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e Models in QM and QFT are typically studied through perturbation series in weak
coupling limit

oo
n!
@(98) = Zang.?a an ~ An”
n=0

Non-perturbative solitonic states (~ exp(—1/gs)), e.g instantons, monopoles, etc, are
more difficult to study.



e Models in QM and QFT are typically studied through perturbation series in weak

coupling limit

oo
n!
P(gs) = E Angys  an An”
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Non-perturbative solitonic states (~ exp(—1/gs)), e.g instantons, monopoles, etc, are

more difficult to study.

e In (extended) supersymmetric theories, (solitonic) BPS states are special.

>

>

>

They are annihilated by some supercharges.

They saturate the BPS bound M = |Z|.

In a typical gauge theory with charge lattice T' = Z*", the central charge is discretely
valued Z, =~ - Z.

The number of BPS states 2(v) is stable with respect to moduli of the theory (up to
codim 1 walls of marginal stability).



e There are various ways to compute (7):
» Quiver mutation [Alim-Cecotti-Cordova-Espahbodi-Rastogi-Vafa],[Del Monte-Longhi]
» Spectral (exponential) network [Gaiotto-Moore-Neitzke]
» Coulomb branch formula [Manschot-Pioline-Sen]
» GW-DT correspondence [Maulik-Nekrasov-Okounkov-Pandharipande],[Bridgeland]



e There are various ways to compute Q(7):
» Quiver mutation [Alim-Cecotti-Cordova-Espahbodi-Rastogi-Vafa],[Del Monte-Longhi]
» Spectral (exponential) network [Gaiotto-Moore-Neitzke]
» Coulomb branch formula [Manschot-Pioline-Sen]
» GW-DT correspondence [Maulik-Nekrasov-Okounkov-Pandharipande],[Bridgeland]
e A new approach for Q(v): Resurgence analysis of the perturbation series (gs) of

> either the supersymmetric theory itself;
» or a dual theory which might not be supersymmetric.



Resurgence theory



How to make sense of an asymptotic series

A typical Gevrey-1 asymptotic series in physics

oo
B " n!
o(z) = Z anz", an ~ —

n=0

e How do we “sum” the asymptotic series?

e Is it possible to relate the series to its (path) integral and the series from other
saddles?



Borel resummation

o0

B = T

n=0

. /aplace transform

s(o)e) = [ a0

Borel resummation

Borel transform

The Borel resummation s(p)(z) reproduces the series ¢(z) in small z expansion



Borel resummation

)
8

If there is no obstruction along ¢ = arg z in the
/ ¢-plane (Borel plane)

) = / " ep(et ] 0)dc,

is a well defined integral.




Lateral Borel resummation

)
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If there is obstruction along ¢ = arg z (Stokes
C+ .
ray), one defines the lateral Borel resummations

ot

¢ s+ = [ T e

0

and Stokes discontinuity

disc(i)(2) = 54 (9)(2) — 5 () (2).




Resurgent functions

Expansion near ¢,

3¢+ = —5, 2285, (6) 1+ 70

c / with regular functions 7,,(§) and

@w(g) = Z an,wgna

n>0
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Resurgent functions

Expansion near ¢,

B(Co+8) = 5025 (0) 170

c / with regular functions 7,,(§) and

@w(g) = Z an,wgna

n>0

)
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which is regarded as Borel transform of a

resurgent series

a
E n ~ n,w
(Pw(z) = Qnw? Anp,w = = .
n>0 ’




Resurgent functions and Stokes discontinuity

Resurgence at (,,

- B log(§) -
@(C) c @(Cw + 5) - 7SU}TM¢1U(£) + Tw (S)
In
Z implies Stokes discontinuity
. discgp(2) = Swe™S/%5_(py)(2)

with Stokes constant S,,.




