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RC-positivity and scalar-flat metrics on ruled surfaces

Jun Wang and Xiaokui Yang

Abstract. Let X be a ruled surface over a curve of genus g. We prove that
X has a scalar-flat Hermitian metric if and only if g > 2 and m(X) > 2—2g
where m(X) is an intrinsic number depends on the complex structure of X.
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1. Introduction
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In his “Problem section”, S.-T. Yau proposed the following classical problem

([Yau82, Problem 41]), which is investigated intensively in the last forty years.
Problem 1.1. Classify all compact Kéhler surfaces with zero scalar curvature.

By the celebrated Calabi-Yau Theorem ([Yau78]), all Kéhler surfaces with van-
ishing first Chern class (e.g. K3 surfaces) admit Kéhler metrics with zero scalar
curvature. Such metrics are usually called scalar-flat Kahler metrics and it is
a special class of constant scalar curvature Kéhler (cscK) metrics or extremal
metrics. Obstructions to the existence of such metrics have been known since
the pioneering works of S.-T. Yau [Yau74] and E. Calabi [Cal85]. For compre-
hensive discussions on this rich topic, we refer to [Yau74, Yau78, Fut83, BDS8S8,
Tian90, Sim91, Fuj92, LS93, LS94, Tian97, Don01, RS05, AP06, AT06, RT06,
Ross06, CT08, Sto08, AP09, ACGT11, Szel4, Szel7] and the references therein.

This work was partially supported by China’s Recruitment Program of Global Experts.
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In this paper, we study the geometry of compact complex manifolds with
scalar-flat Hermitian metrics (with respect to the Chern connection), which is
a generalization of Problem 1.1. We begin with a characterization of compact
complex manifolds with scalar-flat Hermitian metrics, which can be regarded as
a Hermitian analogue of Kazdan-Warner-Bourguignon’s classical work in Rie-
mannian geometry, and we refer to [Bes86] and [Fut93] for more details.

Theorem 1.2. A compact complex manifold X admits a scalar-flat Hermaitian
metric if and only if X is Chern Ricci-flat, or both Kx and K" are RC-positive.

Recall that, a line bundle . is called RC-positive if it has a smooth Hermit-
ian metric h such that its curvature —/—100logh has at least one positive
eigenvalue everywhere. By using a remarkable theorem in [TW10] established
by Tosatti-Weinkove (which is a Hermitian analogue of Yau’s theorem [Yau78)),
the anti-canonical bundle Ky' is RC-positive if and only if X has a smooth
Hermitian metric w such that its Ricci curvature Ric(w) has at least one pos-
itive eigenvalue everywhere. A complex manifold X is called Chern Ricci-flat
if there exists a smooth Hermitian metric w such that the Chern-Ricci curva-
ture Ric(w) = —/—190logw™ = 0. On the other hand, we proved in [Yang17,
Theorem 1.4] that a line bundle . is RC-positive if and only if its dual line
bundle .Z* is not pseudo-effective. By taking this advantage, we can verify the
RC-positivity of Ky or K)}l by adapting methods in differential geometry as
well as algebraic geometry.

As a straightforward application of Theorem 1.2, we obtain

Corollary 1.3. Let X be a compact Kahler manifold. If X has a scalar-flat
Kihler metric w, then either X is a Calabi- Yau manifold, or both Kx and Ky'
are RC-positive.

For instance, if X is the blowing-up of P? along m-points (m < 9), it is well-
known that the anti-canonical bundle K is effective (e.g. [Fri98, p. 125-p. 129))
and so it is pseudo-effective. In this case, Kx can not be RC-positive and X
has no scalar-flat Hermitian (or Kéhler) metrics.

Corollary 1.4. Let P2#mP? be the blowing-up of P? along m points. If X
admits a scalar-flat Hermitian metric, then m > 10.

Indeed, it is proved by Rollin-Singer in [RS05, Theorem 1] (see also [Leb86,
Leb91, LS93]) that: a complex surface X obtained by blowing-up P? at 10 suit-
ably chosen points admits a scalar-flat Kahler metric and any further blowing-up
of X also admits a scalar-flat Kéaler metric.
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A compact complex surface X is called a ruled surface if it is a holomor-
phic P-bundle over a compact Riemann surface C. It is well known that any
ruled surface X can be written as a projective bundle P(&) where & is a rank
two vector bundle over C. Moreover, two ruled surfaces P(&) and P(&”) are
isomorphic if and only if & = & ® £ for some line bundle .Z over C'. The
existence of cscK metrics on ruled surfaces are extensively studied, and we refer
to [Yau74, BD88, Tian90, Sim91, Fuj92, 1.S93, LS94, RS05, AP06, AT06, RT06,
Ross06, Sto08, ACGT11, Szel4| and the references therein. A remarkable result
(e.g. [AT06, BD88, ACGT11]) asserts that: A ruled surface P(&) admits a cscK
metric if and only if & is poly-stable.

