Resurgence and BPS invariants

Jie Gu
YC-SEU, 23-Nov-2021
University of Geneva
1908.07065: Grassi, Gu, Marino
2007.10190: Garoufalidis, Gu, Marino
2012.00062: Garoufalidis, Gu, Marino
2104.07437: Gu, Marino
2111.04763: Garoufalidis, Gu, Marino, Wheeler

- Models in QM and QFT are typically studied through perturbation series in weak coupling limit

$$
\varphi\left(g_{s}\right)=\sum_{n=0}^{\infty} a_{n} g_{s}^{n}, \quad a_{n} \sim \frac{n!}{A^{n}} .
$$

Non-perturbative solitonic states $\left(\sim \exp \left(-1 / g_{s}\right)\right)$, e.g instantons, monopoles, etc, are more difficult to study.

- Models in QM and QFT are typically studied through perturbation series in weak coupling limit

$$
\varphi\left(g_{s}\right)=\sum_{n=0}^{\infty} a_{n} g_{s}^{n}, \quad a_{n} \sim \frac{n!}{A^{n}} .
$$

Non-perturbative solitonic states $\left(\sim \exp \left(-1 / g_{s}\right)\right)$, e.g instantons, monopoles, etc, are more difficult to study.

- In (extended) supersymmetric theories, (solitonic) BPS states are special.
- They are annihilated by some supercharges.
- They saturate the BPS bound $M=|Z|$.
- In a typical gauge theory with charge lattice $\Gamma \cong \mathbb{Z}^{2 r}$, the central charge is discretely valued $Z_{\gamma}=\gamma \cdot Z$.
- The number of BPS states $\Omega(\gamma)$ is stable with respect to moduli of the theory (up to codim 1 walls of marginal stability).
- There are various ways to compute $\Omega(\gamma)$:
- Quiver mutation [Alim-Cecotti-Cordova-Espahbodi-Rastogi-Vafa],[Del Monte-Longhi]
- Spectral (exponential) network [Gaiotto-Moore-Neitzke]
- Coulomb branch formula [Manschot-Pioline-Sen]
- GW-DT correspondence [Maulik-Nekrasov-Okounkov-Pandharipande],[Bridgeland]
- There are various ways to compute $\Omega(\gamma)$:
- Quiver mutation [Alim-Cecotti-Cordova-Espahbodi-Rastogi-Vafa],[Del Monte-Longhi]
- Spectral (exponential) network [Gaiotto-Moore-Neitzke]
- Coulomb branch formula [Manschot-Pioline-Sen]
- GW-DT correspondence [Maulik-Nekrasov-Okounkov-Pandharipande],[Bridgeland]
- A new approach for $\Omega(\gamma)$: Resurgence analysis of the perturbation series $\varphi\left(g_{s}\right)$ of
- either the supersymmetric theory itself;
- or a dual theory which might not be supersymmetric.

Resurgence theory

How to make sense of an asymptotic series

A typical Gevrey-1 asymptotic series in physics

$$
\varphi(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \quad a_{n} \sim \frac{n!}{A^{n}} .
$$

- How do we "sum" the asymptotic series?
- Is it possible to relate the series to its (path) integral and the series from other saddles?

Borel resummation

$$
\begin{aligned}
& \underbrace{\varphi(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \xrightarrow{\text { Borel transform }} \underset{\sim}{~} \widehat{\varphi}(\zeta)=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} \zeta^{n}}_{\text {Laplace transform }} \\
& s(\varphi)(z)=\int_{0}^{\infty} \mathrm{e}^{-\zeta} \widehat{\varphi}(z \zeta) \mathrm{d} \zeta \\
& \text { Borel resummation }
\end{aligned}
$$

The Borel resummation $s(\varphi)(z)$ reproduces the series $\varphi(z)$ in small z expansion

Borel resummation

If there is no obstruction along $\phi=\arg z$ in the ζ-plane (Borel plane),

$$
s(\varphi)(z)=\int_{0}^{\infty} \mathrm{e}^{-\zeta} \widehat{\varphi}\left(\mathrm{e}^{\mathrm{i} \phi}|z| \zeta\right) \mathrm{d} \zeta,
$$

is a well defined integral.

