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1 Introduction

A long-standing challenge in quantum field theory is a strongly coupled phase, due to the
breakdown of conventional techniques. One promising approach is known as dualities, which
often describe the physical equivalence of a strongly coupled theory by a weakly coupled
theory. Moreover, dualities are proposed based on the agreement of a few quantities com-
putable in both involved theories. Among them are the symmetries, dimensions, anomalies,
and partition functions. Recently, as generalisations of conventional global symmetries,
higher form symmetries have been understood as vital components in characterising a QFT
beyond the level of local operators. The charged objects under higher form symmetries
are extended defects, such as line defects for 1-form symmetries. As a duality should
map conventional symmetries as well as higher form symmetries, a crucial test lies in the
understanding of defects.

One instance of strong coupling phenomena is the following: Higgs branches of theories
with 8 supercharges can change drastically at special points, contrary to a long-standing
misbelief. These changes are due to new massless degrees of freedom arising from tensionless
strings in 6d, massless gauge instantons in 5d, and Argyres-Douglas points in 4d. Recently,
magnetic quivers [1–20] have been systematically introduced with the aim to uniformly
address Higgs branches of theories with 8 supercharges in dimensions 4 to 6. For this
an auxiliary quiver gauge theory Q is utilised such that its 3d N = 4 Coulomb branch C
provides a geometric description of the desired Higgs branch H of a theory T in a phase P :

H (T, P ) = C (Q(T, P )) . (1.1)

Prior to the systematic developments, 3d Coulomb branches had already been used to
describe Higgs branches in 4d [21], 5d [22, 23], and 6d [24–27].

The study of Higgs branch moduli spaces, understood as symplectic singularities, or
hyper-Kähler singularities, via magnetic quivers has uncovered a new phenomenon. Given
a hyper-Kähler singularity X, there may exist several magnetic quiver constructions Qi,
with i = 1, . . . , n, i.e.

X ∼= C(Qi) ∀i . (1.2)

The individual magnetic quiver constructions usually differ in various aspects:
• The nodes of a quiver encode dynamical 3d N = 4 vector multiplets as well as

background vector multiplets. The underlying gauge and flavour groups can be
unitary groups U(n), special unitary groups SU(n), orthogonal groups SO(n), or
symplectic groups Sp(n).

• The links between the nodes entail the 3d N = 4 hypermultiplets. Conventional
links denote hypermultiplets in a bifundamental representation of the adjacent nodes.
However, other matter contents are known: such are non-simply laced links, higher
charge hypermultiplets, or fundamental-fundamental representations.

Then, (1.2) raises an immediate question: what is the relation between the different
magnetic quivers Qi? Do these auxiliary quivers, now understood as 3d N = 4 quiver gauge
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theories, only have isomorphic Coulomb branches or might they enjoy a more fundamental
relationship? In the 3d N = 4 context, the notion of duality is understood as an IR-duality:
two theories with different UV descriptions, which in many cases are Lagrangian, flow to
the same IR conformal fixed point. The first evidence for such a duality between Qi comes
from the defining property C(Qi) = C(Qj). Note that this proposed duality is therefore
distinct from 3d mirror symmetry [28, 29]. Moreover, it is important to stress that 3d
N = 4 Coulomb branches are affected by quantum corrections, and C always refers to the
fully quantum corrected moduli space [30] of the IR SCFT.

As a prototypical example, the two different mirror theories of 3d N = 4 Sp(k) gauge
theory with Nf fundamental hypermultiplets enjoy an IR duality. One mirror is a D-type
Dynkin quiver solely composed of unitary nodes [31], while the other mirror is a linear quiver
chain of alternating orthogonal and symplectic nodes [32]. However, not all properties of
the IR SCFT may be apparent in the UV description. This is famously known for the
orthosymplectic1 mirror quiver, which lacks FI parameters such that the Coulomb branch
global symmetry is not manifest. It is intriguing to examine the expected IR duality further
by considering extended operators, such as line defects. Since the Sp(k) theory and both of
its mirror theories admit brane realisations, it is advantageous to consider line defects from
the perspective of brane configurations [33, 34] as well as 1-form symmetry [35].

Similarly, a 5d Sp(k) SQCD at infinite coupling admits two magnetic quiver construc-
tions, corresponding to two different brane realisations. As in the 3d case, the two types
are essentially a unitary magnetic quiver and an orthosymplectic magnetic quiver. Taking
a purely 3d N = 4 viewpoint, it is then reasonable to ask whether they are dual to each
other. Some first hints towards a duality between these magnetic quivers, understood
as legitimate 3d theories, are the match of Coulomb branches and Higgs branches [36].
This work aims to provide further evidence for a duality between D-type Dynkin quivers
and linear orthosymplectic quivers. Probes for a potential duality between two 3d N = 4
theories include:
(i) (Quaternionic) Dimensions of Higgs and Coulomb branches.
(ii) Global symmetries on Higgs and Coulomb branches, i.e. the deformation parameters:

masses and FI terms.
(iii) Higgs or Coulomb branch chiral rings, and their generating functions [37–41].
(iv) Hasse diagram for Higgs and Coulomb branch [3, 42, 43].
(v) Superconformal index [44].
(vi) A-twisted and B-twisted indices [45, section 6].
(vii) 3-sphere partition function [46].
(viii) Extended operators, like line defects [33, 34, 47].
Points (i)–(iv) are very much tailored to analyse the geometry of the hyper-Kähler moduli
spaces. In contrast, the indices (v)–(vi) are tools suitable for studying the IR SCFTs. In
fact, in certain limits, the indices reduce to the Higgs and Coulomb branch generating
functions. Quite differently, the sphere partition function (vii) depends explicitly on the
existence of deformation parameters in the UV description, but is generically easier to

1This denotes a quiver with alternating orthogonal and symplectic nodes.

– 2 –



J
H
E
P
0
2
(
2
0
2
2
)
1
7
4

evaluate than indices. In view of the exact partition functions (iii), (v)–(vii), only some are
sensitive to the global structure of the gauge group in the UV description. This happens
when the precise choice of magnetic lattice or cocharacter lattice is involved; for instance, in
the monopole formula, the superconformal index, and the A-twisted index. Other quantities,
like the sphere partition function or the Higgs branch Hilbert series, are only sensitive
to the Lie algebra of the underlying gauge group. As a more direct probe of the gauge
group, extended operators like line defects are sensitive to the global structure [48]. Put
differently, the spectra of line defects depend on 1-form symmetries [35], which are by
definition sensitive to the gauge group and not just the gauge algebra. Hence, this paper
provides a detailed study of the IR duality between unitary and orthosymplectic magnetic
quivers by exact partition functions (v)–(vii), including line defects (viii).

The paper is organised as follows: the definitions and various aspects of suitable
partition functions are recalled in section 2. Thereafter, the two different 3d mirror theories
for 3d N = 4 Sp(k) gauge theory with fundamental flavours are studied in section 3. In
particular, line operators are introduced and matched between the two types of mirror
theories. Moving on to 5d N = 1 Sp(k) theories and their two types of magnetic quivers,
section 4 starts by comparing partition functions. Next, Wilson line defects are included in
both types of magnetic quivers, and an intriguing matching pattern is presented. At the
end of the section, we demonstrate the identification of some 0-form symmetries, including
that from gauging the 1-form symmetry, in the two types of magnetic quivers. Lastly, we
summarise this paper and discuss some open questions in section 5. Several appendices
provide computational evidence for statements made in the main body. Appendix A collects
background material on relevant Type IIB brane configurations. Computational results on
partition functions are provided in appendix B for the superconformal index, in appendix C
for twisted indices, and in appendix D for the sphere partition function.

2 Exact partition functions

An exact partition function by supersymmetric localisation is a powerful tool to check duali-
ties since it is independent of coupling constants. To test 3d N = 4 unitary/orthosymplectic
dualities, we use exact partition functions of three kinds: superconformal index, twisted
indices and S3 partition function. The combination of these partition functions provides
detailed information of 3d N = 4 quantum field theory, and confirms predictions from brane
configurations in Type IIB theory.

Before discussing partition functions, we provide a lightning review on 3d N = 4 theories.
The superconformal symmetry of an N = 4 theory is OSp(4|4), whose bosonic generators
comprise those of the conformal algebra in addition to those of the SU(2)H × SU(2)C
R-symmetry. The SCFT has GH ×GC global symmetry. If a UV Lagrangian description
is available, the following data needs to be specified: (i) a gauge group G and (ii) a
representation R of the matter content. The gauge group gives rise to a dynamical vector
multiplet, while the matter content is given as terms of hypermultiplets transforming
under G. The two complex scalars in the hypermultiplet transform as [1] ⊗ [0] under
SU(2)H × SU(2)C , whereas the three adjoint-valued real scalars in the vector multiplet

– 3 –



J
H
E
P
0
2
(
2
0
2
2
)
1
7
4

transform as [0]⊗ [2] under the R-symmetry. The IR global symmetry might not be manifest
in the UV description. The Cartan generators of GH × GC correspond to deformation
parameters. These are the masses, which are a Cartan subalgebra of GH and transform as
[0]⊗ [2] in the R-symmetry, and the FI-parameters, which belong to a Cartan subalgebra of
GC and transform as [2]⊗ [0] in the R-symmetry.