In the following, we aim to classify ruled surfaces with scalar-flat Hermitian
metrics. Let & be a rank two vector bundle over a smooth curve C'. One can
define a number m(&) (e.g. [Fri98, p. 122]) which is equal to the minimal degree
of & ® Z if there exists a sheaf extension of & ® .Z:

0208 —F —0

for some line bundle .Z. It is obvious that m(&) = m(& ® £) for any line
bundle .. Hence, we can define an intrinsic number m(X) for a ruled surface
X: m(X) = m(&) if X can be written as P(&). It is obvious that m(X) is
independent of the choices of &. Let’s explain the geometric meaning of m(X)
by the example X = P(.Z @ O¢) — C where .Z is a line bundle. In this case,
m(X) = —| deg(£)| < 0. As another application of Theorem 1.2, we obtain

Theorem 1.5. Let X be a ruled surface over a smooth curve C of genus g. Then
X has a scalar-flat Hermitian metric if and only if g > 2 and m(X) > 2 — 2g.

In particular, we have

Corollary 1.6. Let & — C' be a line bundle over a smooth curve of genus g
and X = P(Z ® O¢). Then X has a scalar-flat Hermitian metric if and only
if g > 2 and |deg(L)| < 2g — 2.

For instance, if C' is a smooth curve of degree d > 4 in P2, then the genus of
Cis g = 3(d — 1)(d — 2) and the degree of O¢(1) is d < 29 — 2. Hence, X =
P(Oc(1) @ O¢) has scalar-flat Hermitian metrics. Note also that, in Corollary
1.6, if deg(.Z) = 0, the vector bundle Z®O¢ is poly-stable and X = P(Z®O¢)
admits scalar-flat Kéhler metrics; however, when 0 < | deg(.Z)| < 2g —2, it has
no scalar-flat Kahler metrics. Moreover, we construct such examples in higher
dimensional ruled manifolds.
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Proposition 1.7. Let C' be a smooth curve with genus g > 2 and £ be a line
bundle over C'. Suppose & = 3@02("_1) and X = P(&*) — C is the projective
bundle. If 0 < deg(Z) < 2;’__12, then P(&*) can not support scalar-flat Kdhler
metrics, but it does admit scalar-flat Hermitian metrics.

As motivated by previous results, we propose the following question.

Question 1.8. Let X be a compact Kahler manifold. Suppose X has a scalar-
flat Hermitian metric. Are there any geometric conditions on X which can
guarantee the existence of scalar-flat Kahler metrics?

Finally, we classify minimal compact complex surfaces with scalar-flat Her-
mitian metrics.

Theorem 1.9. Let X be a minimal compact complex surface. If X admits a
scalar-flat Hermitian metric, then X must be one of the following

(1) an Enriques surface;
(2) a bi-elliptic surface;

(3) a K3 surface;

(4) a 2-torus;

(5) a Kodaira surface;

(6) a ruled surface X over a curve C of genus g > 2 and m(X) > 2 — 2g;
(7) a class V1ly surface with by > 0.

Remark 1.10. It is proved that surfaces in (1) to (6) all have scalar-flat Her-
mitian metrics. On the other hand, since class VI, surfaces with b, > 0 are not
completely classified, we do not prove each class VII; surface with b, > 0 can
support scalar-flat Hermitian metrics. Non-minimal surfaces with scalar-flat
Hermitian metrics will also be studied in the sequel.

The rest of the paper is organized as follows. In Section 3, we give a char-
acterization of compact complex manifolds with scalar-flat Hermitian metrics
and prove Theorem 1.2. In Section 5, we classify ruled surfaces with scalar-flat
Hermitian metrics and establish Theorem 1.5. In Section 6, we classify minimal
complex surfaces with scalar-flat Hermitian metrics and obtain Theorem 1.9.
In Section 7, we give some precise examples with scalar-flat Hermitian metrics
(Proposition 1.7).

Acknowledgements. The first author would like to thank his advisor Pro-
fessor Jian Zhou for his guidance. The second author is very grateful to Professor
K.-F. Liu and Professor S.-T. Yau for their support, encouragement and stim-
ulating discussions over years. We would also like to thank Professors S. Sun,
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A. Futaki, G. Szekelyhidi, V. Tosatti, W.-P. Zhang and X.-Y. Zhou for some
helpful discussions.

2. Background materials

2.1. Scalar curvature and total scalar curvature on complex manifolds.
Let (&, h) be a Hermitian holomorphic vector bundle over a complex manifold X
with Chern connection V. Let {z*}! ; be the local holomorphic coordinates on
X and {e,}"_, be alocal frame of &. The curvature tensor R¢ € I'(X, AYT% ®
End(&’)) has components
(2.1) re = Fhas 50has Do

o 02407’ 0zt 0z’
(Here and henceforth we sometimes adopt the Einstein convention for summa-
tion.) If (X,w,) is a Hermitian manifold, then (7T, g¢) has Chern curvature
components

829k2 P kg agpz

02077 0zt 9z

The Chern-Ricci curvature Ric(w,) of (X, w,) is represented by Rz = g'JRmz.
The (Chern) scalar curvature s of (X, w,) is given by

(2.3) s = tr,,Ric(wy) = gﬁRﬁ.

