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The half-Bogomolny-Prasad-Sommerfield (BPS) Wilson line operators in the irreducible representations
labeled by the Young diagrams for N ¼ 4 UðNÞ super Yang-Mills theory have gravity dual descriptions.
When the numberkof boxes of the diagramgrows ask ∼ N2, thebubblinggeometries emerge.We evaluate the
spectra of quantum fluctuations on the particular bubbling geometry involving the largest degeneracy from the
large N and large k limit of the supersymmetric indices decorated by the Wilson lines. The spectra of
excitations overmultiparticle 1=8- and 1=2-BPS states agreewith the numbers of conjugacy classes of general
linear group over finite fieldswhile degeneracies of single particleBPS states aregiven by thegeneral necklace
polynomial. The bubbling geometry exhibits a new class of asymptotic degeneracy of states.
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I. INTRODUCTION

In the AdS/CFT correspondence [1], the half-Bogomolny-
Prasad- Sommerfield (BPS) Wilson line operators in N ¼ 4
super Yang-Mills (SYM) theory with gauge group UðNÞ are
conjectured to have the dual gravitational description in terms
of type IIB branes and strings in AdS5 × S5. The irreducible
representations (irreps) of UðNÞ in which Wilson line oper-
ators transform are labeled by the Young diagrams. The
Wilson line in the fundamental representation is dual to the
type IIB fundamental string wrapping AdS2 in the global
AdS5 [2,3]. For rank-k symmetric and antisymmetric repre-
sentations, the Wilson lines correspond to an extra D3-brane
wrappingAdS2 × S2 ⊂ AdS5 × S5 with k units of fundamen-
tal string charge [4] and a D5-brane wrapping AdS2 × S4 ⊂
AdS5 × S5 with k units of charge [5] respectively. For more
general representations described by the Young diagram with
k boxes, the gravity dual configurations are realized by
multiple D3- and D5-branes with total k units of charge [6].
In the large representations such that the Young diagrams

have a large number of boxes, one encounters attractive
geometries. When k is large while k=N is fixed, the gravity
dual geometries are microscopically described by probe

branes with fluxes whose backreaction on the supergravity
solutions is neglectable. Beyond that, when k is large while
k=N2 is kept, they lead to new geometries as more general
supergravity solutions, the bubbling geometries. They are
constructed as AdS2 × S2 × S4 fibrations over a two-
dimensional Riemann surface Σ with boundary ∂Σ which
can develop multiple bubbles of cycles carrying fluxes in
such a way that the fiber becomes singular and either S2 or
S4 shrinks at the boundary of the surface. This is the Wilson
line version of the bubbling geometry [7–15] which
generalizes the Lin-Lunin-Maldacena bubbling geometry
[16] for the half-BPS local operators.
The spectrum of the quadratic fluctuations of the funda-

mental string wrapping AdS2 in AdS5 × S5 is obtained using
the Green-Schwarz formalism [17]. Also the spectra of
quantum excitations of the probe brane descriptions, a
D3-brane wrapping AdS2 × S2 and a D5-brane wrapping
AdS2 × S4 are investigated by analyzing the quadratic
fluctuations around the classical solutions of the action
for the probe D-brane with fluxes [18,19]. However, for
the bubbling geometries, the probe brane approximation is
no longer valid due to a fully backreacted supergravity
background and little is known about excitations.
In this paper we present excitations on the bubbling

geometry with the largest degeneracy by analyzing the
Schur line defect correlators for the dual N ¼ 4 SYM
theory [20–25], which decorate the Schur index [26,27].
Our method is surprisingly powerful to evaluate the gravity
indices and our results reveal remarkable relationship
between the unknown quantum fluctuations of the bubbling
geometry and the combinatorial objects.
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II. GRAVITY DUAL OF THE WILSON LINES

