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1 Introduction

In this lecture, we discuss the solution of Bethe ansatz equation (BAE) for the Heisenberg

XXX spin chain. Written in terms of rapidities, the BAE of length L with M magnons take

the following form (
uj +

i
2

uj − i
2

)L

=
M∏
k ̸=j

uj − uk + i

uj − uk − i
, j = 1, . . . ,M. (1.1)

Sometimes it is also useful to write the BAE in the polynomial form

(uj +
i
2
)L

M∏
k=1

(uj − uk − i) + (uj − i
2
)L

M∏
k=1

(uj − uk + i) = 0, j = 1, . . . ,M. (1.2)

Finding solutions of these non-linear algebraic equations is by no means a simple task. Its

solution is also related to the fundamental question of completeness of Bethe ansatz. We

will discuss these points in detail in this lecture.

2 How many solutions do we expect ?

In this section, we count the number of expected solution of BAE with length L and magnon

number M . We consider a slightly more general situation, which is the XXXs model. Later

we will specify to s = 1
2
. Let us denote the irreducible spin-s representation by D(s). Taking

the L-fold tensor product, we have the following decomposition

[D(s)]⊗L =
sL⊕

J=Jmin

ds(L, J)D(J) . (2.1)

where Jmin = 0 or Jmin = 1/2 depending on whether L and s are even or odd. This

decomposition can be computed by a repeated application of the Clebsch-Gordon series

D(ℓ) ⊗D(ℓ′) = D|ℓ′−ℓ| ⊕D|ℓ′−ℓ|+1 ⊕ · · · ⊕ D(ℓ′+ℓ) (2.2)



For example

D(1/2) ⊗D(1/2) ⊗D(1/2) =
(
D(0) ⊕D(1)

)
⊗D(1/2) (2.3)

=
(
D(0) ⊗D(1/2)

)
⊕
(
D(1) ⊗D(1/2)

)
=
(
D(1/2)

)
⊕
(
D(1/2) ⊕D(3/2)

)
=(2D(1/2))⊕D(3/2) .

The spin-J representation is spanned by the states

|J,m⟩, m = −J,−J + 1, . . . , J − 1, J . (2.4)

where m is the magnetization

Sz|J,m⟩ = m|J,m⟩ . (2.5)

In order to compute the degeneracy ds(L, J) in (2.1), let us first compute the number of

states bs(L,M) for a given magnetization m. This can be done as follow

(z−s + z−s+1 + . . .+ zs)L =
sL∑

m=−sL

bs(L,m) zm (2.6)

Now let us compute bs(L,m) in another way. Each spin-J representation with J ≥ |m|
contains one state with magnetization m. Since we have ds(L, J) spin-J representations, we

thus have

bs(L,m) = ds(L, |m|) + ds(L, |m|+ 1) + . . .+ ds(L, sL) . (2.7)

From this relation, it is clear that the number of spin-J representations is given by

ds(L, J) = bs(L, J)− bs(L, J + 1) . (2.8)

Now we focus on the Heisenberg XXX spin chain with s = 1
2
.

XXX1/2 spin chain For this case, we have

(z−1/2 + z1/2)L =

L/2∑
m=−L/2

b1/2(L,m)zm . (2.9)

It is more convenient to write m in terms of magnon number M . They are related by

m =
L

2
−M . (2.10)
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Expanding the left hand side of (2.9), we find

b1/2(L,m) = b1/2(L,−m) =

(
L

|L/2−m|

)
=

(
L

M

)
. (2.11)

For a spin-J representation, its highest weight state or primary state is given by |J, J⟩,
namely it is the state with magnetization m = J ≥ 0. As we have shown in Lecture 2,

Bethe states corresponding to finite solutions1 of BAE are primary states (recall that such

states are annihilated by S+). For an M -magnon Bethe state, the magnetization is given

by

Sz|uM⟩ =
(
L

2
−M

)
|uM⟩ . (2.12)

This implies that theM -magnon Bethe states are the highest weight states of the spin-(L
2
−

M) representation. Since the spin J is non-negative, we restrict to the regime M ≤ L
2
. We

expect that the number of Bethe states |uM⟩ to be the number of spin-(L
2
−M) representations,

which is given by d1/2(L,
L
2
−M). Therefore the number of expected solutions N (L,M) for

BAE of length L and M magnons is given by

N (L,M) = d1/2(L,L/2−M) =

(
L

M

)
−
(

L

M − 1

)
. (2.13)

We will then check whether such an expectation is met.

3 Are all solutions acceptable ?

To see whether we can obtain the expected number of solutions, let us consider a concrete

example. We take L = 4 and M = 2. For small quantum numbers, BAE can be solved

readily by Mathematica or any other standard softwares, which gives 6 solutions :

{u1, u2} = {− i
2
, i
2
}, {− 1

2
√
3
, 1
2
√
3
} (3.1)

and

{u1, u2} = {1
2
± 1√

2
, 1
2
± 1√

2
}, {−1

2
± 1√

2
,−1

2
± 1√

2
}, (3.2)

Taking L = 4 and M = 2 in (2.13), we expect 2 solutions. So there are too many solutions

! What is going on ? As we shall see shortly, the reason is that some of these solutions are

1As we have shown in Lecture 2, rapidities at infinity corresponds to acting S− on the state and thus

corresponds to descendant states.
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non-physical. This means although such solutions indeed satisfy BAE, the corresponding

Bethe state is no longer an eigenstate of the Hamiltonian, or transfer matrix. There are

two kinds of such solutions, which requires more careful analysis. They have both appeared

in our simple example. The first kind are the solutions containing coinciding rapidities,

namely solutions of the form {u, . . . , u︸ ︷︷ ︸
K

, u1, . . . , uM} and the ones containing multiple sets of

coinciding rapidities.

The other kind of solutions are called singular solutions, which refer to the solutions

containing ±i/2, i.e. solutions of the form {i/2,−i/2, u1, . . . , uM}.

3.1 Coinciding rapidities

We first consider solutions with coinciding rapidities. Consider our simple example L = 4,

M = 2. If we plug the solutions (3.2) into the state constructed by coordinate Bethe ansatz

described in Lecture 1, we find that the Bethe states vanish. This is due to the special

choice of the normalization. If, on the other hand, we plug the solutions to the Bethe

state constructed by algebraic Bethe ansatz described in Lecture 2, we obtain a finite Bethe

states, but we can check easily that these states are not eigenstates of the XXX spin chain !