(2-2) Rﬁkz - -

The total (Chern) scalar curvature of w, is

(2.4) /XSWZ = n/Ric(wg) Awpt,

where n is the complex dimension of X.

(1) A Hermitian metric w, is called a Gauduchon metric if ddw?~! = 0.
It is proved by Gauduchon ([Gau77]) that, in the conformal class of
each Hermitian metric, there exists a unique Gauduchon metric (up to
constant scaling).

(2) A projective manifold X is called uniruled if it is covered by rational
curves.

2.2. Positivity of line bundles. Let (X,w,) be a compact Hermitian mani-
fold, and . — X be a holomorphic line bundle.

(1) Zissaid to be positive (resp. semi-positive) if there exists a smooth Her-
mitian metric 4 on . such that the curvature form R% = —/—1901log h
is a positive (resp. semi-positive) (1, 1)-form.
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(2) Z is said to be nef, if for any € > 0, there exists a smooth Hermitian
metric h. on .Z such that —v/—190 log h. > —EWy.

(3) Z is said to be pseudo-effective, if there exists a (possibly) singular
Hermitian metric h on . such that —/—19091ogh > 0 in the sense of
distributions. (See [Dem] for more details.)

(4) & is said to be Q-effective, if there exists some positive integer m such
that H(X, £%™) # 0.

(5) £ is called unitary flat if there exists a smooth Hermitian metric h on
& such that the curvature of (£, h) is zero, i.e. —/—190logh = 0.

(6) The Kodaira dimension k(%) of .Z is defined to be

log dime H(X, %™
k(&) := limsup og dime H(X, )
m—++00 logm

and the Kodaira dimension x(X) of X is defined as x(X) = r(Kx)
where the logarithm of zero is defined to be —oo.

2.3. Positivity of vector bundles. The points of the projective bundle P(&™*)
of & — X can be identified with the hyperplanes of &. Note that every hy-
perplane 7 in &, corresponds bijectively to the line of linear forms in & which
vanish on 7. Let m : P(6*) — X be the natural projection. There is a tau-
tological hyperplane subbundle . of 7*& such that .7 = £7'(0) C &, for
all £ € &\ {0}. The quotient line bundle 7*&/.% is denoted O (1) and is
called the tautological line bundle associated to & — X. Hence there is an
exact sequence of vector bundles over P(&*), 0 — ¥ — 7*& — Og(1) — 0.
A holomorphic vector bundle & — X is called ample (resp. nef) if the line
bundle Og(1) is ample (resp. nef) over P(&*). (Caution: In general, P(&)
and P(&*) are not isomorphic! Og(1) is the tautological line bundle of P(&*),
and Og-(1) is the tautological line bundle of P(&£’).) A Hermitian holomorphic
vector bundle (&, h) over a complex manifold X is called Griffiths positive if at
each point ¢ € X and for any nonzero vector v € &, and any nonzero vector
u e T,X, R (u,u,v,v) > 0.

2.4. RC-positive line bundles. Let’s recall that

Definition 2.1. A line bundle .Z is called RC-positive if it has a smooth Her-
mitian metric A such that its curvature R*" = —/=1901og h has at least one
positive eigenvalue everywhere.

In [Yangl7, Theorem 1.4], we obtained an equivalent characterization for RC-
positive line bundles.
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Theorem 2.2. Let £ be a holomorphic line bundle over a compact complex
manifold X . The following statements are equivalent.

(1) £ is RC-positive;

(2) the dual line bundle £* is not pseudo-effective.

Hence, we obtain

Corollary 2.3. A line bundle £ is unitary flat if and only if neither £ nor
ZL* is RC-positive.

Proof. 1t is easy to see that .Z is unitary flat if and only if both ¥ and £* are
pseudo-effective (e.g. [Yangl7a, Theorem 3.4]). Hence, Corollary 2.3 follows
from Theorem 2.2. O

By using Theorem 2.2, the classical result of [BDPP13, Theorem| and Yau’s
theorem [Yau78], we obtain in [Yangl7, Corollary 1.9] that

Theorem 2.4. A projective manifold X is uniruled if and only if Ky is RC-
positive, i.e. X has a smooth Hermitian metric w such that the Ricci curvature
Ric(w) has at least one positive eigenvalue everywhere.

3. Characterizations of complex manifolds with scalar-flat metrics

In this section, we shall prove Theorem 1.2. Let w be a smooth Hermitian
metric on a compact complex manifold X. For simplicity, we denote by .# (w)
the total (Chern) scalar curvature of w; i.e.