2.1 Superconformal index

The 3d N = 4 superconformal index [44] is defined by

I(q, t) = Tr(−1)F qJ+H+C
4 tH−C , (2.1)

which is understood as the partition function of the theory on S1 × S2. Here F is the
Fermion number, J is the generator of the U(1)J rotational symmetry of the S2 in the
space-time, and H , C stand for the Cartan generators of the SU(2)H ×SU(2)C R-symmetry
groups, respectively. Although fugacities of global symmetries can be turned on, we do
not consider them throughout this paper. This index computes the graded dimensions of
1
8 -BPS states in an IR SCFT. For instance, the mirror symmetry for unitary theories is
studied by the superconformal index in [49].

The contribution from a vector multiplet and an N = 2 chiral multiplet under a
representation R of a gauge group G, respectively, reads off

Zvec(z,m) =
∏
α∈∆

(
q

1
2

t2

)−|α(m)| (
1− q

|α(m)|
2 zα

) (
t2q

1+|α(m)|
2 zα; q

)
∞(

t−2q
1+|α(m)|

2 zα; q
)
∞

(2.2a)

Zchiral(z,m) =
∏
w∈R

(
q

1
2

t2

) 1
4 |w(m)|

(
t−1q

3
4 + 1

2 |w(m)|z−w; q
)
∞(

tq
1
4 + 1

2 |w(m)|zw; q
)
∞

, (2.2b)

where ∆ is the set of simple roots of a gauge group, and m are magnetic fluxes on S2 valued
in the cocharacter lattice of the gauge group. Note that (z; q)∞ := ∏∞

`=1(1 − zq`) is the
q-Pochhammer symbol. For unitary gauge groups, an N = 4 hypermultiplet consists of two
N = 2 chiral multiplets with R⊕R∗ so that

Zhyp(z,m) := Zchiral(z,m)Zchiral(z−1,m) =
∏
w∈R

(
q

1
2

t2

) 1
2 |w(m)|

(
t−1q

3
4 + 1

2 |w(m)|z∓w; q
)
∞(

tq
1
4 + 1

2 |w(m)|z±w; q
)
∞

,

(2.3)
where q-Pochhammer symbols with repeated signs ±,∓ are all multiplied. Then, a super-
conformal index of a quiver gauge theory can be schematically expressed as the contour
integral

I(q, t) =
∑
m

∫ ∏
gauge

1
|WG|

[
dz

2πiz

]
Zvec(z,m)

∏
matter

Zchiral(z,m) . (2.4)

Employing the following change of variables

q = thtc , t =
(
th
tc

)1/4
, (2.5)

– 4 –



J
H
E
P
0
2
(
2
0
2
2
)
1
7
4

the limits th → 0 and tc → 0 of the superconformal index lead to the Hilbert series of the
Coulomb and Higgs branch of the 3d N = 4 theory, respectively [44]. In particular, the
Higgs branch limit reduces to the Molien-Weyl formula [37–39], and the Coulomb branch
limit reproduces the monopole formula [40].

The superconformal index counts 1
8 -BPS gauge-invariant local operators up to (−1)F

in a 3d N = 4 SCFT. The other important operators are extended BPS operators such as
Wilson and vortex line operators. The 3d mirror symmetry exchanges Wilson and vortex
lines operators. In Type IIB theory, a Wilson line operator is realised as F1-strings suspended
by D3 and D5-brane whereas a vortex line operator is realised as D1-branes suspended by
D3 and NS5-branes [33]. See appendix A for details. Using IIB brane configurations, [33]
provides microscopic descriptions of vortex operators, and exactly evaluates expectation
values of line operators in 3d N = 4 theories by performing supersymmetric localisation. In
3d N = 4 unitary/orthosymplectic duality, the exchange of Wilson and vortex line operators
does not occur. Instead, we are interested in which gauge groups in dual quiver theories
line operators of the same type are coupled.

2.2 Twisted indices

To assess whether a pair of unitary/orthosymplectic quiver theories is endowed with
equivalent sets of line operators, we evaluate expectation values of line operators in a
topologically twisted theory [50]. In particular, we consider twisted partition functions [45,
51–55] on S1 × S2 with line operators where a topological twist is performed on S2. A
topological twist with the Cartan subgroup of SU(2)H leads to an A-twisted index, whereas
a twist with the Cartan subgroup of SU(2)C leads to a B-twisted index. The A-twisted and
B-twisted theories flow to a non-linear sigma model on the Coulomb and Higgs branches of
the 3d N = 4 theory, respectively. Hence, the A-twisted and B-twisted indices of S1 × S2

count the cohomology of the topological supercharge, which yields the Hilbert series of
the Coulomb and Higgs branches, respectively [45, 55]. Since half-BPS vortex and Wilson
lines preserve the topological supercharge of A-type and B-type, respectively, we evaluate
their expectation values in the corresponding twisted index on S1 × S2. In fact, the explicit
expressions of the twisted indices (with line operators) are given as the Jeffrey-Kirwan
contour integrals [45, section 6] by performing the supersymmetric localisation. A vortex
line expectation value in the A-twisted index is given by

IA =
∑
m

∮
JK

∏
gauge

1
|WG|

[
dz

2πiz

]
ZAvec(z,m)

∏
matter

ZAchiral(z,m) V(z) , (2.6)

where the contributions from a vector multiplet and a chiral multiplet are

ZAvec(z,m) =
(
t− t−1

)− rk(G) ∏
α∈∆

( 1− zα
t− zαt−1

)α(m)+1
, (2.7a)

ZAchiral(z,m) =
∏
w∈R

(
z
w
2 t

1
2

1− zwt

)w(m)

. (2.7b)

Here, we also sum over magnetic fluxes m supported on S2, which take values in the cocharac-
ter lattices of the gauge group. The vortex loop contribution can be read off by evaluating a
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1d N = 4 supersymmetric quantum mechanics [33]. For the U(k) supersymmetric quantum
mechanics with N1 fundamental and N2 anti-fundamental chiral multiplets

k N2N1
(2.8)

the contribution to the twisted indices becomes

V(z) =
∑

k=
∑N1

i=1 ki

N1∏
a=1

N1∏
b 6=a

zat
−1 − zbt
za − zb

(1− zat
za − t

)N2
ka . (2.9)

In this paper, we focus only on k = 1 for the sake of simplicity. Nonetheless, it is
straightforward to generalise the results to arbitrary k. To evaluate an A-twisted index of
a generic N = 4 non-Abelian quiver gauge theory as a sum over Bethe vacua [45, 51–55],
we need to refine the formulas (2.7) by switching on all the deformation parameters of
the theory such as FI parameters and real masses. Otherwise, solutions of Bethe ansatz
equations would miss some of the vacua. However, with all the deformation parameters
turned on, it is difficult to solve Bethe ansatz equations algebraically. In practice, this
can be done only numerically in most cases. In appendix C.1, we instead perform the
Jeffrey-Kirwan contour integral and sum over magnetic fluxes for A-twisted indices of Sp(1)
SQCDs with vortex loops. Since this is a formidable task for a long or higher rank quiver
gauge theory, we evaluate the B-twisted index with Wilson loop. A B-twisted index with
Wilson loop is given by

IB =
∮

JK

∏
gauge

1
|WG|

[
dz

2πiz

]
ZBvec(z)

∏
matter

ZBchiral(z) W(z) , (2.10)

where the contributions from a vector multiplet and a chiral multiplet are

ZBvec(z) =
(
t− t−1

)rk(G) ∏
α∈∆

(1− zα)
(
t− zαt−1

)
, (2.11a)

ZBchiral(z) =
∏
w∈R

z
w
2 t

1
2

1− zwt . (2.11b)

The Wilson loop W(z) amounts to an insertion of a character corresponding to its repre-
sentation. Here only the zero magnetic flux sector contributes to the B-twisted index so
that we do not have to sum over the magnetic fluxes [45]. The B-twisted index can also be
computed simply by expanding the integrand as a series and taking the z-independent part.
Therefore, it is much easier to calculate the expectation value of a Wilson loop (2.10) than
that of a vortex loop (2.6).

