathscr{E}^*)$ are unitary flat. Hence, we deduce K_X is RC-positive. Since X is uniruled, by Theorem 2.4, K_X^{-1} is RC-positive. Then we can apply Theorem 1.2 and assert that X has scalar-flat Hermitian metrics. In summary, we prove that a ruled surface X over a smooth curve C admits scalar-flat Hermitian metrics if and only if $g(C) \ge 2$ and m(X) > 2 - 2g. The proof of Theorem 1.5 is completed.

6. Classification of minimal surfaces with scalar-flat Hermitian metrics

In this section, we classify minimal surfaces with scalar-flat Hermitian metrics and prove Theorem 1.9.

Proposition 6.1. Let X be a compact complex manifold. If X admits a scalarflat Hermitian metric, then the Kodaira dimension $\kappa(X) = 0$ or $\kappa(X) = -\infty$.

Proof. According to the proof of Theorem 1.2, if X admits a scalar-flat Hermitian metric, then X has a Gauduchon metric with zero total scalar curvature. By Theorem [Yang17a, Theorem 1.4], $\kappa(X) = 0$ or $\kappa(X) = -\infty$.

If X is a minimal surface with Kodaira dimension $\kappa(X) = 0$, X is exactly one of the following (e.g. [BHPV04])

- (1) an Enriques surface;
- (2) a bi-elliptic surface;
- (3) a K3 surface;
- (4) a torus;
- (5) a Kodaira surface.

In this case, it is well-known that X has torsion canonical line bundle, i.e. $K_X^{\otimes 6} = \mathcal{O}_X$ (e.g. [BHPV04, p. 244]). Hence, X admits scalar-flat Hermitian metrics.

If X is a minimal surface with Kodaira dimension $\kappa(X) = -\infty$, then X lies in one of the following classes:

- (1) minimal rational surfaces;
- (2) ruled surfaces of genus $g \ge 1$;
- (3) minimal surfaces of class VII_0 .

Minimal rational surfaces are either \mathbb{P}^2 or Hirzebruch surfaces. Hence, by Proposition 5.1, they can not support scalar-flat Hermitian metrics.

If X is a minimal ruled surfaces of genus $g \ge 1$, by Theorem 1.9, X has a scalar-flat Hermitian metric if and only if $g \ge 2$ and m(X) > 2 - 2g.

- If X is a minimal surface of class VII_0 , then X is one of the following
 - class VII₀ surfaces with $b_2 > 0$;
 - Inoue surfaces: a class VII₀ surface has $b_2 = 0$ and contains no curves;

Hopf surfaces: its universal covering is C² − {0}, or equivalently a class VII₀ surface has b₂ = 0 and contains a curve.

According to the proof of [Tel06, Remark 4.2] (see also [TW13] or [HLY18, Theorem 5.1]), we know Inoue surfaces all have K_X semi-positive but not unitary flat, and so it can not support scalar-flat Hermitian metrics. Similarly, it is proved in [Tel06, Remark 4.3], all Hopf surfaces have semi-positive anticanonical bundle, and so it has no scalar-flat Hermitian metrics. For class VII₀ surfaces with $b_2 > 0$, they are not completely classified, and it is possible that some of them can support scalar-flat Hermitian metrics (see the discussion in [Tel06, p. 977-p. 979]). The proof of Theorem 1.9 is completed.

7. Examples

In this section, we exhibit several examples on ruled manifolds with scalar-flat Hermitian metrics. As a straightforward application of Theorem 1.5, we get the following result.

Corollary 7.1. Let $\mathscr{L} \to C$ be a line bundle over a smooth curve of genus gand $X = \mathbb{P}(\mathscr{L} \oplus \mathcal{O}_C)$. Then X has a scalar-flat Hermitian metric if and only if $g \geq 2$ and $|\deg(\mathscr{L})| < 2g - 2$.

We can also construct higher dimensional ruled manifolds with scalar-flat metrics.

Theorem 7.2. Let C be a smooth curve with genus $g \ge 2$ and \mathscr{L} be a line bundle over C. Suppose $\mathscr{E} = \mathscr{L} \oplus \mathcal{O}_C^{\oplus(n-1)}$ and $X = \mathbb{P}(\mathscr{E}^*) \to C$ is the projective bundle. If $0 \le \deg(\mathscr{L}) < \frac{2g-2}{n-1}$, then both K_X and K_X^{-1} are RC-positive.

