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• Models in QM and QFT are typically studied through perturbation series in weak

coupling limit

ϕ(gs) =

∞∑

n=0

ang
n
s , an ∼

n!

An
.

Non-perturbative solitonic states (∼ exp(−1/gs)), e.g instantons, monopoles, etc, are

more difficult to study.

• In (extended) supersymmetric theories, (solitonic) BPS states are special.

I They are annihilated by some supercharges.
I They saturate the BPS bound M = |Z|.
I In a typical gauge theory with charge lattice Γ ∼= Z2r, the central charge is discretely

valued Zγ = γ · Z.
I The number of BPS states Ω(γ) is stable with respect to moduli of the theory (up to

codim 1 walls of marginal stability).
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• There are various ways to compute Ω(γ):

I Quiver mutation [Alim-Cecotti-Cordova-Espahbodi-Rastogi-Vafa],[Del Monte-Longhi]

I Spectral (exponential) network [Gaiotto-Moore-Neitzke]

I Coulomb branch formula [Manschot-Pioline-Sen]

I GW-DT correspondence [Maulik-Nekrasov-Okounkov-Pandharipande],[Bridgeland]

• A new approach for Ω(γ): Resurgence analysis of the perturbation series ϕ(gs) of

I either the supersymmetric theory itself;
I or a dual theory which might not be supersymmetric.
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Resurgence theory



How to make sense of an asymptotic series

A typical Gevrey-1 asymptotic series in physics

ϕ(z) =

∞∑

n=0

anz
n, an ∼

n!

An
.

• How do we “sum” the asymptotic series?

• Is it possible to relate the series to its (path) integral and the series from other

saddles?
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Borel resummation

s(ϕ)(z) =

∫ ∞

0

e−ζϕ̂(zζ)dζ

ϕ(z) =

∞∑

n=0

anz
n ϕ̂(ζ) =

∞∑

n=0

an
n!
ζn

Borel transform

Laplace transform

Borel resummation

The Borel resummation s(ϕ)(z) reproduces the series ϕ(z) in small z expansion
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Borel resummation

φ

ϕ̂(ζ)

If there is no obstruction along φ = arg z in the

ζ-plane (Borel plane),

s(ϕ)(z) =

∫ ∞

0

e−ζϕ̂( eiφ|z| ζ)dζ,

is a well defined integral.
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Lateral Borel resummation

C+

C−

φ

ϕ̂(ζ) If there is obstruction along φ = arg z (Stokes

ray), one defines the lateral Borel resummations

s±(ϕ)(z) =

∫ ei0
±∞

0

e−ζϕ̂(zζ)dζ,

and Stokes discontinuity

disc(ϕ)(z) = s+(ϕ)(z)− s−(ϕ)(z).
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Resurgent functions

ζw

ϕ̂(ζ)

Expansion near ζw

ϕ̂(ζw + ξ) = −Sw
log(ξ)

2π
ϕ̂w(ξ) + r̂w(ξ)

with regular functions r̂w(ξ) and

ϕ̂w(ξ) =
∑

n≥0

an,wξ
n,

which is regarded as Borel transform of a

resurgent series

ϕw(z) =
∑

n≥0

an,wz
n, ân,w =

an,w
n!

.
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n, ân,w =

an,w
n!

.

7



Resurgent functions and Stokes discontinuity

C+

C−

φ

ϕ̂(ζ)

Resurgence at ζw

ϕ̂(ζw + ξ) = −Sw
log(ξ)

2πi
ϕ̂w(ξ) + r̂w(ξ)

implies Stokes discontinuity

discφϕ(z) = Sw e−ζw/zs−(ϕw)(z)

with Stokes constant Sw.

new saddle: Aw −A0 = ζw
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Resurgent structure

Starting from one asymptotic series, one finds recursively resurgent asymptotic series,

which form a resurgent structure:

ϕ0(z)→ {ϕw(z)} → {Sww′}

S01 S12

S21

S23

S32

S31

0

1

2

3

• {Sww′} are new invariants, which are non-perturbative in nature.

• Sometimes Sww′ can be interpreted as counting of BPS states.
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Stokes automorphism

θ1

θ2
Φ̂w(ζ)

(Local) Stokes automorphism Sθ at angle θ

acting on trans-series Φw(z) = e−Aw/zϕw(z)

SθΦw = Φw +
∑

arg(Aw′−Aw)=θ

Sww′Φw′ .