Here we briefly comment on magnetic lattices in (2.4) and (2.6). As carefully studied
in [36], in addition to the weight lattices, the lattices simultaneously shifted by a half need
to be included for unframed orthosymplectic quivers in section 4. This point is emphasised
in section 2.4 and section 4.
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2.3 Sphere partition function

As in [33, 34], we can also use S3 partition functions to evaluate the expectation value of
line operators. A S3 partition function is evaluated by supersymmetric localisation in the
pioneering work [46] as

ZS
3 =

∮ ∏
gauge

1
|WG|

[ds]ZS3
vec(s)

∏
matter

ZS
3

hyp(s,m) ZFI(s, ξ)ZS
3

defect(s) . (2.12)

A vector multiplet and a hypermultiplet contributes

ZS
3

vec(s) =
∏
α∈∆

sh(α · s) , (2.13a)

ZS
3

hyp(s,m) =
∏
w∈R

1
ch(w · s−m) , (2.13b)

where m is a mass parameter. Here we use the notation

sh(x) ≡ 2 sinh(πx) , ch(x) ≡ 2 cosh(πx) .

Whenever the gauge group has a U(1) factor, the contribution from the FI parameter ξ is

ZFI(s, ξ) = e2πiξTr(s) . (2.14)

Although an orthosymplectic quiver is not endowed with an FI parameter, we can turn on
the unphysical FI parameter (2.14) as a regulator [56] and compute its S3 partition function
by taking the limit ξ → 0. As before, the Wilson loop is evaluated by inserting a character

ZWilson(s) =
∑
w∈R

e2πw·s . (2.15)

On the other hand, the vortex loop described by the 1d supersymmetric quantum mechanics
in (2.8) results in the following contribution:

Zvortex(s) =
∑

k1,··· ,kN∈{0,1}
k=
∑N1

i=1 ki

(−1)(N1+N2)k
N1∏
i<j

sh [si−sj+i(ki−kj)z]
sh [si−sj ]

N1∏
j=1

N2∏
a=1

ch(sj−ma)
ch(sj−ma+ikjz) .

(2.16)
For the sake of brevity, we focus only on k = 1 in this paper.

2.4 Comments on weight lattice and magnetic lattice

In some instances, the evaluation of exact partition functions entails a summation over
the magnetic lattice (also referred to as cocharacter lattice) of the gauge group like (2.4)
and (2.6). Likewise, extended operators are sensitive to the weight lattice of the gauge
group and not just the gauge algebra. Therefore, the weight lattice and the magnetic lattice
need to be discussed. For a review on the relevant lattice in 3d N = 4 theories, the reader
is referred to [57–59], while the notation follows [36]. As two types of quivers appear, these
are discussed in turn.
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An important concept is the following: a quiver gauge theory can be understood as
encoding a representation φ : G → GL(V ) of a group G into a finite-dimensional vector
space V . For a quiver with gauge group G, the symmetry group ker φ ⊂ G is a group that
acts trivially on the matter content. In view of [35], ker φ is an electric 1-form symmetry.
Suppose H ⊂ ker φ is a normal subgroup, and the gauge group is chosen as the quotient
G/H . Taking the quotient with respect to H or, equivalently, gauging the 1-form symmetry
H affects the spectrum of admissible line operators [35, 48, 60]. For example, if a Wilson
line transforms in a G representation that is not H-invariant, then it is charged under
the 1-form symmetry. Consequently, the representation is not admissible for G/H or, put
differently, the line defect does not survive gauging the 1-form symmetry. While 1-form
symmetries of magnetic quivers are discussed in [8, 14, 36], we tailor it below for the unitary
and orthosymplectic quivers relevant in this paper.

Unitary quivers. If the 3d N = 4 quiver gauge theory exhibits explicit flavour nodes, the
group ker φ is trivial and the weight lattice and magnetic weight lattice are well-known. For
each U(n) node, the weight lattice is ΛU(n)

w = Zn, while the magnetic lattice is ΛU(n)∨
w = Zn.

For a product gauge group G = ∏
i U(ni), the lattice are given by

ΛGw = ⊕iZni , ΛG∨w = ⊕iZni . (2.17)

If the quiver theory is composed of unitary gauge nodes, but does not contain any
flavour nodes, the group ker φ = U(1) is non-trivial and continuous. As elaborated in [36],
this continuous group leads to divergent partition functions, like the Coulomb branch
Hilbert series or the superconformal index. The diagonally acting U(1) can be removed in
several ways.

• If the quiver contains a U(1) gauge node, we can simply turn this gauge node into
a flavour node. The resulting quiver has an explicit flavour, and the above results
apply. All theories considered in this paper fall into this class.

• Generically, we may remove the diagonal U(1) from any U(n) node. However, the
result is not equivalent to turning this node into SU(n) nor PSU(n), as extensively
discussed in [36]. The choice of gauge group becomes G = [SU(n)×∏i U(ni)] /Zdiag

n .
The discrete group originates from the centre Zn = Z(SU(n)) and can then be
embedded into each U(ni) factor, such that it defines a diagonally acting Zdiag

n group.

Orthosymplectic quivers. Turning to orthosymplectic quivers, the results of [36] show
that ker φ is trivial either if the quiver contains explicit flavour nodes or if the gauge group
contains at least one SO(2n + 1) factor. In this case, the weight lattices and magnetic
lattices of the different factors are as summarised in table 1. For the product group
G = ∏

i SO(2ni + 1)×∏j Sp(kj)×
∏
l SO(2hj), the lattices are simply given by

ΛGw =
⊕
i

ΛSO(2ni+1)
w ⊕

⊕
j

ΛSp(kj)
w ⊕

⊕
l

ΛSO(2hj)
w , (2.18a)

ΛG∨w =
⊕
i

ΛSO(2ni+1)∨
w ⊕

⊕
j

ΛSp(kj)∨
w ⊕

⊕
l

ΛSO(2hj)∨
w . (2.18b)
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group G SO(2n+ 1) Sp(n) SO(2n)

centre Z(G) 1 Z2 Z2

weight lattice of G ΛGw Zn Zn Zn

magnetic lattice of G ΛG∨w Zn Zn Zn

weight lattice of G/Z2 ΛG/Z2
w NA Zn Zn

magnetic lattice of G/Z2 Λ(G/Z2)∨
w NA Zn∑ |even Zn∑ |even

Table 1. Lattices associated to different gauge group factors. Z(G) denotes the centre of a group
G. ΛGw stands for the weight lattice of the group G, while ΛG∨w is the magnetic lattice of G — also
known as weight lattice of the GNO dual group G∨ [57]. Zn denotes the standard integer lattice
in n dimensions. Zn∑ |even stands for the set of points (a1, . . . , an) ∈ Zn such that

∑
i ai = even.

Likewise, Zn∑ |odd denotes the points (a1, . . . , an) ∈ Zn such that
∑
i ai = odd.

If the orthosymplectic quiver does not admit flavours and does not contain SO(2n+ 1)
factors, the group ker φ = Z2 is non-trivial. It is then a choice to remove this discrete group
from the gauge group or not, as both choices lead to well-defined theories. However, in
view of the unframed orthosymplectic magnetic quivers studied in [5, 6, 9, 15, 16, 25, 27],
the choice of removing the diagonal Z2 seems preferred from brane configurations. To be
specific, consider the example

SO(2n) Sp(k)
(2.19)

such that G = SO(2n)× Sp(k). Considering the quotient gauge group G/Z2 then leads to
the following lattice:

ΛG/Z2
w =

[
Zn∑ |even ⊕ Zk∑ |even

]
∪
[
Zn∑ |odd ⊕ Zk∑ |odd

]
, (2.20a)

Λ(G/Z2)∨
w =

[
Zn ⊕ Zk

]
∪
[(

Z + 1
2

)n
⊕
(
Z + 1

2

)k]
, (2.20b)

see table 1 for notation. The magnetic lattice displays the established integer lattice +
half-integer lattice structure, which enlarges the set of monopole operators contributing
to the 3d quiver theory. In contrast, the weight lattice shows that the set of admissible
representation has been diminished. In particular, the fundamental representations of
SO(2n) and Sp(k) are no longer allowed, as they reside in Zn∑ |odd and Zk∑ |odd, respectively.
However, the bifundamental hypermultiplet in (2.19) is still an admissible representation as
it sits in Zn∑ |odd ⊕ Zk∑ |odd.
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3 3d Sp(k) SQCD: unitary and orthosymplectic mirror quivers

The goal of this section is two-fold. First, with brane perspective and exact partition
functions, we investigate duality between unitary and orthosymplectic quivers, which are
mirror to Sp(k) SQCDs. This investigation paves the way to study the duality of the
magnetic quivers in section 4. Second, we provide a detailed study of the brane dynamics
and S-duality in Type IIB theory with O-plane by using exact partition functions.

