Resurgence and BPS invariants

Jie Gu YC-SEU, 23-Nov-2021

University of Geneva

1908.07065: Grassi, Gu, Marino
2007.10190: Garoufalidis, Gu, Marino
2012.00062: Garoufalidis, Gu, Marino
2104.07437: Gu, Marino
2111.04763: Garoufalidis, Gu, Marino, Wheeler

• Models in QM and QFT are typically studied through perturbation series in weak coupling limit

9

$$\varphi(g_s) = \sum_{n=0}^{\infty} a_n g_s^n, \quad a_n \sim \frac{n!}{A^n}.$$

Non-perturbative solitonic states ($\sim \exp(-1/g_s)$), e.g instantons, monopoles, etc, are more difficult to study.

• Models in QM and QFT are typically studied through perturbation series in weak coupling limit

$$\varphi(g_s) = \sum_{n=0}^{\infty} a_n g_s^n, \quad a_n \sim \frac{n!}{A^n}.$$

Non-perturbative solitonic states ($\sim \exp(-1/g_s)$), e.g instantons, monopoles, etc, are more difficult to study.

- In (extended) supersymmetric theories, (solitonic) BPS states are special.
 - ▶ They are annihilated by some supercharges.
 - They saturate the BPS bound M = |Z|.
 - In a typical gauge theory with charge lattice $\Gamma \cong \mathbb{Z}^{2r}$, the central charge is discretely valued $Z_{\gamma} = \gamma \cdot Z$.
 - The number of BPS states Ω(γ) is stable with respect to moduli of the theory (up to codim 1 walls of marginal stability).

- There are various ways to compute $\Omega(\gamma)$:
 - ▶ Quiver mutation [Alim-Cecotti-Cordova-Espahbodi-Rastogi-Vafa],[Del Monte-Longhi]
 - ► Spectral (exponential) network [Gaiotto-Moore-Neitzke]
 - $\blacktriangleright \ Coulomb \ branch \ formula \ [Manschot-Pioline-Sen]$
 - ► GW-DT correspondence [Maulik-Nekrasov-Okounkov-Pandharipande],[Bridgeland]

- There are various ways to compute $\Omega(\gamma)$:
 - ▶ Quiver mutation [Alim-Cecotti-Cordova-Espahbodi-Rastogi-Vafa],[Del Monte-Longhi]
 - ► Spectral (exponential) network [Gaiotto-Moore-Neitzke]
 - $\blacktriangleright \ Coulomb \ branch \ formula \ [Manschot-Pioline-Sen]$
 - ► GW-DT correspondence [Maulik-Nekrasov-Okounkov-Pandharipande],[Bridgeland]
- A new approach for $\Omega(\gamma)$: Resurgence analysis of the perturbation series $\varphi(g_s)$ of
 - either the supersymmetric theory itself;
 - \blacktriangleright or a dual theory which might not be supersymmetric.

Resurgence theory

A typical Gevrey-1 asymptotic series in physics

$$\varphi(z) = \sum_{n=0}^{\infty} a_n z^n, \qquad a_n \sim \frac{n!}{A^n}.$$

- How do we "sum" the asymptotic series?
- Is it possible to relate the series to its (path) integral and the series from other saddles?

The Borel resummation $s(\varphi)(z)$ reproduces the series $\varphi(z)$ in small z expansion

If there is no obstruction along $\phi = \arg z$ in the ζ -plane (Borel plane),

$$s(\varphi)(z) = \int_0^\infty e^{-\zeta} \widehat{\varphi}(\mathbf{e}^{\mathbf{i}\phi}|z|\zeta) d\zeta,$$

is a well defined integral.

