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Abstract
In this paper, we consider the Laplacian G2 flow on a closed seven-dimensional manifold
M with a closed G2-structure. We first obtain the gradient estimates for positive solutions
of the heat equation under the Laplacian G2 flow and then we get the Harnack inequality
on spacetime. As an application, we prove the monotonicity of parabolic frequency for
positive solutions of the heat equation with bounded Ricci curvature, and get the integral-
type Harnack inequality. Besides, we prove the monotonicity of parabolic frequency for
solutions of the linear heat equation with bounded Bakry-Émery Ricci curvature, and then
obtain the backward uniqueness.

Mathematics Subject Classification Primary 53E99 · 58J35

1 Introduction

1.1 Gradient estimates under the Laplacian G2 flow

In [16, 32], P. Li, S.-T. Yau and Hamilton obtained the following gradient estimates for
positive solutions of the heat equation on a closed Riemannian manifold with Ricci curvature
bounded below.
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Theorem A (Li-Yau, [32]) Let (M, g) be a closed n-dimensional manifold with nonnegative
Ricci curvature, and u = u(x, t) be a positive solution of the heat equation on M × (0,∞).
Then the following estimate

|∇u|2
u2

− ∂t u

u
≤ n

2t

holds on M × (0,∞).

Theorem B (Hamilton, [16]) Let (M, g) be a closed n-dimensional manifold with Ric ≥
−Kg for some K ≥ 0, and u = u(x, t) be a positive solution of the heat equation with
u(x, t) ≤ A for all (x, t) ∈ M × (0,∞), where A is a positive constant. Then the following
estimate

|∇u|2
u2

≤
(
1

t
+ 2K

)
ln

A

u

holds on M × (0,∞).

These two estimates provide a versatile tool for studying the analytical, topological, and
geometrical properties of manifolds.

In 2010, Bǎileşteanu-Cao-Pulemotov [3] obtained the Li-Yau estimate for positive
solutions of the heat equation when the metrics g(t) are evolved by the Ricci flow

∂t g(t) = −2Ric(g(t)). (1.1)

The Ricci flowwas introduced byHamilton in [17] to study the compact three-manifolds with
positive Ricci curvature, which is a special case of the Poincaré conjecture finally proved by
Perelman in [43, 44]. Hamilton [17] obtained the short-time existence and uniqueness of the
Ricci flowon compactmanifolds, and Shi [46] obtained a short-time solution of theRicci flow
on a complete noncompact manifold and the uniqueness with bounded Riemann curvature
was proved by Chen-Zhu in [7]. After that, many people began to study the gradient estimate
for the positive solutions of the heat equation when the metrics are evolved by geometric
flows see [2, 38, 47].

In this paper, we first study gradient estimates for positive solutions of the heat equation
under the Laplacian G2 flow for closed G2-structure:{

∂tϕ(t) = �ϕ(t)ϕ(t),
ϕ(0) = ϕ,

(1.2)

whichwas introducedbyBryant [6] on a smooth 7-manifoldM admitting closedG2-structure,
where �ϕ(t)ϕ(t) = dd∗

ϕ(t)ϕ(t)+d∗
ϕ(t)dϕ(t) is the Hodge Laplacian of g(t) and ϕ is an initial

closed G2-structure. Here g(t) is the associated Riemannian metric of ϕ(t). Since for a
closed G2-structure ϕ, �ϕϕ = dd∗

ϕϕ, we see that the closedness of ϕ(t) is preserved along
the Laplacian G2 flow (1.2). The existence for the solution of the Laplacian G2 flow can be
found in [6, 13, 29, 35, 41].

We first consider the following Li-Yau type gradient estimate of the heat equation

∂t u(t) = �g(t)u(t) (1.3)

under theLaplacianG2 flow (1.2),where�g(t) = trg(t)
(
∇2
g(t)

)
is the traceLaplacian induced

by g(t).

Theorem 1.1 Let (M, ϕ(t))t∈(0,T ] be the solution of the Laplacian G2 flow (1.2) on a closed
7-dimensional manifold M with T < +∞ and −Kg(t) ≤ Ric(g(t)) ≤ 0, where g(t) is the
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Riemannian metric associated with ϕ(t) and K is a positive constant. If u(t) is a positive
solution of the heat equation (1.3), then on M × (0, T ], the following estimate

|∇g(t)u(t)|2g(t)
u2(t)

− α
∂t u(t)

u(t)
≤ 7α

2at
+
(
49α

3a
+ 105α2 − 98α

2a(α − 1)
+ 7

√
29α

2
√
ab

)
K (1.4)

holds for any α > 1 and a, b > 0 with a + 2b = 1

α
.

As an application, we can get the following Harnack inequality on spacetime.

Corollary 1.2 Let (M, ϕ(t))t∈(0,T ] be the solution of the Laplacian G2 flow (1.2) on a closed
7-dimensional manifold M with T < +∞ and −Kg(t) ≤ Ric(g(t)) ≤ 0, where g(t) is the
Riemannian metric associated with ϕ(t) and K is a positive constant. If u(t) is a positive
solution of the heat equation (1.3), then for (x, t1), (y, t2) ∈ M × (0, T ] with t1 < t2, we
have

u(x, t1) ≤ u(y, t2)

(
t2
t1

) 7
2a

exp

{∫ 1

0

[
α|γ ′(s)|2σ(s)

4(t2 − t1)
+ (t2 − t1)Ca,b,αK

]
ds

}
,

where α > 1,

Ca,b,α = 49

3a
+ 105α − 98

2a(α − 1)
+ 7

√
29

2
√
ab

,

a, b > 0 with a + 2b = 1

α
, γ (s) is a geodesic curve connecting x and y with γ (0) = y and

γ (1) = x, and |γ ′(s)|σ(s) is the length of the vector γ ′(s) at σ(s) = (1 − s)t2 + st1.

For the Hamilton type gradient estimate of the heat equation under the Laplacian G2 flow
(1.2), we have

Theorem 1.3 Let (M, ϕ(t))t∈(0,T ] be the solution of the Laplacian G2 flow (1.2) on a closed
7-dimensional manifold M with T < +∞ and −Kg(t) ≤ Ric(g(t)) ≤ 0, where g(t) is the
Riemannian metric associated with ϕ(t) and K is a positive constant. If u(t) is a positive
solution of the heat equation, then on M × (0, T ], the following estimate

|∇g(t)u(t)|2g(t) ≤ u(t)

t

[
u(t) ln

A

u(t)
+ λA2 − λη2

]
(1.5)

holds, where η = min
M

u(0), A = max
M

u(0) and λ is a constant depending on K , η and T .

1.2 Parabolic frequency under the Laplacian G2 flow

In 1979, the (elliptic) frequency functional for a harmonic function u(x) onRn was introduced
by Almgren in [1], which was defined by

N (r) =
r
∫
B(r ,p)

|∇u(x)|2dx
∫

∂B(r ,p)
u2(x)dσ

,

where dσ is the induced (n−1)-dimensional Hausdorff measure on ∂B(r , p), B(r , p) is the
ball inRn and p is a fixed point inRn . Almgren obtained that N (r) ismonotone nondecreasing
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for r , and he used this property to investigate the local regularity of harmonic functions and
minimal surfaces. Next, Garofalo and Lin [14, 15] considered the monotonicity of frequency
functional on Riemannian manifolds to study the unique continuation for elliptic operators.
The frequency functional was also used to estimate the size of nodal sets in [39, 40]. For
more applications, see [9, 18, 19, 36, 49].

The parabolic frequency for the solution of the heat equation onRn was introduced byPoon
in [45], and Ni [42] considered the case when u(t) is a holomorphic function, both of them
showed that the parabolic frequency is nondecreasing. Besides, on Riemannian manifolds,
the monotonicity of the parabolic frequency was obtained by Colding and Minicozzi [10]
through the drift Laplacian operator. Using the matrix Harnack’s inequality in [16], Li and
Wang [33] investigated the parabolic frequency on compact Riemannian manifolds and the
2-dimensional Ricci flow.

In [5], Baldauf-Kim defined the following parabolic frequency for a solution u(t) of the
heat equation

U (t) = −
τ(t)‖∇g(t)u(t)‖2

L2(dν)

‖u(t)‖2
L2(dν)

· exp
{
−
∫ t

t0

1 − κ(s)

τ (s)
ds

}
,

where t ∈ [t0, t1] ⊂ (0, T ), τ(t) is the backwards time, κ(t) is the time-dependent function
and dν is the weighted measure. They proved that parabolic frequency U (t) for the solution
of the heat equation is monotone increasing along the Ricci flow with the bounded Bakry-
Émery Ricci curvature and obtained the backward uniqueness. Baldauf, Ho and Lee derived
analogous result to the mean curvature flow in [4].