To explain what goes wrong, let us analyze this issue more carefully in the framework of

algebraic Bethe ansatz. We consider the case with two magnons. Recall that in algebraic

Bethe ansatz, the action of the transfer matrix on the Bethe state is given by

T (u)B(u1) . . . B(uM)|Ω⟩ = τ(u|uM)|Ω⟩ (3.3)

+
M∑
k=1

g(u, uk)

(
a(uk)

M∏
j ̸=k

f(uj, uk)− d(uk)
∏
j ̸=k

f(uk, uj)

)
B(u)B(u1) . . . B̂(uk) . . . B(uM)|Ω⟩.

where

f(u, v) =
u− v + i

u− v
, g(u, v) =

i

u− v
. (3.4)

For M = 2, we have

T (u)B(u1)B(u2)|Ω⟩ = τ(u|u2)B(u1)B(u2)|Ω⟩ (3.5)

+
i

(u− u1)(u2 − u1)

(
a(u1)(u2 − u1 + i)− d(u1)(u2 − u1 − i)

)
B(u)B(u2)|Ω⟩

− i

(u− u2)(u2 − u1)

(
a(u2)(u1 − u2 + i)− d(u2)(u1 − u2 − i)

)
B(u)B(u1)|Ω⟩

4



We can set u2 = u1 + ϵ and then take the limit ϵ→ 0. This leads to the following result

T (u)B2(u1)|Ω⟩ = τ(u|{u1, u1})B2(u1)|Ω⟩ −
1

u− u1

(
a(u1) + d(u1)

)
B(u)B′(u1)|Ω⟩ (3.6)

+
i

u− u1

(
2(a(u1)− d(u1))− i(a′(u1)− d′(u1))−

i

u− u1
(a(u1) + d(u1))

)
B(u)B(u1)|Ω⟩

As we can see, besides the original vector B2(u1)|Ω⟩, we obtain two new vectors on the right

hand side, which are B(u)B(u1)|Ω⟩ and B(u)B′(u1)|Ω⟩. The second vector is special which

contains a derivative with respect to B(u1) operator. This kinds of term only shows up in

the case with coinciding rapidities.

Demanding these additional terms to vanish, we obtain two equations

a(u1) + d(u1) = 0, (3.7)

2(a(u1)− d(u1))− i(a′(u1)− d′(u1)) = 0 .

Notice that the second equation is independent from the original BAE and is an extra

condition. We can check that the four solutions (3.2) satisfy the first equation but not the

second. Therefore they do not eliminate the terms B(u)B′(u1)|Ω⟩. This explains why the

resulting Bethe state is not an eigenstate.

What happen for the case of M magnons is similar. If we have uj = uk, various formula

involving f(uj, uk) and g(uj, uk) have singularities. By taking the limit uj → uk, we obtain

vectors containing derivatives of the B-operator. We can verify that there are still N

equations (N−1 BAE and 1 additional condition). Therefore, we always have N equations,

but now we only have N − 1 variables. Therefore, the resulting system is overdetermined.

In some cases, one can prove that such overdetermined system do not have solutions.

How to derive the additional constraint when there are coinciding rapidities ? Here we

introduce two methods.

Method 1. RMM relation in the coinciding limit One straightforward method is

using the RTT -relation in the coinciding limit. We can derive the following commutation

relations involving three operators

A(u)B2(v) = f 2(u, v)B2(v)A(u) + g(u, v)B(u)B′(v)A(v) (3.8)

+ g(u, v)B(u)B(v) [(1 + f(u, v))A(v)− A′(v)]

D(u)B2(v) = f 2(v, u)B2(v)D(u) + g(u, v)B(u)B′(v)D(v)

− g(u, v)B(u)B(v) [(1 + f(v, u))D(v) +D′(v)]
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Together with usual commutation relations, we can compute

(A(u) +D(u))B2(u1)
N∏
j=2

B(uj)|Ω⟩ (3.9)

by moving A and D operators to the right. Demanding the unwanted terms to be zero, we

obtain the corresponding constraints.

Method 2. Polynomiality of transfer matrix The above derivation is straightforward

but tedious. There is a more convenient derivation for the constraints by using polynomiality

of the transfer matrix.

Before moving to the cases with coinciding rapidities, let us show that the BAE can

actually be derived from polynomiality of the transfer matrix. By construction, we know

that the eigenvalue of the transfer matrix should be a polynomial in u. From algebraic

Bethe ansatz, the eigenvalue of the transfer matrix is given by

τ(u|uM) = a(u)
M∏
j=1

u− uj − i

u− uj
+ d(u)

M∏
j=1

u− uj + i

u− uj
(3.10)

where

a(u) =
(
u+ i

2

)L
, d(u) =

(
u− i

2

)L
. (3.11)

Looking at (3.10), there seems to be a pole at u = uk. To be consistent with the fact that

τ(u|uM) is a polynomial in u, this pole must be spurious and its residue must be zero. This

leads to

Resu=uk
τ(u|uM) = a(uk)

M∏
j=1

(uk − uj − i) + d(uk)
M∏
j=1

(uj − uk + i) = 0 , (3.12)

which is exactly the BAE for uk.

The cancellation conditions for solutions of coinciding rapidities can be derived by exactly

the same logic. Consider the K +N magnon solution {u0, u0, . . . , u0, u1, . . . , uN} where the

first K rapidities are coinciding. The eigenvalue of the transfer matrix is given by

τ(u) = a(u)

(
u− u0 − i

u− u0

)K N∏
j=1

u− uj − i

u− uj
+ d(u)

(
u− u0 + i

u− u0

)K N∏
j=1

u− uj + i

u− uj
. (3.13)

By construction, τ(u) is a polynomial in u. Imposing the condition that the residues of the

simple pole vanish, we obtain

a(uj)(uj − u− i)K
N∏
k=1

(uj − uk − i) + d(uj)(uj − u+ i)K
N∏
k=1

(uj − uk + i) = 0 . (3.14)
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Imposing that u = u0 is regular leads to the following K conditions

Rl =
∂l

∂ul

(
τ(u)(u− u0)

K
)∣∣∣

u=u0

= 0, l = 0, . . . , K − 1 . (3.15)

One can check that these conditions coincide with the ones derived from the first method.

Different models To obtain physical solutions with coinciding rapidities, we impose extra

conditions apart from BAE. Sometimes such a system do not have solutions, while others

do. In the case of Lieb-Liniger model one can prove rigorously that the combined system

does not have solution [Izergin-Korepin] and therefore in this model repeated roots are not

allowed.

For the Heisenberg XXXs spin chain where

a(u) = (u+ is)L, d(u) = (u− is)L , (3.16)

the situation is more complicated. For our current case, there are good evidence that for

s = 1/2 we do not have physical solutions with repeated roots. For s ≥ 1, there are in

fact repeated roots which are physical [Hao, Nepomechie]. But it would be nice to prove

rigorously that repeated roots are definitely ruled out for s = 1/2.

3.2 Singular solutions

Now we turn to the singular solutions, which take the following form

{ i
2
,− i

2
, u3, . . . , uM} . (3.17)

In our example of L = 4, M = 2, we have already seen such a solution. We immediately see

a problem if we want to compute the eigenvalues corresponding to such solutions. Recall

that the energy reads

E ∼
M∑
k=1

1

u2k + 1/4
. (3.18)

It is obviously divergent if some of the roots become ±i/2. Similarly, we also have singular-

ities in the eigenvector. If we choose the algebraic Bethe ansatz normalization in Lecture

2, we find that B(i/2)B(−i/2)|Ω⟩ is a null vector. One can easily prove that this is due

to the fact B(−i/2)|Ω⟩ = 0. Does this mean we should discard such solutions ? This is a

bit too quick. As usual, in theoretical physics, when there are singularities, we should first

regularize it to obtain finite results and see whether the resulting finite answer makes sense.
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We shall follow this standard practice. In order to regularized the eigenvector, we choose a

different normalization for the Lax matrix. Let us consider

L̃an(u) =
1

u+ i/2
Lan(u), Lan(u) = (u− i

2
)Ian + iPan . (3.19)

where Lan(u) is the previous Lax operator defined in Lecture 2. In this new normalization,

we have

M̃a(u) =
1

(u+ i/2)L
Ma(u) . (3.20)