Proof. By using the projection formula, we know

(7.1)
$$K_X = \mathcal{O}_{\mathscr{E}}(-n) \otimes \pi^*(K_C \otimes \det \mathscr{E}),$$

where $\pi: X \to C$ is the projection. Fix an arbitrary smooth Hermitian metric $h^{\mathscr{L}}$ on \mathscr{L} and the trivial metric on \mathcal{O}_C . Let $\{z\}$ be the local holomorphic coordinate on C. The curvature form of $(\mathscr{L}, h^{\mathscr{L}})$ is

(7.2)
$$R^{\mathscr{L}} = -\sqrt{-1}\partial\overline{\partial}\log h^{\mathscr{L}} = \sqrt{-1}\kappa dz \wedge d\overline{z}.$$

Similarly, fix a smooth metric h^{K_C} on K_C , and its curvature form is

(7.3)
$$R^{K_C} = -\sqrt{-1}\partial\overline{\partial}\log h^{K_C} = \sqrt{-1}\gamma dz \wedge d\overline{z}.$$

Hence, \mathscr{E} has the curvature form

(7.4)
$$R^{\mathscr{E}} = \sqrt{-1}\kappa dz \wedge d\overline{z} \otimes e^1 \otimes e^1 + \sum_{i=2}^n \sqrt{-1} \cdot 0 \cdot dz \wedge d\overline{z} \otimes e^i \otimes e^i,$$

where $e^1 = e_{\mathscr{L}}$ is the local frame of \mathscr{L} and for $i \geq 2$, $e^i = e$ is the local holomorphic frame on \mathcal{O}_C with the order in the direct sum $\mathscr{E} = \mathscr{L} \oplus \mathcal{O}_C^{\oplus (n-1)}$. Therefore, by (4.3), $\mathcal{O}_{\mathscr{E}}(-n)$ has the curvature form at some point

$$R^{\mathcal{O}_{\mathscr{E}}(-n)} = \sqrt{-1} \left(-n\kappa \frac{|a_1|^2}{|a|^2} dz \wedge d\overline{z} \right) - n\omega_{\mathrm{FS}}.$$

Hence, by formula (7.1), the curvature of K_X is given by

$$R^{K_X} = \sqrt{-1} \left(\left((\kappa + \gamma) - n\kappa \frac{|a_1|^2}{|a|^2} \right) dz \wedge d\overline{z} \right) - n\omega_{\rm FS}.$$

Since $\deg(\mathscr{L}) \geq 0$, we can choose the smooth metric $h^{\mathscr{L}}$ such that its curvature is semi-positive, i.e. $\kappa \geq 0$. Therefore,

(7.5)
$$R^{K_X} \ge \sqrt{-1} \left((\gamma - (n-1)\kappa) \, dz \wedge d\overline{z} \right) - n\omega_{\rm FS}.$$

The condition $0 \leq \deg(\mathscr{L}) < \frac{2g-2}{n-1}$ implies $\deg(K_C \otimes \mathscr{L}^{1-n}) > 0$. Therefore, we can choose the Hermitian metric h^{K_C} on K_C such that $h^{K_C} \otimes (h^{\mathscr{L}})^{1-n}$ has positive curvature, i.e.

$$\gamma - (n-1)\kappa > 0.$$

By (7.5), we know the curvature of K_X is positive along the base direction, i.e., K_X is RC-positive. The RC-positivity of K_X^{-1} follows from Theorem 2.4. \Box

Example 7.3. Let $n \ge 2$ be an integer. Let C be a smooth curve of degree $d \ge n+3$ in \mathbb{P}^2 . It is easy to see that $\deg(\mathcal{O}_C(1)) = d$ and C is a curve of genus

(7.6)
$$g = \frac{(d-1)(d-2)}{2}$$

Let $\mathscr{L} = \mathcal{O}_C(1)$ and $\mathscr{E} = \mathscr{L} \oplus \mathcal{O}_C^{\oplus (n-1)}$ and $X := \mathbb{P}(\mathscr{E}^*) \to C$ be the projective bundle. Note that $\dim_{\mathbb{C}} X = n$. Then

$$\frac{2g-2}{n-1} = \frac{d(d-3)}{n-1} \geq \frac{d\cdot n}{n-1} > d = \deg(\mathscr{L}) > 0.$$

Hence, the pair $(X, C, \mathscr{L}, \mathscr{E})$ satisfies the conditions in Theorem 7.2. In particular, both K_X and K_X^{-1} are RC-positive.