Recently, Liu and Xu studied the monotonicity of parabolic frequency for the weighted
p-Laplacian heat equation on Riemannian manifolds in [37], and they obtained a theorem of
Hardy-Ṕolya-Szegö on Kähler manifolds under the Kähler-Ricci flow. In [34], Li and Zhang
derived the matrix Li-Yau-Hamilton estimates for positive solutions to the heat equation and
the backward conjugate heat equation under the Ricci flow, and then applied these estimates
to study the monotonicity of the parabolic frequency.

In [30], the authors studied the monotonicity of parabolic frequency under Ricci flow and
the Ricci-harmonic flow onmanifolds. They considered two cases: one is themonotonicity of
parabolic frequency for the solution of the linear heat equation with bounded Bakry-Émery
Ricci curvature, and the other case is the monotonicity of parabolic frequency for the solution
of the heat equation with bounded Ricci curvature.

Inspired by [30], we first study the parabolic frequency for the solution of the heat equa-
tion (1.3) under the Laplacian G2 flow (1.2) with bounded Ricci curvature. The parabolic
frequency for the positive solution of the heat equation (1.3) is defined by

U (t) = exp

{
−
∫ t

t0

[
h′(s)
h(s)

− 2

3
R0 + 28 + C1(A, η)

s
+ cK + 7

2
C(s)

]
ds

}

·
h(t)

∫
M

|∇g(t)u(t)|2g(t)dμg(t)∫
M
u2(t)dμg(t)

where h(t) is a time-dependent function, K and c are both positive constants,

R0 = min
M×[t0,t1]

R(t), C1(A, η) = ln
A

η
+ λ

A2

η
, C(t) = C1(A, η)

t
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and λ is the constant in Theorem 1.3,

η = min
M

u(0), A = max
M

u(0).

Observe that, A and η are both positive constants. Using Theorem 1.1 and Theorem 1.3 as
an application, we have

Theorem 1.4 Let (M, ϕ(t))t∈[0,T ] be the solution of the Laplacian G2 flow (1.2) on a closed
7-dimensional manifold M with T < +∞ and −Kg(t) ≤ Ric(g(t)) ≤ 0, where g(t) is the
Riemannian metric associated with ϕ(t) and K is a positive constant. If u(t) is a positive
solution of the heat equation (1.3) with η ≤ u(0) ≤ A, then the following holds.

(i) If h(t) is a negative time-dependent function, then the parabolic frequency U (t) is
monotone increasing along the Laplacian G2 flow.

(ii) If h(t) is a positive time-dependent function, then the parabolic frequency U (t) is
monotone decreasing along the Laplacian G2 flow.

Besides, we consider the parabolic frequency for the solution of the linear heat equation

(∂t − �g(t))u(t) = a(t)u(t) (1.6)

under the Laplacian G2 flow (1.2) with bounded Bakry-Émery Ricci curvature, where a(t)
is a time-dependent smooth function. The parabolic frequency is defined by

U (t) = exp

{
−
∫ t

t0

[
−2

3
R0 + h′(s) + κ(s)

h(s)

]
ds

} h(t)
∫
M

|∇g(t)u(t)|2g(t)dμg(t)∫
M
u2(t)dμg(t)

,

where R0 = min
M×[t0,t1]

R(t), h(t) and κ(t) are both time-dependent smooth functions. Then

we get the following theorem, where Ric f (t) is given in (2.10).

Theorem 1.5 Let (M, ϕ(t))t∈[0,T ] be the solution of the Laplacian G2 flow (1.2) on a closed

7-dimensional manifold M with T < +∞ and Ric f (t) ≤ κ(t)

2 h(t)
g(t), where g(t) is the

Riemannian metric associated with ϕ(t). Then the following holds.

(i) If h(t) is a negative time-dependent function, then the parabolic frequency U (t) is
monotone increasing along the Laplacian G2 flow.

(ii) If h(t) is a positive time-dependent function, then the parabolic frequency U (t) is
monotone decreasing along the Laplacian G2 flow.

The backward uniqueness of solutions to parabolic equations has been the object of con-
sistent study for at least half a century. There are already many results for heat operators
concerning it in various domains, such as the exterior domain [11], the half-space [12] and
some cones [31, 48]. For the heat equation onmanifolds, Colding andMinicozzi [10] obtained
the backward uniqueness result. Kotschwar showed a backward uniqueness result to Ricci
flow in [25] and gave a general backward uniqueness theorem in [26]. For more backward
uniqueness results of geometric flows, see [20–22, 28, 50].

As an application of Theorem 1.5, we get the following backward uniqueness.

Corollary 1.6 Let (M, ϕ(t))t∈[0,T ] be the solution of the Laplacian G2 flow (1.2) on a closed

7-dimensional manifold M with T < +∞ and Ric f (t) ≤ κ(t)

2 h(t)
g(t), where g(t) is the

Riemannian metric associated with ϕ(t). If u(t1) = 0, then u(t) ≡ 0 for any t ∈ [t0, t1] ⊂
(0, T ).
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For the general parabolic equation, we have

Theorem 1.7 Let (M, ϕ(t))t∈[0,T ] be the solution of the Laplacian G2 flow (1.2) on a closed

7-dimensional manifold M with T < +∞ and Ric f (t) ≤ κ(t)

2 h(t)
g(t), where g(t) is the

Riemannian metric associated with ϕ(t) and h(t) is a negative time-dependent function.
Suppose u(t) : M × [t0, t1] → R satisfies

∣∣(∂t − �g(t)
)
u(t)

∣∣ ≤ C(t)
[|∇g(t)u(t)|g(t) + |u(t)|]

along the Laplacian G2 flow (1.2). If u(t1) = 0, then u(t) ≡ 0 for all t ∈ [t0, t1]⊂ (0, T ).

We give an outline of this paper.We review the basic theory in Sect. 2 aboutG2-structures,
G2-decompositions of 2-forms and 3-forms, and the torsion tensors ofG2-structures.We also
calculate the conjugate heat equation under the Laplacian G2 flow (1.2). Section3 proves the
Li-Yau type gradient estimate and Hamilton type gradient estimate under the Laplacian G2

flow (1.2) with bounded Ricci curvature, and as an application, we get the Harnack inequality
on spacetime. In Sect. 4, using the Li-Yau type gradient estimate and Hamilton type gradient
estimate, we prove the monotonicity of parabolic frequency for the solution of the linear
equation (1.6) under the Laplacian G2 flow (1.2) with bounded Ricci curvature, then we get
the integral-type Harnack inequality. In Sect. 5, we consider the monotonicity of parabolic
frequency for the heat equation and the general parabolic equation under the Laplacian G2

flow (1.2) with bounded Bakry-Émery Ricci curvature, and obtain the backward uniqueness.

2 G2-structure, notations and definitions

In this section, we introduce the G2-structure on manifolds, G2-decompositions, the torsion
tensor, some notations, and definitions.

2.1 G2-structure on smoothmanifolds

Let O be the octonions (exceptional division algebra), from the vector cross product “×” on
Im O, we can define the 3-form by

φ(a, b, c) := 1

2
〈a, [b, c]〉 = 〈a × b, c〉 for a, b, c ∈ Im O.

Let {e1, e2, · · · , e7} denote the standard basis of R7 and {e1, e2, · · · , e7} be its dual basis.
Using the octonion multiplication table, one can show that

φ = e123 + e145 + e167 + e246 − e257 − e347 − e356,

where ei jk := ei ∧ e j ∧ ek . When we fix φ, the subgroup of GL(7,R) is the exceptional
Lie group G2, which is a compact, connected, simple 14-dimensional Lie subgroup of
SO(7). In fact, G2 acts irreducibly on R7 and preserves the metric and orientation for which
{e1, e2, · · · , e7} is an oriented orthonormal basis. Note that G2 also preserves the 4-form

∗φφ = e4567 + e2367 + e2345 + e1357 − e1346 − e1256 − e1247,

where ∗φ is the Hodge star operator determined by the metric and orientation.
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Remark 2.1 The vector cross product “×” is an algebraic structure defined in a normed divi-
sion algebra. Therefore, the G2-structure can only be defined in the 7-dimensional manifold.
For more details, see [24].

For a smooth 7-manifold M and a point x ∈ M , we define as in [35, 41]

∧3+(T ∗
x M) :=

{
ϕx ∈ ∧3(T ∗

x M)

∣∣∣ h∗φ = ϕx , for invertible h ∈ HomR(T ∗
x M,R7)

}

and the bundle

∧3+(T ∗M) :=
⋃
x∈M

∧3+(T ∗
x M).

We call a section ϕ of ∧3+(T ∗M) a positive 3-form on M or a G2-structure on M , and denote
the space of positive 3-form by �3+(M). The existence of G2-structure is equivalent to the
property that M is oriented and spin, which is equivalent to the vanishing of the first two
Stiefel-Whitney classes ω1(T M) and ω2(T M). For more details, see Theorem 10.6 in [27].