F(w) = /Xsw" = n/XRic(w) Aw™ L

Note that, when X is not Kahler, the total scalar curvature differs from the total
scalar curvature of the Levi-Civita connection of the underlying Riemannian
metric (e.g. [LY17]). Let # be the space of smooth Gauduchon metrics on
X. We obtained in [Yangl7a, Theorem 1.1] a complete characterization on
the image of the total scalar curvature function . : # — R following [Gau77,
Mi82, La99] (see also some special cases in [Tel06, Gau77, HW12]). By Theorem
2.2, we obtain the following result.

Theorem 3.1. The image of the total scalar function F : # — R has exactly
four different cases:

(1) Z(#) =R if and only if both Kx and Ky are RC-positive;
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(2) F(#) = R>° if and only if Ky is RC-positive but Kx is not RC-
positive;

(3) F(#) = R<° if and only if Kx is RC-positive but Ky' is not RC-
positive;

(4) F (W) = {0} if and only if X is Ricci-flat; or equivalently, neither Kx
nor Ky is RC-positive.

Proof. We obtained in [Yangl17a, Theorem 1.1] that the image of the total scalar
function .# : #" — R has exactly four different cases:

(1) FZ(#) =R, if and only if nelther Kx nor Ky is pseudo-effective;

(2) F(W) = ]R>0 if and only if Ky is pseudo-effective but not unitary flat;
(3) Z(#) =R if and only if Kx is pseudo-effective but not unitary flat;
(4) Z (W) = {0}, if and only if Kx is unitary flat.

By [TW10, Corollary 2], Kx is unitary flat if and only if X is Ricci-flat, i.e.
there exists a Hermitian metric w on X such that Ric(w) = 0. Hence Theorem
3.1 follows from Theorem 2.2 and Corollary 2.3. U

Remark 3.2. It is easy to see that Theorem 3.1 also holds for Bott-Chern
classes ([Yangl7a, Theorem 3.4])

As an application of Theorem 3.1, we establish Theorem 1.2, that is,

Theorem 3.3. Let X be a compact complex manifold. Then X admits a scalar-
flat Hermitian metric if and only if X is Ricci-flat, or both Kx and Ky' are
RC-positive.

Proof. If X has a scalar-flat Hermitian metric w, in the conformal class of w,
there exists a Gauduchon metric w; = e/w. Then the total scalar curvature s;
of the Gauduchon metric wy is

(3.1) sy = n/ Ric(wy) /\w;}_l = n/ (Ric(w) — nv/ =190 ) A Wy L
X X
Since wy is Gauduchon, i.e. ng?_l = 0, an integration by part yields
s = n/ Ric(w) A w}™ !
X
= n/ Ric(u))/\e("_l)fw"_1
X

= /e("_l)f-trwRic(w) cw™.
X
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Since w has zero scalar curvature, i.e. tr,Ric(w) = 0, we deduce that the total
scalar curvature sy of the Gauduchon metric wy is zero. By Theorem 3.1, we
conclude that either X is Ricci-flat, or both Kx and Ky' are RC-positive.

On the other hand, suppose either X is Ricci-flat, or both Kx and Ky' are
RC-positive, by Theorem 3.1 again, we know X has a Gauduchon metric wg
with zero total scalar curvature. By a conformal perturbation method, it is
easy to see that there exists a Hermitian metric w with zero scalar curvature
(e.g. [Yangl7a, Lemma 3.2]). Indeed, let si be the scalar curvature of we. It is
well-known (e.g.[Gau77] or [CTW16, Theorem 2.2]) that the following equation

(3.2) sq — trueV—190f =0

has a solution f € C°°(X) since wg is Gauduchon and its total scalar curvature
. ! .
f « Sawg is zero. Let w = enwg. Then the scalar curvature s of w is,

s = tr,Ric(w) = —tr,v/—190log(w™)
= —e‘£trwG\/—_185 log(e/wf)
— —e % (sG — trwG\/—_lﬁgf)
= 0.
The proof of Theorem 1.2 is completed. O

The proof of Corollary 1.3. 1t is a special case of Theorem 1.2 since Kahler
manifolds with unitary flat Ky are Kéahler Calabi-Yau. 0

Corollary 3.4. Let X be a compact Kdhler manifold. Suppose X has a scalar-
flat Hermitian metric, or a Gauduchon metric with zero total scalar curvature.

If Kx or Ky' is pseudo-effective, then X is a Kihler Calabi-Yau manifold.

4. Projective bundles with scalar-flat metrics
In this section, we prove the following result.

Theorem 4.1. Let & be a nef vector bundle of rank r > 2 over a smooth curve
C with genus g > 2 and X =P(&). If 0 < deg(&) < 29 — 2, then both Kx and
K)_(1 are RC-positive. In particular, X has scalar-flat Hermaitian metrics.