The half-BPS Wilson line in N ¼ 4 SYM theory breaks
the four-dimensional conformal symmetry SUð2; 2Þ down
to SUð1; 1Þ × SUð2Þ and the R-symmetry SOð6Þ down to
SOð5Þ so that it can preserve the one-dimensional super-
conformal symmetry OSpð4�j4Þ. N ¼ 4 UðNÞ SYM
theory is realized as the low-energy effective theory of
N D3-branes in type IIB string theory. The Wilson line in
the fundamental representation is described by a funda-
mental string [2,3]. Unlike a proper open string, it also
obeys Dirichlet boundary condition along the direction
parallel to the D3-banes [28]. The Wilson line in the kth
antisymmetric representation corresponds to a collection of
k fundamental strings which puff up into a single D5-brane
with k units of fundamental string charge [5]. Each string
must terminate on a distinct D3-brane due to the s-rule [29].
This explains why the number k should be at most N. For
the kth symmetric representation, theWilson line is realized

by introducing an extra D3-brane parallel to the stack of
D3-branes with k units of fundamental string charge [4].
More generally, the irrep of UðNÞ is labeled by the Young
diagram for which there are two gravity dual descriptions of
theWilson line in terms of either D3- or D5-branes carrying
fundamental string charges [6]. The D3-brane description is
obtained by associating ith row of the diagram with ki
boxes to ith D3-brane with ki units of charge, whereas the
D5-brane realization is constructed by identifying jth
column of the diagram with kj boxes with jth D5-brane
with kj units of charge.

III. BUBBLING GEOMETRIES

The supergravity solutions which are dual to the half-
BPS Wilson lines appear in the near horizon limit of the
brane construction in type IIB string theory. The ten-
dimensional geometry is

FIG. 1. The bubbles of cycles appearing along the boundary ∂Σ of the Riemann surface Σ due to the alternating boundary conditions
for h1 where N (resp D) stands for the Neumann (resp Dirichlet) boundary condition, at which the S2 (resp S4) shrinks (top). The Maya
diagram consisting of black boxes corresponding to D3-branes and white boxes to D5-branes (middle). The Young diagram associated
to the representation for the dual Wilson line (bottom).
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X ¼ AdS2 × S2 × S4 × Σ; ð1Þ
that is the AdS2 × S2 × S4 fibration over a Riemann surface
Σ with boundary ∂Σ being the real axis. The surface Σ can
be identified with the lower half-plane in one sheet of a
hyperelliptic Riemann surface of genus g as a compacti-
fication of the hyperelliptic curve [10]

s2 ¼ ðu − e1Þ
Yg
i¼1

ðu − e2iÞðu − e2iþ1Þ; ð2Þ

where e2gþ2 ¼ −∞ < e2gþ1 < � � � < e1 are real branch
points and the values þ∞ and −∞ are identified. The
solutions are determined by two real harmonic functions h1
and h2 on Σ. They are nonsingular except for a point u0 >
e1 on ∂Σ corresponding to the asymptotic AdS5 × S5

region. While h2 obeys the Dirichlet boundary condition
at ∂Σ, the boundary conditions of h1 change at the (2gþ 2)
points on ∂Σ corresponding to the branch points. It satisfies
the Dirichlet boundary condition in the slits right side of the
points e2i−1, i ¼ 1;…; g where the S4 shrinks to zero and
the Neumann boundary condition in those left side of them
where the S2 vanishes.
As shown in Fig. 1, on the degeneration locus of the

S4, the geometries develop bubbles of 5-cycles Ci5,
i ¼ 0;…; gþ 1.1 They are formed by the fibration of the
S4 over a segment with one endpoint in the interval
ðe2iþ1; e2iÞ and the other in ðe2i−1; e2i−2Þ. Also 7-cycles
Ci7 arise as the warped product S

2 × Ci5. On the degeneration
locus of the S2, bubbles of 3-cycles Cj3 are built as the
fibration of the S2 over a segment with one endpoint in the
interval ðe2jþ2; e2jþ1Þ and the other in ðe2j; e2j−1Þ as
well as the 7-cycles C̃j7 as the warped product S4 × Cj3 with
j ¼ 1;…; g.
The D5-brane charges, the D3-brane charges and the

fundamental string charges can be computed from the
supergravity solutions for the 3-cycles Cj3, 5-cycles Ci5,
and 7-cycles Ci7, C̃j7 which support the RR 3-form, the
RR 5-form and the NSNS 3-form respectively. It follows
from the explicit computation of the charges in the canonical
gauge that [13]

Ni
F1 ¼ Ni

D3

Xg
j¼i

Nj
D5; for i ¼ 1; � � � ; g

N0
F1 ¼

Xg
i¼1

Ni
D3

Xg
j¼i

Nj
D5; Ngþ1

F1 ¼ 0;