For a 3-form ϕ, we define a �7(M)-valued bilinear form Bϕ by

Bϕ(u, v) = 1

6
(u�ϕ) ∧ (v�ϕ) ∧ ϕ,

where u, v are tangent vectors on M and “�′′ is the interior multiplication operator (Here we
use the orientation in [6]). Then we can see that any ϕ ∈ �3+(M) determines a Riemannian
metric gϕ and an orientation dVϕ , hence theHodge star operator ∗ϕ and the associated 4-form

ψ := ∗ϕϕ

can also be uniquely determined by ϕ.
The group G2 acts irreducibly on R

7 (and hence on ∧1(R7)∗ and ∧6(R7)∗), but it acts
reducibly on∧k(R7)∗ for 2 ≤ k ≤ 5. Hence aG2 structure ϕ induces splittings of the bundles
∧k(T ∗M)(2 ≤ k ≤ 5) into direct summands, which we denote by ∧k

l (T
∗M, ϕ) with l being

the rank of the bundle. We let the space of sections of ∧k
l (T

∗M, ϕ) be �k
l (M). Define the

natural projections

πk
l : �k(M) −→ �k

l (M), α �−→ πk
l (α).

Then we have

�2(M) = �2
7(M) ⊕ �2

14(M),

�3(M) = �3
1(M) ⊕ �3

7(M) ⊕ �3
27(M).

where each component is determined by

�2
7(M) = {X�ϕ : X ∈ C∞(T M)} = {β ∈ �2(M) : ∗ϕ(ϕ ∧ β) = 2β},

�2
14(M) = {β ∈ �2(M) : ψ ∧ β = 0} = {β ∈ �2(M) : ∗ϕ(ϕ ∧ β) = −β},

and

�3
1(M) = { f ϕ : f ∈ C∞(M)},

�3
7(M) = {∗ϕ(ϕ ∧ α) : α ∈ �1(M)} = {X�ψ : X ∈ C∞(T M)},

�3
27(M) = {η ∈ �3(M) : η ∧ ϕ = η ∧ ψ = 0}.
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Remark 2.2 �4 and �5 have the corresponding decompositions by Hodge duality. The more
details for G2-decompositions see [6, 24].

By the definition of G2 decompositions, we can find unique differential forms τ0 ∈
�0(M), τ1, τ̃1 ∈ �1(M), τ2 ∈ �2

14(M) and τ3 ∈ �3
27(M) such that (see [6])

dϕ = τ0ψ + 3τ1 ∧ ϕ + ∗ϕτ3, (2.1)

dψ = 4 τ̃1 ∧ ψ + τ2 ∧ ϕ. (2.2)

In fact, Karigiannis [23] proved that τ1 = τ̃1. We call τ0 the scalar torsion, τ1 the vector
torsion, τ2 the Lie algebra torsion, and τ3 the symmetric traceless torsion. We also call
τϕ := {τ0, τ1, τ2, τ3} the intrinsic torsion forms of the G2-structure ϕ.

If ϕ is closed, whichmeans dϕ = 0, then τ0, τ1, τ3 are all zero, so the only nonzero torsion
form is

τ ≡ τ2 = 1

2
(τ2)i j dx

i ⊗ dx j = 1

2
τi j dx

i ⊗ dx j .

Then from [23, 24], the full torsion tensor T = Ti j dxi ⊗ dx j satisfies the followings

Ti j = −T j i = −1

2
(τ2)i j or equivalently T = −1

2
τ,

so that T is a skew-symmetric 2-tensor or a 2-form.

2.2 The Laplacian G2 flow and some notations

In this subsection, we introduce the LaplacianG2 flow, some notations, and definitions which
will be used in the sequel.We use the notations inHamilton’s paper [17],∇g is the Levi-Civita
connection induced by g, Ric(g), Rg , dVg are Ricci curvature, scalar curvature, and volume
form, respectively. The Laplacian of the smooth time-dependent function f (t) with respect
to a family of Riemannian metrics g(t) is

�g(t) f (t) = gi j (t)
[
∂i∂ j f (t) − �k

i j (t)∂k f (t)
]
,

where �k
i j (t) is the Christoffel symbol of g(t) and ∂i = ∂

∂xi
.

In [6], Bryant introduced the following Laplacian G2 flow on a smooth 7-manifold M
admitting closed G2-structures {

∂tϕ(t) = �ϕ(t)ϕ(t),
ϕ(0) = ϕ,

under the LaplacianG2 flow. From [41], we see that the associated metric tensor g(t) evolves
by

∂t g(t) = −2Sic(g(t)), (2.3)

where

Sic(g(t)) = Ric(g(t)) + 1

3
|T(t)|2g(t)g(t) + 2T̂(t)

is the symmetric 2-tensor and its components are given by

Si j = Ri j + 1

3
|T(t)|2g(t)gi j + 2T̂i j , (2.4)
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and T̂i j = T k
i Tk j . In [35, 41], we see that Rg(t) = −|T(t)|2g(t) and Ti j is skew-symmetric,

then we have that

trg(t)
(
Sic(g(t))

)
= Rg(t) + 7

3
|T(t)|2g(t) − 2|T(t)|2g(t)

= −|T(t)|2g(t) + 7

3
|T(t)|2g(t) − 2|T(t)|2g(t) = 2

3
Rg(t).

Under the Laplacian G2 flow (1.2), for any smooth functions u(t), v(t) with∫
M
u(T )v(T )dVg(T ) =

∫
M
u(0)v(0)dVg(0),

we have that∫ T

0

∫
M

v(t)
(
∂t − �g(t)

)
u(t)dVg(t)dt

=
∫ T

0

∫
M

[
−u(t)∂tv(t) + 2

3
v(t)u(t)Rg(t) − u(t)�g(t)v(t)

]
dVg(t)dt

=
∫ T

0

∫
M
u(t)

(
2

3
Rg(t) − ∂t − �g(t)

)
v(t)dVg(t)dt .

Let τ(t) = T − t be the backward time. For any time-dependent smooth function f (t) on
M , we denote

K(t) = (4πτ(t))−
7
2 e− f (t)

to be the positive solution of the conjugate heat equation

∂tK(t) = −�g(t)K(t) + 2

3
Rg(t)K(t). (2.5)

From the definition ofK(t), we can calculate the smooth function f (t) satisfies the following
equation

∂t f (t) = −�g(t) f (t)−2

3
Rg(t) + |∇g(t) f (t)|2g(t) + 7

2τ(t)
. (2.6)

We can define the weighted measure

dμg(t) := K(t)dVg(t) = (4πτ(t))−
7
2 e− f (t)dVg(t),

∫
M
dμg(t) = 1. (2.7)

And the volume form dVg(t) satisfies

∂t (dVg(t)) = −2

3
Rg(t)dVg(t),

thus, the conjugate heat kernel measure dμg(t) is evolved by

∂t (dμg(t)) = −(�g(t)K(t))dVg(t) = −�g(t)K(t)

K(t)
dμg(t). (2.8)

On the weighted Riemannianmanifold (Mn, g(t), dμg(t)), the weighted Bochner formula
for any smooth function u is as follow

�g(t), f (t)

(
|∇g(t)u|2g(t)

)
= 2

∣∣∣∇2
g(t)u

∣∣∣2
g(t)

+ 2
〈∇g(t)u,∇g(t)�g(t), f (t)u

〉
g(t)

+ 2Ric f (t)
(∇g(t)u,∇g(t)u

)
, (2.9)
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where

Ric f (t) := Ric(g(t)) + ∇2
g(t) f (t) (2.10)

is the Bakry-Émery Ricci tensor introduced in [8], and

�g(t), f (t)u := e f (t)divg(t)
(
e− f (t)∇g(t)u

)
= �g(t)u − 〈∇g(t) f (t),∇g(t)u

〉
g(t) (2.11)

is the drift Laplacian operator for any smooth function u.

3 Gradient estimates under Laplacian G2 flow

In this section, we consider the Li-Yau type gradient estimate andHamilton type gradient esti-
mate of the heat equation(1.3) under the Laplacian G2 flow (1.2). Since Rg(t) = −|T(t)|2g(t),
which implies the scalar curvature is non-positive here, some methods of gradient estimate
require the non-negative Ricci curvature condition, which can’t hold in this circumstance.
Inspired by Liu in [38], we weaken the curvature constraints and obtain the gradient estimate
for the solution of the heat equation when the metric is evolved by the Laplacian G2 flow
(1.2).