In particular,

B̃(u) =
1

(u+ i/2)L
B(u) . (3.21)

In this normalization, the Bethe state B̃(i/2)B̃(−i/2)|Ω⟩ now has a 0/0 ambiguity. Let us

first can consider the following naive regularization

unaive1 =
i

2
+ ϵ, unaive2 = − i

2
+ ϵ . (3.22)

We plug this solution to the explicit expressions for the eigenvalue and eigenstate. To see

whether the regularization makes sense, we perform a direct brute force diagonalization of

the Hamiltonian

H =
1

4

L∑
n=1

(σ⃗n · σ⃗n+1 − 1) (3.23)

and compare with the results we obtain from Bethe ansatz. For the Hamiltonian (3.23), the

corresponding eigenvalue is

E = −1

2

M∑
k=1

1

u2k + 1/4
. (3.24)

The naive regularization (3.22) yields a finite answer for the eigenvalue in the limit ϵ → 0,

which gives E = −1. This is indeed one of the eigenvalues from brute force diagonalization.

The naive regularization also leads to a finite vector. However, this finite vector is not

an eigenvector of the Hamiltonian (3.23) ! After a little bit of thought, we conclude that

one should not be surprised by this fact. What we are trying to do is getting a finite answer

for

1

N (u1, u2)
B(u1)B(u2)|Ω⟩ (3.25)
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in the limit where u1 → i/2 and u2 → −i/2. However, the finite answer in general depends

on how the two Bethe roots tend to their limiting values. For example, consider the following

limit

lim
x,y→0

x− y

x+ y
(3.26)

This limit is ambiguous and depends on how x and y tend to zero. We can take, for example

x = 4ϵ, y = 3ϵ, or x = ϵ2 + ϵ, y = −ϵ2 + ϵ with ϵ → 0, which lead to different answers.

Therefore, the key point is finding a proper regularization scheme which allows us to obtain

the correct eigenvalue and eigenvector. There are two regularizations in the literature.

Prescription 1 The first one is the following modified regularization

u1 =
i

2
+ ϵ+ c ϵL, u2 = − i

2
+ ϵ , (3.27)

where c is a constant to be determined for different L and M . In our L = 4, M = 2

example, it turns out that c = 2i. Let us analyze this in more detail using ABA. Recall

that the action of the transfer matrix on the off-shell Bethe state is given by (we use the

new normalization in (3.20))

T̃ (u)|u1, . . . , uM⟩ = τ(u|uM)|u1, . . . , uM⟩ (3.28)

+
M∑
k=1

Fk(u|uM)B̃(u1) · · · ̂̃B(uk) · · · B̃(uM)B(u)|Ω⟩

where τ(u|uM) is the eigenvalue of the transfer matrix and Fk are given by

Fk(u|uM) =
i

u− uk

[
M∏
j ̸=k

(
uk − uj − i

uk − uj

)
−
(
uk − i

2

uk +
i
2

)L M∏
j ̸=k

(
uk − uj + i

uk − uj

)]
. (3.29)

Let us first focus on the two magnon sectorM = 2. We first consider the naive regularization

(3.22) and see what goes wrong. The key observation is that

lim
ϵ→0

B̃( i
2
+ ϵ) ∼ finite, (3.30)

lim
ϵ→0

B̃(− i
2
+ ϵ) ∼ 1

ϵL
+ less singular terms

In order the unwanted terms

F1(u|u2)B̃(u2)|Ω⟩+ F2(u|u2)B̃(u1)|Ω⟩ (3.31)
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to vanish in the ϵ → 0 limit, the coefficients F1(u|u2) and F2(u|u2) should go to zero at

least at the speed

F1(u|u2) ∼ ϵL+1, F2(u|u2) ∼ ϵ . (3.32)

However, explicit calculations show that F1 ∼ ϵL (instead of ϵL+1) and F2 ∼ 1 (instead of ϵ).

Hence, the unwanted terms are finite in the limit and that’s why the corresponding Bethe

vector is not an eigenvector.

Now we consider the modified regularization (3.27), explicit calculations lead to

F1(u|u2) =

(
c+ 2i−L+1

u− i
2

)
ϵL +O(ϵL+1), (3.33)

F2(u|u2) =

(
2i− i−Lc

u+ i
2

)
+O(ϵ).

In order to satisfy (3.32), we require the leading terms in (3.33) to vanish. For even L, both

conditions can be satisfied by taking

c = 2i(−1)L/2 . (3.34)

For odd L, we cannot satisfy both conditions. Indeed, it is found that in general there are

no singular solutions for spin chains with odd length. One can check that the choice (3.34)

reproduces the correct eigenvector for L = 4, M = 2.

Encouraged by this example, we consider the general singular solution

{ i
2
,− i

2
, u3, . . . , uM}. (3.35)

The Bethe equations imply that the last M − 2 Bethe roots obey(
uk +

i
2

uk − i
2

)L−1(
uk − 3i

2

uk +
3i
2

)
=

M∏
j ̸=k
j=3

uk − uj + i

uk − uj − i
, k = 3, . . . ,M . (3.36)

These equations ensures that Fk(u|uM) = 0 for k = 3, . . . ,M . To make sure all the unwanted

terms vanish, we require that

F1(u|uM) ∼ ϵL+1, F2(u|uM) ∼ ϵ (3.37)

Similarly, these requirement lead to two constraints on the constant c in the modified

regularization. The constraints can be solved readily, yielding

c = − 2

iL+1

M∏
j=3

uj − 3i
2

uj +
i
2

, c = 2iL+1

M∏
j=3

uj +
3i
2

uj − i
2

(3.38)
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respectively. For the two equations in (3.38) to be consistent, we must have

M∏
j=3

(
uj − i

2

uj +
i
2

)(
uj − 3i

2

uj +
3i
2

)
= (−1)L (3.39)

Making use of the BAE (3.36), we can rewrite the above consistency condition as[
−

M∏
k=3

(
uk +

i
2

uk − i
2

)]L
= 1 . (3.40)

The conclusion is that, if the Bethe roots {u3, . . . , uM} satisfy both (3.36) and (3.40), we

can make sure that all the unwanted terms vanish and obtain correct eigenstates. These

solutions are called singular physical solutions. If the Bethe roots only satisfy (3.36) but

not (3.40), they are called singular non-physical solutions.

Prescription 2 The above prescription, although works fine, might be well criticized as

somewhat ad hoc. Therefore, here we discuss another way of regularizing the solution which

has more clear physical meaning. Let us consider the following equation(
uj +

i
2

uj − i
2

)L

= e−iβ

M∏
k ̸=j

uj − uk + i

uj − uk − i
, j = 1, . . . ,M . (3.41)

This is in fact the Bethe ansatz equation of the XXX spin chain with the following twisted

boundary condition

σx
L+1 = cos β σx

1 − sin β σy
1 , (3.42)

σy
L+1 = sin β σx

1 + cos β σy
1 ,

σz
L+1 = σz

1 .