Resurgent functions and Stokes discontinuity

Resurgence at ¢,
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In
Z implies Stokes discontinuity
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with Stokes constant S,,. \

new saddle: A, — Ay =




Resurgent structure

Starting from one asymptotic series, one finds recursively resurgent asymptotic series,
which form a resurgent structure:

vo(2) = {pw(2)} = {Sww}




Resurgent structure

Starting from one asymptotic series, one finds recursively resurgent asymptotic series,
which form a resurgent structure:

vo(2) = {pw(2)} = {Sww}

e {S,w } are new invariants, which are non-perturbative in nature.

e Sometimes S, can be interpreted as counting of BPS states.



Stokes automorphism

(Local) Stokes automorphism &y at angle 0

acting on trans-series ®,,(z) = e~ 4w/?¢,,(2)
02

) GoPu=Pu+ > SwwPur
arg(A, —Ay)=60

H)
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Stokes automorphism

(Local) Stokes automorphism &y at angle 0

acting on trans-series ®,,(z) = e~ 4w/?¢,,(2)
02

) GoPu=Pu+ > SwwPur
arg(A, —Ay)=60

H)

Global Stokes automorphism between two angles

.
Goo. = || S

01<0<02

e Ordered product;

e Unique factorisation.
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Comparison with Wall-Crossing formula

Let us recall the Wall-Crossing formula of Kontsevich-Soibelman for BPS invariants.

e Let I' be lattice of elec./mag. charges with pairing (, ), functions X, : M — C*.
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Comparison with Wall-Crossing formula

Let us recall the Wall-Crossing formula of Kontsevich-Soibelman for BPS invariants.

e Let I' be lattice of elec./mag. charges with pairing (, ), functions X, : M — C*.

e Define symplectomorphism [Kontsevich,Soibelman][Gaiotto,Moore,Neitzke]
G(0) = H Kreps
VBPS:arg(— Zyppg) =0

where /C acts by

K

YBPS
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)Q(WBPS)C%WBPS>
YBPS
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Comparison with Wall-Crossing formula

Let us recall the Wall-Crossing formula of Kontsevich-Soibelman for BPS invariants.

e Let I' be lattice of elec./mag. charges with pairing (, ), functions X, : M — C*.

e Define symplectomorphism [Kontsevich,Soibelman][Gaiotto,Moore,Neitzke]
G(0) = H Kreps
VBPS:arg(— Zyppg) =0

where /C acts by

K

YBPS

5 X,y — Xw(l e O’(’prs)X

)Q('YBPS)<’Y;’YBPS>
YBPS

YBPS
e Global symplectomorphism (spectrum generator)

&(01,0,) = H &(0

01 <6<02

> Ordered product;
» Unique factorisation.
11



Stokes constants vs BPS invariants

Stokes constants BPS invariants

Stokes automorphism KS symplectomorphism

Messages
e One could combine saddle action and saddle point expansion into trans-series.

e Saddle point trans-series are related to each other by Stokes automorphisms.

e Stokes automorphisms (constants) may be identified with KS symplectomorphism
(BPS invariants).

e To compute Stokes constants, many terms in asymptotic series are required.
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Example 1: Seiberg-Witten
theory




Seiberg-Witten theory and its BPS spectrum

4d N = 2 pure SU(2) theory has moduli space identified with family of spectral curves
[Seiberg,Witten)]
p? + 2A% coshz = 2u
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Seiberg-Witten theory and its BPS spectrum

4d N = 2 pure SU(2) theory has moduli space identified with family of spectral curves
[Seiberg,Witten)]
p? + 2A% coshz = 2u

Wall of marginal stability
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Seiberg-Witten theory and its BPS spectrum

4d N = 2 pure SU(2) theory has moduli space identified with family of spectral curves
[Seiberg,Witten)]
p? + 2A% coshz = 2u

Wall of marginal stability BPS spectrum
s [w e |u| < 1: Strong coupling
:l:((]? 1)7 i(17 1)

e |u| > 1: Weak coupling

+(1,0), *(4,1), L€Z
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Quantum periods