N0
D3 ¼ N; Ngþ1

D3 ¼ N −
Xg
i¼1

Ni
D3; ð3Þ

where Ni
F1, N

i
D3 and Nj

D5 are the number of fundamental
strings for the Ci7, that of D3-branes for the Ci5 and that of
D5-branes for the Cj3. The conditions (3) verify the identi-
fication [11] of the genus g supergravity solutions (1) with
the Young diagrams containing g parts in such a way that the
∂Σ is obtained from the Maya diagram which is one-to-one
correspondence with the Young diagram (see, e.g., [30]).
The corresponding Maya diagram contains Ni

D3 consecutive
black cells as the segments for the ith stack of D3-branes and
Nj

D5 consecutive white cells for the jth stack of D5-branes
except for those far to the left and right. The lengths of the
vertical (resp. horizontal) segments j (resp:−) on the boun-
dary of the Young diagram are given by the numbers of
D3-branes (reps. of D5-branes) on the corresponding slits on
∂Σ (see Fig. 1).

IV. QUANTUM FLUCTUATIONS

Our starting point to obtain the spectra of quantum
fluctuations of the bubbling geometries (1) is the Schur
index [26,27] which is a supersymmetric partition function
on S1 × S3. The index is protected in the infrared and may
depend on two variables q and t which are coupled to the
charges of the superconformal algebra. It can be viewed as
the Taylor series in variable q1=2 and the Laurent poly-
nomial in variable t. In [31], we found the following closed-
form expression:

IUðNÞðt;qÞ ¼−
X

p1<p2<���<pN ∈Z

q−
N2

4 tN
2
YN
i¼1

q
pi
2 t−2pi

1−qpi−N
4 tN

: ð4Þ

According to the AdS/CFT correspondence [1], in the large
N limit the index (4) is shown to be equivalent to the
multiparticle gravity index [32]

IAdS5×S
5ðt;qÞ ¼ lim

N→∞
IUðNÞðt;qÞ

¼
Y∞
n¼1

ð1 − qnÞ
ð1 − q

n
2t2nÞð1 − q

n
2t−2nÞ ; ð5Þ

which encodes the BPS spectrum of the quantum fluctua-
tions produced by a gas of free gravitons and their super-
partners on AdS5 × S5.
In the limit t → 1, one finds the unflavored index whose

coefficients count the number of the 1=8-BPS local
operators in N ¼ 4 SYM UðNÞ theory. Furthermore, the
enhanced 1=2-BPS sector is obtained by taking the limit
q → 0 while keeping q ≔ q

1
2t2 finite, which we call the

half-BPS limit of the index [31]. In the unflavored limit and
the half-BPS limit, the multiparticle gravity index (5)
reduces to

IAdS5×S
5

1
8
BPS

ðqÞ ¼ lim
N→∞
t→1

IUðNÞðt; qÞ ¼
Y∞
n¼1

1þ q
n
2

1 − q
n
2

¼
X
n≥0

p̄ðnÞqn
2;

ð6Þ

1As the values þ∞ and −∞ are identified, we have a pair of
cycles ðCgþ1

5 ; Cgþ1
7 Þ. Also we have an additional pair of cycles

ðC05; C07Þ enclosing the singular point u0. They can be uniformly
described by setting e2gþ3 ¼ −∞, e0 ¼ e−1 ¼ u0, e−2 ¼ ∞. See
Ref. [13] for the convention.
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IAdS5×S
5

1
2
BPS

ðqÞ ¼ lim
N→∞

q≔q
1
2t2finite
q→∞

IUðNÞðt;qÞ ¼
Y∞
n¼1

1

1− qn
¼
X
n≥

pðnÞqn;

ð7Þ

which coincides with the generating function for the
number p̄ðnÞ of overpartitions [33] of n and that for the
number pðnÞ of partition of n respectively.

Provided that N ¼ 4 SYM theory is placed on S1 × S3,
the BPSWilson lines can wrap the S1 and sit at points along
a great circle in the S3 so that the Schur index (4) can be
generalized to correlation functions of the line defects
[20,34]. According to the supersymmetric localization, the
(unnormalized) correlator of the Wilson lines in the
representations Rj, j ¼ 1;…; k can be evaluated from
the elliptic matrix integral [20]

hWR1
� � �WRk

iUðNÞðt; qÞ ¼ ð−1ÞNq−N2

4 tN
2

N!