Let’s recall some elementary settings. Suppose dim¢ Y = n and r = rank(&).
Let 7 be the projection P(&*) — Y and £ = Og(1). Let (e1,---,e.) be
the local holomorphic frame on & and the dual frame on &* is denoted by
(el,---,e"). The corresponding holomorphic coordinates on &* are denoted by
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(Wi, -+, W,). If (h,3) is the matrix representation of a smooth metric A% on
& with respect to the basis {ea}a 1, then the induced Hermitian metric h% on
% can be written as h¥ = ——-———. The curvature of (%, h?) is

Zhaﬁw W'
(4.1) RZ = /100 log (Z h“BWan)

where 0 and 0 are operators on the total space P(&*). We fix a point p € P(&£*),

then there exist local holomorphic coordinates (z!,---,2") centered at point
g = 7(p) € Y and local holomorphic basis {ey, -+ ,e.} of & around ¢ such that
(4.2) hog = 0u5 Rf;aBz 7 4+ 0()z)

Without loss of generality, we assume p is the point (0,---,0, [a1,- -+ ,a,]) with

a, = 1. On the chart U = {W, = 1} of the fiber P"~!, we set w? = W, for
A=1,---,r—1. By formula (4.1) and (4.2)

ag
(4.3) =V— ZRzyaﬁ af? 2dz' A dF + wrs

where |a]? = Z laa* and wps = v/— Z (“Sg—@ — “ﬁﬁ{‘) dw? A dw? is the
AB=1

Fubini-Study metrlc on the fiber P 1.

Lemma 4.2. If & is Griffiths-positive, then Og«(—1) is RC-positive.

Proof. 1t follows from formula (4.3). Indeed, by (4.3), the induced metric on
Og+(—1) over P(&) has curvature form

RO+ (-1 = (\/ 1> RS ‘Tﬁ“‘;‘ d2' A d7 + wFs) .

On the other hand, R¢™ = — (Réa)t and so

ROg*( 1 =V — Z R aﬁd N dZ] — WFS-

ijaB | ‘2

Hence, Og-(—1) is RC-positive if (&, h?) is Griffiths-positive. O

Lemma 4.3. If & is a nef vector bundle over a smooth curve C'. Then for any
ample line bundle o/ over C' and any k > 0, Og«(—k) @ (&) is RC-positive.

Proof. It is easy to see that Sym®*& ® 7 is an ample vector bundle over C. By
[CF90], Sym®* & ® o7 has a smooth Griffiths-positive metric. In particular, by
Lemma 4.2, the dual tautological line bundle

(44) OSym®k£*®£{*(_1)

10
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is RC-positive. More precisely, the base curve C' direction is a positive direction
of the curvature tensor of Ogy, ek grg .+ (—1). On the other hand, we have the
following commutative diagram

! |

=
o

) LN P(Sym®* &) — s P(Sym®* & @ o)
-] dl |
C RN C SN C

where v, : & — Sym®*& is the k-th Veronese map, f = Identity and i is an
isomorphism. It is easy to see that Og«(—k) ® 7*(7) is RC-positive, i.e., the
induced curvature has a positive direction along the base C' direction. U

The proof of Theorem 4.1. By using the projection formula on X = P(&),
KX = Og*(—n) X W*(Kc & det g*),

where 7 : X — (' is the projection. If deg(&) < 29 — 2 = deg(K¢), then
deg(Kc ® det &) > 0 and so K¢ ® det & is ample. By Lemma 4.3, Ky is
RC-positive. On the other hand, by Theorem 2.4, it is easy to see that K)}l is
RC-positive. Hence, by Theorem 1.2, X has scalar-flat Hermitian metrics. [

5. Classification of ruled surfaces with scalar-flat Hermitian metrics

In this section, we classify ruled surfaces with scalar-flat Hermitian metrics
and prove Theorem 1.5. It is well-known that any ruled surface X can be
written as a projective bundle P(&) where & is a rank two vector bundle over
a smooth curve C' with genus g. Moreover, two ruled surfaces P(&) and P(&”)
are isomorphic if and only if & = &’ ® .Z for some line bundle .Z over C'. Since
& has rank two and X = P(&) = P(&*), we shall use projection formulas

Kx =0s(-2) @71 (Kc®det&), m:P(&")—C

and
Ky =04(-2)@ 71" (Kc®det&*), m:P(&) —C

alternatively.
When g = 0, C' = P! and each rank two vector bundle can be written as & =
Op1(a)®Op:1 (b). We can write a ruled surface over P! as X = P(Op1 (—k)®Op1).

11
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Proposition 5.1. Let X = P(Op: (—k)®Op1) be a Hirzebruch surface. Then the
anti-canonical line bundle K_;(l 15 effective and X has no scalar-flat Hermitian
metrics.