Lateral Borel resummation

If there is obstruction along $\phi = \arg z$ (Stokes ray), one defines the lateral Borel resummations

$$s_{\pm}(\varphi)(z) = \int_{0}^{\mathrm{e}^{\mathrm{i}0^{\pm}\infty}} \mathrm{e}^{-\zeta}\widehat{\varphi}(z\zeta)\mathrm{d}\zeta,$$

and Stokes discontinuity

 $\operatorname{disc}(\varphi)(z) = s_+(\varphi)(z) - s_-(\varphi)(z).$

Expansion near ζ_w

$$\widehat{\varphi}(\zeta_w + \xi) = -\mathsf{S}_w \frac{\log(\xi)}{2\pi} \widehat{\varphi}_w(\xi) + \widehat{r}_w(\xi)$$

with regular functions $\hat{r}_w(\xi)$ and

$$\widehat{\varphi}_w(\xi) = \sum_{n \ge 0} a_{n,w} \xi^n,$$

Expansion near ζ_w

$$\widehat{\varphi}(\zeta_w + \xi) = -\mathsf{S}_w \frac{\log(\xi)}{2\pi} \widehat{\varphi}_w(\xi) + \widehat{r}_w(\xi)$$

with regular functions $\hat{r}_w(\xi)$ and

$$\widehat{\varphi}_w(\xi) = \sum_{n \ge 0} a_{n,w} \xi^n,$$

which is regarded as Borel transform of a resurgent series

$$\varphi_w(z) = \sum_{n \ge 0} a_{n,w} z^n, \quad \widehat{a}_{n,w} = \frac{a_{n,w}}{n!}.$$

Resurgent functions and Stokes discontinuity

Resurgence at ζ_w

$$\widehat{\varphi}(\zeta_w + \xi) = -\mathsf{S}_w \frac{\log(\xi)}{2\pi \mathsf{i}} \widehat{\varphi}_w(\xi) + \widehat{r}_w(\xi)$$

implies Stokes discontinuity

$$\operatorname{disc}_{\phi}\varphi(z) = \mathsf{S}_{w} \operatorname{e}^{-\zeta_{w}/z} s_{-}(\varphi_{w})(z)$$

with Stokes constant S_w .

Resurgent functions and Stokes discontinuity

Resurgence at ζ_w

$$\widehat{\varphi}(\zeta_w + \xi) = -\mathsf{S}_w \frac{\log(\xi)}{2\pi\mathsf{i}} \widehat{\varphi}_w(\xi) + \widehat{r}_w(\xi)$$

implies Stokes discontinuity

disc_{$$\phi$$} $\varphi(z) = \mathsf{S}_{w} e^{-\zeta_{w}/z} s_{-}(\varphi_{w})(z)$
with Stokes constant S_{w} .

Starting from one asymptotic series, one finds recursively resurgent asymptotic series, which form a resurgent structure:

$$\varphi_0(z) \to \{\varphi_w(z)\} \to \{\mathsf{S}_{ww'}\}$$

Starting from one asymptotic series, one finds recursively resurgent asymptotic series, which form a resurgent structure:

$$\varphi_0(z) \to \{\varphi_w(z)\} \to \{\mathsf{S}_{ww'}\}$$

- $\{S_{ww'}\}$ are new invariants, which are *non-perturbative* in nature.
- Sometimes $S_{ww'}$ can be interpreted as counting of BPS states.

Stokes automorphism

(Local) Stokes automorphism \mathfrak{S}_{θ} at angle θ acting on trans-series $\Phi_w(z) = e^{-A_w/z} \varphi_w(z)$

$$\mathfrak{S}_{\theta}\Phi_w = \Phi_w + \sum_{\arg(A_{w'} - A_w) = \theta} \mathsf{S}_{ww'}\Phi_{w'}.$$

(Local) Stokes automorphism \mathfrak{S}_{θ} at angle θ acting on trans-series $\Phi_w(z) = e^{-A_w/z} \varphi_w(z)$

$$\mathfrak{S}_{\theta}\Phi_w = \Phi_w + \sum_{\arg(A_{w'} - A_w) = \theta} \mathsf{S}_{ww'}\Phi_{w'}.$$

Global Stokes automorphism between two angles

$$\mathfrak{S}_{ heta_1, heta_2} = \prod_{ heta_1 < heta < heta_2}^{\leftarrow} \mathfrak{S}_{ heta}.$$

- Ordered product;
- Unique factorisation.

Comparison with Wall-Crossing formula

Let us recall the Wall-Crossing formula of Kontsevich-Soibelman for BPS invariants.

• Let Γ be lattice of elec./mag. charges with pairing \langle, \rangle , functions $\mathcal{X}_{\gamma} : \mathcal{M} \to \mathbb{C}^*$.

Comparison with Wall-Crossing formula

Let us recall the Wall-Crossing formula of Kontsevich-Soibelman for BPS invariants.