Understanding D3-D5-NS5 brane dynamics in Type IIB theory [29] is indispensable to
study duality of 3d N = 4 theories. At the same time, exact results in 3d N = 4 theories
uncover detailed information about brane systems in Type IIB theory [33, 34, 56, 61]. In
this section, we study 3d N = 4 mirror symmetry in the presence of an O-plane, including
line operators, from this point of view. Also, we show the correspondence of Wilson lines
between the unitary and orthosymplectic mirror quivers. The reader can refer to appendix A
for the rudiments and notations about 3d N = 4 theories and Type IIB brane constructions.

3.1 Duality of unitary and orthosymplectic mirror quivers

It is well-known that Type IIB brane configurations can realise 3d N = 4 low-energy theories
with Sp(k) gauge group and Nf fundamental matter fields. The Lagrangian description is
conveniently summarised via a quiver diagram as follows:

Sp(k)

SO(2Nf )
(3.1)

where the number of flavours is constrained by Nf ≥ 2k. This condition ensures complete
Higgsing such that the mirror theory can be derived from Type IIB configurations introduced
in [29, 32]. A slightly more restrictive constraint is Nf ≥ 2k + 1, which ensures that the
Sp(k) gauge node is good in the sense of [62]. For Nf = 2k + 1, the gauge group is
balanced, see (A.6), which implies an enhanced SO(2) topological symmetry in the IR.
Borrowing from [40], the Coulomb branch Hilbert series for Sp(1) with Nf flavours is
H = PE[t2 + tNf−2 + tNf−1 − t2Nf−2], which identifies the generators as Casimir invariant,
bare monopole operator, and dressed monopole operator of charge 2, Nf − 2, and Nf − 1,
respectively, subject to one relation at order 2Nf − 2. For Nf = 3, the bare monopole
operator is part of the global symmetry multiplet of R-charge 1, hence the IR Coulomb
branch global symmetry emerges due to monopole operators. The same argument holds for
Sp(k) with Nf = 2k + 1, see for instance [40, eq. (5.14)] for the explicit monopole formula.

For Nf = 2k, the theory is conventionally labelled as bad, because there exists at least
one monopole operator that violates the unitarity bound. Hence, the IR theory needs to be
carefully evaluated, see for instance [63] for a detailed discussion. Unless otherwise stated,
bad theories are omitted in this paper because most of the partition functions are ill-defined.
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· · ·

· · ·

2k D3

Nf half D5

(a)

· · · · · ·1
2 2k−1

2k
2k

2k
k

k

Nf half D5

(b)

Figure 1. Brane configuration for 3d Sp(k) with Nf fundamental flavours. (See (A.2) for notations.)
In (a), the brane configuration is in the electric phase or Coulomb branch phase, in which all D3s are
suspended between NS5 branes. To transition to the Higgs branch phase, or magnetic phase, shown
on (b), 2k half D5s are moved through the half NS5 towards the left hand-side. The mirror theory is
obtained from (b) via S-duality, i.e. exchanging D5 and NS5, and replacing the O5− with an ON−.

Interestingly, two different realisations exist which give rise to the same effective theory,
namely:

• A stack of k full D3 branes on top of an O3+ plane, intersected by 2Nf half D5
branes [32].

• A stack of k full D3 branes crossing an O5− plane, together with a stack of 2Nf half
D5 branes parallel to the orientifold [31, 64].

Unitary mirror quiver. To begin with, consider the first setup for which the brane
realisation is provided in figure 1. The corresponding mirror quiver [31] is given by

Nf ≥ 2k + 2 :
1 2

. . .

2k−1 2k 2k
. . .

2k

k

k

1

Nf − 2k − 1 nodes

(3.2a)

Nf = 2k + 1 :
1 2

. . .

2k−2 2k−1

k

k

1

1
(3.2b)

Nf = 2k :
1 2

. . .

2k−3 2k−2

k

k−1

2

(3.2c)

and, in each case, there are Nf balanced nodes. The case Nf = 2k + 1 displays a
S(U(1)×U(1)) ∼= U(1) flavour symmetry, which indicates the non-trivial U(1)J Coulomb
branch symmetry for the balanced Sp(k) gauge theory on the mirror side.
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· · ·

· · ·

2Nf half D5

O3+O3+

k D3

(a)

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

1 1
k k k k k k

1 1

Õ3
− O3− Õ3

− O3− Õ3
−

Õ3
+ O3+ O3+ Õ3

+

Õ3
− O3− Õ3

− O3− Õ3
−

2k + 1 half D5 2(Nf − 2k − 1) half D5 2k + 1 half D5

(b)

Figure 2. Brane configuration for 3d Sp(k) with Nf fundamental flavours using O3 planes.
(See (A.2) for notations.) In (a), the electric phase of the brane configuration is displayed, which
gives rise to the Sp(k) gauge group due to the stack of k full D3s on top of an O3+ plane. The
magnetic phase displayed in (b) is reached by moving 2k half D5 through each of the half NS5s. In
the general case Nf ≥ 2k + 2, it is convenient to move an additional half D5 through each half NS5.
The mirror configuration is then derived via S-duality, i.e. exchanging D5 and NS5, and exchanging
O3+ and Õ3

−
, while O3− and Õ3

+
are invariant.

Orthosymplectic mirror quiver. Next, consider the alternative setup which is given
by the brane configuration in figure 2. The resulting mirror quiver [32] reads

Nf ≥ 2k+2 :
2 2

. . .

2k 2k 2k+1
. . .

2k+1 2k 2k
. . .

2 2

1 1

(Nf−2k−1)×SO(2k+1) nodes
(Nf−2k)×Sp(k) nodes

(3.3a)

Nf = 2k+1 :

2 2
. . .

2k−2 2k−2 2k 2k 2k 2k−2 2k−2
. . .

2 2

2

(3.3b)

Nf = 2k :

2 2
. . .

2k−4 2k−2 2k−2 2k 2k−2 2k−2 2k−4
. . .

2 2

2

(3.3c)

and the linear chain of p = 2Nf − 3 balanced nodes with SO(2) at both ends gives rise
to an enhanced SO(p+ 3) = SO(2Nf ) Coulomb branch symmetry, see [62] for details and
recall (A.6). As in the unitary case, the Nf = 2k + 1 case displays a SO(2) ∼= U(1) flavour
symmetry indicating the non-trivial U(1)J topological symmetry on the mirror side.

We obtain a pair of 3d N = 4 unitary and orthosymplectic mirror quivers from the
Sp(k) SQCD, and it is expected that they flow to the same IR fixed point [31, 32]. To verify
it, we evaluate the superconformal index for both quivers. A straightforward but tedious
computation shows that the indices are compatible with each other in the given order of
perturbative evaluation. The computational details for the cases k = 1 with Nf = 3, 4, 5, 6
and k = 2 with Nf = 4, 5, 6 are presented in table 3. Moreover, the limits (2.5) of the
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computed superconformal indices reproduce the known Higgs and Coulomb branch Hilbert
series [65–67], which provides a consistency check of the results.

3.2 Match of Wilson line defects in the two mirror quivers

It is natural to ask whether the unitary and orthosymplectic mirror quivers are endowed
with the same set of line defects. If so, it is important to understand how they are mapped
under the duality. Thereafter, we may proceed to include Wilson line defects in the two
mirrors. By using the B-twisted index, we create a dictionary for the corresponding Wilson
lines under the duality. The guiding principle is the following: Wilson lines defects in the
unitary and orthosymplectic quivers can be compatible only if they originate from an equal
number of brane configurations. That is, the F1 defining the Wilson line needs to have
as many possibilities to end on a stack of D3 branes in one mirror configuration as in the
other mirror configuration. This means that the total dimensions of representations for
Wilson lines are equal under the duality.

After careful analysis of the B-twisted indices for the cases k = 1 with Nf = 3, 4, 5, 6 —
see tables 5, 6, 7, 8– and k = 2 with Nf = 4, 5, 6 — see tables 9, 10, 11 — an interesting
pattern between Wilson lines in (3.2a) and in (3.3a) arises.

• Observation 1. For a fundamental Wilson line at the Sp(r) node, for 1 ≤ r ≤ k

2 2
. . .

2r 2r

W
. . .

2k 2k 2k+1
. . .

1 sym. axis

2k 2k
. . .

2 2

1

←→
1 2

. . . . . .
2r

W
. . .

2k−1 2k
. . .

2k

k

k

1

(3.4)

where the Wilson line of the U(2r) gauge node is in the fundamental representation.

• Observation 2. For a fundamental Wilson line at the SO(2r) node, for 1 ≤ r ≤ k

2 2
. . .