Global Stokes automorphism between two angles

Sθ1,θ2 =

←∏

θ1<θ<θ2

Sθ.

• Ordered product;

• Unique factorisation.
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Comparison with Wall-Crossing formula

Let us recall the Wall-Crossing formula of Kontsevich-Soibelman for BPS invariants.

• Let Γ be lattice of elec./mag. charges with pairing 〈, 〉, functions Xγ :M→ C∗.

• Define symplectomorphism [Kontsevich,Soibelman][Gaiotto,Moore,Neitzke]

S(θ) =
∏

γBPS:arg(−ZγBPS
)=θ

KγBPS

where KγBPS
acts by

KγBPS : Xγ → Xγ(1− σ(γBPS)XγBPS)Ω(γBPS)〈γ,γBPS〉

• Global symplectomorphism (spectrum generator)

S(θ1, θ2) =

←∏

θ1<θ<θ2

S(θ).

I Ordered product;
I Unique factorisation.
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Stokes constants vs BPS invariants

Stokes constants (if integers!) BPS invariants

Stokes automorphism KS symplectomorphism

Messages

• One could combine saddle action and saddle point expansion into trans-series.

• Saddle point trans-series are related to each other by Stokes automorphisms.

• Stokes automorphisms (constants) may be identified with KS symplectomorphism

(BPS invariants).

• To compute Stokes constants, many terms in asymptotic series are required.
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Example 1: Seiberg-Witten

theory



Seiberg-Witten theory and its BPS spectrum

4d N = 2 pure SU(2) theory has moduli space identified with family of spectral curves

[Seiberg,Witten]

p2 + 2Λ2 coshx = 2u

Wall of marginal stability

1−1

u
weak

strong

BPS spectrum

• |u| < 1: Strong coupling

±(0, 1), ±(1, 1)

• |u| > 1: Weak coupling

±(1, 0), ±(`, 1), ` ∈ Z
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Quantum periods

Classical spectral curve

H1(Σ) gives lattice Γ = Z2 with pairing 〈, 〉

γA

γB

Quantum spectral curve

−~2ψ′′(x) + 2Λ2 cosh(x)ψ(x) = Eψ(x)

has WKB solutions

ψ(x,E) = exp

(
i

~

∫ x

p(x,E; ~)dx

)

Quantum periods: Πγ(E; ~) =

∮

γ
p(x,E; ~)dx =

∑

n=0

Π(n)
γ (E)~2n

Voros symbols: Φγ(E; ~) = e
1
~ Πγ(E;~) = e

1
~ Π(0)

γ (E) exp
∑

n≥1

Π(n)
γ (E)~2n−1

As solutions to an ODE, p(x; ~) and thus Πγ(E; ~) can be computed efficiently to many

terms.
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Stokes automorphism

Borel singularities of quantum periods

• u = 0

(1, 1)(−1,−1)

(0,−1)

(0, 1)

(1, 1)(−1,−1)

ΠA(~) ΠB(~)

• u = E/2 = 4
(0, 1) (1, 1)(−1, 1)

(0,−1) (1,−1)(−1,−1)

(1, 0)

(1, 1)(−1, 1)

(−1, 0)

(1,−1)(−1,−1)

ΠA(~) ΠB(~)

15



Stokes automorphism
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Identification

A,B cycles elec., mag. charges

Saddle points BPS states

Classical period Π
(0)
γ Central charge Zγ

Voros symbol Φγ function Xγ
Stokes automorphism KS symplectomorphism
1
~Πγ → 1

~Πγ + Sγγ′ log(1− σγ′e
1
~ Π′γ ) Xγ → Xγ (1− σγBPS

XγBPS
)
ΩγBPS

〈γ,γBPS〉

Stokes constants Sγγ′ BPS invariants ΩγBPS 〈γ, γBPS〉
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Example 2: Complex

Chern-Simons theory



Quantum Topology

Chern-Simons

3d SCFT

String Theory

HOMFLY-PT (Jones, Alexander) polynomial

HOMFLY-PT (Khovanov, knot Floer) homology

SL(n,C) CS on

M = S3\K

Tn[M ] on S1 × R2

Open GW invariants on resolved

conifold O(−1) ⊕ O(−1) → CP1

3d-3d correspondence

phys. real. cat.
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Action and saddle points

• Consider (complex) Chern-Simons theory with gauge algebra g on a 3d manifold M

with the action [Witten][Gukov]

S =
t

8π

∫

M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
+

t̃

8π

∫

M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)

• Saddle points are g flat connections on M

dA+A ∧A = 0, A ∈ g,

classified via holonomies

σ : H1(M)→ C.
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Saddle expansion of Chern-Simons

• Saddle point expansion around the flat connection σ [Dimofte-Gukov-Lenells-Zagier]

Z(σ)(M, ~) ∼ exp

(
1

~
S

(σ)
0 − 1

2
δ(σ) log ~ +

∞∑

n=0

S
(σ)
n+1~

n

)
, ~ = 2π/t.