- Let Γ be lattice of elec./mag. charges with pairing \langle,\rangle , functions $\mathcal{X}_{\gamma}: \mathcal{M} \to \mathbb{C}^*$.
- Define symplectomorphism [Kontsevich,Soibelman][Gaiotto,Moore,Neitzke]

$$\mathfrak{S}(\theta) = \prod_{\gamma_{\mathrm{BPS}:\mathrm{arg}(-Z_{\gamma_{\mathrm{BPS}}})}=\theta} \mathcal{K}_{\gamma_{\mathrm{BPS}}}$$

where $\mathcal{K}_{\gamma_{\mathrm{BPS}}}$ acts by

$$\mathcal{K}_{\gamma_{\rm BPS}}: \mathcal{X}_{\gamma} \to \mathcal{X}_{\gamma} (1 - \sigma(\gamma_{\rm BPS}) \mathcal{X}_{\gamma_{\rm BPS}})^{\Omega(\gamma_{\rm BPS}) \langle \gamma, \gamma_{\rm BPS} \rangle}$$

Comparison with Wall-Crossing formula

Let us recall the Wall-Crossing formula of Kontsevich-Soibelman for BPS invariants.

- Let Γ be lattice of elec./mag. charges with pairing \langle,\rangle , functions $\mathcal{X}_{\gamma}: \mathcal{M} \to \mathbb{C}^*$.
- Define symplectomorphism [Kontsevich,Soibelman][Gaiotto,Moore,Neitzke]

$$\mathfrak{S}(\theta) = \prod_{\gamma_{\mathrm{BPS}:\mathrm{arg}(-Z_{\gamma_{\mathrm{BPS}}})} = \theta} \mathcal{K}_{\gamma_{\mathrm{BPS}}}$$

where $\mathcal{K}_{\gamma_{\rm BPS}}$ acts by

$$\mathcal{K}_{\gamma_{\rm BPS}}: \mathcal{X}_{\gamma} \to \mathcal{X}_{\gamma} (1 - \sigma(\gamma_{\rm BPS}) \mathcal{X}_{\gamma_{\rm BPS}})^{\Omega(\gamma_{\rm BPS}) \langle \gamma, \gamma_{\rm BPS} \rangle}$$

• Global symplectomorphism (spectrum generator)

$$\mathfrak{S}(\theta_1,\theta_2) = \prod_{\theta_1 < \theta < \theta_2}^{\leftarrow} \mathfrak{S}(\theta).$$

- ► Ordered product;
- ▶ Unique factorisation.

Stokes constants (if integers!)BPS invariantsStokes automorphismKS symplectomorphism

Messages

- One could combine saddle action and saddle point expansion into trans-series.
- Saddle point trans-series are related to each other by Stokes automorphisms.
- Stokes automorphisms (constants) may be identified with KS symplectomorphism (BPS invariants).
- To compute Stokes constants, many terms in asymptotic series are required.

Example 1: Seiberg-Witten theory

4
d $\mathcal{N}=2$ pure SU(2) theory has moduli space identified with family of spectral curves
 <code>[Seiberg,Witten]</code>

$$p^2 + 2\Lambda^2 \cosh x = 2u$$

4d $\mathcal{N} = 2$ pure SU(2) theory has moduli space identified with family of spectral curves [Seiberg,Witten]

$$p^2 + 2\Lambda^2 \cosh x = 2u$$

4
d $\mathcal{N}=2$ pure SU(2) theory has moduli space identified with family of spectral curves [Seiberg,Witten]

$$p^2 + 2\Lambda^2 \cosh x = 2u$$

BPS spectrum

• |u| < 1: Strong coupling

 $\pm(0,1), \quad \pm(1,1)$

• |u| > 1: Weak coupling

 $\pm (1,0), \quad \pm (\ell,1), \quad \ell \in \mathbb{Z}$

Quantum spectral curve

$$-\hbar^2\psi''(x) + 2\Lambda^2\cosh(x)\psi(x) = E\psi(x)$$

has WKB solutions

$$\psi(x, E) = \exp\left(\frac{\mathrm{i}}{\hbar}\int^x p(x, E; \hbar)\mathrm{d}x\right)$$

Quantum periods

Classical spectral curve $H_1(\Sigma)$ gives lattice $\Gamma = \mathbb{Z}^2$ with pairing \langle, \rangle