Theorem 3.1 Let (M, ϕ(t))t∈(0,T ] be the solution of the Laplacian G2 flow (1.2) on a closed
7-dimensional manifold M with with T < +∞ and −Kg(t) ≤ Ric(g(t)) ≤ 0, where g(t) is
the Riemannian metric associated with ϕ(t) and K is a positive constant. If u(t) is a positive
solution of the heat equation, then on M × (0, T ] the following estimate

|∇g(t)u(t)|2g(t)
u(t)2

− α
∂t u(t)

u(t)
≤ 7α

2at
+
(
49α

3a
+ 105α2 − 98α

2a(α − 1)
+ 7

√
29α

2
√
ab

)
K (3.1)

holds for any α > 1 and a, b > 0 with a + 2b = 1

α
.

Proof We first set f = ln u and

F = t
(|∇ f |2 − α∂t f

)
.

Observe that, (3.1) is true when F < 0, hence we always assume that F ≥ 0 in the sequel.
Some computations show that

�
(|∇ f |2) =

∑
1≤i, j≤7

(
2 f 2i j + 2 fi f j j i + 2Ri j fi f j

)
,

∂t (� f ) = ∂t

(
gi j∇i∇ j f

)
=

∑
1≤i, j≤7

(
2Ri j fi j + 4T̂i j fi j

)+ 2

3
|T|2� f + �(∂t f ).

Combining these two equations we have that

�F = t
(
�
(|∇ f |2)− α�(∂t f )

)

= t

(
2
∑

1≤i, j≤7

f 2i j + 2
∑

1≤i, j≤7

fi f j j i + 2
∑

1≤i, j≤7

Ri j fi f j − α∂t (� f )

+ 2α
∑

1≤i, j≤7

Ri j fi j + 2

3
α|T|2� f + 4α

∑
1≤i, j≤7

T̂i j fi j

)
.
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Since � f = ∂t f − |∇ f |2, it follows that

α∂t (� f ) = α ftt − α

( ∑
1≤i, j≤7

(
2Ri j fi f j + 4T̂i j fi f j

)+ 2

3
|T|2|∇ f |2 + 2∇ f · ∇(∂t f )

)
,

and

�F = t

(
2
∑

1≤i, j≤7

f 2i j + 2∇ f · ∇� f + 2
∑

1≤i, j≤7

Ri j fi f j − α ftt + 2α
∑

1≤i, j≤7

Ri j fi f j

+ 2

3
α|T|2|∇ f |2 + 4α

∑
1≤i, j≤7

T̂i j fi f j + 2α∇ f · ∇(∂t f )

+ 2α
∑

1≤i, j≤7

Ri j fi j + 2

3
α|T|2� f + 4α

∑
1≤i, j≤7

T̂i j fi j

)
.

On the other hand, we have

∂t F = |∇ f |2 − α∂t f + t

(
2
∑

1≤i, j≤7

Ri j fi f j + 2

3
|T|2|∇ f |2

+4
∑

1≤i, j≤7

T̂i j fi f j + 2∇ f · ∇(∂t f )

)
− tα ftt .

Now we obtain

(� − ∂t ) F = t
(
2∇ f · ∇� f + 2α∇ f · ∇(∂t f ) − 2∇ f · ∇(∂t f )

)

+ t

(
2
∑

1≤i, j≤7

f 2i j + 2α
∑

1≤i, j≤7

Ri j fi j + 4α
∑

1≤i, j≤7

T̂i j fi j

)

+ t

(
2

3
α|T|2|∇ f |2 + 2

3
α|T|2� f − 2

3
|T|2|∇ f |2

)

+ t

(
2α

∑
1≤i, j≤7

Ri j fi f j + 4α
∑

1≤i, j≤7

T̂i j fi f j − 4
∑

1≤i, j≤7

T̂i j fi f j

)

−
(
|∇ f |2 − α∂t f

)
. (3.2)

Again using � f = ∂t f − |∇ f |2, the first and third line in the right side of (3.2) become

t
(
2∇ f · ∇� f + 2α∇ f · ∇(∂t f ) − 2∇ f · ∇(∂t f )

)

= 2t∇ f · ∇
(
∂t f − |∇ f |2 + α∂t f − ∂t f

)
= −2∇ f · ∇F,

t
(2
3
α|T|2|∇ f |2 + 2

3
α|T|2� f − 2

3
|T|2|∇ f |2

)

= 2

3
t |T|2

(
α|∇ f |2 + α� f − |∇ f |2

)
= −2

3
|T|2F .

For the second line, using the trick in [2, 3], we get
∑

1≤i, j≤7

(
f 2i j + αRi j fi j + 2αT̂i j fi j

)
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=
∑

1≤i, j≤7

(
(aα + 2bα) f 2i j + αRi j fi j + 2αT̂i j fi j

)

=
∑

1≤i, j≤7

⎛
⎝aα f 2i j + α

∣∣∣∣
√
b fi j + Ri j

2
√
b

∣∣∣∣
2

− α

4b
|Ric|2 + α

∣∣∣∣∣
√
b fi j + T̂i j√

b

∣∣∣∣∣
2

− α

b
|T̂|2

⎞
⎠

≥ aα
∑

1≤i, j≤7

f 2i j − α

4b
|Ric|2 − α

b
|T̂|2,

where a, b are constants satisfying a + 2b = 1

α
. Noting that

∑
1≤i, j≤7

f 2i j ≥ 1

7

( ∑
1≤i≤7

fii

)2

= (� f )2

7
, |Ric|2 ≤ 7K 2, |T̂|2 ≤ 49K 2,

so it becomes

∑
1≤i, j≤7

(
f 2i j + αRi j fi j + 2αT̂i j fi j

)
≥ aα(� f )2

7
−
(
7α

4b
+ 49α

b

)
K 2.

For the fourth line, since Ti j is skew-symmetric, we obtain∑
1≤i, j≤7

T̂i j fi f j =
∑

1≤i, j,k≤7

T k
i Tk j fi f j

= −
∑

1≤i, j,k≤7

(Tik fi )(T jk f j ) = −
∣∣∣∣
∑

1≤i≤7

Tik fi

∣∣∣∣
2

.

Together with the Cauchy inequality, we have

∑
1≤i, j≤7

T̂i j fi f j = −
∣∣∣∣
∑

1≤i≤7

Tik fi

∣∣∣∣
2

= −
∑

1≤k≤7

( ∑
1≤i≤7

Tik fi

)2

≥ −
∑

1≤k≤7

( ∑
1≤i≤7

T2
ik |∇ f |2

)

= −|T|2|∇ f |2 = R|∇ f |2 ≥ −7K |∇ f |2.
Now, the fourth line becomes

t
∑

1≤i, j≤7

(
2αRi j fi f j + 4αT̂i j fi f j − 4T̂i j fi f j

)

≥ −2αt K |∇ f |2 − 28t(α − 1)K |∇ f |2 = −
(
2α + 28(α − 1)

)
t K |∇ f |2.

Substituting all these terms into (3.2), we now obtain

(� − ∂t ) F ≥ −2∇ f · ∇F + 2aαt

7

(
|∇ f |2 − ∂t f

)2 −
(
2α + 28(α − 1)

)
t K |∇ f |2

− 2

3
|T|2F −

(
|∇ f |2 − α∂t f

)
−
(
7α

2b
+ 98α

b

)
t K 2. (3.3)
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Following the trick in [3, 38], set y = |∇ f |2, z = ∂t f . Observe that

(y − z)2 = 1

α2 (y − αz)2 +
(

α − 1

α

)2

y2 + 2(α − 1)

α2 y(y − αz),

and mx2 − nx ≥ − n2

4m
for any m, n > 0. Now we have

2aαt

7

((|∇ f |2 − ft
)2 − 7α + 98(α − 1)

aα
K |∇ f |2

)

= 2aαt

7

(
(y − z)2 − 7α + 98(α − 1)

aα
Ky

)

= 2aαt

7

[ 1

α2 (y − αz)2 +
(

α − 1

α

)2

y2 + 2(α − 1)

α2 y(y − αz) − 7α + 98(α − 1)

aα
Ky
]

≥ 2aαt

7

(
1

α2 (y − αz)2 + 2(α − 1)

α2 y(y − αz) − 49K 2[α + 14(α − 1)]2
4(α − 1)2a2

)

= 2a

7α

F2

t
+ 2(α − 1)

α2 |∇ f |2 F
t

2aαt

7
− 7αK 2[α + 14(α − 1)]2

2(α − 1)2a
t

≥ 2a

7α

F2

t
− 7αK 2[α + 14(α − 1)]2

2(α − 1)2a
t .

Taking this term into (3.3), we finally arrive at

(� − ∂t ) F ≥ −2∇ f · ∇F + 2a

7α

F2

t
− 7α[α + 14(α − 1)]2

2(α − 1)2a
tK 2

+ 2

3
RF − F

t
−
(
7α

2b
+ 98α

b

)
t K 2. (3.4)

We assume that F(x, t) takes its maximum at (x0, t0), which means

∇F(x0, t0) = 0, ∂t F(x0, t0) ≥ 0, �F(x0, t0) ≤ 0.