2r

W

2r
. . .

2k 2k 2k+1
. . .

1 sym. axis

2k 2k
. . .

2 2

1

←→
1 2

. . .
2r−1

W

2r
. . .

2k−1 2k
. . .

2k

k

k

1

(3.5)

+
1

W

2
. . .

2r−1 2r
. . .

2k−1 2k
. . .

2k

k

k

1
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and the Wilson lines of the unitary gauge nodes transform in the fundamental
representations. Here and similarly below, the equality is understood as a single
Wilson line expectation value in the orthosymplectic quiver equals a linear combination
of two Wilson line expectation values in the unitary quiver.

• Observation 3. For Sp(k) node at position l ≥ 2k, which is not the central node:

2 2
. . .

2k 2k 2k+1
. . .

2k

W

2k+1
. . .

1

l-th node

sym. axis

2k 2k
. . .

2 2

1

←→
1 2

. . .

2k−1 2k 2k
. . .

2k

W
. . .

2k

k

k

1

(3.6)

and the Wilson lines in unitary nodes transform in the fundamental representation.

• Observation 4. For SO(2k + 1) node at position l > 2k, which is not the central
node:

2 2
. . .

2k 2k 2k+1
. . .

2k+1

W

2k
. . .

1

l-th node

sym. axis

2k 2k
. . .

2 2

1

←→
1 2

. . .

2k−1 2k 2k
. . .

2k

W
. . .

2k

k

k

1

(3.7)

+
1

W

2
. . .

2k−1 2k 2k
. . .

2k
. . .

2k

k

k

1

and the Wilson lines in the unitary nodes transform in the fundamental representation.
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• Observation 5. For a fundamental Wilson line at the central Sp(k) node

2 2
. . .

2k 2k 2k+1
. . .

2k+1 2k

W
. . .

1 sym. axis

2k 2k
. . .

2 2

1

←→
1 2

. . .

2k−1 2k 2k
. . .

2k

k

W

k

1

(3.8)

+
1 2

. . .

2k−1 2k 2k
. . .

2k

k

k

W
1

and the Wilson lines in the unitary nodes transform in the fundamental representation.

• Observation 6. For a fundamental Wilson line at the central SO(2k + 1) node

2 2
. . .

2k 2k 2k+1
. . .

2k 2k+1

W
. . .

1 sym. axis

2k 2k
. . .

2 2

1

←→
1 2

. . .

2k−1 2k 2k
. . .

2k

k

W

k

1

(3.9)

+
1 2

. . .

2k−1 2k 2k
. . .

2k

k

k

W
1

+
1

W

2
. . .

2k−1 2k 2k
. . .

2k

k

k

1

and the Wilson lines in the unitary nodes transform in the fundamental representation.

In this dictionary, a Wilson line at an Sp gauge node is dual to a Wilson line at the
corresponding unitary gauge node from the left in the quiver diagrams. (Observation 1, 3.)
Note that a Wilson line at the middle Sp gauge node corresponds to a direct sum of those at
the two spinor nodes. (Observation 5.) On the other hand, a Wilson line at a non-abelian
SO gauge node is dual to a direct sum of one(s) at the corresponding unitary gauge node(s)
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and one at the left U(1) node. (Observation 2, 4, 6.) As a result, it is consistent with the
guiding principle so that the total dimensions of representations are equal.

The observed pattern straightforwardly applies to the balanced case Nf = 2k+ 1. Since
the flavour nodes are at the spinor nodes in (3.2b) or at the central Sp node in (3.3b),
Observations 1 and 2 apply for all SO(2l) nodes with 1 ≤ l ≤ k and all Sp(l) nodes with
1 ≤ l ≤ k − 1, respectively. Similarly, Observation 5 applies for the Wilson line at the
central Sp(k) node.

3.3 Mirror symmetry for Wilson and vortex defect

Now let us consider the 3d N = 4 mirror symmetry with line defects. As studied in [33,
34, 47], Wilson and vortex defects are exchanged under the mirror symmetry. A vortex
defect in the Sp(k) SQCD with Nf flavours is characterised by an Sp(k) representation
R and a splitting Nf = L + (Nf − L). Here, the aim is to derive the mirror Wilson line
defects from the vortex defects of Sp(k) by brane dynamics and confirm that the exact
partition functions match. The starting point is the brane configuration of Sp(k) SQCD in
the presence of a vortex line defect:

· · ·

· · ·

· · ·

· · ·

2k

Nf − LL

−→

Sp(k)

L Nf − L

SQM
1

1d
3d (3.10)

with the notations of (A.2). It is understood that the D1 can end on either of the 2k D3
branes; hence, the defect is characterised by the fundamental representation of Sp(k).

The S3 partition function for Sp(k) SQCD with Nf fundamental hypermultiplets of
masses mi (i = 1, . . . , Nf ) is given by

ZS
3

Sp(k),Nf (m) =
∑

I∈C
Nf
k

k∏
j=1

mIj sh(2mIj )∏
`6∈I sh(m` ±mIj )

(3.11)

where I runs over all combinations CNfk of k different integers in {1, . . . , Nf}. Once we
include the vortex of type L+ (Nf − L) in (3.10), the partition function is given by

ZS
3

(L,Nf−L),2k = (2k − L) · ZS3

Sp(k),Nf (m) +
L∑
j=1

ZS
3

Sp(k),Nf (mj → mj − i) , (3.12)

where mj (j = 1, . . . , L) are the masses of the hypermultiplets charged under the vortex
defect. In appendix D, we provide a brief derivation of the sphere partition functions (3.11)–
(3.12) and an analytic proof of the equalities of sphere partition functions with line operators
under the mirror symmetry for k = 1. In fact, (3.12) encodes the information about 2k
configurations of the D1 ending on the D3 brane as well as a splitting of the flavours. Taking
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the S-duality, 2k individual brane configurations give rise to a linear combination of Wilson
line defects in the mirror theory. Hence, the sum of the dimensions of the Wilson line
representations is equal to 2k. We see this below in various flavour splittings. To begin
with, focus on the Nf > 2k + 1 case (3.2a).

Splitting L + (Nf −L), 1 ≤ L ≤ 2k− 1. Performing S-duality of (3.10) yields brane
configurations of two types: the first configuration has the F1 stretched between the defect
D5 and one of the L D3 branes in segment of the form

· · ·· · ·· · ·

1
2

L 2k−1
2k

2k
2k

k

k

1 2
. . .

L

W
. . .

2k − 1 2k 2k
. . .

2k

k

k

1

Nf − 2k − 1 nodes

(3.13a)

which gives rise to a fundamental Wilson line in the U(L) gauge group. Again the notations
for branes are summarised in (A.2). The other configuration has the F1 stretched between
the defect D5 and flavour D5. This setup is the result of the F1 sliding off the D5 due to
the unequal number of connecting D3s from the left and right — this has been referred
to as D3 brane spike [68]. There are (2k − L) configurations that give rise to the same
brane system

· · ·· · ·· · ·

1
2

L 2k−1
2k

2k
2k

k

k

1 2
. . .

L

. . .

2k − 1 2k 2k
. . .

2k

k

k

1 W

Nf − 2k − 1 nodes

(3.13b)

such that the resulting flavour Wilson line comes with multiplicity 2k − L.
In the mirror unitary quiver (3.2), we assign the FI parameter ξl − ξl+1 to the l-th

gauge node from the left whereas we associate ξNf−1 ± ξNf as the FI parameters to the
two spinor nodes of the balanced D-type diagram. The S3 partition function of the mirror
unitary quiver is equal to (3.11) by mapping the FI parameters to the mass parameters
ξi ←→ mi. Since the mirror unitary quiver (3.13a) contains the T [SU(2k)] tail [62], the
fundamental Wilson loop at the L-th node (L ≤ 2k − 1) gives rise to the shifts of the FI
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parameters [33, section 5.4.2] as

ZS
3

W at U(L) =
L∑
j=1

ZS
3(ξj → ξj − i) .

in the S3 partition function. As a result, (3.12) can be recast into

ZS
3

(L,Nf−L),2k
∣∣
mi→ξi

= ZS
3

W at U(L) + (2k − L) · ZS3(ξ) (3.14)

i.e. the sum of a fundamental Wilson loop at the L-th node and (2k − L) flavour Wilson
loops in the unitary mirror quiver under the exchange ξi ←→ mi.

In terms of twisted indices, an analogous relation is implied

IA(L,Nf−L),2k = IBW at U(L) + (2k − L) · IB (3.15)

where the index IB without defect reflects the contribution of the flavour Wilson line, due
to the unrefined computation. For the case k = 1, the explicit results for the B-twisted
index are provided in tables 6, 7, 8 and for the A-twisted index in table 4.