We assume that for small β, the roots ±i/2 of physical singular solution acquire some small

correction of order β,

u1 =
i

2
+ c1 β +O(β2) , u2 = − i

2
+ c2 β +O(β2) . (3.43)

Consider the Bethe equations for u1 and u2 in the polynomial form

(
u1 +

i
2

)L
(u1 − u2 − i)

M∏
k=3

(u1 − uk − i) = e−iβ
(
u1 − i

2

)L
(u1 − u2 + i)

M∏
k=3

(u1 − uk + i) ,

(
u2 +

i
2

)L
(u2 − u1 − i)

M∏
k=3

(u2 − uk − i) = e−iβ
(
u2 − i

2

)L
(u2 − u1 + i)

M∏
k=3

(u2 − uk + i) .
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Plugging (3.43) into the above equation, expand both sides in β, and require that these

equations are satisfied up to first order in β, we obtain

c1 = c2 . (3.44)

Taking the product of all Bethe ansatz equations in (3.41), we obtain(
u1 +

i
2

u1 − i
2

u2 +
i
2

u2 − i
2

M∏
j=3

uj +
i
2

uj − i
2

)L

= e−iMβ (3.45)

Now plugging the expansion (3.43) into the above equation using c1 = c2, we obtain(
c1 β + i

c1β − i

M∏
j=3

uj +
i
2

uj − i
2

)L

= e−iMβ (3.46)

The limit β → 0 can be taken readily and leads to[
−

M∏
j=3

(
uj +

i
2

uj − i
2

)]L
= 1 . (3.47)

This is the same condition as we derived before. The rest rapidities satisfy the usual Bethe

equations.

3.3 Roots at infinity

Finally, let us discuss roots at infinity. Let us consider the BAE with M + 1 magnons.

Suppose we take uM+1 → ∞, the BAE corresponding to uM+1 becomes trivial and we are

left with M non-trivial BAE. The dependence on uM+1 in these equations also decouple

since

lim
uM+1→∞

uk − uM+1 − i

uk − uM+1 + i
= 1 . (3.48)

We thus recover a BAE of M magnons. The magnon with infinite rapidity has zero energy.

We see that adding roots at infinity to a Bethe state |uM⟩ does not change the energy or

BAE of the original state. But the magnon number is changed.

As we discussed in Lecture 2, adding a root at infinity corresponds to acting a S− on

the primary state. The existence of such states is related to the fact that Heisenberg XXX

spin chain is SU(2) invariant. If we introduce the twisted boundary condition, which breaks

the SU(2) invariance, we see immediately that roots at infinity are not allowed.

When considering solutions of BAE, we usually only consider the cases where the

rapidities are finite. The solutions at infinity can be taken into account straightforwardly

by symmetry considerations.
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3.4 Summary

Let us summarize what we have learned so far

1. When there are coinciding rapidities, extra conditions need to imposed to ensure all the

unwanted terms vanish. These condition lead to overdetermined system of equations.

In the Heisenberg XXX spin chain, numerical evidences show that this overdetermined

system is not solvable. As a result, coinciding rapidities are not allowed. However, a

rigorous proof like the one for the Lieb-Liniger model [1] is still lacking.

2. Singular roots need to be regularized carefully. After proper regularizations, we see

that some of the singular solutions are physical while others are not. The physical

singular solutions need to satisfy an additional condition (3.40).

3. Roots at infinity are allowed due to SU(2) invariance. Adding roots at infinity

corresponds to acting S− on the corresponding Bethe state.

Completeness conjecture Let us end this part of the story by a conjecture of complete-

ness formulated by Hao, Nepomechie and Sommese [2]. For the Bethe equation of length L

and M magnons, let us denote the solution of non-singular and physical singular without

repeated roots by N1(L,M) and N2(L,M). HNS conjectured is that

N1(L,M) +N2(L,M) =

(
L

M

)
−
(

L

M − 1

)
. (3.49)

We see the right hand side is precisely the number of solutions that we expect in (2.13).

This conjecture, if valid, tells us the following things

• If we solve BAE directly, there are in general too many solutions;

• We need to discard solutions with coinciding rapidities and non-physical singular

solutions;

• Bethe ansatz for Heisenberg XXX spin chain is complete.

This conjecture is tested quite non-trivially up to L = 14 in [2].
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4 Baxter’s TQ-relation

In this section, we consider an alternative formulation of the Bethe ansatz equation, which

is Baxter’s TQ-relation. Recall that the eigenvalue of the transfer matrix is

τ(u|uM) = a(u)
M∏
j=1

u− uj − i

u− uj
+ d(u)

M∏
j=1

u− uj + i

u− uj
. (4.1)

Let us define the following Q-polynomial

Q(u) =
M∏
j=1

(u− uj), (4.2)

whose zeros are the Bethe roots. We can write (from now on, to simplify the notation, we

will simply write τ(u|uM) as τ(u).)

τ(u)Q(u) = a(u)Q(u− i) + d(u)Q(u+ i) . (4.3)

This is called the TQ-relation. It is equivalent to the Bethe ansatz equation. This can be

seen as follows. Evaluate both sides at u = uj where uj is one of the Bethe roots, we obtain

a(uj)Q(uj − i) + d(uj)Q(uj + i) = 0, (4.4)

which is the polynomial form of BAE. Now because both τ(u) and Q(u) are polynomials of

degree L and M respectively, we can make the following ansatz

τ(u) =
L∑

k=0

tk u
k, Q(u) = uM +

M−1∑
k=0

cku
k . (4.5)

Plugging the ansatz (4.5) into (4.3) and compare the coefficients of uk, (k = 0, . . . , L) on

both sides of the equation, we obtain a set of algebraic equations for {tj, cj}. Solving these

equations, we obtain {tj, cj} simultaneously, which in turn determine τ(u) and Q(u).

Example 1 Let us again consider the L = 4, M = 2 example. The TQ-relation reads(
t4u

4 + t3u
3 + t2u

2 + t1u+ t0
)
(u2 + c1u+ c0) (4.6)

=(u+ i
2
)4
[
(u− i)2 + c1(u− i) + c0

]
+ (u− i

2
)4
[
(u+ i)2 + c1(u+ i) + c0

]
.
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Expanding both sides in u and compare the coefficients, we obtain the following 7 equations

t4 − 2 = 0 , (4.7)

t4 c1 + t3 − 2c1 = 0 ,

t4 c0 + t3 c1 + t2 − 2c0 − 3 = 0 ,

t3 c0 + t2 c1 + t1 − c1 = 0 ,

t2 c0 + t1 c1 + t0 + 3c0 −
9

8
= 0 ,

t1 c0 + t0 c1 +
7

8
c1 = 0 ,

t0 c0 −
1

8
c0 +

1

8
= 0 .

This set of algebraic equations can be solved straightforwardly, yielding two solutions

t4 = 2, t3 = 0, t2 = 3, t1 = 0, t0 =
13

8
, c1 = 0, c0 = − 1

12
, (4.8)

t4 = 2, t3 = 0, t2 = 3, t1 = 0, t0 = −3

8
, c1 = 0, c0 =

1

4
.