Lateral Borel resummation

If there is obstruction along $\phi=\arg z$ (Stokes ray), one defines the lateral Borel resummations

$$
s_{ \pm}(\varphi)(z)=\int_{0}^{\mathrm{e}^{\mathrm{i} 0^{ \pm}} \infty} \mathrm{e}^{-\zeta} \widehat{\varphi}(z \zeta) \mathrm{d} \zeta,
$$

and Stokes discontinuity

$$
\operatorname{disc}(\varphi)(z)=s_{+}(\varphi)(z)-s_{-}(\varphi)(z) .
$$

Resurgent functions

Expansion near ζ_{w}

$$
\widehat{\varphi}\left(\zeta_{w}+\xi\right)=-S_{w} \frac{\log (\xi)}{2 \pi} \widehat{\varphi}_{w}(\xi)+\widehat{r}_{w}(\xi)
$$

with regular functions $\widehat{r}_{w}(\xi)$ and

$$
\widehat{\varphi}_{w}(\xi)=\sum_{n \geq 0} a_{n, w} \xi^{n}
$$

Resurgent functions

Expansion near ζ_{w}

$$
\widehat{\varphi}\left(\zeta_{w}+\xi\right)=-\mathrm{S}_{w} \frac{\log (\xi)}{2 \pi} \widehat{\varphi}_{w}(\xi)+\widehat{r}_{w}(\xi)
$$

with regular functions $\widehat{r}_{w}(\xi)$ and

$$
\widehat{\varphi}_{w}(\xi)=\sum_{n \geq 0} a_{n, w} \xi^{n},
$$

which is regarded as Borel transform of a resurgent series

$$
\varphi_{w}(z)=\sum_{n \geq 0} a_{n, w} z^{n}, \quad \widehat{a}_{n, w}=\frac{a_{n, w}}{n!} .
$$

Resurgent functions and Stokes discontinuity

Resurgence at ζ_{w}

$$
\widehat{\varphi}\left(\zeta_{w}+\xi\right)=-\mathrm{S}_{w} \frac{\log (\xi)}{2 \pi \mathrm{i}} \widehat{\varphi}_{w}(\xi)+\widehat{r}_{w}(\xi)
$$

implies Stokes discontinuity

$$
\operatorname{disc}_{\phi} \varphi(z)=\mathrm{S}_{w} \mathrm{e}^{-\zeta_{w} / z} s_{-}\left(\varphi_{w}\right)(z)
$$

with Stokes constant S_{w}.

Resurgent functions and Stokes discontinuity

Resurgence at ζ_{w}

$$
\widehat{\varphi}\left(\zeta_{w}+\xi\right)=-\mathrm{S}_{w} \frac{\log (\xi)}{2 \pi \mathrm{i}} \widehat{\varphi}_{w}(\xi)+\widehat{r}_{w}(\xi)
$$

implies Stokes discontinuity

$$
\operatorname{disc}_{\phi} \varphi(z)=\mathrm{S}_{u} \mathrm{e}^{-\zeta_{w} / z^{\prime}} s_{-}\left(\varphi_{w}\right)(z)
$$

with Stokes constant S_{w}.

$$
\text { new saddle: } A_{w}-A_{0}=\zeta_{w}
$$

Resurgent structure

Starting from one asymptotic series, one finds recursively resurgent asymptotic series, which form a resurgent structure:

$$
\varphi_{0}(z) \rightarrow\left\{\varphi_{w}(z)\right\} \rightarrow\left\{S_{w w^{\prime}}\right\}
$$

Resurgent structure

Starting from one asymptotic series, one finds recursively resurgent asymptotic series, which form a resurgent structure:

$$
\varphi_{0}(z) \rightarrow\left\{\varphi_{w}(z)\right\} \rightarrow\left\{\mathrm{S}_{w w^{\prime}}\right\}
$$

- $\left\{\mathrm{S}_{w w^{\prime}}\right\}$ are new invariants, which are non-perturbative in nature.
- Sometimes $\mathrm{S}_{w w^{\prime}}$ can be interpreted as counting of BPS states.

Stokes automorphism

(Local) Stokes automorphism \mathfrak{S}_{θ} at angle θ acting on trans-series $\Phi_{w}(z)=\mathrm{e}^{-A_{w} / z} \varphi_{w}(z)$

$$
\mathfrak{S}_{\theta} \Phi_{w}=\Phi_{w}+\sum_{\arg \left(A_{w^{\prime}}-A_{w}\right)=\theta} \mathrm{S}_{w w^{\prime}} \Phi_{w^{\prime}} .
$$

Stokes automorphism

(Local) Stokes automorphism \mathfrak{S}_{θ} at angle θ acting on trans-series $\Phi_{w}(z)=\mathrm{e}^{-A_{w} / z} \varphi_{w}(z)$

$$
\mathfrak{S}_{\theta} \Phi_{w}=\Phi_{w}+\sum_{\arg \left(A_{w^{\prime}}-A_{w}\right)=\theta} \mathrm{S}_{w w^{\prime}} \Phi_{w^{\prime}} .
$$

Global Stokes automorphism between two angles

$$
\mathfrak{S}_{\theta_{1}, \theta_{2}}=\prod_{\theta_{1}<\theta<\theta_{2}}^{\overleftarrow{ }} \mathfrak{S}_{\theta}
$$

- Ordered product;
- Unique factorisation.