Quantum spectral curve

$$-\hbar^2\psi''(x) + 2\Lambda^2\cosh(x)\psi(x) = E\psi(x)$$

has WKB solutions

$$\psi(x, E) = \exp\left(\frac{\mathrm{i}}{\hbar} \int^x p(x, E; \hbar) \mathrm{d}x\right)$$

Quantum periods

Classical spectral curve $H_1(\Sigma)$ gives lattice $\Gamma = \mathbb{Z}^2$ with pairing \langle, \rangle

Quantum spectral curve

$$-\hbar^2\psi''(x) + 2\Lambda^2\cosh(x)\psi(x) = E\psi(x)$$

has WKB solutions

Quantum periods:
$$\Pi_{\gamma}(E;\hbar) = \oint_{\gamma} p(x,E;\hbar) dx = \sum_{n=0} \Pi_{\gamma}^{(n)}(E)\hbar^{2n}$$
Voros symbols:
$$\Phi_{\gamma}(E;\hbar) = e^{\frac{1}{\hbar}\Pi_{\gamma}(E;\hbar)} = e^{\frac{1}{\hbar}\Pi_{\gamma}^{(0)}(E)} \exp \sum_{n\geq 1} \Pi_{\gamma}^{(n)}(E)\hbar^{2n-1}$$

As solutions to an ODE, $p(x; \hbar)$ and thus $\Pi_{\gamma}(E; \hbar)$ can be computed efficiently to many terms.

Stokes automorphism

• u = 0

Borel singularities of quantum periods

Stokes automorphism

Borel singularities of quantum periods

• u = 0• (0, -1) (1, 1)(-1, -1)(-1, -1)(1, 1)• (0,1) $\Pi_A(\hbar)$ $\Pi_B(\hbar)$ • u = E/2 = 4(-1, 1)(0, 1) (1, 1) (-1,1) (1, 1) . • • . (-1, 0)(1, 0)٠ (-1, -1) ٠ ٠ • (-1, -1) • (1, -1) (0, -1) (1, -1) ٠ $\Pi_A(\hbar)$ $\Pi_B(\hbar)$

A,B cycles Saddle points Classical period $\Pi_{\gamma}^{(0)}$

elec., mag. charges BPS states Central charge Z_{γ} $\begin{array}{ll} \text{A,B cycles} & \text{elec., mag. charges} \\ \text{Saddle points} & \text{BPS states} \\ \text{Classical period } \Pi_{\gamma}^{(0)} & \text{Central charge } Z_{\gamma} \\ \text{Voros symbol } \Phi_{\gamma} & \text{function } \mathcal{X}_{\gamma} \\ \text{Stokes automorphism} & \text{KS symplectomorphism} \\ \frac{1}{\hbar}\Pi_{\gamma} \rightarrow \frac{1}{\hbar}\Pi_{\gamma} + \mathsf{S}_{\gamma\gamma'} \log(1 - \sigma_{\gamma'} \mathrm{e}^{\frac{1}{\hbar}\Pi_{\gamma}}) \\ \text{Stokes constants } \mathsf{S}_{\gamma\gamma'} & \text{BPS invariants } \Omega_{\gamma_{\mathrm{BPS}}} \langle \gamma, \gamma_{\mathrm{BPS}} \rangle \\ \end{array}$

Example 2: Complex Chern-Simons theory

Action and saddle points

• Consider (complex) Chern-Simons theory with gauge algebra g on a 3d manifold M with the action [Witten][Gukov]

$$S = \frac{t}{8\pi} \int_M \operatorname{Tr}\left(A \wedge \mathrm{d}A + \frac{2}{3}A \wedge A \wedge A\right) + \frac{\tilde{t}}{8\pi} \int_M \operatorname{Tr}\left(\overline{A} \wedge \mathrm{d}\overline{A} + \frac{2}{3}\overline{A} \wedge \overline{A} \wedge \overline{A}\right)$$