• Let g = SL(2,C) and M = S3\K (∼= solid torus):

I Trivial (Abelian) flat connection S
(σ0)
0 = 0.

I Geometric flat connection (Volume Conjecture) S
(σ1)
0 = Vol(M) + iCS(M).

• To work out the resurgent structure of Z(σ)(M, ~), we need to compute the

trans-series efficiently.
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Non-trivial flat connections: state integrals

• Perturbation series at non-Abelian flat connections are encoded

in the state integral [Dimofte-Gukov-Lenells-Zagier]. For figure eight

knot (41) [Hikami][Andersen,Kashaev]

Z41
(b) =

∫

R+i0

Φb(v)2e−πiv
2

dv, ~ = 2πb2

whose main ingredient is Faddeev’s quantum dilogarithm Φb(v).

• It has two saddle points for geom. and conj. flat connections

Z(σ1)(~) =eV/~(1 + 11~
72
√

3
+ 697~2

2(72
√

3)2
+ . . .),

Z(σ2)(~) =iZ(σ1)(−~)

with V = Vol(S3\41).

• Can be computed efficiently with Gaussian expansion up to

∼ 300 terms.
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Jones polynomial

• Using skein relation:

with

q−1JL+
(q)− qJL−(q) = (q

1
2 − q− 1

2 )JL0
(q)

to compute

Unknot: Junknot(q) = 1 Figure eight: J41(q) = q2 − q + 1− q−1 + q−2

• Promotion to Khovanov homology:

JK(q) =
∑

i,j

(−1)iqj dimKhi,j(K)
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Trivial flat connection: Jones polynomial

• Colored Jones polynomial

J41
n (q) =

n−1∑

k=0

(−1)kq−k(k+1)/2
k∏

j=1

(1− qj+n)(1− qj−n).

is the vev of Wilson loop 〈41〉n along 41 with repr. n of SL(2,C) and q = exp 2πi
t

[Witten].

• J41
n (q) allows loop expansion

J41
n (eh) =

∞∑

i=0

i∑

j=0

ai,jn
jhi ∈ Q[[n, h]]

and the perturbative series Z(σ0)(~) for trivial flat connections is

Z(σ0)(~) =

∞∑

i=0

ai,0~i.

• J41
n (q) (and thus Z(σ0)(~)) can be computed efficiently by recursion relations in n.
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t

[Witten].

• J41
n (q) allows loop expansion

J41
n (eh) =

∞∑

i=0

i∑

j=0

ai,jn
jhi ∈ Q[[n, h]]

and the perturbative series Z(σ0)(~) for trivial flat connections is

Z(σ0)(~) =

∞∑

i=0

ai,0~i.

• J41
n (q) (and thus Z(σ0)(~)) can be computed efficiently by recursion relations in n.
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Another way of computation: Quantum A-polynomial

• Turn on holonomy on the boundary T 2: Z(σ)(~)→ Z(σ)(x, ~).

• Z(σ)(x, ~) satisfy the difference equation (quantum A-polynomial)

Â(x̂, ŷ)Z(x, ~) = 0,

with

x̂Z(x, ~) = xZ(x, ~), ŷZ(x, ~) = Z(qx, ~).

∂(S3\K) = T 2

S3\K

Z(x; τ)

partition function

wave-funtion on moduli space
M of SL(2,C) flat connections

Â is the Schrödinger equation on

M. [Gukov]
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Borel singularities

“Classical” Borel singularities [Gukov-Marino-Putrov][Gang-Hatsuda][Garoufalidis-Zagier]

σ2

2V

Z(σ1)

σ1

−2V

Z(σ2)

σ2σ1

V−V

Z(σ0)

Sσ0,σ1 Sσ0,σ2

Sσ1,σ2

Sσ2,σ1

Z(σ0)

Z(σ1) Z(σ2)
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Borel singularities

More singularities due to multivaluedness of CS action and the state integral potential