Comparison with Wall-Crossing formula

Let us recall the Wall-Crossing formula of Kontsevich-Soibelman for BPS invariants.

- Let Γ be lattice of elec./mag. charges with pairing \langle,$\rangle , functions \mathcal{X}_{\gamma}: \mathcal{M} \rightarrow \mathbb{C}^{*}$.

Comparison with Wall-Crossing formula

Let us recall the Wall-Crossing formula of Kontsevich-Soibelman for BPS invariants.

- Let Γ be lattice of elec./mag. charges with pairing \langle,$\rangle , functions \mathcal{X}_{\gamma}: \mathcal{M} \rightarrow \mathbb{C}^{*}$.
- Define symplectomorphism [Kontsevich,Soibelman][Gaiotto,Moore,Neitzke]

$$
\mathfrak{S}(\theta)=\prod_{\gamma_{\mathrm{BPS}} \arg \left(-z_{\left.\gamma_{\mathrm{BPS}}\right)}=\theta\right.} \mathcal{K}_{\gamma_{\mathrm{BPS}}}
$$

where $\mathcal{K}_{\gamma_{\text {BPS }}}$ acts by

$$
\mathcal{K}_{\gamma_{\mathrm{BPS}}}: \mathcal{X}_{\gamma} \rightarrow \mathcal{X}_{\gamma}\left(1-\sigma\left(\gamma_{\mathrm{BPS}}\right) \mathcal{X}_{\gamma_{\mathrm{BPS}}}\right)^{\Omega\left(\gamma_{\mathrm{BPS}}\right)\left\langle\gamma, \gamma_{\mathrm{BPS}}\right\rangle}
$$

Comparison with Wall-Crossing formula

Let us recall the Wall-Crossing formula of Kontsevich-Soibelman for BPS invariants.

- Let Γ be lattice of elec./mag. charges with pairing \langle,$\rangle , functions \mathcal{X}_{\gamma}: \mathcal{M} \rightarrow \mathbb{C}^{*}$.
- Define symplectomorphism [Kontsevich,Soibelman][Gaiotto,Moore,Neitzke]

$$
\mathfrak{S}(\theta)=\prod_{\gamma_{\mathrm{BPS}} \arg \left(-z_{\left.\gamma_{\mathrm{BPS}}\right)}=\theta\right.} \mathcal{K}_{\gamma_{\mathrm{BPS}}}
$$

where $\mathcal{K}_{\gamma_{\text {BPS }}}$ acts by

$$
\mathcal{K}_{\gamma_{\mathrm{BPS}}}: \mathcal{X}_{\gamma} \rightarrow \mathcal{X}_{\gamma}\left(1-\sigma\left(\gamma_{\mathrm{BPS}}\right) \mathcal{X}_{\gamma_{\mathrm{BPS}}}\right)^{\Omega\left(\gamma_{\mathrm{BPS}}\right)\left\langle\gamma, \gamma_{\mathrm{BPS}}\right\rangle}
$$

- Global symplectomorphism (spectrum generator)

$$
\mathfrak{S}\left(\theta_{1}, \theta_{2}\right)=\prod_{\theta_{1}<\theta<\theta_{2}}^{\leftarrow} \mathfrak{S}(\theta)
$$

- Ordered product;
- Unique factorisation.

Stokes constants vs BPS invariants

$$
\begin{array}{l|r}
\text { Stokes constants (if integers!) } & \text { BPS invariants } \\
\text { Stokes automorphism } & \text { KS symplectomorphism }
\end{array}
$$

Messages

- One could combine saddle action and saddle point expansion into trans-series.
- Saddle point trans-series are related to each other by Stokes automorphisms.
- Stokes automorphisms (constants) may be identified with KS symplectomorphism (BPS invariants).
- To compute Stokes constants, many terms in asymptotic series are required.

Example 1: Seiberg-Witten theory

Seiberg-Witten theory and its BPS spectrum

$4 \mathrm{~d} \mathcal{N}=2$ pure $S U(2)$ theory has moduli space identified with family of spectral curves [Seiberg,Witten]

$$
p^{2}+2 \Lambda^{2} \cosh x=2 u
$$

Seiberg-Witten theory and its BPS spectrum

$4 \mathrm{~d} \mathcal{N}=2$ pure $S U(2)$ theory has moduli space identified with family of spectral curves [Seiberg,Witten]

$$
p^{2}+2 \Lambda^{2} \cosh x=2 u
$$

Seiberg-Witten theory and its BPS spectrum

$4 \mathrm{~d} \mathcal{N}=2$ pure $S U(2)$ theory has moduli space identified with family of spectral curves [Seiberg,Witten]

$$
p^{2}+2 \Lambda^{2} \cosh x=2 u
$$

BPS spectrum

- $|u|<1$: Strong coupling

$$
\pm(0,1), \quad \pm(1,1)
$$

- $|u|>1$: Weak coupling

$$
\pm(1,0), \quad \pm(\ell, 1), \quad \ell \in \mathbb{Z}
$$

Quantum periods

Quantum spectral curve

$$
-\hbar^{2} \psi^{\prime \prime}(x)+2 \Lambda^{2} \cosh (x) \psi(x)=E \psi(x)
$$

has WKB solutions

$$
\psi(x, E)=\exp \left(\frac{\mathrm{i}}{\hbar} \int^{x} p(x, E ; \hbar) \mathrm{d} x\right)
$$