Action and saddle points

• Consider (complex) Chern-Simons theory with gauge algebra g on a 3d manifold M with the action [Witten][Gukov]

$$S = \frac{t}{8\pi} \int_M \operatorname{Tr}\left(A \wedge \mathrm{d}A + \frac{2}{3}A \wedge A \wedge A\right) + \frac{\tilde{t}}{8\pi} \int_M \operatorname{Tr}\left(\overline{A} \wedge \mathrm{d}\overline{A} + \frac{2}{3}\overline{A} \wedge \overline{A} \wedge \overline{A}\right)$$

• Saddle points are $\mathfrak g$ flat connections on M

$$dA + A \wedge A = 0, \qquad A \in \mathfrak{g},$$

classified via holonomies

$$\sigma: H_1(M) \to \mathbb{C}.$$

• Saddle point expansion around the flat connection σ [Dimofte-Gukov-Lenells-Zagier]

$$Z^{(\sigma)}(M,\hbar) \sim \exp\left(\frac{1}{\hbar}S_0^{(\sigma)} - \frac{1}{2}\delta^{(\sigma)}\log\hbar + \sum_{n=0}^{\infty}S_{n+1}^{(\sigma)}\hbar^n\right), \quad \hbar = 2\pi/t.$$

• Saddle point expansion around the flat connection σ [Dimofte-Gukov-Lenells-Zagier]

$$Z^{(\sigma)}(M,\hbar) \sim \exp\left(\frac{1}{\hbar}S_0^{(\sigma)} - \frac{1}{2}\delta^{(\sigma)}\log\hbar + \sum_{n=0}^{\infty}S_{n+1}^{(\sigma)}\hbar^n\right), \quad \hbar = 2\pi/t.$$

- Let $\mathfrak{g} = SL(2,\mathbb{C})$ and $M = S^3 \setminus K$ (\cong solid torus):
 - Trivial (Abelian) flat connection $S_0^{(\sigma_0)} = 0$.
 - ► Geometric flat connection (Volume Conjecture) $S_0^{(\sigma_1)} = \operatorname{Vol}(M) + \operatorname{i} \operatorname{CS}(M)$.

• Saddle point expansion around the flat connection σ [Dimofte-Gukov-Lenells-Zagier]

$$Z^{(\sigma)}(M,\hbar) \sim \exp\left(\frac{1}{\hbar}S_0^{(\sigma)} - \frac{1}{2}\delta^{(\sigma)}\log\hbar + \sum_{n=0}^{\infty}S_{n+1}^{(\sigma)}\hbar^n\right), \quad \hbar = 2\pi/t.$$

- Let $\mathfrak{g} = SL(2,\mathbb{C})$ and $M = S^3 \setminus K$ (\cong solid torus):
 - Trivial (Abelian) flat connection $S_0^{(\sigma_0)} = 0$.
 - Geometric flat connection (Volume Conjecture) $S_0^{(\sigma_1)} = \operatorname{Vol}(M) + \operatorname{i} \operatorname{CS}(M)$.
- To work out the resurgent structure of $Z^{(\sigma)}(M,\hbar)$, we need to compute the trans-series efficiently.

Non-trivial flat connections: state integrals

• Perturbation series at non-Abelian flat connections are encoded in the state integral [Dimofte-Gukov-Lenells-Zagier]. For figure eight knot $(\mathbf{4}_1)$ [Hikami][Andersen,Kashaev]

$$Z_{\mathbf{4}_1}(\mathsf{b}) = \int_{\mathbb{R}+\mathsf{i}0} \Phi_{\mathsf{b}}(v)^2 \mathrm{e}^{-\pi \mathrm{i}v^2} \mathrm{d}v, \quad \hbar = 2\pi \mathsf{b}^2$$

whose main ingredient is Faddeev's quantum dilogarithm $\Phi_{\mathsf{b}}(v)$.

Non-trivial flat connections: state integrals

• Perturbation series at non-Abelian flat connections are encoded in the state integral [Dimofte-Gukov-Lenells-Zagier]. For figure eight knot (4_1) [Hikami][Andersen,Kashaev]

$$Z_{\mathbf{4}_1}(\mathsf{b}) = \int_{\mathbb{R}+\mathsf{i}0} \Phi_{\mathsf{b}}(v)^2 \mathrm{e}^{-\pi \mathrm{i}v^2} \mathrm{d}v, \quad \hbar = 2\pi \mathsf{b}^2$$

whose main ingredient is Faddeev's quantum dilogarithm $\Phi_{b}(v)$. • It has two saddle points for geom. and conj. flat connections

$$Z^{(\sigma_1)}(\hbar) = e^{\mathcal{V}/\hbar} (1 + \frac{11\hbar}{72\sqrt{3}} + \frac{697\hbar^2}{2(72\sqrt{3})^2} + \ldots),$$

$$Z^{(\sigma_2)}(\hbar) = i Z^{(\sigma_1)}(-\hbar)$$

with $\mathcal{V} = \operatorname{Vol}(S^3 \setminus \mathbf{4}_1).$

• Can be computed efficiently with Gaussian expansion up to ~ 300 terms.