I YN
i¼1

dσi
2πisσi

θ0ð1; qÞNQi≠jθ
�
σi
σj
; q
�

Q
i;jθ

�
qt−4 σi

σj
; q
� Yk

j¼1

χRj
ðσÞ; ð8Þ

where θðx;qÞ≔P
n∈Zð−1Þnxnþ1

2q
n2þn
2 , θ0ðx; qÞ ¼ ∂xθðx; qÞ

and χRj
is the character of the representation Rj. The

additional degrees of freedom due to the insertion of line
operators can be obtained from the normalized correlator
defined by

hWR1
� � �WRk

iUðNÞðt; qÞ ≔ hWR1
� � �WRk

iUðNÞðt; qÞ
IUðNÞðt;qÞ : ð9Þ

As a pair of the Wilson lines in the irrepR at a north pole
and its conjugate R̄ at a south pole in theS3 can forma straight
line in the flat space upon the conformal map to preserve a
one-dimensional superconformal symmetry [34], we define
the Schur line defect index by their 2-point function

IUðNÞ
R ðt; qÞ ≔ hWRWR̄iUðNÞðt; qÞ: ð10Þ

The direct calculation of the spectra of the excitations
around the gravity dual geometry (1) for the half-BPS
Wilson line in the irrep R is a nontrivial question. Here we
seek the single particle gravity index defined as a generat-
ing function of the BPS spectrum

iXðt; qÞ ≔ TrHð−1ÞFq
hþj
2 t2ðq2−q3Þ; ð11Þ

where the trace is taken over the Hilbert spaceH of the BPS
states obeying the condition h ¼ jþ q2 þ q3. The gener-
ators F h, j and qi, i ¼ 1, 2, 3 are the Fermion number
operator, the scaling dimension, the SOð3Þ spin and the
SOð6Þ Cartan generators.
Similarly to (5), the multiparticle gravity index can be

obtained from the Schur line defect index (10) by taking the
large N limit

IXðt; qÞ ¼ lim
N→∞

IUðNÞ
R ðt; qÞ: ð12Þ

Given the multiparticle gravity index, the single particle
gravity index can be obtained by taking the plethystic
logarithm [35]

iXðt; qÞ ¼ PL½IXðt; qÞ� ≔
X
d≥1

μðdÞ
d

log ½IXðtd; qdÞ�; ð13Þ

where μðkÞ is the Möbius function.
To proceed with the calculation, we observe that the

charged Wilson line correlators characterized by the power
sum symmetric functions pnðσÞ play a role of a critical
platform. The large N limit of the 2-point function of the
Wilson line of charge n and that of −n is given by [23]

hWnW−niUð∞Þ ¼ nð1 − qnÞ
ð1 − q

n
2t2nÞð1 − q

n
2t−2nÞ : ð14Þ

For n ¼ 1 the Wilson line transforms in the fundamental
representation. The gravity indices read

Istringðt; qÞ ¼ 1 − q

ð1 − q
1
2t2Þð1 − q

1
2t−2Þ ; ð15Þ

istringðt; qÞ ¼ −qþ q
1
2t2 þ q

1
2t−2: ð16Þ

As argued in [20], the single particle index (16) precisely
matches the spectrum of the quantum fluctuations of the
gravity dual configuration calculated in [17] where the
fundamental string wrapping AdS2 and propagating in
AdS5 × S5. The term −q appears in (16) as the contribution
from one of the 8 massive fermions with ðh; j; q2 − q3Þ ¼
ð3=2; 1=2; 0Þ and the terms q1=2t2, q1=2t−2 in (16) are the
contributions from two of the 5 massless scalars with
ðh; j; q2 − q3Þ ¼ ð1; 0; 1Þ; ð1; 0;−1Þ describing the fluctu-
ations of the fundamental string in the S5.
Our strategy to get more general gravity indices follows

from the prescription in [25]. We first use the Jacobi-Trudi
identity sλðσÞ ¼ detðhλiþj−iðσÞÞ, where hkðσÞ is the com-
plete homogeneous symmetric function and the Newton’s
identity khkðσÞ ¼

P
k
i¼1 hk−iðσÞpiðσÞ to express the Schur

function sλðσÞ, i.e., the character of the irrep labeled by the
Young diagram λ in terms of the power sum symmetric
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functions. Consequently the multiparticle gravity index can
be viewed as the large N correlation function of the charged
Wilson lines. Furthermore, according to the factorization
property [23]

h
Yk
j¼1

ðWnjW−njÞmjiUð∞Þ ¼
Yk
j¼1

mj!ðhWnjW−njiUð∞ÞÞmj;