Quantum periods

Classical spectral curve
$H_{1}(\Sigma)$ gives lattice $\Gamma=\mathbb{Z}^{2}$ with pairing \langle,

Quantum spectral curve

$$
-\hbar^{2} \psi^{\prime \prime}(x)+2 \Lambda^{2} \cosh (x) \psi(x)=E \psi(x)
$$

has WKB solutions

$$
\psi(x, E)=\exp \left(\frac{\mathrm{i}}{\hbar} \int^{x} p(x, E ; \hbar) \mathrm{d} x\right)
$$

Quantum periods

Classical spectral curve
$H_{1}(\Sigma)$ gives lattice $\Gamma=\mathbb{Z}^{2}$ with pairing \langle,

Quantum spectral curve

$$
-\hbar^{2} \psi^{\prime \prime}(x)+2 \Lambda^{2} \cosh (x) \psi(x)=E \psi(x)
$$

has WKB solutions

$$
\psi(x, E)=\exp \left(\frac{\mathrm{i}}{\hbar} \int^{x} p(x, E ; \hbar) \mathrm{d} x\right)
$$

Quantum periods: $\Pi_{\gamma}(E ; \hbar)=\oint_{\gamma} p(x, E ; \hbar) \mathrm{d} x=\sum_{n=0} \Pi_{\gamma}^{(n)}(E) \hbar^{2 n}$
Voros symbols: $\Phi_{\gamma}(E ; \hbar)=\mathrm{e}^{\frac{1}{\hbar} \Pi_{\gamma}(E ; \hbar)}=\mathrm{e}^{\frac{1}{\hbar} \Pi_{\gamma}^{(0)}(E)} \exp \sum_{n \geq 1} \Pi_{\gamma}^{(n)}(E) \hbar^{2 n-1}$
As solutions to an ODE, $p(x ; \hbar)$ and thus $\Pi_{\gamma}(E ; \hbar)$ can be computed efficiently to many terms.

Stokes automorphism

Borel singularities of quantum periods

- $u=0$

$\Pi_{A}(\hbar)$

$\Pi_{B}(\hbar)$

Stokes automorphism

Borel singularities of quantum periods

- $u=0$

- $u=E / 2=4$

Identification

A,B cycles
Saddle points
Classical period $\Pi_{\gamma}^{(0)}$

elec., mag. charges
BPS states
Central charge Z_{γ}

Identification

Example 2: Complex
Chern-Simons theory

Chern-Simons
$S L(n, \mathbb{C}) \mathrm{CS}$ on
$M=S^{3} \backslash K$ HOMFLY-PT (Khovanov, knot Floer) homology

Quantum Topology

HOMFLY-PT (Jones, Alexander) polynomial HOMFLY-PT (Khovanov, knot Floer) homology

Quantum Topology

HOMFLY-PT (Jones, Alexander) polynomial HOMFLY-PT (Khovanov, knot Floer) homology

Action and saddle points

- Consider (complex) Chern-Simons theory with gauge algebra \mathfrak{g} on a 3 d manifold M with the action [Witten][Gukov]

$$
S=\frac{t}{8 \pi} \int_{M} \operatorname{Tr}\left(A \wedge \mathrm{~d} A+\frac{2}{3} A \wedge A \wedge A\right)+\frac{\tilde{t}}{8 \pi} \int_{M} \operatorname{Tr}\left(\bar{A} \wedge \mathrm{~d} \bar{A}+\frac{2}{3} \bar{A} \wedge \bar{A} \wedge \bar{A}\right)
$$

Action and saddle points

- Consider (complex) Chern-Simons theory with gauge algebra \mathfrak{g} on a 3 d manifold M with the action [Witten][Gukov]

$$
S=\frac{t}{8 \pi} \int_{M} \operatorname{Tr}\left(A \wedge \mathrm{~d} A+\frac{2}{3} A \wedge A \wedge A\right)+\frac{\tilde{t}}{8 \pi} \int_{M} \operatorname{Tr}\left(\bar{A} \wedge \mathrm{~d} \bar{A}+\frac{2}{3} \bar{A} \wedge \bar{A} \wedge \bar{A}\right)
$$