Jones polynomial

• Using skein relation:

with

$$q^{-1}J_{L_+}(q) - qJ_{L_-}(q) = (q^{\frac{1}{2}} - q^{-\frac{1}{2}})J_{L_0}(q)$$

to compute

Unknot: $J^{\text{unknot}}(q) = 1$ Figure eight: $J^{\mathbf{4}_1}(q) = q^2 - q + 1 - q^{-1} + q^{-2}$

Jones polynomial

• Using skein relation:

with

$$q^{-1}J_{L_+}(q) - qJ_{L_-}(q) = (q^{\frac{1}{2}} - q^{-\frac{1}{2}})J_{L_0}(q)$$

to compute

Unknot: $J^{\text{unknot}}(q) = 1$ Figure eight: $J^{\mathbf{4}_1}(q) = q^2 - q + 1 - q^{-1} + q^{-2}$ • Promotion to Khovanov homology:

$$J^{K}(q) = \sum_{i,j} (-1)^{i} q^{j} \dim Kh_{i,j}(K)$$

21

Trivial flat connection: Jones polynomial

• Colored Jones polynomial

$$J_n^{\mathbf{4}_1}(q) = \sum_{k=0}^{n-1} (-1)^k q^{-k(k+1)/2} \prod_{j=1}^k (1-q^{j+n})(1-q^{j-n}).$$

is the vev of Wilson loop $\langle \mathbf{4}_1 \rangle_n$ along $\mathbf{4}_1$ with repr. n of $SL(2, \mathbb{C})$ and $q = \exp \frac{2\pi i}{t}$ [Witten].

Trivial flat connection: Jones polynomial

• Colored Jones polynomial

$$J_n^{\mathbf{4}_1}(q) = \sum_{k=0}^{n-1} (-1)^k q^{-k(k+1)/2} \prod_{j=1}^k (1-q^{j+n})(1-q^{j-n}).$$

is the vev of Wilson loop $\langle \mathbf{4}_1 \rangle_n$ along $\mathbf{4}_1$ with repr. n of $SL(2, \mathbb{C})$ and $q = \exp \frac{2\pi i}{t}$ [Witten].

• $J_n^{\mathbf{4}_1}(q)$ allows loop expansion

$$J_{n}^{\mathbf{4}_{1}}(e^{h}) = \sum_{i=0}^{\infty} \sum_{j=0}^{i} a_{i,j} n^{j} h^{i} \in \mathbb{Q}[[n,h]]$$

and the perturbative series $Z^{(\sigma_0)}(\hbar)$ for trivial flat connections is

$$Z^{(\sigma_0)}(\hbar) = \sum_{i=0}^{\infty} a_{i,0}\hbar^i.$$

Trivial flat connection: Jones polynomial

• Colored Jones polynomial

$$J_n^{\mathbf{4}_1}(q) = \sum_{k=0}^{n-1} (-1)^k q^{-k(k+1)/2} \prod_{j=1}^k (1-q^{j+n})(1-q^{j-n}).$$

is the vev of Wilson loop $\langle \mathbf{4}_1 \rangle_n$ along $\mathbf{4}_1$ with repr. n of $SL(2, \mathbb{C})$ and $q = \exp \frac{2\pi i}{t}$ [Witten].

• $J_n^{\mathbf{4}_1}(q)$ allows loop expansion

$$J_{n}^{\mathbf{4}_{1}}(e^{h}) = \sum_{i=0}^{\infty} \sum_{j=0}^{i} a_{i,j} n^{j} h^{i} \in \mathbb{Q}[[n,h]]$$

and the perturbative series $Z^{(\sigma_0)}(\hbar)$ for trivial flat connections is

$$Z^{(\sigma_0)}(\hbar) = \sum_{i=0}^{\infty} a_{i,0}\hbar^i.$$

• $J_n^{\mathbf{4}_1}(q)$ (and thus $Z^{(\sigma_0)}(\hbar)$) can be computed efficiently by recursion relations in n.