This means we have two possible {τ(u), Q(u)}, given by

t(u) = 2u4 + 3u2 +
13

8
, Q(u) = u2 − 1

12
. (4.9)

and

t(u) = 2u4 + 3u2 − 3

8
, Q(u) = u2 +

1

4
. (4.10)

To find Bethe roots, we find the zeros of the Q(u) in (4.9) and (4.10), which are

{ 1

2
√
3
,− 1

2
√
3
}, { i

2
,− i

2
} . (4.11)

Interestingly, the solutions with coinciding rapidities are automatically eliminated. Why this

is so ? Recall that both BAE and the extra conditions for the coinciding rapidities (3.15)

can be obtained from polynomiality of τ(u). By making the ansatz (4.5), we are explicitly

requiring that τ(u) to be a polynomial. Since the repeated roots are not allowed (although

we do not have a rigorous proof so far), such solutions are automatically eliminated. This

is one of the advantages of the TQ-relation.

However, TQ-relation does not eliminate all the non-physical solutions. It does not

eliminate the non-physical singular solutions. For example, consider the BAE with L = 5

and M = 2. From our analysis above, we know that in this case { i
2
,− i

2
} is not a physical

solution because L is odd. Nevertheless, it shows up in the solution of TQ-relation. There

exists another formalism which eliminates all non-physical solutions, including the singular

non-singular solutions. This is the rational Q-system.
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5 Rational Q-system

In this section, we discuss the rational Q-system method for finding Bethe roots. This

method was proposed by Marboe and Volin in [3] in 2016.

5.1 The formalism

Young tableaux For a length L spin chain with M magnons, we take a Young tableaux

with two rows (L−M,M) as is shown in figure 5.1. At each node, we associate a polynomial

Figure 5.1: Young tableaux corresponding to the BAE of length L and magnon number M .

Qa,s(u) whose degree is given by the number of boxes to the upper right of the node.

Boundary condition We fix the Q-functions at the upper and left boundary. The Q-

functions at the upper boundary are fixed to be 1, namely Q2,s(u) = 1. On the left boundary,

we fix

Q0,0(u) = uL, Q1,0(u) =
M∏
j=1

(u− uj) . (5.1)

where Q1,0(u) is precisely the Q-function defined in (4.2). To solve the rational Q-system

in what follows, we will parameterize Q1,0(u) as

Q1,0(u) = uM +
M−1∑
k=0

cku
k . (5.2)

Later we will derive a set of algebraic equations for {ck}.

The QQ-relation The Q-functions on the Young tableaux are not independent, they obey

the QQ-relation

Qa+1,s(u)Qa,s+1(u) = Q+
a+1,s+1(u)Q

−
a,s(u)−Q−

a+1,s+1(u)Q
+
a,s(u) . (5.3)
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Polynomiality of Q-functions Now the task is to find the rest Q-functions using the

QQ-relation and the boundary condition. We make the crucial requirement that all the

Q-functions should be polynomials. We will see that this turns out to be a non-trivial

requirement and lead to a set of algebraic equations.

5.2 From QQ to BAE

Let us show how Bethe ansatz can be derived from the QQ-relation. To this end, we focus

on the first column of the QQ-relation. We have two such relations

Q1,1(u) = Q+
1,0(u)−Q−

1,0(u) , (5.4)

Q1,0(u)Q0,1(u) = Q−
1,1(u)Q

+
0,0(u)−Q+

1,1(u)Q
−
0,0(u) .

Here we need to use the important condition that Q1,0(uk) = 0. Evaluating the second

equation in (5.4) at u = uk, we obtain

Q−
1,1(uk)Q

+
0,0(uk)−Q+

1,1(uk)Q
−
0,0(uk) = 0 (5.5)

Next, we want to rewrite Q±
1,1(uk) in terms of Q1,0(uk) and Q0,0(uk). This can be achieved

by evaluating the first equation at u = uk ± i/2, which lead to

Q+
1,1(uk) = Q++

1,0 (uk), Q−
1,1(uk) = −Q−−

1,0 (uk) . (5.6)

Plugging into (5.5), we obtain

Q+
0,0(uk)Q

−−
1,0 (uk) +Q−

0,0(uk)Q
++
1,0 (uk) = 0 . (5.7)

This is equivalent to

Q+
0,0(uk)Q

−−
1,0 (uk)

Q−
0,0(uk)Q

++
1,0 (uk)

= −1 (5.8)

which is precisely the BAE upon plugging in (5.1).

5.3 Solving QQ-relations

Let us solve the rational Q-system row by row. For a = 1, the QQ-relation reads

Q1,s+1 = Q−
1,s −Q+

1,s . (5.9)
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This can be solved by

Q1,s(u) = DsQ1,0(u), Df(u) ≡ f(u− i
2
)− f(u+ i

2
) . (5.10)

We then consider the row a = 0. The QQ-relation reads

Q0,s+1Q1,s = Q+
1,s+1Q

−
0,s −Q−

1,s+1Q
+
0,s (5.11)

The Q1,s has been computed in the previous step. We have

Q0,s+1 =
Q+

1,s+1Q
−
0,s −Q−

1,s+1Q
+
0,s

Q1,s

(5.12)

In general, the right hand side is a rational function instead of a polynomial. To ensure that

all the Q-functions are polynomials, we need to impose the condition that the remainder of

the right hand side of (5.12) is vanishing. This leads to a set of algebraic equations for {ck}
defined in (5.2), which is called zero remainder condition. We then solve these equations

and determine Q1,0(u). Let us see how rational Q-system works by an example.

Example 1 Consider again our example L = 4,M = 2. We first draw the Young tableaux

(2, 2). We have the following boundary conditions

Q0,0(u) = u4, Q1,0(u) = u2 + c1 u+ c0 (5.13)

and Q2,s(u) = 1. We first calculate Q1,s(u) by (5.10) for s = 1, 2. They are given by

Q1,1 = Q+
1,0 −Q−

1,0 = i(2u+ c1) , (5.14)

Q1,2 = Q+
1,1 −Q−

1,1 = −2 .

Then we move to compute Q0,s(u) with s = 1, 2. First consider Q0,1. From QQ-relation, we

have

Q0,1 =
Q+

1,1Q
−
0,0 −Q−

1,1Q
+
0,0

Q1,0

(5.15)

= i
[2(u+ i

2
) + c1](u− i

2
)4 − [2(u− i

2
) + c1](u+

i
2
)4

u2 + c1 u+ c0

Performing this polynomial division explicitly, we obtain a quotient and a remainder. We

take the quotient to be Q0,1

Q0,1(u) ≡ 6u2 − 2c1 u+ (2c21 − 6c0 + 1) . (5.16)
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The corresponding remainder is given by

R0,1(u) =
(
−2c31 + 8c1 c0 − 2c1

)
u−

(
2c0 c

2
1 − 6c20 + c0 +

1

8

)
(5.17)

We then compute Q0,2 by the QQ-relation

Q0,2 =
Q+

1,2Q
−
0,1 −Q−

1,2Q
+
0,1

Q1,1

. (5.18)

Plugging (5.14) and (5.16) into (5.18), we again find a quotient and remainder, given by

Q0,2(u) = 12, R0,2(u) = −16i c1 . (5.19)

Requiring the remainders R0,1(u) and R0,2(u) to vanish for any u, we obtain the following

zero remainder conditions

− 2c31 + 8c1 c0 − 2c1 = 0 , (5.20)

2c0 c1 − 6c20 + c0 +
1

8
= 0 ,

− 16i c1 = 0 .