The proof of Proposition 1.7. By Theorem 7.2 and Theorem 1.2, X admits a scalar-flat Hermitian metric. On the other hand, by [ACGT11, Theorem 1], X has no scalar-flat Kähler metrics since $\mathscr{E} = \mathscr{L} \oplus \mathcal{O}_C^{\oplus (n-1)}$ is not polystable. \Box

References

- [AP06] Arezzo, C.; Pacard, F. Blowing up and desingularizing constant scalar curvature Kähler manifolds., Acta Math. **196** (2006), 179–228.
- [AP09] Arezzo, C.; Pacard, F. Blowing up Kähler manifolds with constant scalar curvature II, Ann. of Math. (2) **170** (2009), 685–738.
- [ACGT11] Apostolov, V.; Calderbank, D.; Gauduchon, P.; Tønnesen-Friedman, C. Extremal Kähler metrics on projective bundles over a curve. Adv. Math. 227 (2011), 2385– 2424.
- [AT06] Apostolov, V.; Tønnesen-Friedman, C. A remark on Kähler metrics of constant scalar curvature on ruled complex surfaces. Bull. London Math. Soc. 38(2006), 494–500.
- [Ati57] Atiyah, M. F. Vector bundles over an elliptic curve. Proc. London Math. Soc. 7(1957), 414–452.
- [BHPV04] Barth, W.; Hulek, K.; Peters, C.; Van de Ven, A. Compact complex surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, 2004.
- [Bes86] Besse, A. *Einstein manifolds*. Berline Heidelberg New York, Sringer. 1986.
- [BDPP13] Boucksom, S.; Demailly, J.-P.; Paun, M.; Peternell, P.The pseudoeffective cone of a compact Kähler manifold and varieties of negative Kodaira dimension. J. Algebraic Geom. 22 (2013) 201–248.
- [BD88] Burns, D.; De Bartolomeis, P. Stability of vector bundles and extremal metrics. Invent. Math. 92 (1988), 403–407.
- [Cal82] Calabi, E. Extremal Kähler metrics. Seminar on Differential Geometry, pp. 259– 290, Ann. of Math. Stud., 102, Princeton Univ. Press, Princeton, N.J., 1982.
- [Cal85] Calabi, E. Extremal Kähler metrics. II. Differential geometry and complex analysis, 95–114, Springer, Berlin, 1985.
- [CF90] Campana, F.; Flenner, H. A characterization of ample vector bundles on a curve. Math. Ann. 287 (1990), no. 4, 571–575.
- [CT08] Chen, X. X.; Tian, G. Geometry of Kähler metrics and foliations by holomorphic discs. Publ. Math. Inst. Hautesétudes Sci. No. 107 (2008), 1–107.
- [CTW16] Chu, J.-C.; Tosatti, V.; Weinkove, B. The Monge-Ampère equation for nonintegrable almost complex structures. arXiv:1603.00706. To appear in J. Eur. Math. Soc.
- [Dem] Demailly, J.-P. Analytic Methods in Algebraic Geometry, Higher Education Press, Surveys of Modern Mathematics, Vol. 1, 2010.
- [DPS94] Demailly, J.-P.; Peternell, T.; Schneider, M. Compact complex manifolds with numerically effective tangent bundles. J. Algebraic Geom. 3 (1994), no. 2, 295– 345.
- [Don01] Donaldson, S. Scalar curvature and projective embeddings, I, J. Differential Geom. 59 (2001), 479–522.
- [Fri98] Friedman, Robert. Algebraic surfaces and holomorphic vector bundles. Springer-Verlag, New York, 1998.