Splitting L + (Nf − L) for 2k ≤ L ≤ Nf − 1. Performing S-duality of (3.10) in this
range of L yields only one brane configuration

· · ·· · ·· · ·

1
2

2k−1
2k

2k
2k

2k
2k 2k

k

k

L NS5 Nf−L NS5

1 2
· · ·

2k−1 2k 2k
· · ·

2k 2k

W

2k
. . .

2k

k

k

1

L− 1 nodes

(3.16)

which results in a fundamental Wilson line of an U(2k) node in the linear part of the quiver
theory. We compute the S3 partition function with the Wilson loop for k = 1 in (D.13),
which agrees with the mirror vortex. Likewise, in terms of twisted indices, (3.16) implies
the following relation:

IA(L,Nf−L),2 = IBW at [0,...,0,1,0,...,0] (3.17)

where [0, . . . , 0, 1, 0, . . . , 0] denotes the L-th node in the DNf -type Dynkin quiver. For the
k = 1 case, the explicit results for the B-twisted index are provided in tables 6, 7, 8 and for
the A-twisted index in table 4.
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Splitting (Nf − 1) + 1. Performing S-duality of (3.10) yields two different brane
configurations, depending on which D3 branes the F1 ends. To begin with, we consider that
the F1 stretches between the defect D5 and the stack of k D3s that does not pass through
the ON plane. We find

· · ·· · ·

1
2

2k−1
2k

2k
2k

k

k

1 2
. . .

2k−1 2k 2k
. . .

2k

k

W

k

1

Nf − 2k − 1 nodes

(3.18)

which induces a fundamental Wilson line in one of the U(k) nodes, i.e. a spinor node of the
balanced D-type diagram. It is straightforward to read off from the brane configuration
that the corresponding FI parameter is ξNf−1 − ξNf . Next, the F1 could also be stretched
between a defect D5 and the stack of k D3s that goes through the ON plane. This yields

· · ·· · ·

1
2

2k−1
2k

2k
2k

k

k

1 2
. . .

2k−1 2k 2k
. . .

2k

k

k

W
1

Nf − 2k − 1 nodes

(3.19)

which induces a fundamental Wilson line on the other U(k) node. Note that the correspond-
ing FI parameter of this gauge node is ξNf−1 + ξNf .

In summary, the configuration (3.18) leads to a Wilson line in a U(k) gauge group
at one of the spinor nodes of the D-type quiver, while the configuration (3.19) induces a
Wilson line in the other spinor node. We compute the sum of the S3 partition functions
with the Wilson loops for k = 1 in (D.16), which agrees with the mirror vortex. In terms of
twisted indices, this implies

IA(Nf−1,1),2k = IBW at [0,...,0,1,0] + IBW at [0,...,0,0,1] (3.20)

where [0, . . . , 0, 1, 0] and [0, . . . , 0, 0, 1] denote the two spinor nodes of the DNf -type Dynkin
quiver. For the k = 1 case, the explicit results for the B-twisted index are provided in
tables 6, 7, 8 and for the A-twisted index in table 4.
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Splitting Nf + 0. The mirror symmetry of the vortex loop of splitting Nf + 0 is more
subtle. When the defect D5 brane is present between the NS5 brane and the ON plane,
there are two ways for the F1 to end to the stack of k D3s: before and after the D3s goes
through the ON plane. This gives

· · ·· · ·

1
2

2k−1
2k

2k
2k

k

k

· · ·· · ·

1
2

2k−1
2k

2k
2k

k

k

2×
1 2

. . .

2k−1 2k 2k
. . .

2k

k

k

W
1

Nf − 2k − 1 nodes

(3.21)

which results in the Wilson line at the spinor node of type [0, . . . , 0, 1] with multiplicity two.
The difference from the (Nf − 1) + 1 splitting can be seen explicitly in the S3 partition
function. A fundamental Wilson line is charged under the gauge group with the FI parameter
ξNf−1 + ξNf .

In terms of S3 partition functions, we have

ZS
3

(Nf ,0),2k = 2 · ZS3

W at [0,...,0,1] . (3.22)

We check this for k = 1 in (D.17), which agrees with the mirror vortex. We observe that
the relation of twisted indices under the mirror symmetry is given by

IA(Nf ,0),2k = (t+ t−1) · IBW at [0,...,0,1] . (3.23)

The appearing prefactor t+ t−1 is computationally verified, but the reason behind is unclear
at this point. For the k = 1 case, the explicit results for the B-twisted index are provided
in tables 6, 7, 8 and for the A-twisted index in table 4.

Balanced case. The analysis can be readily extended to the balanced case Nf = 2k + 1.
Since the flavour nodes in (3.2b) reside at the two spinor nodes, the pattern presented
in (3.13) applies for all splittings L+ (Nf − L), 1 ≤ L ≤ 2k − 1 = Nf − 2. The remaining
two splitting behave as follows: L = 2k = Nf − 1 follows the logic of (3.18)–(3.19), i.e. the
vortex line is dual to the sum of Wilson line expectation values at the two spinor nodes.
Lastly, the splitting L = 2k + 1 = Nf corresponds to (3.21), meaning a Wilson line on a
spinor node with a multiplicity of 2.
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Comment on orthosymplectic mirror quiver. One may ask why the mirror symmetry
considerations are relevant for the objective of studying a duality between unitary and
orthosymplectic quivers. In principle, one possible way to derive a pattern between Wilson
lines as in section 3.2 is to trace the Wilson lines back to vortex line defects in the Sp(k)
SQCD. This, however, is not straightforward because they are realised by two different
brane configurations. To exemplify, for an O3 configuration one can place a defect D1
between any two half D5 branes as follows

L 2Nf − L

O3+O3+

k D3

(3.24)

which should induce a vortex defect of L+ (2Nf − L) splitting. Therefore, unlike (3.10),
the 2Nf half-hypermultiplets admit 2Nf + 2 different ways of splittings. While one can
argue that half of these are redundant due to the symmetry along the x6 direction, the
introduced 1d SQM and its coupling to the 3d bulk theory are rather delicate. If L is odd,
then the vortex defect is described by the SQM coupled to the Sp(k) bulk gauge symmetry
and an SO(L) flavour symmetry, which does not appear in (3.10). Moreover, evaluating the
expectation value of such a vortex defect remains a challenging task, both in the A-twisted
index and in the sphere partition function. It requires a precise microscopic description of
the 1d/3d coupled system, and we leave this problem to future research.

3.4 A comment on vortex line defects in the two mirrors

In view of section 3.2, it is tempting to ask whether vortex line defects can be matched
between the two different mirrors of Sp(k) gauge theory. An interesting class of vortex lines
is realised as 3d mirrors of a fundamental Wilson line in the Sp(k) gauge symmetry.

Unitary mirror quiver. The brane construction for a fundamental Wilson line is given by

Nf D5

2k D3 O5− −→
Sp(k)W

SO(2Nf )
(3.25)

and the position of the F1 with respect to the flavour D5s is not physical. This is because
the F1 can move across any of the D5 branes since the number of D3 branes on the left
and right agree.
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Based on the brane configuration (3.25) and assuming Nf > 2k + 1, the mirror vortex
defect is realised by

ON−
· · ·· · ·· · ·

1 2 2k−1 2k 2k 2k 2k 2k 2k 2k 2k

L NS5 Nf−L NS5
(3.26)

Moving the D1 to the nearest NS5 on the left-hand side, yields the following defect insertion:

1 2
. . .

2k−1 2k 2k
. . .

2k 2k 2k
. . .

2k

k

k

1
SQM

(3.27)

whereas moving the D1 to the nearest NS5 on the right-hand side yields the following:

1 2
. . .

2k−1 2k 2k
. . .

2k 2k 2k
. . .

2k

k

k

1
SQM

(3.28)

In terms of the brane configuration (3.26), the D-string can cross any of the NS5 as long as
the numbers of D3 branes on the left and right are equal. Hence, the two defects should be
equivalent. This is indeed true due to the hopping duality discussed in [33]. In other words,
the vortex defects defined by two adjacent U(2k) nodes are equivalent. This is evident from
the brane configuration and has been proven on the level of the S3 partition function in [33].

By the same logic, we find two more configurations describing dual defects by utilising
hopping duality. These are given by

1 2
. . .

2k−1 2k 2k
. . .

2k 2k 2k
. . .

2k

k

k

1
SQM

(3.29)

1 2
. . .

2k−1 2k 2k
. . .

2k 2k 2k
. . .

2k

k

k

1
SQM

(3.30)

and the equivalence follows straightforwardly from the arguments in [33].
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For k = 1 Nf > 3, we show explicitly by S3 partition functions (D.20) that the vortex
loop in the D-type quiver is mirror dual to the Wilson loop in the Sp(1) SQCD.