Proof. Let & = Opi(k) @ Op1 and X = P(&*). We have Ky' = 0¢(2) ®
7 (Op1(2 — k)). By the direct image formula (e.g. [Laz04, p.90]), we have
HY X, K') = HX,04(2) @7 (Op (2 - k))
= H°(P',Sym®*¢ @ Op (2 — k))
= HP', Opi(k +2) ® Op(2) ® Opi(2 — k)

# 0
for any k. Therefore, K" is effective and Kx is not RC-positive. By Theorem
1.2, X has no scalar-flat Hermitian metrics. 0

Theorem 5.2. Let X = P(&*) — C be a projective bundle over an elliptic curve
C where & — C is a rank two vector bundle. Then the Kx is not RC-positive
and X has no scalar-flat Hermitian metrics.

Proof. We divide the proof into three different cases.

Case 1. Suppose & is indecomposable and deg& = 0. A well-known result of
Atiyah asserts that an indecomposable vector bundle over an elliptic curve is
semi-stable and so & is semi-stable (e.g. [Tu93, Appendix A]). On the other
hand, a semi-stable vector bundle over a curve is nef if deg(&) > 0 (e.g. [Laz04,
Theorem 6.4.15]). Hence & is nef. By using the projection formula,

(5.1) K= 0s2) @ m*(K;' @ det &) = Og(2) @ 7*(det &*)

we deduce K)}l is nef.

Case 2. Suppose & is indecomposable and deg(&) # 0. There exists an étale
base change f : C' — C of degree k where k is an integer such that 2|k, and C”
is also an elliptic curve. Suppose X' = P(f*&*), then we have the commutative
diagram

x o x

o—L.c
Let ¢ be an integer defined as
_ deg(f*&) _ kdeg(é)

2 2 ’

(5.2) ¢

12



RC-positivity and scalar-flat metrics on ruled surfaces Jun Wang and Xiaokui Yang

and .Z be a line bundle over Y such that deg(.%#) = —¢. Now we set
E=fERE,

then deg(&) = 0. Since & is indecomposable, it is semi-stable. Therefore f*&
is semi-stable (e.g. [Laz04, Lemma 6.4.12]) and so & is semi-stable. Therefore,
& is nef since deg(&’) = 0. By projection formula again, we have

K3t = 02(2) @ 7(det &).

We deduce K)_{,l is nef. Hence K;(l is nef.

Case 3. If & is decomposable, then there exits a line bundle . such that
=L@ (L '@det&).
By the projection formula (5.1) again, we have
HY(X, K" = HYX,04(2) @ 7*(det &*)) =2 H(C, Sym®*& @ det £*))
= H°(C,(L*®det &) & O @ (L2 @ det &))
# 0

So K)}l is effective.

In summary, we conclude that the anti-canonical line bundle K)}l is pseudo-
effective, i.e. Kx is not RC-positive. By Theorem 1.2, X has no scalar-flat
Hermitian metrics. l

Finally, we deal with ruled surfaces over curves of genus g > 2. For a rank
two vector bundle & over a curve C, in general, it is not clear whether & has
an extension by Og¢:

(5.3) 0>0c—&— F—0

where .Z is a coherent sheaf over C'. However, one can obtain such an extension
for & ® £ where £ is some suitable line bundle. This enables us to make the
following definition (see [Fri98, p.121-p.124] for more details).

Definition 5.3. Let & be a rank two vector bundle over a smooth curve C.
The number m(&) is defined to be the minimal degree of & ® £ where there
exists a sheaf extension of & ® Z:

(5.4) 0=20c—=66R0YL—F =0

for some line bundle ¥ over C.

13
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It is easy to see that for a sufficiently ample line bundle ., H°(C,& @ £) # 0
and a global section of & ® .Z gives an extension (5.4). Hence, m(&) is well-
defined. It is obvious that m(&) = m(& ® (,ifﬂv) for any line bundle .. Nagata
proved in [Nag70, Theorem 1] (see also [Fri98, p. 123]) that

Theorem 5.4. m(&) < g.

(Note that, in [Fri98, p. 123], the notion (&) is exactly —m(&).)

As we pointed out before, any ruled surface X can be written as a projective
bundle P(&") and two ruled surfaces P(&) and P(&”) are isomorphic if and only
if & = &' ® % for some line bundle .Z, then we can define m(X) by m(&) for
any ruled surface X = P(&).

One can see that the definition of m(&) is related to stability of coherent
sheaves. If m(&) > 0, then & is stable. Indeed, for any rank one sub-sheaf .#
of &, we have the short exact sequence:

0—- ¥ —&—.% —=0.

Since & is torsion free, .Z is torsion free and we know .Z is a line bundle.
Therefore,

0200 —=ERL ' FZL =0
By the definition of m(&), we have deg(& @ £~') > m(&) > 0 which is equiv-
alent to deg .Z < %. This implies & is stable. Conversely, if & is stable, by a

similar argument, we can conclude m(&) > 0. Hence, we obtain a fact pointed
out in [Fri98, Proposition 12, p. 123].