[Garoufalidis][Witten][Gukov-Marino-Putrov]

σ2

Z(σ1)

σ1

Z(σ2)

σ2σ1

Z(σ0)

Sσ0,σ1 Sσ0,σ2

Sσ1,σ2

Sσ2,σ1

Sσ1,σ1 Sσ2,σ2

Z(σ0)

Z(σ1) Z(σ2)

A family of trans-series but with the same power series

Z(σj)
n (~) = Z(σj)(~)e−n

4π2 i
~ , n ∈ Z.
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Peacock pattern of Stokes rays

• Stokes rays in the Borel plane for the vector (Z(σ0)(~), Z(σ1)(~), Z(σ2)(~))T .
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Stokes constants are non-trivial integers

The Stokes constants are non-trivial integers!

Z(σ1)(~)

−8

−9

18

46

90

3

9

75

642

5580

48558

• Complete set of Stokes constants can be solved!

• The Stokes q-series

S±σσ′(q) = 1 +

∞∑

n=1

Sσσ′;±nq
±n, Sσσ′;±n ∈ Z

are given by bilinear expressions in fundamental solutions of

the equation

ym+1(q) + ym−1(q)− (2− qm)ym(q) = 0
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3d-3d correspondence

Wrap n M5 branes on M × Λ, with topological twist on M

• M is a 3d manifold that allows hyperbolic metric: tetrahedron, S3\K.

• Λ is a 3d Seifert manifold that has S1 fibration: R2 ×q S1, S2 ×q S1, S3
b /Zk.

S1

2-manifold
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3d-3d correspondence

There are two possibities

S1

2-manifold

×

• Shrinking M leads to 3d N = 2

Chern-Simons-matter theory that

flows to SCFT Tn[M ] on Λ in IR.

• Shrinking Λ leads to 3d SL(n,C)

Chern-Simons theory on M

(supersymmetry is broken).

SUSY ground states of Tn[M ] = SL(n,C) flat connections on M
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3d-3d correspondence

• BPS states in Tn[M ] arise from M2 branes ending on M5 branes.

• If M = S3\K, Tn[M ] has a U(1) flavor symmetry. Define supersymmetric index

[Dimofte,Gaiotto,Gukov]

Ind(m, ζ; q) = TrHm(−1)F q
R
2 +j3ζe.

• Ind(m, ζ; q) is SUSY partition function of Tn[M ] on S2 ×q S1.
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Integer Stokes constants as BPS counting

The Stokes constants are non-trivial integers!

Z(σ1)(~)

−8

−9

18

46

90

3

9

75

642

5580

48558

• Generating series of Stokes constants in positive imaginary axis

S+
σ1σ1

(q) = 1− 8q− 9q2 + 18q3 + 46q4 + 90q5 + . . . , q = e4π2i/~.

(Conjecture) It coincides with index Ind(0, 1; q) of dual 3d

superconformal field theory!

Ind(m, ζ; q) = TrHm(−1)F q
R
2 +j3ζe.

• The generating series for other Stokes constants

S+
σ1σ2

(q),S+
σ2σ2

(q) are also identified with the index with

magnetic flux turned on.

• Can we turn on flavor fugacity ζ?
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Turning on deformation

Z(σ1)(x; ~)

| log(x)|

• Turning on holonomoy x = eu on boundary

Z(σ1,2)(~)→ Z(σ1,2)(x; ~) ∼
∫

Φb(v)Φb(v+u)e−πi(v
2+4uv)dv

• Generating series of Stokes constants in vertical towers

S+
σ1σ1

(x; q) =1− (2x−2 + x−1 + 2 + x+ 2x2)q

− (x−2 + 2x−1 + 3 + 2x+ x2)q2 +O(q3)

• They coincide with the index Ind(m,x; q) with the flavor

fugacity turned on.
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Conclusions and open

questions



Conclusions

• Stokes constants define new non-perturbative invariants.

• In some models (SW theory, complex Chern-Simons, topological string) they are

non-trivial integers and are BPS countings,

• and they can be solved completely.

Open questions

• Proof of BPS interpretation of Stokes constants in complex Chern-Simons? [Gregory

Moore, “Number Theory, Strings, and Quantum Physics”, Jun-2021]

• BPS interpretation of Stokes constants in S+
σ0,σ1

(q),S+
σ0,σ2

(q)?

• Resurgence in other theories where perturbative coefficients are efficiently computable

(integrable models)?
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Thank you for your attention!
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