ð17Þ

it is expressible in terms of the large N charged 2-point
functions (14).
Whenkgrows ask ∼ N, the dual geometries have the probe

brane descriptions in terms of a D3-brane (resp. D5-brane)
with k units of flux wrapping AdS2 × S2 (resp. AdS2 × S4).
The multiparticle gravity indices are obtained by taking the
large N and large k limit while keeping N=k finite

Iprobe D3ðt; qÞ ¼ lim
N→∞
k→∞

IUðNÞ
ðkÞ ðt; qÞ; ð18Þ

Iprobe D5ðt; qÞ ¼ lim
N→∞
k→∞

IUðNÞ
ð1kÞ ðt; qÞ: ð19Þ

One finds [20,23]

Iprobe D3ðt;qÞ ¼ Iprobe D5ðt;qÞ ¼
Y∞
n¼1

1

ð1−q
n
2t2nÞð1−q

n
2t−2nÞ ;

ð20Þ

iprobe D3ðt;qÞ ¼ iprobe D5ðt;qÞ ¼ q
1
2t2

1−q
1
2t2

þ q
1
2t−2

1−q
1
2t−2

: ð21Þ

In fact, the single particle index (21) encodes quantum
fluctuations of the gravity dual configurations obtained from
the action of a curved probe D-brane with flux [18,19]. The
BPS spectrum of excitations of the probe D3-brane with flux
wrapping AdS2 × S2 in AdS5 × S5 is given by an infinite
number of fields as a Kaluza-Klein (KK) tower of scalars
with ðh; j; q2 − q3Þ ¼ ðlþ 1; 0;−l − 1þ 2iÞ describing the
embeddingof theD3-brane in theS5 and that of fermionswith
ðh;j;q2−q3Þ¼ðlþ3=2;1=2;−lþ2iÞ, where l¼0;1;2;…;

i ¼ 0; 1;…; lþ 1þð−1ÞF
2

[19].2 Likewise, theBPS spectrumof
fluctuations of the probe D5-brane with flux wrapping
AdS2 × S4 in AdS5 × S5 contains the same set of KK towers
[18] (see Ref. [20] for the detail).
When k grows as k ∼ N2, the dual geometries are fully

backreacted as bubbling geometries. So far the calculation
of excitations on the bubbling geometries from the gravity

side is out of reach. Nevertheless, we can still address
them from the dual gauge theory side by following the
above method.
The quadratic area growth of boxes of the Young

diagram for the bubbling geometry of genus g can be
realized by the Young diagram with g parts. In particular,
given the total number of the boxes of the diagram, the
largest degeneracy of the BPS states or local operators is
realized by the diagram of the form ððgkÞk, ððg − 1ÞkÞk, � � �,
kk) consisting of gðgþ 1Þ=2 ðkkÞ’s, the Young diagrams of
square shape (see Fig. 2).3 By taking the large k and largeN
limit of the Schur line defect index for it, we get the
following elegant form of the multiparticle gravity index
for the bubbling geometry of genus g

Ibubblingg ðt;qÞ ¼ lim
k→∞

IUð∞Þ
ððgkÞk;ððg−1ÞkÞk;…;kkÞðt;qÞ

¼
Y∞
n¼1

ð1−q
n
2t2nÞð1−q

n
2t−2nÞ

1− ðgþ 1Þðt2nþ t−2nÞqn
2 þð2gþ 1Þqn :

ð22Þ

In the unflavored limit t → 1 and the half-BPS limit, the
expression (22) reduces to

Ibubblingg ðqÞ ¼
Y∞
n¼1

1 − q
n
2

1 − ð2gþ 1Þqn
2

; ð23Þ

Ibubbling
g;1

2
BPS

ðqÞ ¼
Y∞
n¼1

1 − qn

1 − ðgþ 1Þqn : ð24Þ

The function

Y∞
n¼1

1 − qn

1 − rqn
¼

X
n≥0

Cn;rqn ð25Þ

FIG. 2. The Young diagram ððgkÞk, ððg − 1ÞkÞk, � � �, kk). It
consists of gðgþ 1Þ=2 Young diagrams ðkkÞ of square shape.

2We note that the 1=8- and 1=2-BPS indices perfectly agree
with the spectrum in [19] with the SOð3Þ quantum numbers j ¼ 0
for scalars and j ¼ 1=2 for fermions rather than j ¼ l and
j ¼ lþ 1=2.

3There exist more general representations which admit dual
descriptions as smooth bubbling geometries. It would be an
interesting future work to figure out more general spectra.