- Saddle points are \mathfrak{g} flat connections on M

$$
\mathrm{d} A+A \wedge A=0, \quad A \in \mathfrak{g}
$$

classified via holonomies

$$
\sigma: H_{1}(M) \rightarrow \mathbb{C} .
$$

Saddle expansion of Chern-Simons

- Saddle point expansion around the flat connection σ [Dimofte-Gukov-Lenells-Zagier]

$$
Z^{(\sigma)}(M, \hbar) \sim \exp \left(\frac{1}{\hbar} S_{0}^{(\sigma)}-\frac{1}{2} \delta^{(\sigma)} \log \hbar+\sum_{n=0}^{\infty} S_{n+1}^{(\sigma)} \hbar^{n}\right), \quad \hbar=2 \pi / t
$$

Saddle expansion of Chern-Simons

- Saddle point expansion around the flat connection σ [Dimofte-Gukov-Lenells-Zagier]

$$
Z^{(\sigma)}(M, \hbar) \sim \exp \left(\frac{1}{\hbar} S_{0}^{(\sigma)}-\frac{1}{2} \delta^{(\sigma)} \log \hbar+\sum_{n=0}^{\infty} S_{n+1}^{(\sigma)} \hbar^{n}\right), \quad \hbar=2 \pi / t
$$

- Let $\mathfrak{g}=S L(2, \mathbb{C})$ and $M=S^{3} \backslash K$ (\cong solid torus):
- Trivial (Abelian) flat connection $S_{0}^{\left(\sigma_{0}\right)}=0$.
- Geometric flat connection (Volume Conjecture) $S_{0}^{\left(\sigma_{1}\right)}=\operatorname{Vol}(M)+\mathrm{i} \operatorname{CS}(M)$.

Saddle expansion of Chern-Simons

- Saddle point expansion around the flat connection σ [Dimofte-Gukov-Lenells-Zagier]

$$
Z^{(\sigma)}(M, \hbar) \sim \exp \left(\frac{1}{\hbar} S_{0}^{(\sigma)}-\frac{1}{2} \delta^{(\sigma)} \log \hbar+\sum_{n=0}^{\infty} S_{n+1}^{(\sigma)} \hbar^{n}\right), \quad \hbar=2 \pi / t
$$

- Let $\mathfrak{g}=S L(2, \mathbb{C})$ and $M=S^{3} \backslash K$ (\cong solid torus):
- Trivial (Abelian) flat connection $S_{0}^{\left(\sigma_{0}\right)}=0$.
- Geometric flat connection (Volume Conjecture) $S_{0}^{\left(\sigma_{1}\right)}=\operatorname{Vol}(M)+\mathrm{iCS}(M)$.
- To work out the resurgent structure of $Z^{(\sigma)}(M, \hbar)$, we need to compute the trans-series efficiently.

Non-trivial flat connections: state integrals

- Perturbation series at non-Abelian flat connections are encoded in the state integral [Dimofte-Gukov-Lenells-Zagier]. For figure eight knot $\left(4_{1}\right)$ [Hikami][Andersen,Kashaev]

$$
Z_{4_{1}}(\mathrm{~b})=\int_{\mathbb{R}+\mathrm{i} 0} \Phi_{\mathrm{b}}(v)^{2} \mathrm{e}^{-\pi i v^{2}} \mathrm{~d} v, \quad \hbar=2 \pi \mathrm{~b}^{2}
$$

whose main ingredient is Faddeev's quantum dilogarithm $\Phi_{\mathrm{b}}(v)$.

Non-trivial flat connections: state integrals

- Perturbation series at non-Abelian flat connections are encoded in the state integral [Dimofte-Gukov-Lenells-Zagier]. For figure eight knot $\left(\mathbf{4}_{1}\right)$ [Hikami] [Andersen,Kashaev]

$$
Z_{\mathbf{4}_{1}}(\mathrm{~b})=\int_{\mathbb{R}+\mathrm{i} 0} \Phi_{\mathrm{b}}(v)^{2} \mathrm{e}^{-\pi \mathrm{i} v^{2}} \mathrm{~d} v, \quad \hbar=2 \pi \mathrm{~b}^{2}
$$

whose main ingredient is Faddeev's quantum dilogarithm $\Phi_{\mathrm{b}}(v)$.

- It has two saddle points for geom. and conj. flat connections

$$
\begin{aligned}
& Z^{\left(\sigma_{1}\right)}(\hbar)=\mathrm{e}^{\mathcal{V} / \hbar}\left(1+\frac{11 \hbar}{72 \sqrt{3}}+\frac{697 \hbar^{2}}{2(72 \sqrt{3})^{2}}+\ldots\right), \\
& Z^{\left(\sigma_{2}\right)}(\hbar)=\mathrm{i} Z^{\left(\sigma_{1}\right)}(-\hbar)
\end{aligned}
$$

$$
\text { with } \mathcal{V}=\operatorname{Vol}\left(S^{3} \backslash \mathbf{4}_{1}\right)
$$

- Can be computed efficiently with Gaussian expansion up to ~ 300 terms.