Quantum spectral curve
—h2" (x) 4+ 2A? cosh(z))(x) = Erp(x)

has WKB solutions

(z, E) = exp (7'1 / p(z, E; h)dx)
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Quantum periods

Classical spectral curve Quantum spectral curve
H1(X) gives lattice I' = Z? with pairing (,)
—h2" (x) 4+ 2A? cosh(z))(x) = Erp(x)

has WKB solutions

(z, E) = exp (7'1 / p(z, E; h)dx)
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Quantum periods

Classical spectral curve Quantum spectral curve
H1(X) gives lattice I' = Z? with pairing (,)
—h2" (x) 4+ 2A? cosh(z))(x) = Erp(x)

has WKB solutions

(z, E) = exp (7'1 / p(z, B; h)dx)

Quantum periods: IL,(E;h) = f p(x, E;h)de = Z H,(Y") (B)R*™
Y n=0
Voros symbols: ®.(E;h) = en Il (Bih) — o7 LY (B) o, Z 1'[(7”)(E)712”_1
n>1
As solutions to an ODE, p(x;h) and thus IL,(E; h) can be computed efficiently to many
terms. 14



Stokes automorphism

Borel singularities of quantum periods

e u=20

(0,-1)

(=1,=1) (1,1) (G (1,1)

(0,1)

4 (h) p(h)
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Stokes automorphism

Borel singularities of quantum periods

e u=20

(0,-1)

(=1,=1) (1,1) (G (1,1)

e u=FE/2=4

.
(-1.-1) ©-1 @,-1 (-1,-1 -1

ITa(R) Iz (h) 15



Identification

A B cycles elec., mag. charges
Saddle points BPS states
Classical period H(WO) Central charge Z,
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Identification

A B cycles elec., mag. charges
Saddle points BPS states
Classical period H(WO) Central charge Z,
Voros symbol @, function &,
Stokes automorphism KS symplectomorphism
%HW - %H’Y + S’W' IOg(l - O”Y'e%r{;) X’Y - X”Y (1 - O-'YBPSX'YBPS)Q’YBPS <’Y7’YBPS>
Stokes constants S, BPS invariants Qy,.¢ (v, 78PS)
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Example 2: Complex

Chern-Simons theory




(Chern-Simons |
SL(n,C) CS on
M = S3\K
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(()2 ) [Quantum Topology]
HOMFLY-PT (Jones, Alexander) polynomial

HOMFLY-PT (Khovanov, knot Floer) homology

phys. real.

[Chern—Simons]
SL(n,C) CS on
M = S3\K
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() ) Quantum Topology]
HOMFLY-PT (Jones, Alexander) polynomial

HOMFLY-PT (Khovanov, knot Floer) homology

phys. real. cat.

- 3d-3d correspondence
(Chern-Simons | - ~(3d SCFT)
SL(n,C) CS on T, [M] on S x R2

M = S3\K
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(()2 ) Quantum Topology]
HOMFLY-PT (Jones, Alexander) polynomial

HOMFLY-PT (Khovanov, knot Floer) homology

phys. real. cat.

- 3d-3d correspondence
(Chern-Simons | - ~(3d SCFT)
SL(n,C) CS on T, [M] on S x R2

M = S3\K

[String Theory}
Open GW invariants on resolved

conifold O(—1) ® O(—1) — CP!
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Action and saddle points

e Consider (complex) Chern-Simons theory with gauge algebra g on a 3d manifold M
with the action [Witten][Gukov]

s:i/ Tr (ANdA+2ANANA i/ Tr (AndA+ 2ANANE
8T M 3 8 M 3

™
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Action and saddle points

e Consider (complex) Chern-Simons theory with gauge algebra g on a 3d manifold M
with the action [Witten][Gukov]

s:i/ Tr (ANdA+2ANANA i/ Tr (AndA+ 2ANANE
8 M 3 8 M 3

e Saddle points are g flat connections on M
dA+ANA=0, Aeg,
classified via holonomies

o : Hi(M) — C.