EXCITATIONS OF BUBBLING GEOMETRIES FOR LINE … PHYS. REV. D 109, 066013 (2024)

066013-5



is the generating function for the numberCn;r of conjugacy classes of a general linear groupGLðn; rÞ over a finite field with
r elements [36,37]. Hence the spectrum of the quantum fluctuations of the bubbling geometry with genus g over the
multiparticle 1=8-BPS (resp. 1=2-BPS) states at level n exactly agrees with Cn;2gþ1 (resp. Cn;gþ1).

4

From (22) we obtain the single particle gravity index for the bubbling geometry of genus g

ibubblingg ðt; qÞ ¼ −
q

1
2t2

1 − q
1
2t2

−
q

1
2t−2

1 − q
1
2t−2

þ
X∞
n¼1

X
m1 ;m2 ;m3≥0ðm1 ;m2 ;m3Þ≠ð0;0;0Þ

ð−1Þm3Nððgþ 1Þm1þm2ð2gþ 1Þm3 ; nÞMðm1; m2; m3Þqð
m1þm2

2
þm3Þnt2ðm1−m2Þn: ð26Þ

Here

Nðm; nÞ ¼ 1

n

X
djn

φðdÞmn
d ð27Þ

is the general necklace polynomial, the number of neckla-
ces of length n consisting of beads with m distinct colors
(see, e.g., [38]) where

P
djn is the sum over divisors d of n

and φðnÞ is the Euler’s totient function. Also

Mðm1;m2;m3Þ ¼
1

m1þm2þm3

×
X

mjgcdðm1;m2;m3Þ
μðmÞ

�m1þm2þm3

m
m1

m ;m2

m ;m3

m

�
ð28Þ

is the number of circular words of length ðm1 þm2 þm3Þ
and minimal period ðm1 þm2 þm3Þ with letter xi appear-
ing mi times [39].
In the unflavored limit t → 1, the gravity index (26)

becomes

ibubblingg ðqÞ ¼
X∞
n¼1

½Nð2gþ 1; nÞ − 1�qn
2: ð29Þ

Similarly, the half-BPS limit of the gravity index (26) reads

ibubbling
g;1

2
BPS

ðqÞ ¼
X∞
n¼1

½Nðgþ 1; nÞ − 1�qn: ð30Þ

The expression (29) (resp. (30)) demonstrates that the
degeneracy of the excitations for the 1=8-BPS (resp.
1=2-BPS) single particle states on the bubbling geometry
of genus g is equal to the number of necklaces of length n
whose beads with (2gþ 1) [resp. (gþ 1)] distinct colors
minus one.
It is worth mentioning that the bubbling geometry

exhibits a new class of asymptotic degeneracy of states.
When the multiparticle gravity indices are expanded as

IXðqÞ ¼
X
n≥0

dXðnÞqn
2; ð31Þ

IX1
2
BPS

ðqÞ ¼
X
n≥0

dX1
2
BPS

ðnÞqn; ð32Þ

the coefficient dXðnÞ (resp. dX1
2
BPS

ðnÞ) is the degeneracy of

the 1=8-BPS (resp. 1=2-BPS) multiparticle states at level n
for the geometry X. As n → ∞, the degeneracies behave as

dstringðnÞ ∼ 2; dstring1
2
BPS

ðnÞ ∼ 1; ð33Þ

dprobe DpðnÞ ∼ 1

4 · 3
3
4n

5
4

exp

�
2π

3
1
2

n
1
2

�
; dprobe Dp

1
2
BPS

ðnÞ ∼ 1

4 · 3
1
2n

exp

�
2
1
2π

3
1
2

n
1
2

�
; ð34Þ

dbubblingg ðnÞ ∼ exp ½logð2gþ 1Þn�; dbubbling
g;1

2
BPS

ðnÞ ∼ exp ½logðgþ 1Þn�; ð35Þ

withp ¼ 3, 5. The asymptotic degeneracies (35) for bubbling
geometries take the form ∼ expðαnÞ where α is some real
constant. Such anenormous leadingbehavior is reached as the
maximal case from the degeneracy for d-dimensional free

scalar field theory [40] in the limit d → ∞ or that for
fluctuations of a p-brane [41–45] in the limit p → ∞. Such
infinite dimensional disasters indicate that the quantum
fluctuations of bubbling geometries need some new class
of description. Also it would be interesting to explore the
different limits which interpolate between the probe brane
limit (34) and the bubbling geometry (35).4This generalizes the result for g ¼ 1 in [25].
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