These equations can be solved easily. We obtain two solutions

c1 = 0, c0 =
1

4
, and c1 = 0, c0 = − 1

12
, (5.21)

which corresponds to

Q1,0(u) = u2 +
1

4
, Q1,0(u) = u2 − 1

12
. (5.22)

Finding the zeros of Q1,0(u), we find the correct Bethe roots.

Compared with solving BAE directly or the TQ-relation, we find that in the rational

Q-system approach, it takes some effort to find what are precisely the equations to solve.

This might seem to be a disadvantage of the approach. However, it is definitely worth

the pain because it turns out the zero remainder conditions are much efficient to solve. In

addition, the other crucial advantage of the approach is that it eliminates all non-physical

solutions. By solving rational Q-system, we obtain all physical solutions at once. This fact

is quite remarkable and in the rest of the lecture we will explain why rational Q-system is

able to achieve this.
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6 Polynomiality of the other solution of TQ-relation

We start to decode the rational Q-system from this section. Let us recall the TQ-relation

τ(u)Q(u) = a(u)Q(u− i) + d(u)Q(u+ i). (6.1)

This can be seen as a second order difference equation for the unknown function Q(u). It

has two solutions. Let us denote the other one by P (u). Here we have made the assumption

that both τ(u) and Q(u) are polynomials. However, the other solution P (u) does not have

to be a polynomial in general. We will see that, by requiring P (u) to be polynomial, we can

eliminate the non-physical singular solution from the solution of TQ-relation. This fact can

be stated more precisely as a theorem, which we will prove in this section. Before going to

the theorem, let us first prove a lemma following [4].

Lemma Given a solution of BAE {uj}. If there are two Bethe roots, which without loss

of generality can be denoted by u1 and u2, satisfy u1 − u2 = i, then we must have u1 = i/2,

u2 = −i/2.

In another words, this lemma says that for a set of Bethe roots, either it does not contain

any two rapidities whose difference is i, or in the case such pair exists, these two rapidities

must be ±i/2.

Proof : Since u2 − u1 = i, we can write u1 = s + i
2
and u2 = s− i

2
. We need to prove that

s = 0.

Let us first consider the case of N = 2 to have an idea how the proof goes. The BAE

reads (
u1 +

i
2

u1 − i
2

)L

=
u1 − u2 + i

u1 − u2 − i
, (6.2)(

u2 +
i
2

u2 − i
2

)L

=
u2 − u1 + i

u2 − u1 − i
.

Let us analyze the first equation. Due to the condition u1 − u2 = i, the right hand side is

divergent. For the equation to hold, the left hand side cannot be finite and we must have

u1 =
i
2
. Similarly, we consider the second equation. Due to u1 − u2 = i, the right hand side

of the second equation is vanishing. To ensure the left hand side is also vanishing, we must

have u2 = −i/2. Therefore we have proved the lemma for N = 2.

Now we consider the case for N > 2.
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Let us consider the BAE for u1, which reads(
u1 +

i
2

u1 − i
2

)L

=
u1 − u2 + i

u1 − u2 − i

N∏
k=3

u1 − uk + i

u1 − uk − i
. (6.3)

The first term on the rhs is divergent. Therefore, either we have u1 = i/2 as in the N = 2

case, or there exist another Bethe root called u3 such that u1 − u3 = −i, which produces

a 0 that cancels the pole and make the result finite. If the latter case were true, we have

u2 = s− i
2
, u1 = s+ i

2
and u3 = s+ 3i

2
. We can then analyze the BAE for u3, which reads(

u3 +
i
2

u3 − i
2

)L

=
u3 − u1 + i

u3 − u1 − i

N∏
k ̸=1,3

u3 − uk + i

u3 − uk − i
. (6.4)

Since the first term on the rhs is divergent. We either have s = −i (for the left hand to be

zero), or there exist a u4 such that u3−u4 = −i (to produce a zero to cancel the pole). In the

later case, we can move on to analyze the BAE for u4. It is easy to convince oneself by this

analysis, for the BAE to be consistent, the possible values of s are s = 0,−i,−2i, . . . ,−ni,
namely it is a non-positive integer times imaginary unit i.

Let us analyze the BAE in a different way. We start by considering BAE for u2(
u2 +

i
2

u2 − i
2

)L

=
u2 − u1 + i

u2 − u1 − i

N∏
k=3

u2 − uk + i

u2 − uk − i
. (6.5)

Now the right hand side is vanishing, so we must have either u2 = − i
2
, meaning s = 0 or

there exists a u3 such that u2 − u3 = i, which means u3 = s − 3i
2
. Similar to the previous

case, we then analyze the BAE for u3 and conclude that either s = i or there is a u4

such that u3 − u4 = i. Repeating this reasoning, we find that the possible values of s are

s = 0, i, 2i, 3i, . . . , ni. The two ways of analyzing are not compatible with each other unless

s = 0. Therefore, we conclude that s = 0.

Now we move to prove the main theorem following [4, 5].

Theorem 1 Consider the TQ-relation

τ(u)Q(u) = (u+ i
2
)LQ(u− i) + (u− i

2
)LQ(u+ i) . (6.6)

where τ(u) is a polynomial. For each polynomial solution Q(u) with degree n ≤ L/2,

• If the zeros of Q(u) does not contain ±i/2, there exist a polynomial P (u) such that

P (u+ i/2)Q(u− i/2)− P (u− i/2)Q(u+ i/2) = uL (6.7)
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Notice that such a polynomial is not unique. If P0(u) satisfies (6.7), the following

polynomials

P (u) = P0(u) + αQ(u) (6.8)

where α is an arbitrary constant, all satisfy (6.7).

• If the zeros of Q(u) contain ±i/2, then there exist a function P (u) satisfying (6.7).

However, P (u) is in general not a polynomial but take the following form

P (u) = P0(u) + αQ(u)ψ(−iu+ 1/2) (6.9)

where P0(u) is a polynomial, ψ(u) is the digamma function and α a constant. The

function P (u) will become a polynomial, namely α = 0 if and only if the following

additional condition is satisfied

(−1)L =
N∏
k=3

uk +
i
2

uk − i
2

uk +
3i
2

uk − 3i
2

. (6.10)

where uk are the rest of the roots (apart from ±i/2) of Q(u).

Proof : We first divide the two sides of the TQ-relation (6.6) by Q(u− i)Q(u)Q(u+ i) and

obtain

τ(u)

Q(u+ i)Q(u− i)
= R(u− i/2) +R(u+ i/2) (6.11)

where

R(u) =
uL

Q(u− i/2)Q(u+ i/2)
. (6.12)

Performing a partial faction decomposition, we can write R(u) as

R(u) = π(u) +
q−(u)

Q(u− i/2)
+

q+(u)

Q(u+ i/2)
(6.13)

Assuming Q(u) is of degree n. We have

deg π(u) = L− 2n, deg q−(u) < n, deg q+(u) < n . (6.14)

Plugging (6.13) into (6.11), we obtain

τ(u)

Q(u+ i)Q(u− i)
= π(u− i/2) + π(u+ i/2) +

q−(u− i/2)

Q(u− i)
+
q+(u+ i/2)

Q(u+ i)
(6.15)

+
q+(u− i/2) + q−(u+ i/2)

Q(u)
.

Now we need to distinguish two cases.
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• For the case of non-singular solutions, namely Q(u) does not contain ±i/2 its zeros,

we multiply both sides by (u− uk) and then take u→ uk. The left hand side is zero.