18



Saddle expansion of Chern-Simons

e Saddle point expansion around the flat connection o [Dimofte-Gukov-Lenells-Zagier]

- 1@ Lo  o(0) pn
A >(Z\/[,h)~exp(h30 —§5<>1ogh+25n+1h , h=2r/t.

n=0
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Saddle expansion of Chern-Simons

e Saddle point expansion around the flat connection o [Dimofte-Gukov-Lenells-Zagier]

- 1@ Lo  o(0) pn
A >(Z\/[,h)~exp(h50 —§5<>1ogﬁ+25n+1h , h=2r/t.

n=0
e Let g = SL(2,C) and M = S*\K (2 solid torus):

» Trivial (Abelian) flat connection SégU) =0.
» Geometric flat connection (Volume Conjecture) 57 = Vol(M) + i CS(M).
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Saddle expansion of Chern-Simons

e Saddle point expansion around the flat connection o [Dimofte-Gukov-Lenells-Zagier]

- 1@ Lo  o(0) pn
A >(Z\/[,h)~exp(h50 —§5<>1ogﬁ+25n+1h , h=2r/t.

n=0

e Let g = SL(2,C) and M = S*\K (2 solid torus):
» Trivial (Abelian) flat connection SégU) =0.
» Geometric flat connection (Volume Conjecture) 57 = Vol(M) + i CS(M).

e To work out the resurgent structure of Z(®) (M, i), we need to compute the
trans-series efficiently.

19



Non-trivial flat connections: state integrals

e Perturbation series at non-Abelian flat connections are encoded
in the state integral [Dimofte-Gukov-Lenells-Zagier]. For figure eight
knot (41) [Hikami][Andersen,Kashaev]

Z4,(b) :/ Dy (v)2e ™ dv, = 2rb?
R+i0

whose main ingredient is Faddeev’s quantum dilogarithm &y, (v).
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Non-trivial flat connections: state integrals

e Perturbation series at non-Abelian flat connections are encoded
in the state integral [Dimofte-Gukov-Lenells-Zagier]. For figure eight
knot (41) [Hikami][Andersen,Kashaev]

Z4,(b) :/ Dy (v)2e ™ dv, = 2rb?
R+i0

whose main ingredient is Faddeev’s quantum dilogarithm &y, (v).

e It has two saddle points for geom. and conj. flat connections

ZOU) ="/ (14 A B ),

Z(2)(R) =i 2(°1) (—h)
with V = Vol(S3\4;).
e Can be computed efficiently with Gaussian expansion up to

~ 300 terms.
20



Jones polynomial

e Using skein relation:

with

to compute

Unknot: J'kn°t(¢) =1  Figure eight: J*'(¢) =¢* —q+1—q ' +¢72
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Jones polynomial

e Using skein relation:

L2000

g 1, (@) —aJr_(q) = (% —q %) Jry(q)

%

Unknot: J'kn°t(¢) =1  Figure eight: J*'(¢) =¢* —q+1—q ' +¢72
e Promotion to Khovanov homology:

T5(q) = 3" (~1)i¢ dim Khy j(K)
" 21

with

to compute



Trivial flat connection: Jones polynomial

e Colored Jones polynomial
k
Jsl ((Z) _ Z( k 7k (k+1)/ H 1 o qj+n qun).

is the vev of Wilson loop (4:), along 4, with repr. n of SL(2,C) and ¢ = exp =F 2’”

[Witten].
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Trivial flat connection: Jones polynomial

e Colored Jones polynomial
k
Jsl ((Z) _ Z( k 7k (k+1)/ H 1 o qj+n qun).

is the vev of Wilson loop (4:), along 4, with repr. n of SL(2,C) and ¢ = exp =F 2’”
[Witten].

e J4(g) allows loop expansion

Ji(e ZZaunjhleQ n, h|]