Thus, at (x0, t0), we have

2a

7α
F2 −

(
1 − 2

3
Rt

)
F − 7α[α + 14(α − 1)]2

2(α − 1)2a
t2K 2 −

(
7α

2b
+ 98α

b

)
t2K 2 ≤ 0. (3.5)

According to the quadratic formula

F ≤ 7α

4a
·
(√(

1 − 2

3
Rt

)2

+ 8a

7α

(
7α[α + 14(α − 1)]2

2(α − 1)2a
+
(
7α

2b
+ 98α

b

))
t2K 2

+ 1 − 2

3
Rt

)
,

which implies

F ≤ 7α

4a

(
2 − 4

3
Rt + 2[α + 14(α − 1)]

α − 1
t K +

√
8a

(
1

2b
+ 14

b

)
t K

)
.
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Since F takes its maximum at (x0, t0), for all (x, t) ∈ M × (0, T ],

F(x, t) ≤ F(x0, t0) ≤ 7α

2a
+
(
49α

3a
+ 7α[α + 14(α − 1)]

2a(α − 1)
+ 7α

4a

√
8a

(
1

2b
+ 14

b

))
t K .

According to the definition of F(x, t), we obtain the desired result

|∇u|2
u2

− α
∂t u

u
≤ 7α

2at
+
(
49α

3a
+ 105α2 − 98α

2a(α − 1)
+ 7

√
29α

2
√
ab

)
K , (3.6)

where α > 1, a + 2b = 1

α
. ��

Remark 3.2 For example, if we take a = 2b = 1

2α
, then the estimate becomes

|∇u|2
u2

− α
∂t u

u
≤ 7α2

t
+
[(

98

3
+ 7

√
58

)
α2 + 105α3 − 98α2

α − 1

]
K ,

where α > 1.

Corollary 3.3 Let (M, ϕ(t))t∈(0,T ] be the solution of the Laplacian G2 flow (1.2) on a closed
7-dimensional manifold M with T < +∞ and −Kg(t) ≤ Ric(g(t)) ≤ 0, where g(t) is the
Riemannian metric associated with ϕ(t) and K is a positive constant. If u(t) is a positive
solution of the heat equation, then on M × (0, T ] such that t1 < t2, we have

u(x, t1) ≤ u(y, t2)

(
t2
t1

) 7
2a

exp

{∫ 1

0

[
α|γ ′(s)|2σ(s)

4(t2 − t1)
+ (t2 − t1)Ca,b,αK

]
ds

}
,

where α > 1,

Ca,b,α = 49

3a
+ 105α − 98

2a(α − 1)
+ 7

√
29

2
√
ab

,

a, b > 0, a + 2b = 1

α
, γ (s) is a geodesics curve connecting x and y with γ (0) = y and

γ (1) = x, and |γ ′(s)|σ(s) is the length of the vector γ ′(s) at σ(s) = (1 − s)t2 + st1.

Proof We can write Li-Yau type gradient estimate in Theorem 3.1 as follows:

|∇u|2
u2

− α
∂t u

u
≤ Cα

t
+ Cα,a,bK ,

where

Cα = 7α

2a
, Cα,a,b = 49α

3a
+ 105α2 − 98α

2a(α − 1)
+ 7

√
29α

2
√
ab

.

Choosing a geodesics curve γ (s) connects x and ywith γ (0) = y and γ (1) = x .We define
l(s) = ln u(γ (s), (1− s)t2 + st1) and σ(s) = (1− s)t2 + st1, then we have l(0) = ln u(y, t2)
and l(1) = ln u(x, t1). By calculating, we have

∂l(s)

∂s
= (t2 − t1)

(∇u

u

γ ′(s)
(t2 − t1)

− ut
u

)
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≤ (t2 − t1)

(
α|γ ′(s)|2σ(s)

4(t2 − t1)2
+ |∇u|2

αu2
− ut

u

)

≤ α|γ ′(s)|2σ(s)

4(t2 − t1)
+ t2 − t1

α

(
Cα

σ (s)
+ Cα,a,bK

)
, (3.7)

where |γ ′(s)|σ(s) is the length of the vector γ ′(s) at σ(s). Integrating (3.7) over γ (s), we get

ln
u(x, t1)

u(y, t2)
=
∫ 1

0

∂l(s)

∂s
ds

≤
∫ 1

0

[
α|γ ′(s)|2σ(s)

4(t2 − t1)
+ t2 − t1

α

(
Cα

σ (s)
+ Cα,a,bK

)]
ds

=
∫ 1

0

[
α|γ ′(s)|2σ(s)

4(t2 − t1)
+ t2 − t1

α
Cα,a,bK

]
ds + 7

2a
ln

t2
t1

.

Thus, we get the desired result. ��
Theorem 3.4 Let (M, ϕ(t))t∈(0,T ] be the solution of the Laplacian G2 flow (1.2) on a closed
7-dimensional manifold M with T < +∞ and −Kg(t) ≤ Ric(g(t)) ≤ 0, where g(t) is the
Riemannian metric associated with ϕ(t) and K is a positive constant. If u(t) is a positive
solution of the heat equation, then on M × (0, T ] the following estimate

|∇g(t)u(t)|2g(t) ≤ u(t)

t

(
u(t) ln

A

u(t)
+ λA2 − λη2

)
(3.8)

holds, where η = min
M

u(0), A = max
M

u(0) and λ is a constant depending on K , η and T .

Proof First, using the Bochner technique with the flow equation, we have that

(∂t − �)|∇u|2 = −2|∇2u|2 + 2

3
|T|2|∇u|2 − 4

∑
1≤k≤7

∣∣∣∣
∑

1≤i≤7

Tik∇i u

∣∣∣∣
2

. (3.9)

Let λ be a constant to be fixed later. Setting

P = t
|∇u|2
u

− u ln
A

u
+ λu2,

some calculations show that

∂t

( |∇u|2
u

)
= ∂t |∇u|2

u
− |∇u|2

u2
∂t u,

�

( |∇u|2
u

)
= �|∇u|2

u
+ �

(
1

u

)
|∇u|2 + 2∇

(
1

u

)
· ∇(|∇u|2)

= �|∇u|2
u

−
(

�u

u2
− 2

|∇u|2
u3

)
|∇u|2 − 4

u2
∑

1≤i, j≤7

ui j ui u j ,

∂t

(
u ln

A

u

)
= �

(
u ln

A

u

)
+ |∇u|2

u
,

∂t
(
u2
) = �

(
u2
)− 2|∇u|2.
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Combining these equations we obtain

(∂t − �) P = t

(
∂t

|∇u|2
u

− �
|∇u|2
u

)
− 2λ|∇u|2

= t

(
(∂t − �)|∇u|2

u
− 2

|∇u|4
u3

+ 4

u2
∑

1≤i, j≤7

ui j ui u j

)
− 2λ|∇u|2

= t

u

(
− 2|∇2u|2 + 2

3
|T|2|∇u|2 − 4

∑
1≤k≤7

∣∣∣∣
∑

1≤i≤7

Tikui

∣∣∣∣
2)

− 2t

u

( |∇u|4
u2

− 2

u

∑
1≤i, j≤7

ui j ui u j

)
− 2λ|∇u|2

= −2t

u

∑
1≤i, j≤7

∣∣∣ui j − uiu j

u

∣∣∣2 +
(
2t

3u
|T|2 − 2λ

)
|∇u|2

− 4t

u

∑
1≤k≤7

∣∣∣∣
∑

1≤i≤7

Tikui

∣∣∣∣
2

.

Since η ≤ u(0) ≤ A and |T|2 = −R, taking λ ≥ 7KT

3η
, we obtain (∂t − �) P ≤ 0.

According to the maximum principle, we obtain

P(t) ≤ max
M

P(0) = λA2,

which means

|∇u|2 ≤ u

t

(
u ln

A

u
+ λA2 − λu2

)
, (3.10)

where λ is a constant depending on K , η and T . Thus we get the desired result. ��

4 Parabolic frequency on LaplacianG2 flowwith bounded Ricci
curvature

In this section, using the Li-Yau type gradient estimate and Hamilton type gradient estimate,
we study the parabolic frequency for the solutionof the heat equation (1.3) under theLaplacian
G2 flow (1.2) with bounded Ricci curvature.