Orthosymplectic mirror quiver. Turning to the brane configuration of a Sp(k) gauge
theory with a fundamental Wilson line via an O3 plane

2Nf half D5

2k D3

O3− O3+ O3−O3+

−→
Sp(k)W

SO(2Nf )
(3.31)

and the position of the F1 string with respect to the flavour D5s is not physical. As above,
this is because the F1 can move across any of the half D5 branes since the number of D3
branes on the left and right are the same.

Based on the brane configuration (3.31) and assuming Nf > 2k + 1, the mirror
configuration is given by

· · · · · · · · · · · ·
1 1 k k k k k k k k k 1 1

O3+ O3− O3+ O3− Õ3
−

Õ3
+

Õ3
+

Õ3
− O3− O3+ O3− O3+

(3.32)
and the D1 is free to move across any of the central half NS5 branes because the numbers
of D3 branes on the left and right are equal. To derive the defect description, the D1 brane
in (3.32) can be moved to the nearest NS5 brane on the left such that the mirror theory
with vortex defect is realised by

2 2
. . .

2k 2k
. . .

2k 2k+1 2k
. . .

1
SQM

2k 2k
. . .

2 2

1

(3.33)

Alternatively, the D1 brane in (3.32) can be moved the nearest NS5 brane on the right-hand
side, which implies the following realisation:

2 2
. . .

2k 2k
. . .

2k 2k+1 2k
. . .

1
SQM

2k 2k
. . .

2 2

1

(3.34)

and again, the equivalence of these two defects follows from generalising the hopping duality
to brane configurations with O3 planes. Consequently, any vortex defect defined by two
consecutive Sp(k) and SO(2k + 1) gauge nodes is expected to be the same defect, which is
mirror dual to a fundamental Wilson line defect.
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Moreover, we find another mirror realisation of the fundamental Wilson line in the
Sp(k) theories, which is given by

2 2
. . .

2k 2k
. . .

2k 2k+1 2k
. . .

1
SQM

2k 2k
. . .

2 2

1

(3.35)
which follows from moving the D1 in (3.32) to the left-hand side of the interval containing
the half D5 flavour brane.

Unfortunately, it is not clear how to verify these predictions by A-twisted index or sphere
partition function. A promising tool could be the squashed sphere partition function [69, 70].

Comments on the balanced case Nf = 2k + 1. By an analogous line of reasoning,
one arrives at the following conjectural statements: a fundamental Wilson line in Sp(k)
SQCD with Nf = 2k + 1 should be mirror dual to

1 2
. . .

2k−2 2k−1

k

k

1

1

SQM (3.36)

which is similar in spirit to (3.30). Moreover, the Wilson line expectation value should also
be mirror dual to the follow vortex line in the orthosymplectic mirror:

2 2
. . .

2k−2 2k−2 2k 2k 2k 2k−2 2k−2
. . .

2 2

1

1

SQM

(3.37)

As we explicitly describe the case of k = 1 in section 5, we do not have the precise description
of the coupling of the SQM to the 3d theory in both unitary and orthosymplectic cases.
This is left for future work.

4 5d Sp(k) SQCD: unitary and orthosymplectic magnetic quivers

Consider 5d N = 1 theories which have a low-energy effective description as a 5d N = 1
gauge theory with Sp(k) gauge group and Nf fundamental flavours. However, the number
of flavours is constrained by Nf ≤ 2k + 5, which ensures that the low-energy theory admits
a UV completion into a 5d N = 1 SCFT. Field theory [71] and 5-brane web [72] arguments
restraint Nf ≤ 2k + 4, while the case Nf = 2k + 5 has been shown to be admissible in [73].

The Higgs branch of a 5d N = 1 theory changes from the IR theory, referred to as
finite (gauge) coupling, to the UV fixed point known as infinite coupling since new massless
instantons appear. The magnetic quiver technique, introduced in [1, 6, 22, 23], allows us to
analyse the Higgs branches at both finite and infinite coupling.
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Focusing in Sp(k) gauge groups, the same logic as in section 3 applies. Due to two
different string theory realisations, we have two distinct types of magnetic quivers:

• 5-brane webs in the presence of an O7− plane yield unitary magnetic quivers [6].
• 5-brane webs with an O5+ plane yield (unitary-)orthosymplectic magnetic

quivers [6, 9].
The magnetic quivers for finite coupling are the same as the mirror quivers for Sp(k) in 3d,
which have been explained in section 3. Now, the focus is placed on the magnetic quivers for
the Higgs branches at infinite coupling. The relevant unitary and orthosymplectic quivers
are given in [6, table 1].

The unitary magnetic quivers derived from 6d or 5d brane configurations at the strong
coupling fixed point are conventionally written as unframed quivers, meaning that no explicit
flavour node exists. As detailed in section 2.4, one overall U(1) needs to be removed from
the appearing product gauge group in order to render the theory well-defined. Starting from
the unitary magnetic quivers in [6, table 1], the diagonal U(1) is removed as follows: firstly,
it is convenient to ungauge a U(1) gauge node, as it is the simplest ungauging procedure.
Secondly, it is advisable to choose a U(1) node that is not balanced (if such a node exists).
Since the magnetic quivers are composed of good nodes only, the suitable U(1) is always
over-balanced. The reason for this choice is that the set of balanced nodes provides a
Dynkin diagram of the enhanced Coulomb branch symmetry. Hence, it seems ill-advised to
sacrifice this pattern. See also appendix C.3.

Turning to orthosymplectic magnetic quivers, these are also unframed if they correspond
to Higgs branches of 5d or 6d theories at the strong coupling fixed point. As discussed in
section 2.4, only a diagonal Z2 needs to be taken care of, which results in extending the
magnetic lattice from a pure integer lattice to integer lattice + half-integer lattice. This is
particularly relevant for the superconformal index, the A-twisted index, and the Coulomb
branch Hilbert series.

4.1 Duality of unitary and orthosymplectic magnetic quivers

It is observed in [36] that the 3d N = 4 unitary and orthosymplectic magnetic quivers
have not only the same Coulomb branch, but also the same Higgs branch. Namely, the
Hilbert series of the Higgs and Coulomb branches agree for a pair of the magnetic quivers.
Nevertheless, it remains unsettled to see whether they are dual as quantum field theory. In
this section, we show solid evidence by exact results that they flow to the same IR fixed point.

E4 quiver. To begin with, consider k = 1 and Nf = 3. The E4 ∼= su(5) quiver is given
by the Dynkin diagram of su(5):

1 1

1 1 1 1 2 22

1

1

(4.1)
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The wiggly line denotes a charge 2 hypermultiplet (under the U(1) gauge node). The
definition of the index for the framed unitary quiver is standard; in contrast, the index
for the orthosymplectic quiver requires a careful consideration of the magnetic lattice as
emphasised in section 2.4. After these preliminary remarks, a straightforward perturbative
computation shows that both quivers have the same superconformal indices

I= 1+√q
(24
t2

+t2
)

+q

(
−26+ 200

t4
+t4

)
+2q

5
4 t5+q

3
2

(1000
t6
− 451

t2
+t6

)
+q

7
4
(
−2t3+2t7

)
+q2

(
373+ 3675

t8
− 2824

t4
+t8

)
+. . . (4.2)

up to order q2.

E5 quiver. In the case of Nf = 4, the unitary quiver is the same as the k = 1, Nf = 5
case discussed in section 3, whereas the orthosymplectic quiver is different. Again, to
evaluate the superconformal index of the unframed orthosymplectic, we need to adjust the
magnetic lattice. It is then straightforward but tedious to verify that the superconformal
index of the orthosymplectic quiver below agrees with the k = 1, Nf = 5 case of table 3 up
to O(q3/2).

1

1

1

1
2 2

2 4 2 22

1
(4.3)

E6 quiver. Consider the unitary quiver whose Coulomb branch is Oe6
min:

321 2 1

2

1

(4.4)

The unitary-orthosymplectic quiver whose Coulomb branch is the closure of the E6 minimal
nilpotent orbit Oe6

min takes the following form [6] (see also [74, section A.1.5] for class S
description):

4 4 2 2422

1

=

4 4 2 2422

2

(4.5)

Since the orthosymplectic quiver is rather large, the perturbative calculation of the super-
conformal indices of these theories is limited to order O(q). Nonetheless, both computations
yield the same result

I = 1 + 78√q
t2

+ q

(
−79 + 2430

t4

)
+ . . . . (4.6)
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E7 quiver. We move on to the unitary-orthosymplectic quiver whose Coulomb branch is
the closure of the E7 minimal nilpotent orbit Oe7

min.