The first four terms on the right hand side are also zero. For the last term to be zero,

we require

q+(uk − i/2) + q−(uk + i/2) = 0 , k = 1, . . . , n . (6.16)

Since the two polynomials satisfy deg(q±(u)) < n, each of them can be parameterized

by n parameters. The relation (6.16) imposes n constraints and we are left with n

independent parameters. We can use these n parameters to define another polynomial

of degree n − 1. Or, put it differently, the constraints (6.16) can be solved by

introducing a polynomial q(u) of degree n− 1 such that

q+(u) = q(u+ i/2), q−(u) = −q(u− i/2) . (6.17)

Plugging into (6.13), we find

R(u) = π(u) +
q(u+ i/2)

Q(u+ i/2)
− q(u− i/2)

Q(u− i/2)
(6.18)

The polynomial π(u) can always be written as

π(u) = ρ(u+ i/2)− ρ(u− i/2) (6.19)

where ρ(u) is a polynomial of degree L− 2n+ 1. Notice that ρ(u) is not unique, but

the only important thing is that such a polynomial exists. We can then write

R(u) =
uL

Q(u+ i/2)Q(u− i/2)
=
P (u+ i/2)

Q(u+ i/2)
− P (u− i/2)

Q(u− i/2)
. (6.20)

where

P (u) = ρ(u)Q(u) + q(u) . (6.21)

By construction, P (u) is a polynomial of degree n∗ = L + 1 − n. From (6.20), we

obtain

P (u+ i/2)Q(u− i/2)− P (u− i/2)Q(u+ i/2) = uL (6.22)

Let us denote the zeros of of P (u) as {ũk}. From (6.22), we have

P (ũk + i)Q(ũk) = (ũk + i/2)L, −P (ũk − i)Q(ũ)k) = (ũk − i/2)L . (6.23)
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Taking the ratio of the above two equations, we find that(
ũk + i/2

ũk − i/2

)L

= −
n∗∏
j=1

ũk − ũj + i

ũk − ũj − i
(6.24)

which implies that the zeros of P (u) also satisfy Bethe equations of length L and

magnon number n∗. The solutions {ũk} are called dual solutions of {uk}.

• For the case with singular solutions, let us denote

Q(u) = (u− i
2
)(u+ i

2
)Q̄(u) (6.25)

where Q̄(u) is a polynomial of degree of n− 2. The equation (6.15) now becomes

1

(u− 3i
2
)(u+ 3i

2
)(u− i

2
)(u+ i

2
)

τ(u)

Q̄(u+ i)Q̄(u− i)
(6.26)

=π(u− i/2) + π(u+ i/2) +
q−(u− i/2)

Q(u− i)
+
q+(u+ i/2)

Q(u+ i)

+
q+(u− i/2) + q−(u+ i/2)

(u+ i
2
)(u− i

2
)Q̄(u)

Let us denote the zeros of Q̄(u) by {u3, . . . , un}. We can multiply both sides of (6.26)

by (u− uk) and then take u→ uk, this leads to the condition

q+(uk − i/2) + q−(uk + i/2) = 0 , k = 3, . . . , n . (6.27)

Here comes the crucial difference. Now in general q±(u) have 2n parameters. Our

condition (6.27) only fixes n− 2 of them. So in total we still have n + 2 parameters.

Therefore in this case, the constraint can be solved by

q+(u) = +q(u+ i/2) +
1

2
Q̄(u+ i/2)σ(u+ i/2) , (6.28)

q−(u) = −q(u− i/2) +
1

2
Q̄(u− i/2)σ(u− i/2) .

where q(u) is a polynomial of degree deg q(u) ≤ n− 1 and σ(u) is another polynomial

whose degree degσ(u) ≤ 1. In general we need n + 2 parameters to fix the two

polynomials q(u) and σ(u). Plugging (6.28) into (6.13), we obtain

R(u) = π(u) +
q(u+ i/2)

Q(u+ i/2)
− q(u− i/2)

Q(u− i/2)
+

1

2

(
σ(u− i/2)

u(u− i)
+
σ(u+ i/2)

u(u+ i)

)
(6.29)

Again, we write π(u) = ρ(u+ i/2)− ρ(u− i/2) where ρ(u) is a polynomial, unique up

to an additive constant. Let us denote

U(u) =
1

2

(
σ(u− i/2)

u(u− i)
+
σ(u+ i/2)

u(u+ i)

)
(6.30)
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It can be decomposed as

U(u) =
a0
u

+
b+0
u− i

+
b−0
u+ i

. (6.31)

We want to write U(u) in a difference form

U(u) = V (u+ i/2)− V (u− i/2) . (6.32)

One choice is

V (u) = −i(a0 + b+0 + b−0 )ψ(−iu+ 1/2) +
b−0

u+ i/2
− b+0
u− i/2

(6.33)

where ψ(x) is the digamma function defined by

ψ(x) =
d

dx
log Γ(x) . (6.34)

Using the property of the digamma function

ψ(x+ 1)− ψ(x) =
1

x
(6.35)

we can verify that (6.32) is indeed valid. We can then write

R(u) =
P (u+ i/2)

Q(u+ i/2)
− P (u− i/2)

Q(u− i/2)
(6.36)

where now

P (u) = ρ(u)Q(u) + q(u) +Q(u)V (u) . (6.37)

It satisfies

P (u+ i/2)Q(u− i/2)− P (u− i/2)Q(u+ i/2) = uL . (6.38)

This proves the first part of the theorem. Now we move to the second part of the

theorem. In the TQ-relation, we replace the factors (u± i/2)L by

(u− i/2)L = P (u)Q(u− i)− P (u− i)Q(u) , (6.39)

(u+ i/2)L = P (u+ i)Q(u)− P (u)Q(u+ i)

and divide both sides by Q(u). This gives

τ(u) = P (u+ i)Q(u− i)− P (u− i)Q(u+ i) . (6.40)
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Evaluate the above equation at u = −i/2, we obtain

τ(−i/2) = P (i/2)Q(−3i/2)− P (−3i/2)Q(i/2) (6.41)

We need to focus on the second term. Since Q(u) has zeros at ±i/2, Q(i/2) is

vanishing. However, in P (−3i/2), there is a term ψ(−1) which is divergent with

residue −1. This divergence is cancelled by the zero and leads to

τ(−i/2) = P (i/2)Q(−3i/2) + (a0 + b+0 + b−0 )Q̄(i/2)Q(−3i/2) (6.42)

Now evaluating the TQ-relation at u = −i/2, we find

τ(−i/2) = −(−i)L Q̄(i/2)

Q̄(−i/2)
(6.43)

Evaluating (6.38) at u = i, we find that (noticing that P (3i/2) is finite)

P (i/2) = − iL

Q(3i/2)
. (6.44)

Plugging into (6.42), we obtain

τ(−i/2) = −iLQ(−3i/2)

Q(3i/2)
+ (a0 + b+0 + b−0 )Q

∗(i/2)Q(−3i/2) (6.45)

Comparing the rhs of (6.43) and (6.45), we find that a0 + b+0 + b−0 = 0 if and only if

−(−i)L Q̄(i/2)

Q̄(−i/2)
= −iLQ(−3i/2)

Q(3i/2)
= −iL Q̄(−3i/2)

Q̄(3i/2)
(6.46)

This is precisely

N∏
k=3

uk +
i
2

uk − i
2

uk +
3i
2

uk − 3i
2

= (−1)L . (6.47)

The same as the condition (3.39) derived from regularization of Bethe roots.