For a time-dependent function u = u(t) : M × [t0, t1] → R
+ with u(t), ∂t u(t) ∈

W 2,2
0 (dμg(t)) and for all t ∈ [t0, t1] ⊂ (0, T ), we define

I (t) =
∫
M
u2(t)dμg(t),

D(t) = h(t)
∫
M

|∇g(t)u(t)|2g(t)dμg(t) = −h(t)
∫
M

〈u(t),�g(t), f (t)u(t)〉g(t)dμg(t),

U (t) = exp

{
−
∫ t

t0

(
h′(s)
h(s)

− 2

3
R0 + 28 + C1(A, η)

s
+ cK + 7

2
C(s)

)
ds

}
D(t)

I (t)

where h(t) is a time-dependent function, K and c are both positive constants,

R0 = min
M×[t0,t1]

R(t), C1(A, η) = ln
A

η
+ λ

A2

η
, C(t) = C1(A, η)

t
,
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and λ is the constant in Theorem 3.4,

η = min
M

u(0), A = max
M

u(0).

Observe that, A and η are both positive constants.

Lemma 4.1 Under the Laplacian G2 flow (1.2), the norm of the gradient of any smooth
function u(t) satisfies the following equation

(∂t − �)|∇u|2 = −2|∇2u|2 + 2〈∇u,∇(∂t − �)u〉 + 2

3
|T|2|∇u|2

− 4
∑

1≤k≤7

∣∣∣∣
∑

1≤i≤7

Tik∇i u

∣∣∣∣
2

. (4.1)

Proof At first, note that

∂t |∇u|2 = 2Ric(∇u,∇u) + 2

3
|T|2|∇u|2 + 4

∑
1≤i, j≤7

T̂i j∇i u∇ j u + 2〈∇u,∇∂t u〉 (4.2)

Since Ti j is anti-symmetric, we obtain
∑

1≤i, j≤7

T̂i j∇i u∇ j u =
∑

1≤i, j,m≤7

TimT m
j ∇i u∇ j u

= −
∑

1≤i, j,m≤7

(Tim∇i u)(T j
m∇ j u)

= −
∑

1≤k≤7

∣∣∣∣
∑

1≤i≤7

Tik∇i u

∣∣∣∣
2

. (4.3)

Together with the Bochner formula, we obtain the desired result. ��
Theorem 4.2 Let (M, ϕ(t))t∈(0,T ] be the solution of the Laplacian G2 flow (1.2) on a closed
7-dimensional manifold M with T < +∞ and −Kg(t) ≤ Ric(g(t)) ≤ 0, where g(t) is the
Riemannian metric associated with ϕ(t) and K is a positive constant. If u(t) is a positive
solution of the heat equation (1.3) with η ≤ u(0) ≤ A, then the following holds.

(i) If h(t) is a negative time-dependent function, then the parabolic frequency U (t) is
monotone increasing along the Laplacian G2 flow.

(ii) If h(t) is a positive time-dependent function, then the parabolic frequency U (t) is
monotone decreasing along the Laplacian G2 flow.

Proof Before discussing the monotonicity ofU (t), we need to calculate the derivative of I (t)

and D(t). Taking α = 2, a = 1

4
, b = 1

8
in Theorem 3.1, we obtain

|∇u|2
u2

− 2
∂t u

u
≤ 28

t
+ cK , (4.4)

where c = 392

3
+ 448 + 28

√
58. Then we can get the derivative of I (t),

I ′(t) = d

dt

(∫
M
u2dμ

)
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= 2
∫
M

(
u · ∂t u − |∇u|2) dμ − 2

∫
M
u�udμ

= 2
∫
M

(
u · ∂t u − 1

2
|∇u|2

)
dμ − 2

∫
M
u�udμ −

∫
M

|∇u|2dμ

≥ −
(
28

t
+ cK

)
I (t) − 2

∫
M
u�udμ −

∫
M

|∇u|2dμ

≥ −
(
28 + C1(A, η)

t
+ cK + 7C(t)

2

)
I (t) − 2

7C(t)

∫
M

|�u|2dμ. (4.5)

where C1(A, η) = ln
A

η
+ λ

A2

η
, and we use Young’s inequality and Theorem 3.4 in the last

line.
For the derivative of D(t), according to Lemma 4.1, we have

D′(t) = h′(t)
∫
M

|∇u|2dμ + h(t)
d

dt

(∫
M

|∇u|2dμ

)

= h′(t)
∫
M

|∇u|2dμ + h(t)
∫
M

(∂t − �)|∇u|2dμ

= h′(t)
∫
M

|∇u|2dμ − 2h(t)
∫
M

|∇2u|2dμ

+ 2

3
h(t)

∫
M

|T|2|∇u|2dμ − 4h(t)
∫
M

|Tik∇ i u|2dμ. (4.6)

If h(t) < 0, then by (4.6),

D′(t) ≥
(
h′ − 2

3
hR0

)∫
M

|∇u|2dμ − 2h
∫
M

|∇2u|2dμ,

together with (4.5) and Theorem 3.4, yields

I 2(t)U ′(t) ≥ exp

{
−
∫ t

t0

(
h′(s)
h(s)

− 2

3
R0 + 28 + C1(A, η)

s
+ cK + 7C(s)

2

)
ds

}

·
[
−2hI (t)

(∫
M

|∇2u|2dμ

)
+ 2h

7C(t)

(∫
M

|�u|2dμ

)(∫
M

|∇u|2dμ

)]

≥ exp

{
−
∫ t

t0

(
h′(s)
h(s)

− 2

3
R0 + 28 + C1(A, η)

s
+ cK + 7C(s)

2

)
ds

}

·
[
−2h

7
I (t)

(∫
M

|�u|2dμ

)
+ 2h

7C(t)

(∫
M

|�u|2dμ

)(∫
M

|∇u|2dμ

)]

≥ exp

{
−
∫ t

t0

(
h′(s)
h(s)

− 2

3
R0 + 28 + C1(A, η)

s
+ cK + 7C(s)

2

)
ds

}

·
[
−2h

7
I (t)

(∫
M

|�u|2dμ

)
+ 2h

7C(t)
· C1(A, η)

t
I (t)

(∫
M

|�u|2dμ

)]

= 0

where we take trace over |∇2u|2 and let C(t) = C1(A, η)

t
.

On the other hand, if h(t) > 0, similarly, we have

I 2(t)U ′(t) ≤ exp

{
−
∫ t

t0

(
h′(s)
h(s)

− 2

3
R0 + 28 + C1(A, η)

s
+ cK + 7C(s)

2

)
ds

}
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·
[
−2hI (t)

(∫
M

|∇2u|2dμ

)
+ 2h

7C(t)

(∫
M

|�u|2dμ

)(∫
M

|∇u|2dμ

)]

≤ exp

{
−
∫ t

t0

(
h′(s)
h(s)

− 2

3
R0 + 28 + C1(A, η)

s
+ cK + 7C(s)

2

)
ds

}

·
[
−2h

7
I (t)

(∫
M

|�u|2dμ

)
+ 2h

7C(t)
· C1(A, η)

t
I (t)

(∫
M

|�u|2dμ

)]

= 0.

Thus we get the desired result. ��
We define the first nonzero eigenvalue of the Laplacian G2 flow (M, ϕ(t))t∈(0,T ] with the

weighted measure dμg(t) by

λM (t) = inf

⎧⎪⎪⎨
⎪⎪⎩

∫
M

|∇g(t)u|2g(t)dμg(t)∫
M
u2dμg(t)

∣∣∣∣∣∣∣∣
0 < u ∈ C∞(M) \ {0}

⎫⎪⎪⎬
⎪⎪⎭

.

Then we have the following corollary by Theorem 4.2.

Corollary 4.3 Let (M, ϕ(t))t∈(0,T ] be the solution of the Laplacian G2 flow (1.2) on a closed
7-dimensional manifold M with T < +∞ and −Kg(t) ≤ Ric(g(t)) ≤ 0, where g(t) is the
Riemannian metric associated with ϕ(t) and K is a positive constant. If u(t) is a positive
solution of the heat equation (1.3) with η ≤ u(0) ≤ A, then for any t ∈ [t0, t1] ⊂ (0, T ), the
following holds.

(i) If h(t) is a negative time-dependent function, then β(t)h(t)λM (t) is a monotone
increasing function.

(ii) If h(t) is a positive time-dependent function, then β(t)h(t)λM (t) is a monotone
decreasing function.

where

β(t) = exp

{
−
∫ t

t0

(
h′(s)
h(s)

− 2

3
R0 + 28 + C1(A, η)

s
+ cK + 7C(s)

2

)
ds

}
.

Corollary 4.4 Let (M, ϕ(t))t∈(0,T ] be the solution of the Laplacian G2 flow (1.2) on a closed
7-dimensional manifold M with T < +∞ and −Kg(t) ≤ Ric(g(t)) ≤ 0, where g(t) is the
Riemannian metric associated with ϕ(t) and K is a positive constant. If u(t) is a positive
solution of the heat equation (1.3) with η ≤ u(0) ≤ A, then for any t ∈ [t0, t1] ⊂ (0, T ),

I (t1) ≥ exp

{
2U (t0)

∫ t1

t0

dt

−h(t)β(t)

}
I (t0).