Jones polynomial

- Using skein relation:

L_{+}

L_{-}

L_{0}
with

$$
q^{-1} J_{L_{+}}(q)-q J_{L_{-}}(q)=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) J_{L_{0}}(q)
$$

to compute

Unknot: $J^{\text {unknot }}(q)=1 \quad$ Figure eight: $J^{4_{1}}(q)=q^{2}-q+1-q^{-1}+q^{-2}$

Jones polynomial

- Using skein relation:

L_{+}

L_{-}

L_{0}
with

$$
q^{-1} J_{L_{+}}(q)-q J_{L_{-}}(q)=\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right) J_{L_{0}}(q)
$$

to compute

Unknot: $J^{\text {unknot }}(q)=1 \quad$ Figure eight: $J^{4_{1}}(q)=q^{2}-q+1-q^{-1}+q^{-2}$

- Promotion to Khovanov homology:

$$
J^{K}(q)=\sum_{i, j}(-1)^{i} q^{j} \operatorname{dim} K h_{i, j}(K)
$$

Trivial flat connection: Jones polynomial

- Colored Jones polynomial

$$
J_{n}^{4_{1}}(q)=\sum_{k=0}^{n-1}(-1)^{k} q^{-k(k+1) / 2} \prod_{j=1}^{k}\left(1-q^{j+n}\right)\left(1-q^{j-n}\right) .
$$

is the vev of Wilson loop $\left\langle\mathbf{4}_{1}\right\rangle_{n}$ along $\mathbf{4}_{1}$ with repr. n of $S L(2, \mathbb{C})$ and $q=\exp \frac{2 \pi \mathrm{i}}{t}$ [Witten].

Trivial flat connection: Jones polynomial

- Colored Jones polynomial

$$
J_{n}^{4_{1}}(q)=\sum_{k=0}^{n-1}(-1)^{k} q^{-k(k+1) / 2} \prod_{j=1}^{k}\left(1-q^{j+n}\right)\left(1-q^{j-n}\right) .
$$

is the vev of Wilson loop $\left\langle\mathbf{4}_{1}\right\rangle_{n}$ along $\mathbf{4}_{1}$ with repr. n of $S L(2, \mathbb{C})$ and $q=\exp \frac{2 \pi \mathrm{i}}{t}$ [Witten].

- $J_{n}^{4_{1}}(q)$ allows loop expansion

$$
J_{n}^{4_{1}}\left(e^{h}\right)=\sum_{i=0}^{\infty} \sum_{j=0}^{i} a_{i, j} n^{j} h^{i} \in \mathbb{Q}[[n, h]]
$$

and the perturbative series $Z^{\left(\sigma_{0}\right)}(\hbar)$ for trivial flat connections is

$$
Z^{\left(\sigma_{0}\right)}(\hbar)=\sum_{i=0}^{\infty} a_{i, 0} \hbar^{i} .
$$

Trivial flat connection: Jones polynomial

- Colored Jones polynomial

$$
J_{n}^{4_{1}}(q)=\sum_{k=0}^{n-1}(-1)^{k} q^{-k(k+1) / 2} \prod_{j=1}^{k}\left(1-q^{j+n}\right)\left(1-q^{j-n}\right)
$$

is the vev of Wilson loop $\left\langle\mathbf{4}_{1}\right\rangle_{n}$ along $\mathbf{4}_{1}$ with repr. n of $S L(2, \mathbb{C})$ and $q=\exp \frac{2 \pi \mathrm{i}}{t}$ [Witten].

- $J_{n}^{4_{1}}(q)$ allows loop expansion

$$
J_{n}^{4_{1}}\left(e^{h}\right)=\sum_{i=0}^{\infty} \sum_{j=0}^{i} a_{i, j} n^{j} h^{i} \in \mathbb{Q}[[n, h]]
$$

and the perturbative series $Z^{\left(\sigma_{0}\right)}(\hbar)$ for trivial flat connections is

$$
Z^{\left(\sigma_{0}\right)}(\hbar)=\sum_{i=0}^{\infty} a_{i, 0} \hbar^{i} .
$$

- $J_{n}^{4_{1}}(q)$ (and thus $Z^{\left(\sigma_{0}\right)}(\hbar)$) can be computed efficiently by recursion relations in n.