- [Fut83] Futaki, A. An obstruction to the existence of Einstein-Kähler metrics, Invent. Math. 73 (1983), 437–443.
- [Fut93] Futaki, A. Scalar-flat closed manifolds not admiting positive scalar curvature metrics. Invent. Math. 112 (1993), 23–29.
- [Fuj92] Fujiki, A. Remarks on extremal Kähler metrics on ruled manifolds. Nagoya Math. J. 126 (1992), 89–101.
- [Gau77] Gauduchon, P. Le théorème de l'excentricité nulle. C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 5, A387-A390.
- [Ga77] Gauduchon, P. Fibrés hermitiens à endomorphisme de Ricci non-négatif, Bull. Soc. Math. France 105 1977), 113–140.
- [HW12] Heier, G; Wong, B. Scalar curvature and uniruledness on projective manifolds. Comm. Anal. Geom. 20 (2012), no. 4, 751–764.
- [HLY18] He, J.; Liu, K.-F.; Yang, X.-K. Levi-Civita Ricci flat metrics on compact complex manifolds. arXiv:1806.07206
- [Hong99] Hong, Y.-J. Constant Hermitian scalar curvature equations on ruled manifolds. J. Differential Geom. 53 (1999), 465–516.
- [La99] A. Lamari, Le cône kählerien d'une surface, J. Math. Pures Appl., 78 (1999), 249–263.
- [Laz04] Lazarsfeld, R. Positivity in algebraic geometry. II Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics Springer-Verlag, Berlin, 2004.
- [LeP75] Le Potier, J. Annulation de la cohomolgie à valeurs dans un fibré vectoriel holomorphe positif de rang quelconque. (French) Math. Ann. 218(1975), no. 1, 35–53.
- [Leb86] LeBrun, C. On the topology of self-dual 4-manifolds. Proc. Amer. Math. Soc. 98(1986), 637–640.
- [Leb91] LeBrun, C. Scalar-flat Kähler metrics on blown-up ruled surfaces. J. Reine Angew. Math. 420(1991), 161–177.
- [LS93] LeBrun, C.; Singer, M. Existence and deformation theory for scalar-flat Kähler metrics on compact complex surfaces. Invent. Math. 112(1993), 273–313.
- [LS94] LeBrun, C.; Singer, M. Extremal Kähler metrics and complex deformation theory, Geom. and Func. Anal. 4 (1994), 298–336.
- [LY17] Liu, K.-F.; Yang, X.-K. Ricci curvatures on Hermitian manifolds. Trans. Amer. Math. Soc. 369 (2017), 5157–5196.
- [Mat57] Matsushima, Y. Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne, Nagoya Math. J. **11** (1957), 145–150.
- [Mi82] Michelsohn, M. L. On the existence of special metrics in complex geometry. Acta Math. **149** (1982), 261–295.
- [Nag70] Nagata, M. On self-intersection number of a section on a ruled surface. Nagoya Math. J. 37(1970), 191–196.
- [RS05] Rollin, Y.; Singer, M. Non-minimal scalar-flat Kähler surfaces and parabolic stability. Invent. Math. 162 (2005), 235–270.
- [Ross06] Ross, J. Unstable products of smooth curves. Invent. Math. **165** (2006), no. 1, 153–162.

[RT06] Ross, J.; Thomas, R. An obstruction to the existence of constant scalar curvature Kähler metrics. J. Differential Geom. 72 (2006), 429–466. [Sim91] Simanca, S. Kähler metrics of constant scalar curvature on bundles over CP_{n-1} , Math. Ann. **291** (1991), 239–246. [Sto08] Stoppa, J. K-stability of constant scalar curvature Kähler manifolds, Adv. Math. **221** (2009), 1397–1408. [Sze14] Szekelyhidi, G. An introduction to extremal Kähler metrics. Graduate Studies in Mathematics, 152. American Mathematical Society, Providence, RI, 2014. Szekelyhidi, G. Kähler-Einstein metrics. arXiv:1710.06042. [Sze17] [Tel06] Teleman, A. The pseudo-effective cone of a non-Kählerian surface and applications. Math. Ann. **335**(2006), 965–989. [Tian90] Tian, G. On Calabi's conjecture for complex surfaces with positive first Chern class, Invent. Math. **101** (1990), 101–172. [Tian97] Tian, G. Kähler-Einstein metrics with positive scalar curvature, Invent. Math. **137** (1997), 1–37. [TW10] Tosatti, V.; Weinkove, B. The complex Monge-Ampère equation on compact Hermitian manifolds. J. Amer. Math. Soc. 23 (2010), 1187–1195. [TW13] Tosatti, V.; Weinkove, B. The Chern-Ricci flow on complex surfaces. Compos. Math. 149 (2013), 2101–2138. [Tu93] Tu, L.-W. Semistable bundles over an elliptic curve. Advance Math. 98 (1993), 1 - 26.Yang, X.-K. Scalar curvature on compact complex manifolds. arXiv:1705.02672. [Yang17a] To appear in Trans. Amer. Math. Soc. [Yang17] X.-K. A partial converse to the Andreotti-Grauert theorem. Yang, arXiv:1707.08006. To appear in Compositio. Math. [Yang18] Yang, X.-K. RC-positivity, rational connectedness and Yau's conjecture. Camb. J. Math. 6 (2018), 183–212. [Yang18a] Yang, X.-K. RC-positivity, vanishing theorems and rigidity of holomorphic maps. arXiv:1807.02601 Yau, S.-T. On the curvature of compact Hermitian manifolds. Invent. Math. 25 [Yau74] (1974), 213-239.[Yau78] Yau, S.-T. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31 (1978), 339–411. MR 0480350 Yau, S.-T. Problem section. In Seminar on Differential Geometry, Ann. of Math [Yau82] Stud. 102, 669-706. 1982.

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.

Address of Xiaokui Yang: Morningside Center of Mathematics, Institute of Mathematics, Hua Loo-Keng Center of Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.

E-mail address: xkyang@amss.ac.cn