=0 j=0

and the perturbative series Z(?0)(h) for trivial flat connections is
Z@(h) =" a;oh'.
i=0
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Trivial flat connection: Jones polynomial

e Colored Jones polynomial
k
Jsl ((Z) _ Z( k 7k (k+1)/ H 1 o qj+n qun).

is the vev of Wilson loop (4:), along 4, with repr. n of SL(2,C) and ¢ = exp =F 2’”
[Witten].

e J4(g) allows loop expansion

Ji(e ZZaunjhleQ n, h|]

=0 j=0

and the perturbative series Z(?0)(h) for trivial flat connections is
Z@(h) =" a;oh'.
i=0

e J*(q) (and thus Z(?0)(h)) can be computed efficiently by recursion relations in n. 9



Another way of computation: Quantum A-polynomial

e Turn on holonomy on the boundary T2: Z(°) (k) — Z(9)(x, h).

e Z9)(z, h) satisfy the difference equation (quantum A-polynomial)

A(#,9)Z(z, k) =0,

with
&Z(x,h) = xZ(x,h),

A(S\K) =17 wave-funtion on moduli space

M of SL(2,C) flat connections

Z(z;7)

SIN\K partition function

9Z(x,h) = Z(qzx, h).

A is the Schrédinger equation on

M. [Gukov]

23



Borel singularities

“Classical” Borel singularities [Gukov-Marino-Putrov][Gang-Hatsuda][Garoufalidis-Zagier]

Z(00) Z(o1) Z(02)
Z(d‘) Gt72-,01 Z(az)
. /\ .
-—
oy oy oy 4] Sop,00
4 R4 2V -2V

24



Borel singularities

More singularities due to multivaluedness of CS action and the state integral potential

[Garoufalidis][Witten][Gukov-Marino-Putrov]

Z(00) Z(01) Z(02)
(] (] L] ° L
[ ) [ ] ° [ ) L
[ ] [ ] L] L] L
a1 _ i (o] . 02 a1 _
[ ] (] L] L] L
[ ] [ ] L] L] L

A family of trans-series but with the same power series

2
Z@(h) = Z) (h)e ™%, neZ.
25



Peacock pattern of Stokes rays

e Stokes rays in the Borel plane for the vector (Z(°0)(k), Z(o1)(k), Z(°2) (R))T.

26



Stokes constants are non-trivial integers

The Stokes constants are non-trivial integers!

AT e Complete set of Stokes constants can be solved!
90 ;48558 e The Stokes g-series
46 305580 &9
i +
18 10642 Sgg/(q) =1+ Z SUJ’;inqina Sao”;in €z
n=1
-9 375
—3¢ 9 are given by bilinear expressions in fundamental solutions of
3 the equation

Ym+1(0) + Ym-1(q) = (2= q™)ym(q) =0

27



3d-3d correspondence

Wrap n M5 branes on M x A, with topological twist on M

e M is a 3d manifold that allows hyperbolic metric: tetrahedron, S3\ K.

o O

e A is a 3d Seifert manifold that has S* fibration: R? x, S', 52 x, S, S3/Zj.

28



3d-3d correspondence

There are two possibities

e Shrinking M leads to 3d N =2 e Shrinking A leads to 3d SL(n,C)
Chern-Simons-matter theory that Chern-Simons theory on M
flows to SCFT T,[M] on A in IR. (supersymmetry is broken).

SUSY ground states of T,,[M] = SL(n,C) flat connections on M

29



3d-3d correspondence

e BPS states in T;,[M] arise from M2 branes ending on M5 branes.

M

|

Q

o If M = S3\K, T,,[M] has a U(1) flavor symmetry. Define supersymmetric index

[Dimofte,Gaiotto,Gukov]

Ind(m,(;q) = Try (_1)Fq§+jsce.

m

e Ind(m,¢;q) is SUSY partition function of T;,[M] on S? x, S*.