Proof We give the proof of case h(t) < 0 (The case h(t) > 0 is similar to it). According to
the definition of U (t), yields

d

dt
ln(I (t)) = I ′(t)

I (t)
= − 2D(t)

h(t)I (t)
= 2U (t)

−h(t)β(t)
. (4.7)

By Theorem 4.2, integrating (4.7) from t0 to t1, we get

ln I (t1) − ln I (t0) = 2
∫ t1

t0

U (t)

−h(t)β(t)
dt ≥ 2U (t0)

∫ t1

t0

dt

−h(t)β(t)
.
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From the boundedness of time-dependent function h(t), we have

I (t1) ≥ exp

{
2U (t0)

∫ t1

t0

dt

−h(t)β(t)

}
I (t0).

We prove this corollary. ��

5 Parabolic frequency on LaplacianG2 flowwith bounded Bakry-Émery
Ricci curvature

In this section, we study the parabolic frequency for the solution of the linear equation (5.1)
and themore general equations under theLaplacianG2 flow (1.2)with boundedBakry-Émery
Ricci curvature.

For a time-dependent function u = u(t) : M × [t0, t1] → R with u(t), ∂t u(t) ∈
W 2,2

0 (dμg(t)) for all t ∈ [t0, t1] ⊂ (0, T ), we denote by

I (t) =
∫
M
u2(t)dμg(t),

D(t) = h(t)
∫
M

|∇g(t)u(t)|2g(t)dμg(t)

= −h(t)
∫
M

〈u(t),�g(t), f (t)u(t)〉g(t)dμg(t),

U (t) = exp

{
−
∫ t

t0

(
−2

3
R0 + h′(s) + κ(s)

h(s)

)
ds

}
D(t)

I (t)
,

where R0 = min
M×[t0,t1]

R(t), h(t) and κ(t) are both time-dependent smooth functions.

5.1 Parabolic frequency for the linear heat equation under Laplacian G2 flow

In this section, we consider the parabolic frequency U (t) for the solution of the linear heat
equation

(∂t − �g(t))u(t) = a(t)u(t) (5.1)

under the Laplacian G2 flow (1.2), where a(t) is a time-dependent smooth function. At first,
we give some lemmas.

Lemma 5.1 For any u ∈ W 2,2
0 (dμg(t)), we have∫

M
|∇2

g(t)u|2g(t)dμg(t) =
∫
M

(
|�g(t), f (t)u|2g(t) − Ric f (t)(∇g(t)u,∇g(t)u)

)
dμg(t).

Proof This result has been proved in Lemma 1.13 of [5]. ��
Theorem 5.2 Let (M, ϕ(t))t∈[0,T ] be the solution of the Laplacian G2 flow (1.2) on a closed

7-dimensional manifold M with T < +∞ and Ric f (t) ≤ κ(t)

2 h(t)
g(t), where g(t) is the

Riemannian metric associated with ϕ(t).

(i) If h(t) is a negative time-dependent function, then the parabolic frequency U (t) is
monotone increasing along the Laplacian G2 flow.
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(ii) If h(t) is a positive time-dependent function, then the parabolic frequency U (t) is
monotone decreasing along the Laplacian G2 flow.

Proof We only give the proof of the first case (The second case is similar to it). Our main
purpose is to compute the I ′(t) and D′(t). Under the Laplacian G2 flow (1.2), combining
with the linear heat equation (5.1) and Lemma 4.1, we can obtain

(∂t − �)|∇u|2 = 2〈∇u,∇(∂t − �)u〉 − 2|∇2u|2 + 2

3
|T|2|∇u|2

− 4
∑

1≤k≤7

∣∣∣∣
∑

1≤i≤7

Tik∇i u

∣∣∣∣
2

= 2a(t)|∇u|2 − 2|∇2u|2 + 2

3
|T|2|∇u|2 − 4

∑
1≤k≤7

∣∣∣∣
∑

1≤i≤7

Tik∇i u

∣∣∣∣
2

. (5.2)

From (2.8) and integration by parts, we get the derivative of I (t) as follow

I ′(t) =
∫
M

(
2u∂t u − u2

�K
K

)
dμ

=
∫
M

(
2u∂t u − �(u2)

)
dμ

=
∫
M

(
2u∂t u − 2u�u − 2|∇u|2) dμ

= − 2

h
D(t) + 2a(t)I (t). (5.3)

If we write

Î (t) = exp

{
−
∫ t

t0
2a(s)ds

}
I (t),

then we can easily find

Î ′(t) = − 2

h
exp

{
−
∫ t

t0
2a(s)ds

}
D(t). (5.4)

Next, it turns to compute the derivative of D(t). Using (2.8), (5.2) and the assumption of
the Bakry-Émery Ricci curvature, we obtain

D′(t) = h′
∫
M

|∇u|2dμ + h
∫
M

(
∂t |∇u|2 − |∇u|2 �K

K

)
dμ

= h′
∫
M

|∇u|2dμ + h
∫
M

(∂t − �)|∇u|2dμ

= (2ah + h′)
∫
M

|∇u|2dμ − 2h
∫
M

|∇2u|2dμ + 2

3
h
∫
M

|T|2|∇u|2dμ

− 4h
∫
M

|Tik∇ i u|2dμ

≥ (2ah + h′ − 2

3
hR0)

∫
M

|∇u|2dμ − 2h
∫
M

|∇2u|2dμ

= (2ah + h′ − 2

3
hR0)

∫
M

|∇u|2dμ − 2h
∫
M

[|� f u|2 − Ric f (∇u,∇u)
]
dμ
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≥ (κ + 2ah + h′ − 2

3
hR0)

∫
M

|∇u|2dμ − 2h
∫
M

|� f u|2dμ

=
(
2a − 2

3
R0 + h′ + κ

h

)
D(t) − 2h

∫
M

|� f u|2dμ.

where we write R0 = min
M×[t0,t1]

R(t). Similarly, if we write

D̂(t) = exp

{
−
∫ t

t0

[
2a(s) − 2

3
R0 + h′(s) + κ(s)

h(s)

]
ds

}
D(t),

then we get

D̂′(t) ≥ −2h exp

{
−
∫ t

t0

[
2a(s) − 2

3
R0 + h′(s) + κ(s)

h(s)

]
ds

}∫
M

|� f u|2dμ. (5.5)

Finally, the parabolic frequency U (t) can be written as U (t) = D̂(t)

Î (t)
. By (5.4) and (5.5),

we can compute the derivative of U (t)

Î 2(t)U ′(t) = D̂′(t) Î (t) − Î ′(t)D̂(t)

≥ −2h exp

{
−
∫ t

t0

[
4a(s) − 2

3
R0 + h′(s) + κ(s)

h(s)

]
ds

}

·
[(∫

M
|� f u|2dμ

)
·
(∫

M
|u|2dμ

)
−
(∫

M
|∇u|2dμ

)2
]

≥ −2h exp

{
−
∫ t

t0

[
4a(s) − 2

3
R0 + h′(s) + κ(s)

h(s)

]
ds

}

·
[(∫

M
〈u(t),� f u〉dμ

)2
−
(∫

M
|∇u|2dμ

)2
]

= 0. (5.6)

The last inequality is directly obtained by the definition of D(t) and the Cauchy-Schwarz
inequality. ��

Then we have the following

Corollary 5.3 Let (M, ϕ(t))t∈[0,T ] be the solution of the Laplacian G2 flow (1.2) on a closed

7-dimensional manifold M with T < +∞ and Ric f (t) ≤ κ(t)

2 h(t)
g(t), where g(t) is the

Riemannian metric associated with ϕ(t). If u(t1) = 0, then u(t) ≡ 0 for any t ∈ [t0, t1] ⊂
(0, T ).

Proof We give the proof of case h(t) < 0 (The case h(t) > 0 is similar to it). Recalling the
definition of U (t), we get

d

dt
ln(I (t)) = I ′(t)

I (t)
= − 2D(t)

h(t)I (t)
+ 2a(t)

= − 2

h(t)
exp

{∫ t

t0

(
−2

3
R0 + h′(s) + κ(s)

h(s)

)
ds

}
U (t) + 2a(t). (5.7)
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According to Theorem 5.2 and integrating (5.7) from t ′ to t1 for any t ′ ∈ [t0, t1], yields
ln I (t1) − ln I (t ′)

= −2
∫ t1

t ′
exp

{∫ t

t0

(
h′(s) + κ(s)

h(s)
− 2

3
R0

)
ds

}
U (t)

h(t)
dt + 2

∫ t1

t ′
a(t)dt

≥ −2U (t0)
∫ t1

t ′
exp

{∫ t

t0

(
h′(s) + κ(s)

h(s)
− 2

3
R0

)
ds

}
dt

h(t)
+ 2

∫ t1

t ′
a(t)dt .