Another way of computation: Quantum A-polynomial

- Turn on holonomy on the boundary $T^{2}: Z^{(\sigma)}(\hbar) \rightarrow Z^{(\sigma)}(x, \hbar)$.
- $Z^{(\sigma)}(x, \hbar)$ satisfy the difference equation (quantum A-polynomial)

$$
\widehat{A}(\hat{x}, \hat{y}) Z(x, \hbar)=0,
$$

with

$$
\hat{x} Z(x, \hbar)=x Z(x, \hbar), \quad \hat{y} Z(x, \hbar)=Z(q x, \hbar) .
$$

\widehat{A} is the Schrödinger equation on M. [Gukov]

Borel singularities

"Classical" Borel singularities [Gukov-Marino-Putrov][Gang-Hatsuda][Garoufalidis-Zagier]

Borel singularities

More singularities due to multivaluedness of CS action and the state integral potential [Garoufalidis][Witten][Gukov-Marino-Putrov]

A family of trans-series but with the same power series

$$
Z_{n}^{\left(\sigma_{j}\right)}(\hbar)=Z^{\left(\sigma_{j}\right)}(\hbar) \mathrm{e}^{-n \frac{4 \pi^{2}}{\hbar}}, \quad n \in \mathbb{Z} .
$$

Peacock pattern of Stokes rays

- Stokes rays in the Borel plane for the vector $\left(Z^{\left(\sigma_{0}\right)}(\hbar), Z^{\left(\sigma_{1}\right)}(\hbar), Z^{\left(\sigma_{2}\right)}(\hbar)\right)^{T}$.

Stokes constants are non-trivial integers

The Stokes constants are non-trivial integers!

- Complete set of Stokes constants can be solved!
- The Stokes q-series

$$
\mathrm{S}_{\sigma \sigma^{\prime}}^{ \pm}(q)=1+\sum_{n=1}^{\infty} \mathrm{S}_{\sigma \sigma^{\prime} ; \pm n} q^{ \pm n}, \quad \mathrm{~S}_{\sigma \sigma^{\prime} ; \pm n} \in \mathbb{Z}
$$

are given by bilinear expressions in fundamental solutions of the equation

$$
y_{m+1}(q)+y_{m-1}(q)-\left(2-q^{m}\right) y_{m}(q)=0
$$

$3 \mathrm{~d}-3 \mathrm{~d}$ correspondence

Wrap n M5 branes on $M \times \Lambda$, with topological twist on M

- M is a 3 d manifold that allows hyperbolic metric: tetrahedron, $S^{3} \backslash K$.

- Λ is a 3d Seifert manifold that has S^{1} fibration: $\mathbb{R}^{2} \times_{q} S^{1}, S^{2} \times_{q} S^{1}, S_{b}^{3} / \mathbb{Z}_{k}$.

$3 \mathrm{~d}-3 \mathrm{~d}$ correspondence

There are two possibities

\times

- Shrinking M leads to $3 \mathrm{~d} N=2$ Chern-Simons-matter theory that flows to SCFT $T_{n}[M]$ on Λ in IR.
- Shrinking Λ leads to $3 \mathrm{~d} S L(n, \mathbb{C})$ Chern-Simons theory on M (supersymmetry is broken).

SUSY ground states of $T_{n}[M]=S L(n, \mathbb{C})$ flat connections on M

$3 \mathrm{~d}-3 \mathrm{~d}$ correspondence

- BPS states in $T_{n}[M]$ arise from M2 branes ending on M5 branes.

- If $M=S^{3} \backslash K, T_{n}[M]$ has a $U(1)$ flavor symmetry. Define supersymmetric index [Dimofte,Gaiotto, Gukov]

$$
\operatorname{Ind}(m, \zeta ; q)=\operatorname{Tr}_{\mathcal{H}_{m}}(-1)^{F} q^{\frac{R}{2}+j_{3}} \zeta^{e}
$$

- $\operatorname{Ind}(m, \zeta ; q)$ is SUSY partition function of $T_{n}[M]$ on $S^{2} \times_{q} S^{1}$.

Integer Stokes constants as BPS counting

The Stokes constants are non-trivial integers!

- Generating series of Stokes constants in positive imaginary axis

$$
\mathrm{S}_{\sigma_{1} \sigma_{1}}^{+}(q)=1-8 q-9 q^{2}+18 q^{3}+46 q^{4}+90 q^{5}+\ldots, \quad q=\mathrm{e}^{4 \pi^{2} \mathrm{i} / \hbar} .
$$

(Conjecture) It coincides with index $\operatorname{Ind}(0,1 ; q)$ of dual 3 d superconformal field theory!

$$
\operatorname{Ind}(m, \zeta ; q)=\operatorname{Tr}_{\mathcal{H}_{m}}(-1)^{F} q^{\frac{R}{2}+j_{3}} \zeta^{e} .
$$

Integer Stokes constants as BPS counting

The Stokes constants are non-trivial integers!