30



Integer Stokes constants as BPS counting

The Stokes constants are non-trivial integers!

o Generating series of Stokes constants in positive imaginary axis

700y St ,.(q) =1—8q—9¢° +18¢° +46¢* +90¢° +..., ¢q= et /R,
904 #4855 ] o o
Y (Conjecture) It coincides with index Ind(0, 1; ¢) of dual 3d
superconformal field theory!
139 #642
91 o7 Ind(m, ¢; q) = Tra,, (—1)Fq? H92¢°.
8¢ 9
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Integer Stokes constants as BPS counting

The Stokes constants are non-trivial integers!

o Generating series of Stokes constants in positive imaginary axis

Z0(n St o.(q) = 1—8¢—9¢° +18¢° +46¢* + 904> + ..., q=e'" /"

004 #4858

P 1‘5580 (Conjecture) It coincides with index Ind(0, 1; ¢) of dual 3d
superconformal field theory!

184 642

0y o7 Ind(m, ¢; q) = Tra,, (—1)Fq? H92¢°.

—8¢ 9

__,3—. e The generating series for other Stokes constants
| S4.5,(a), Sk, o, (q) are also identified with the index with

magnetic flux turned on.
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Integer Stokes constants as BPS counting

The Stokes constants are non-trivial integers!

o Generating series of Stokes constants in positive imaginary axis

Z0(n St o.(q) = 1—8¢—9¢° +18¢° +46¢* + 904> + ..., q=e'" /"

004 #4858

P 1‘5580 (Conjecture) It coincides with index Ind(0, 1; ¢) of dual 3d
superconformal field theory!

184 642

0y o7 Ind(m, ¢; q) = Tra,, (—1)Fq? H92¢°.

—8¢ 9

__,3—. e The generating series for other Stokes constants
| S4.5,(a), Sk, o, (q) are also identified with the index with

magnetic flux turned on.

o Can we turn on flavor fugacity ¢ ?

31



Turning on deformation

e Turning on holonomoy z = e* on boundary

Z(Ul)(x; h)
eecegeces cecececececes Z(Ul-?)(h) — Z(O'LQ)(x;h) ~ /Q)b(U)Q)b(v+u)e—ﬂi(’vz+4u’11)dv
eepee 00000000 e Generating series of Stokes constants in vertical towers
eogee eccee S;‘lgl(x,q) :1— (2$_2+5E—1 +2+x+2$2)q
ot | log ()| - (17_2 + 227! +3+2$+$2)q2 +O(q3)
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Turning on deformation

e Turning on holonomoy z = e* on boundary

Z(Ul)(x; h)
eecegeces cecececececes Z(Ul-?)(h) — Z(O'LQ)(x;h) ~ /Q)b(U)Q)b(v+u)e—ﬂi(’vz+4u’11)dv
eepee 00000000 e Generating series of Stokes constants in vertical towers
eogee eccee S;‘lgl(x,q) :1— (2$_2+5E—1 +2+x+2$2)q
ot | log ()| - (17_2 + 227! +3+2$+$2)q2 +O(q3)

e They coincide with the index Ind(m, z;¢) with the flavor
fugacity turned on.

32



Conclusions and open

questions




Conclusions

e Stokes constants define new non-perturbative invariants.

e In some models (SW theory, complex Chern-Simons, topological string) they are

non-trivial integers and are BPS countings,

e and they can be solved completely.
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Conclusions

e Stokes constants define new non-perturbative invariants.
e In some models (SW theory, complex Chern-Simons, topological string) they are
non-trivial integers and are BPS countings,

e and they can be solved completely.
Open questions

e Proof of BPS interpretation of Stokes constants in complex Chern-Simons? [Gregory

Moore, “Number Theory, Strings, and Quantum Physics”, Jun-2021]

e BPS interpretation of Stokes constants in ST _ (¢),ST _ (q)?

00,01 70,02
e Resurgence in other theories where perturbative coefficients are efficiently computable
(integrable models)?
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Thank you for your attention!
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