Another way of computation: Quantum A-polynomial

- Turn on holonomy on the boundary T^2 : $Z^{(\sigma)}(\hbar) \to Z^{(\sigma)}(x,\hbar)$.
- $Z^{(\sigma)}(x,\hbar)$ satisfy the difference equation (quantum A-polynomial)

$$\widehat{A}(\hat{x},\hat{y})Z(x,\hbar) = 0,$$

with

$$\hat{x}Z(x,\hbar) = xZ(x,\hbar), \quad \hat{y}Z(x,\hbar) = Z(qx,\hbar).$$

 \widehat{A} is the Schrödinger equation on \mathcal{M} . [Gukov]

"Classical" Borel singularities [Gukov-Marino-Putrov][Gang-Hatsuda][Garoufalidis-Zagier]

Borel singularities

More singularities due to multivaluedness of CS action and the state integral potential

[Garoufalidis] [Witten] [Gukov-Marino-Putrov]

A family of trans-series but with the same power series

$$Z_n^{(\sigma_j)}(\hbar) = Z^{(\sigma_j)}(\hbar) \mathrm{e}^{-n\frac{4\pi^2 \mathrm{i}}{\hbar}}, \quad n \in \mathbb{Z}.$$

Peacock pattern of Stokes rays

• Stokes rays in the Borel plane for the vector $(Z^{(\sigma_0)}(\hbar), Z^{(\sigma_1)}(\hbar), Z^{(\sigma_2)}(\hbar))^T$.

- Complete set of Stokes constants can be solved!
- The Stokes *q*-series

$$\mathsf{S}_{\sigma\sigma'}^{\pm}(q) = 1 + \sum_{n=1}^{\infty} \mathsf{S}_{\sigma\sigma';\pm n} q^{\pm n}, \quad \mathsf{S}_{\sigma\sigma';\pm n} \in \mathbb{Z}$$

are given by bilinear expressions in fundamental solutions of the equation

$$y_{m+1}(q) + y_{m-1}(q) - (2 - q^m)y_m(q) = 0$$

3d-3d correspondence

Wrap n M5 branes on $M \times \Lambda$, with topological twist on M

• M is a 3d manifold that allows hyperbolic metric: tetrahedron, $S^3 \setminus K$.

• A is a 3d Seifert manifold that has S^1 fibration: $\mathbb{R}^2 \times_q S^1$, $S^2 \times_q S^1$, S^3_b/\mathbb{Z}_k .

There are two possibilies

• Shrinking M leads to 3d N = 2Chern-Simons-matter theory that flows to SCFT $T_n[M]$ on Λ in IR. • Shrinking Λ leads to 3d $SL(n, \mathbb{C})$ Chern-Simons theory on M(supersymmetry is broken).

SUSY ground states of $T_n[M] = SL(n, \mathbb{C})$ flat connections on M

• BPS states in $T_n[M]$ arise from M2 branes ending on M5 branes.

• If $M = S^3 \setminus K$, $T_n[M]$ has a U(1) flavor symmetry. Define supersymmetric index [Dimofte,Gaiotto,Gukov]

$$\operatorname{Ind}(m,\zeta;q) = \operatorname{Tr}_{\mathcal{H}_m}(-1)^F q^{\frac{R}{2}+j_3} \zeta^e.$$

• Ind $(m, \zeta; q)$ is SUSY partition function of $T_n[M]$ on $S^2 \times_q S^1$.