- Generating series of Stokes constants in positive imaginary axis

$$
\mathrm{S}_{\sigma_{1} \sigma_{1}}^{+}(q)=1-8 q-9 q^{2}+18 q^{3}+46 q^{4}+90 q^{5}+\ldots, \quad q=\mathrm{e}^{4 \pi^{2} \mathrm{i} / \hbar} .
$$

(Conjecture) It coincides with index $\operatorname{Ind}(0,1 ; q)$ of dual 3 d superconformal field theory!

$$
\operatorname{Ind}(m, \zeta ; q)=\operatorname{Tr}_{\mathcal{H}_{m}}(-1)^{F} q^{\frac{R}{2}+j_{3}} \zeta^{e} .
$$

- The generating series for other Stokes constants $\mathrm{S}_{\sigma_{1} \sigma_{2}}^{+}(q), \mathrm{S}_{\sigma_{2} \sigma_{2}}^{+}(q)$ are also identified with the index with magnetic flux turned on.

Integer Stokes constants as BPS counting

The Stokes constants are non-trivial integers!

- Generating series of Stokes constants in positive imaginary axis

$$
\mathrm{S}_{\sigma_{1} \sigma_{1}}^{+}(q)=1-8 q-9 q^{2}+18 q^{3}+46 q^{4}+90 q^{5}+\ldots, \quad q=\mathrm{e}^{4 \pi^{2} \mathrm{i} / \hbar} .
$$

(Conjecture) It coincides with index $\operatorname{Ind}(0,1 ; q)$ of dual 3d superconformal field theory!

$$
\operatorname{Ind}(m, \zeta ; q)=\operatorname{Tr}_{\mathcal{H}_{m}}(-1)^{F} q^{\frac{R}{2}+j_{3}} \zeta^{e} .
$$

- The generating series for other Stokes constants $\mathrm{S}_{\sigma_{1} \sigma_{2}}^{+}(q), \mathrm{S}_{\sigma_{2} \sigma_{2}}^{+}(q)$ are also identified with the index with magnetic flux turned on.
- Can we turn on flavor fugacity ζ ?

Turning on deformation

- Turning on holonomoy $x=\mathrm{e}^{u}$ on boundary

$$
Z^{\left(\sigma_{1,2}\right)}(\hbar) \rightarrow Z^{\left(\sigma_{1,2}\right)}(x ; \hbar) \sim \int \Phi_{\mathrm{b}}(v) \Phi_{\mathrm{b}}(v+u) \mathrm{e}^{-\pi \mathrm{i}\left(v^{2}+4 u v\right)} \mathrm{d} v
$$

- Generating series of Stokes constants in vertical towers

$$
\begin{aligned}
\mathrm{S}_{\sigma_{1} \sigma_{1}}^{+}(x ; q)= & 1-\left(2 x^{-2}+x^{-1}+2+x+2 x^{2}\right) q \\
& -\left(x^{-2}+2 x^{-1}+3+2 x+x^{2}\right) q^{2}+\mathcal{O}\left(q^{3}\right)
\end{aligned}
$$

Turning on deformation

- Turning on holonomoy $x=\mathrm{e}^{u}$ on boundary

$$
Z^{\left(\sigma_{1,2}\right)}(\hbar) \rightarrow Z^{\left(\sigma_{1,2}\right)}(x ; \hbar) \sim \int \Phi_{\mathrm{b}}(v) \Phi_{\mathrm{b}}(v+u) \mathrm{e}^{-\pi \mathrm{i}\left(v^{2}+4 u v\right)} \mathrm{d} v
$$

- Generating series of Stokes constants in vertical towers

$$
\begin{aligned}
\mathrm{S}_{\sigma_{1} \sigma_{1}}^{+}(x ; q)= & 1-\left(2 x^{-2}+x^{-1}+2+x+2 x^{2}\right) q \\
& -\left(x^{-2}+2 x^{-1}+3+2 x+x^{2}\right) q^{2}+\mathcal{O}\left(q^{3}\right)
\end{aligned}
$$

- They coincide with the index $\operatorname{Ind}(m, x ; q)$ with the flavor fugacity turned on.

Conclusions and open questions

Conclusions

- Stokes constants define new non-perturbative invariants.
- In some models (SW theory, complex Chern-Simons, topological string) they are non-trivial integers and are BPS countings,
- and they can be solved completely.

Conclusions

- Stokes constants define new non-perturbative invariants.
- In some models (SW theory, complex Chern-Simons, topological string) they are non-trivial integers and are BPS countings,
- and they can be solved completely.

Open questions

- Proof of BPS interpretation of Stokes constants in complex Chern-Simons? [Gregory

Moore, "Number Theory, Strings, and Quantum Physics", Jun-2021]

- BPS interpretation of Stokes constants in $\mathrm{S}_{\sigma_{0}, \sigma_{1}}^{+}(q), \mathrm{S}_{\sigma_{0}, \sigma_{2}}^{+}(q)$?
- Resurgence in other theories where perturbative coefficients are efficiently computable (integrable models)?

Thank you for your attention!