7 Demystifying rational Q-system

In the previous section, we have mentioned that rational Q-system gives precisely all the

physical Bethe roots that we want. In addition, we also proved that the requirement that

both solutions to the TQ-relation are polynomials gives the additional condition under which

singular physical solutions are physical. In this section, we will see that this polynomiality

is encoded in the rational Q-system, which explains why it only gives physical solutions.

Let us first prove the following theorem.
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Theorem 2 The zeros of Baxter polynomialQ(u) is a physical solution to the Bethe ansatz

equation if and only if the functions T0(u) and T1(u) in the following two TQ-relations are

polynomials

T0(u)Q(u) = W0(u− i/2)Q(u+ i) +W0(u+ i/2)Q(u− i) , (7.1)

T1(u)DQ(u) = W1(u− i/2)DQ(u+ i) +W1(u+ i/2)DQ(u− i) ,

where

DQ(u) = Q(u− i/2)−Q(u+ i/2) , (7.2)

W0(u) = uL ,

W1(u) = (u+ i
2
)L + (u− i

2
)L − T0(u) .

Proof: From Theorem 1 we have

(u+ i
2
)L = P (u+ i)Q(u)− P (u)Q(u+ i) , (7.3)

(u− i
2
)L = P (u)Q(u− i)− P (u− i)Q(u) .

From (6.40), we have

T0(u) = P (u+ i)Q(u− i)− P (u− i)Q(u+ i) (7.4)

Plugging (7.3) and (7.4) into the definition of W1(u) (7.2), we obtain

W1(u) = DQ(u− i/2)DP (u+ i/2)−DQ(u+ i/2)DP (u− i/2) (7.5)

We can then plug W1(u) into (7.1) and find that

T1(u) = DP (u+ i)DQ(u− i)−DP (u− i)DQ(u+ i) (7.6)

Using the general form of P (u), we have

DP (u) =P (u− i/2)− P (u+ i/2) (7.7)

=DP0(u) + α0Q(u− i/2)ψ(−iu)− α0Q(u+ i/2)ψ(−iu+ 1)

Here we focus on the case of singular solution because this is the tricky case. Using the

property of the digamma function (6.35), we can write the above quantity as

DP (u) = DP0(u)− iα0
Q(u+ i/2)

u
+ α0DQ(u)ψ(−iu) (7.8)
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Now consider

T1(0) = DP (i)DQ(−i)−DP (−i)DQ(i) (7.9)

we see that DP (−i) has a pole because ψ(−iu) has a pole at u = −i. The corresponding

residue is −iα0DQ(i)DQ(−i). Now

DQ(i) = Q(i/2)−Q(3i/2) = −Q(3i/2), (7.10)

DQ(−i) = Q(−3i/2)−Q(−i/2) = Q(−3i/2) .

For singular solutions, Q(±3i/2) cannot be zero. Otherwise this will contradict our lemma,

which says the only possible roots whose difference is i are ±i/2. On the other hand, if

T1(u) is a polynomial, there should be no pole at u = 0. Therefore, to ensure T1(u) to be a

polynomial, we must have α0 = 0, which in term means P (u) is a polynomial. According

to Theorem 1, the zeros of Q(u) is a physical solution if and only if P (u) is a polynomial.

Why rational Q-system works Now let us see that the equations (7.2) appears naturally

in the rational Q-system.

Let us first consider the box whose lower left corner is at (a, s) = (0, 0). The correspond-

ing QQ-relation is given by

Q1,0Q0,1 = Q+
1,1Q

−
0,0 −Q−

1,1Q
+
0,0 (7.11)

Plugging in the boundary conditions

Q1,0(u) = Q(u), Q0,0(u) = uL , (7.12)

we obtain

Q0,1(u)Q(u) = (u− i
2
)LQ+

1,1(u)− (u+ i
2
)LQ−

1,1(u) (7.13)

= (u− i
2
)L
[
Q(u)−Q++(u)

]
− (u+ i

2
)L
[
Q−−(u)−Q(u)

]
where we have used the QQ-relation in the second equality[

(u− i
2
)L + (u+ i

2
)L −Q0,1(u)

]
Q(u) = (u− i

2
)LQ++(u) + (u+ i

2
)LQ−−(u) . (7.14)

Defining

T0(u) = (u+ i
2
)L + (u− i

2
)L −Q0,1(u), Q0,1(u) = W1(u), (7.15)

we have

T0(u)Q(u) = (u− i
2
)LQ++(u) + (u+ i

2
)LQ−−(u) . (7.16)
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This is the first TQ-relation in (7.2).

Now we consider the block at (a, s) = (0, 1) with the corresponding QQ-relation

Q1,1Q0,2 =Q+
1,2Q

−
0,1 −Q−

1,2Q
+
0,1 (7.17)

=W−
1 Q+

1,2 −W+
1 Q−

1,2

=W−
1

(
Q1,1 −Q++

1,1

)
−W+

1

(
Q−−

1,1 −Q1,1

)
.

This can be rewritten as(
W+

1 +W−
1 −Q0,2

)
Q1,1 = W−

1 Q
++
1,1 +W+

1 Q
−−
1,1 (7.18)

Noticing that Q1,1(u) = DQ(u) and defining

T1(u) = W+
1 (u) +W−

1 (u)−Q0,2(u) , (7.19)

we can rewrite (7.18) as

T1(u)DQ(u) = W−
1 (u)DQ++(u) +W+

1 (u)DQ−−(u) . (7.20)

This is the second TQ-like equation in (7.2). Therefore, according to Theorem 2, the zeros

of Q(u) = Q1,0(u) are physical solutions of Bethe ansatz equations. This explains why the

rational Q-system works so well.

Notice that we only used the QQ-relations in the first two columns of the Young tableaux

to derive the two TQ-like relations in Theorem 2. This means that the QQ-relations for the

rest of the boxes in the Young tableaux is redundant.

8 On completeness of Bethe ansatz

After a long discussion on Bethe ansatz equations of the XXX spin chain, let us summarize

the situation about the completeness problem of Bethe ansatz. The conclusion is that Bethe

ansatz is complete for XXX spin chain. However, this is not a simple result proven in a

single work, but rather a conclusion we can draw from several works in the past decade.

• The original BAE has too many solutions. There are two kinds of non-physical

solutions: coinciding rapidities and non-physical singular solutions. This is discussed

in detail in [2].

• These two kinds of solutions can be eliminated by considering TQ-relations and require

that both solutions of TQ-relations are polynomials. This is explained in [4].
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• There is a final important result, which we did not discuss in this lecture. It is proven

by Muhkin, Tarasov and Varchenko [6] that the number of solutions for a the TQ-

relation with two polynomial solutions is given by

NL,M =

(
L

M

)
−
(

L

M − 1

)
(8.1)

where L is the degree of T (u) and M is the degree of Q(u). Notice that (8.1) is

precisely the number of primary states (2.13) that we need for the Bethe ansatz to be

complete, derived at the beginning of the lecture.
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