Since a(t), h(t) are finite, it follows from the last inequality that

I (t1)

I (t ′)
≥ exp

{
−2U (t0)

∫ t1

t ′
exp

{∫ t

t0

(
h′(s) + κ(s)

h(s)
− 2

3
R0

)
ds

}
dt

h(t)

+2
∫ t1

t ′
a(t)dt

}
,

which implies Corollary 5.3. ��
Remark 5.4 If we let

− 2

h(t)
exp

{∫ t

t0

(
h′(s) + κ(s)

h(s)
− 2

3
R0

)
ds

}
≡ C3,

and a′(t) ≥ 0, where C3 is a constant, then we get ln I (t) is convex, which is a parabolic
version of the classical Hadamard’s three-circle theorem for holomorphic functions. For
example, if we let

h ≡ C4, κ = 2

3
R0C4,

where C4 is any constant, then we get the classical Hadamard’s three-circle theorem.

5.2 Parabolic frequency for themore general parabolic equations under Laplacian
G2 flow

This section considers the parabolic frequency for more general parabolic equations. We
use the definition of parabolic frequency in Sect. 5.1, here we assume h(t) is the negative
smooth function.

Theorem 5.5 Suppose that u(t) satisfies

|(∂t − �g(t))u(t)| ≤ C(t)
(|∇g(t)u(t)|g(t) + |u(t)|)

along the Laplacian G2 flow (1.2). Then

(ln I (t))′ ≥ −(2 + C(t)
)
exp

{∫ t

t0

(
−2

3
R0 + h′(s) + κ(s)

h(s)

)
ds

}
U (t)

h(t)
− 3C(t),

U ′(t) ≥ C2(t)

(
U (t) + h(t) exp

{∫ t

t0

(
−2

3
R0 + h′(s) + κ(s)

h(s)

)
ds

})
.

Proof At first, we calculate

I ′(t) =
∫
M

(
2u∂t u − 2u�u − 2|∇u|2) dμ
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= − 2

h
D(t) + 2

∫
M
u(∂t − �)udμ

≥ − 2

h
D(t) − 2C

∫
M

|u|(|∇u| + |u|)dμ

= − 2

h
D(t) − 2C I (t) − 2C

∫
M

|∇u||u|dμ

≥ − 2

h
D(t) − 3C I (t) − C

h
D(t)

= −2 + C

h
D(t) − 3C I (t)

= −(2 + C) exp

{∫ t

t0

(
−2

3
R0 + h′(s) + κ(s)

h(s)

)
ds

}
I (t)

U (t)

h
− 3C I (t).

Then we get the first inequality.
For the second inequality, we write

D(t) = −h
∫
M
u

(
� f + 1

2
(∂t − �)

)
udμ+h

2

∫
M

(∂t − �)udμ.

Then from (5.3), we get

I ′(t) =
∫
M

(
2u∂t u − 2u�u − 2|∇u|2) dμ

= 2
∫
M
u(� f + ∂t − �)udμ

= 2
∫
M
u

(
� f + 1

2
(∂t − �)

)
udμ +

∫
M

(∂t − �)udμ.

From the above two equalities, we get

I ′(t)D(t) = −2h

(∫
M
u

(
� f + 1

2
(∂t − �)

)
udμ

)2
+h

2

(∫
M

(∂t − �)udμ

)2

.

According to Lemma 4.1 and Lemma 5.1, we can calculate

D′(t) = h′
∫
M

|∇u|2dμ + h
∫
M

(∂t − �)|∇u|2dμ

= h
∫
M

(h′

h
|∇u|2 − 2|∇2u|2 + 2〈∇u,∇(∂t − �)u〉

+ 2

3
|T|2|∇u|2 − 4|Tik∇i u|2

)
dμ

= h
∫
M

(h′

h
|∇u|2 − 2|� f u|2 + 2Ric f (∇u,∇u) − 2� f u · (∂t − �)u

+ 2

3
|T|2|∇u|2 − 4|Tik∇i u|2

)
dμ

= 2h
∫
M

(
Ric f (∇u,∇u) + h′

2h
|∇u|2 + 1

3
|T|2|∇u|2 − 2|Tik∇i u|2

)
dμ

− 2h
∫
M

(|� f u|2 + � f u · (∂t − �)u
)
dμ
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≥
∫
M

(
κ + h′ − 2

3
hR0

)
|∇u|2dμ − 2h

∫
M

(|� f u|2 + � f u · (∂t − �)u
)
dμ

= −2h
∫
M

(∣∣∣∣
(

� f + 1

2
(∂t − �)

)
u

∣∣∣∣
2

− 1

4
|(∂t − �)u|2

)
dμ

+
(

κ + h′ − 2

3
hR0

)
D(t)

h
.

where R0 = min
M×[t0,t1]

R(t).

Together with the above, using Cauchy-Schwarz inequality, yields

I 2(t)U ′(t) = exp

{
−
∫ t

t0

(
−2

3
R0 + h′(s) + κ(s)

h(s)

)
ds

}

·
[(

2

3
R0 − h′(s) + κ(s)

h(s)

)
I (t)D(t) + I (t)D′(t) − I ′(t)D(t)

]

≥ exp

{
−
∫ t

t0

(
−2

3
R0 + h′(s) + κ(s)

h(s)

)
ds

}

·
{

−2hI (t)
∫
M

(∣∣∣∣
(

� f + 1

2
(∂t − �)

)
u

∣∣∣∣
2

− 1

4
|(∂t − �)u|2

)
dμ

+ 2h

(∫
M
u

(
� f + 1

2
(∂t − �)

)
udμ

)2
− h

2

(∫
M

(∂t − �)udμ

)2
}

≥ h

2
I (t) exp

{
−
∫ t

t0

(
−2

3
R0 + h′(s) + κ(s)

h(s)

)
ds

}∫
M

|(∂t − �)u|2dμ

≥ h

2
I (t)C2 exp

{
−
∫ t

t0

(
−2

3
R0 + h′(s) + κ(s)

h(s)

)
ds

}∫
M

(|∇u| + |u|)2dμ

≥ C2 exp

{
−
∫ t

t0

(
−2

3
R0 + h′(s) + κ(s)

h(s)

)
ds

}
I (t)
(
D(t) + hI (t)

)
.

Then we prove this Theorem. ��
Corollary 5.6 Suppose that u(t) : M × [t0, t1] → R satisfies

|(∂t − �g(t))u(t)| ≤ C(t)
(|∇g(t)u(t)|g(t) + |u(t)|)

along the Laplacian G2 flow (1.2). Then

I (t1) ≥ I (t0) exp

{∫ t1

t0
−(2 + sup

[t0,t1]
C(t)

)
exp

{∫ t

t0

(
−2

3
R0 + h′(s) + κ(s)

h(s)

)
ds

}

· 1

h(t)

[
exp

{
−
∫ t

t0
C2(s)ds

}
U (t0) + exp

{
−
∫ t

t0
C2(s)ds

}

·
∫ t1

t0
exp

{∫ τ

t0

(
−2

3
R0 + h′(s) + κ(s)

h(s)
−C2(s)

)
ds

}
dτ

]
dt

−3
∫ t1

t0
sup
[t0,t1]

C(t)dt

}
.

In particular, if u(t1) = 0, then u ≡ 0 for all t ∈ [t0, t1].
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Proof By the first inequality in Theorem 5.5, we get

ln(I (t1)) − ln(I (t0))

≥
∫ t1

t0
−(2 + C(t)) exp

{∫ t

t0

(
−2

3
R0 + h′(s) + κ(s)

h(s)

)
ds

}
U (t)

h(t)
dt

−
∫ t1

t0
3C(t)dt . (5.8)

If we write Û (t) as Û (t) = exp{− ∫ tt0 C2(s)ds}U (t), then from the second inequality in
Theorem 5.5, we have

Û (t)′ ≥ h(t)C2(t) exp

{∫ t

t0

(
−2

3
R0 + h′(s) + κ(s)

h(s)
−C2(s)

)
ds

}
. (5.9)

Integrating (5.9) from t0 to t for any t ∈ [t0, t1], yields

Û (t) ≥ Û (t0) +
∫ t

t0
h(τ )C2(τ ) exp

{∫ τ

t0

(
−2

3
R0 + h′(s) + κ(s)

h(s)
−C2(s)

)
ds

}
dτ,

which means

U (t) ≥ exp

{
−
∫ t

t0
C2(s)ds

}
U (t0) + exp

{
−
∫ t

t0
C2(s)ds

}

·
∫ t1

t0
h(τ )C2(τ ) exp

{∫ τ

t0

(
−2

3
R0 + h′(s) + κ(s)

h(s)
−C2(s)

)
ds

}
dτ. (5.10)

where we use h(t) is the negative smooth function. Submitting (5.10) to (5.8), we get the
desired result. ��
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