Proposition 5.5. If & is a rank two vector bundle over a Riemann surface C,
then & is stable if and only if m(&) > 0.

The proof of Theorem 1.5. Let X be a ruled surface which can support scalar-
flat Hermitian metrics. We can write X = P(&,) for some rank 2 vector bundle
&, over a smooth curve C. Note that, since &, has rank 2, &, = & @ det &,
and so X = P(&,) = P(&F). By Proposition 5.1 and Theorem 5.2, we know
the genus ¢g(C') > 2. On the other hand, by the above discussion, we can write
X = P(&) where deg(&) = m(X) and & has an extension

(5.5) 0—-0c—&—F —0.
Hence, deg(&) = deg(.#) = m(X).

14
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(1). If m(X) = deg.# < 2—2¢g, X = P(&) = P(&) has no scalar-flat
Hermitian metrics. Indeed, we consider X = P(&™). By the exact sequence
(5.5), we have

0— H(C,00) = HY(C,&) — -+ .
Therefore, H°(C, &) # 0. By the Le Potier isomorphism ([LeP75]), we have

Hence, Oz(1) is effective and so it is pseudo-effective. On the other hand, since
deg(&) < 2—2g = —deg(K(¢), we deduce K'®det &* is semi-positive. By the
projection formula K" = Og(2) @ 7*(K;' ® det &*), we know K is pseudo-
effective. By Theorem 2.2, Kx is not RC-positive. By Theorem 1.2, X has no
scalar-flat Hermitian metrics.

(2). If 2 =29 < m(X) = deg(&) = deg(.#) < 0, we know 0 < deg(&™*) <
2g — 2. Since O¢ and F* are nef, by the dual exact sequence of (5.5),

0= F* =& — O — 0,

we deduce &* is nef with 0 < deg(&™*) < 2g — 2. By Theorem 4.1, X = P(&£™*)
can support scalar-flat Hermitian metrics.

(3). f 0 < m(X) = deg(&) = deg(-#) < 29 — 2, by the exact sequence
(5.5), & is nef with 0 < deg(&) < 29 — 2. By Theorem 4.1, X = P(&) admits
scalar-flat Hermitian metrics. Note that P(&) = P(&™).

(4). Suppose m(X) > 2g — 2. By Theorem 5.4, m(X) < g. Hence, in
this case, we have g = 2 and m(X) = deg(&) = 2. We work on X = P(&).
By Proposition 5.5, & is a stable vector bundle and deg(&) = 2. By ([Laz04,
Theorem 6.4.15]), we know & is an ample vector bundle over a smooth curve.
According to [CF90], & has a smooth Griffiths-positive metric. By using Lemma
4.2, Og+«(—1) is RC-positive. By the projection formula again, we have

KX = Og*(_2> ® W*(KC ® det (b@*)

Since deg(K¢) = deg(&) = 2, we know Ko ® det &* and 7*(K¢ ® det &) are
unitary flat. Hence, we deduce Ky is RC-positive. Since X is uniruled, by
Theorem 2.4, K)}l is RC-positive. Then we can apply Theorem 1.2 and assert
that X has scalar-flat Hermitian metrics.
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In summary, we prove that a ruled surface X over a smooth curve C' admits
scalar-flat Hermitian metrics if and only if ¢g(C) > 2 and m(X) > 2 — 2g. The
proof of Theorem 1.5 is completed. U

6. Classification of minimal surfaces with scalar-flat Hermitian metrics

In this section, we classify minimal surfaces with scalar-flat Hermitian metrics
and prove Theorem 1.9.

Proposition 6.1. Let X be a compact complex manifold. If X admits a scalar-
flat Hermitian metric, then the Kodaira dimension k(X) =0 or k(X ) = —oo.

Proof. According to the proof of Theorem 1.2, if X admits a scalar-flat Hermit-
ian metric, then X has a Gauduchon metric with zero total scalar curvature.
By Theorem [Yangl7a, Theorem 1.4], K(X) =0 or x(X) = —oc. O

If X is a minimal surface with Kodaira dimension x(X) = 0, X is exactly
one of the following (e.g. [BHPV04))

(1) an Enriques surface;
(2) a bi-elliptic surface;
(3) a K3 surface;

(4) a torus;

(5) a Kodaira surface.

In this case, it is well-known that X has torsion canonical line bundle, i.e.
K = Ox (e.g. [BHPVO04, p. 244]). Hence, X admits scalar-flat Hermitian
metrics.

If X is a minimal surface with Kodaira dimension x(X) = —oco, then X lies
in one of the following classes:

(1) minimal rational surfaces;
(2) ruled surfaces of genus g > 1;
(3) minimal surfaces of class VII,.