• Generating series of Stokes constants in positive imaginary axis

$$S^+_{\sigma_1\sigma_1}(q) = 1 - 8q - 9q^2 + 18q^3 + 46q^4 + 90q^5 + \dots, \quad q = e^{4\pi^2 i/\hbar}.$$

(Conjecture) It coincides with index $\operatorname{Ind}(0, 1; q)$ of dual 3d superconformal field theory!

$$\operatorname{Ind}(m,\zeta;q) = \operatorname{Tr}_{\mathcal{H}_m}(-1)^F q^{\frac{R}{2}+j_3} \zeta^e.$$

• Generating series of Stokes constants in positive imaginary axis

$$S^+_{\sigma_1\sigma_1}(q) = 1 - 8q - 9q^2 + 18q^3 + 46q^4 + 90q^5 + \dots, \quad q = e^{4\pi^2 i/\hbar}.$$

(Conjecture) It coincides with index Ind(0, 1; q) of dual 3d superconformal field theory!

$$\operatorname{Ind}(m,\zeta;q) = \operatorname{Tr}_{\mathcal{H}_m}(-1)^F q^{\frac{R}{2}+j_3} \zeta^e.$$

• The generating series for other Stokes constants $S^+_{\sigma_1\sigma_2}(q), S^+_{\sigma_2\sigma_2}(q)$ are also identified with the index with magnetic flux turned on.

• Generating series of Stokes constants in positive imaginary axis

$$S^+_{\sigma_1\sigma_1}(q) = 1 - 8q - 9q^2 + 18q^3 + 46q^4 + 90q^5 + \dots, \quad q = e^{4\pi^2 i/\hbar}.$$

(Conjecture) It coincides with index Ind(0, 1; q) of dual 3d superconformal field theory!

$$\operatorname{Ind}(m,\zeta;q) = \operatorname{Tr}_{\mathcal{H}_m}(-1)^F q^{\frac{R}{2}+j_3} \zeta^e.$$

- The generating series for other Stokes constants $S^+_{\sigma_1\sigma_2}(q), S^+_{\sigma_2\sigma_2}(q)$ are also identified with the index with magnetic flux turned on.
- Can we turn on flavor fugacity ζ ?

Turning on deformation

• Turning on holonomoy $x = e^u$ on boundary

$$Z^{(\sigma_{1,2})}(\hbar) \to Z^{(\sigma_{1,2})}(x;\hbar) \sim \int \Phi_{\mathsf{b}}(v) \Phi_{\mathsf{b}}(v+u) \mathrm{e}^{-\pi \mathrm{i}(v^2+4uv)} \mathrm{d}v$$

• Generating series of Stokes constants in vertical towers

$$\begin{aligned} \mathsf{S}^+_{\sigma_1\sigma_1}(x;q) =& 1 - (2x^{-2} + x^{-1} + 2 + x + 2x^2)q \\ & - (x^{-2} + 2x^{-1} + 3 + 2x + x^2)q^2 + \mathcal{O}(q^3) \end{aligned}$$

Turning on deformation

• Turning on holonomoy $x = e^u$ on boundary

$$Z^{(\sigma_{1,2})}(\hbar) \to Z^{(\sigma_{1,2})}(x;\hbar) \sim \int \Phi_{\mathsf{b}}(v) \Phi_{\mathsf{b}}(v+u) \mathrm{e}^{-\pi \mathrm{i}(v^2+4uv)} \mathrm{d}v$$

• Generating series of Stokes constants in vertical towers

$$\begin{aligned} \mathsf{S}^+_{\sigma_1\sigma_1}(x;q) =& 1 - (2x^{-2} + x^{-1} + 2 + x + 2x^2)q \\ & - (x^{-2} + 2x^{-1} + 3 + 2x + x^2)q^2 + \mathcal{O}(q^3) \end{aligned}$$

• They coincide with the index $\operatorname{Ind}(m, x; q)$ with the flavor fugacity turned on.

Conclusions and open questions

Conclusions

- Stokes constants define new *non-perturbative* invariants.
- In some models (SW theory, complex Chern-Simons, topological string) they are non-trivial integers and are BPS countings,
- and they can be solved *completely*.

Conclusions

- Stokes constants define new *non-perturbative* invariants.
- In some models (SW theory, complex Chern-Simons, topological string) they are non-trivial integers and are BPS countings,
- and they can be solved *completely*.

Open questions

- Proof of BPS interpretation of Stokes constants in complex Chern-Simons? [Gregory Moore, "Number Theory, Strings, and Quantum Physics", Jun-2021]
- BPS interpretation of Stokes constants in $S^+_{\sigma_0,\sigma_1}(q), S^+_{\sigma_0,\sigma_2}(q)$?
- Resurgence in other theories where perturbative coefficients are efficiently computable (integrable models)?

Thank you for your attention!