Minimal rational surfaces are either P? or Hirzebruch surfaces. Hence, by
Proposition 5.1, they can not support scalar-flat Hermitian metrics.

If X is a minimal ruled surfaces of genus g > 1, by Theorem 1.9, X has a
scalar-flat Hermitian metric if and only if ¢ > 2 and m(X) > 2 — 2g.

If X is a minimal surface of class VIIj, then X is one of the following

e class VIl surfaces with by > 0;
e Inoue surfaces: a class VIIj surface has by = 0 and contains no curves;

16
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e Hopf surfaces: its universal covering is C* — {0}, or equivalently a class
VII, surface has by = 0 and contains a curve.

According to the proof of [Tel06, Remark 4.2] (see also [TW13] or [HLY1S,
Theorem 5.1]), we know Inoue surfaces all have Ky semi-positive but not uni-
tary flat, and so it can not support scalar-flat Hermitian metrics. Similarly,
it is proved in [Tel06, Remark 4.3|, all Hopf surfaces have semi-positive anti-
canonical bundle, and so it has no scalar-flat Hermitian metrics. For class VII,
surfaces with by > 0, they are not completely classified, and it is possible that
some of them can support scalar-flat Hermitian metrics (see the discussion in

[Tel06, p. 977-p. 979]). The proof of Theorem 1.9 is completed.

7. Examples

In this section, we exhibit several examples on ruled manifolds with scalar-flat
Hermitian metrics. As a straightforward application of Theorem 1.5, we get the
following result.

Corollary 7.1. Let & — C be a line bundle over a smooth curve of genus g
and X = P(ZL ® O¢). Then X has a scalar-flat Hermitian metric if and only
if g > 2 and |deg(Z)| < 29 — 2.

We can also construct higher dimensional ruled manifolds with scalar-flat met-
rics.

Theorem 7.2. Let C be a smooth curve with genus g > 2 and £ be a line
bundle over C'. Suppose & = 3@(9?3("‘” and X = P(&*) — C is the projective
bundle. If 0 < deg(£) < 222, then both Kx and Ky' are RC-positive.

1
Proof. By using the projection formula, we know
(7.1) Kx = Og(—n) @ 7" (Kc ® det &),

where 7 : X — (' is the projection. Fix an arbitrary smooth Hermitian metric
h? on % and the trivial metric on Oc. Let {z} be the local holomorphic
coordinate on C. The curvature form of (£, h?) is

(7.2) R? = —\/=100logh? = \/—1kdz A dZ.
Similarly, fix a smooth metric h*¢ on K¢, and its curvature form is

(7.3) R¥c¢ = —\/=1901log h'c = \/—1vdz N dzZ.
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Hence, & has the curvature form

(7.4) R =V-lrdzNdZ®e' @e' +) V-1-0-dzNdZ@€ @€

i=2
where e! = ey is the local frame of .Z and for i > 2, ¢/ = e is the local
holomorphic frame on Og with the order in the direct sum & = . & O?("_l).

Therefore, by (4.3), Og(—n) has the curvature form at some point

2
RO = /1 <—n/€@dz A dE) — NUWFS.

|af?

Hence, by formula (7.1), the curvature of Kx is given by

2
REx = /-1 (((/ﬁ—l—’}/) —nm‘aﬂ )dz/\d?) — NWFS.

|af?

Since deg(.#) > 0, we can choose the smooth metric A% such that its curvature
is semi-positive, i.e. kK > 0. Therefore,

(7.5) REX > /=1 ((y — (n — 1)K) dz A dZ) — nwgs.
The condition 0 < deg(¢) < 222 implies deg (K¢ ® £'~") > 0. Therefore,

we can choose the Hermitian metric h%¢ on K¢ such that h¢ @ (%)™ has
positive curvature, i.e.

v—(n—1)k>0.
By (7.5), we know the curvature of Ky is positive along the base direction, i.e.,
Ky is RC-positive. The RC-positivity of K follows from Theorem 2.4. O

Example 7.3. Let n > 2 be an integer. Let C be a smooth curve of degree
d > n+3in P2 Tt is easy to see that deg(Oc(1)) = d and C is a curve of genus
(d—1)(d—-2)

(7.6) g=—=>5—

Let £ =0O¢(l) and & = £ & (92("_1) and X :=P(&*) — C be the projective
bundle. Note that dimc X = n. Then

2g—2 d(d—3) _ d-n
] m— _n_1>d deg(Z) >0
Hence, the pair (X, C,.Z, &) satisfies the conditions in Theorem 7.2. In partic-

ular, both Ky and K' are RC-positive.

The proof of Proposition 1.7. By Theorem 7.2 and Theorem 1.2, X admits a
scalar-flat Hermitian metric. On the other hand, by [ACGT11, Theorem 1], X
has no scalar-flat Kahler metrics since & = £ & Og(n_l) is not polystable. [J
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