1 2 3 4 3 2 1

2

4 6 4 4422 2 2

2

1

(4.7)
The unitary quiver is of Dynkin type, while the orthosymplectic quiver has been derived
in [6] (see also [75, section 3.2.2] for the class S viewpoint). Here we present the unframed
unitary quiver. Due to the large rank of the gauge group, it is computationally challenging
to evaluate the superconformal indices of these theories. Despite the obstacles, the sphere
partition function is insightful as we can utilise the equivalence of the S3 partition function
on the level of the different legs in the two star-shaped quivers (4.7). For this computation,
we ungauge U(1) from the middle gauge group U(4) in the unitary quiver. Since the S3

partition function is insensitive to the magnetic lattice, we can compute it by naively
decoupling the U(1) factor from the middle gauge node to SU(4). (See section 2.4.)

Both the quivers in (4.7) have three tails, and two of them are T [SU(4)] ' T [SO(6)] [62].
The S3 partition functions of the T [G] theory is conjectured in (D.26), and in particular,
for T [SU(4)] ' T [SO(6)], explicit computation yields

ZS
3

T [SU(4)] = ZS
3

T [SO(6)] = 1
12

∏
1≤i<j≤3

(mi ±mj)
sh(mi ±mj)

. (4.8)

Taking residues, we calculate the S3 partition function of the other tail as

ZS
3
[

SU(4)2
]

= ZS
3
[

621
]

=
3∑
i=1

m2
i∏

j 6=i sh(mj ±mi)
. (4.9)

Note that the S3 partition function of U(2) SQCD with Nf = 4 flavours can be read off
from (D.24). To obtain (4.9), we impose m4 = m1 + m2 + m3 on (D.24) for the SU(4)
flavour symmetry. Therefore, the equalities of (4.8) and (4.9) imply that the S3 partition
functions of the two quivers (4.7) agree.

4.2 Wilson lines and unframed quivers

As a next step, we include Wilson lines defects into the unitary and orthosymplectic
magnetic quivers. As found in [8, 14, 36], some unframed magnetic quivers are endowed
with non-trivial 1-form symmetries which dictate the spectra of admissible line defects. Here,
we therefore study the spectra of admissible Wilson lines in the unitary and orthosymplectic
magnetic quivers from the viewpoint of 1-form symmetries and ungauging schemes.

Admissible Wilson lines for unframed unitary quivers. For unframed unitary
magnetic quivers, the quotient of the product gauge group ∏i U(ni) by the continuous
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ker φ ∼= U(1) group can be realised in various ways, see section 2.4. Although the resulting
theories have been argued to give rise to the same moduli spaces, the allowed line defects
require a careful treatment:

• If ni = 1 holds for some i, and the gauge node is over-balanced, we can simply ungauge
the group and obtain G/ker φ ∼=

∏
j 6=i U(nj). Notably, G′ ≡ G/ker φ has no trivially

acting subgroup anymore, due to the appearance of the U(ni) = U(1) flavour node.
The allowed representations for Wilson lines lie in the weight lattice of the gauge
group, i.e.

W ∈ ΛG′w =
⊕
j 6=i

Znj . (4.10)

In other words, the Wilson line can transform in any product representation composed
of the U(nj)|j 6=i representations.

• We could also choose to remove ker φ from any U(ni) node, with ni ≥ 2. Naively,
the gauge group becomes Gnaive = SU(ni) ×

∏
j 6=i U(nj). In contrast to the case

above, there still exists a non-trivial Zni = Z(SU(ni)), which acts trivial on the
matter content and is embedded via Zni ⊂ U(1) = Z(U(nj)) for j 6= i. This Zdiag

ni

groups defines an electric 1-form symmetry for the Gnaive gauge theory [35]. However,
as argued in [36], the gauge group, which seems to be preferred from the brane
system, is given by the quotient G′ = Gnaive/Zdiag

ni . As a result, the allowed Wilson
line representations R are any product representation of the gauge group factors
SU(ni) ×

∏
j 6=i U(nj), such that the R is Zdiag

ni invariant, i.e. the charge under the
diagonal U(1) has to be 0 mod ni.

To demonstrate, consider the affine E6 unitary quiver

1

q(1)

2

a
(1)
i

3 2

a
(2)
i

1

q(2)

2a
(3)
i

1q(3)

(4.11)

such that the U(1)I charges are q(I), the U(2)I fugacities are {a(I)
i }i=1,2, and the U(3)

fugacities are {bj}j=1,2,3. Starting from ungauging the diagonal U(1) at, say, the U(1)3
node. Then we can without doubt consider the following Wilson line:

R = q(1) ⊗
∏
I

[0, 0]
a

(I)
i

⊗ [0, 0, 0]bj (4.12)

see also figure 3a. This Wilson line is non-trivial.
Next, we ungauge the diagonal U(1) at, say, the U(2)3 node. Hence, the admissible

Wilson lines need to be invariant under Zdiag
2 . We may ask what happens to the Wilson

line (4.12) in this frame. Given the representation R, we need to implement the Z2
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1

Wq(1)

2 3 2 1

2

1

(a)

1

Wq(1)

2 3 2 1

2

1W1/q(3)

(b)

1

Wq(1)

2 3 2 1

2

1W1/q(3)

(c)

Figure 3. Affine E6 Dynkin quiver and different choices of ungauging. Here the superposition of a
circle and a square, called squircle, represents the node where the diagonal U(1) is ungauged. The
Wilson lines defined in each theory have identical B-twisted indices, see table 17.

invariance. Using the additional q(3) charge, the candidate Wilson line is given by

R′ = q(1) ⊗
(
q(3)

)x
⊗
∏
I 6=3

[0, 0]
a

(I)
i

⊗ [0]SU(2)(3) ⊗ [0, 0, 0]bj

Z2 − invariance ⇒ 1 + x = 0 mod 2
(4.13)

see figure 3b.
Likewise, ungauging at the central U(3) node leads to Wilson line configuration that

needs to be Z3 invariant. Utilising the q(3) charge, the candidate Wilson line is given by

R′′ = q(1) ⊗
(
q(3)

)x
⊗
∏
I

[0, 0]
a

(I)
i

⊗ [0, 0]SU(3)

Z3 − invariance ⇒ 1 + x = 0 mod 3
(4.14)

see figure 3c.
Demanding that the simplest solution satisfies both (4.13) and (4.14), and is moreover

compatible with (4.12), we find x = −1. Explicit computations for all Wilson lines in
figure 3 show that the B-twisted indices agree, see table 17 for the result.

Admissible Wilson lines for unframed orthosymplectic quivers. For unframed
orthosymplectic magnetic quivers, the removal of the diagonal ker φ = Z2 modifies not only
the magnetic lattice, but also the weight lattice of the gauge group, see (2.20) for an explicit
example. An immediate consequence is that a Wilson line transforming in the fundamental
representation of either a single SO(2n) node or single Sp(k) node is not an admissible line
operator, as these representations are outside the weight lattice. There are two possible
ways out if we aim for Wilson lines in “simple” representations:

• A Wilson line transforming in the product representation of two fundamental repre-
sentations of two distinct gauge nodes. This corresponds to the Zn∑ |odd ⊕ Zk∑ |odd
factor in (2.20).

• A Wilson line that transforms in a representation on the root lattice of a single gauge
node. This corresponds to the Zn∑ |even ⊕ Zk∑ |even factor in (2.20), where each lattice
is a root lattice of either SO(2n) or Sp(k).
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4.3 General observations and conjectures

Given the spectra of admissible Wilson lines analysed above, our next goal is to establish a
pattern between the admissible Wilson lines of the different magnetic quiver constructions.
The motivation comes from the pattern observed in the two different mirror quivers of 3d
Sp(k) of section 3.

The exceptional families [6] fall into two groups:

• The E8,7,6,5 families are labelled by the rank k of the 5d Sp(k) gauge group.

• The E4−2l and E3−2l families depend on the rank k as well as another integer 0 ≤ l ≤ k.

Almost all orthosymplectic magnetic quivers for the exceptional En families contain a single
U(1), originating from 5-branes unaffected by the orientifold projection. The only exception
is the E8 family. Given this U(1), it is particularly convenient to study Wilson lines in
the product representation q ⊗ [1, 0, . . . , 0]C/D of the charge 1 U(1) representation and a
fundamental representation of a single SO(2n) or Sp(k) gauge node. This is because the
U(1) representation does not increase the dimensionality of the representation.

Explicit computations of B-twisted indices with Wilson loops have been performed
for E7,6,5 with k = 1 — see tables 7, 17, 18 — as well as E4 with k = 1, 2 and E3 with
k = 1, 2, 3 — see tables 12, 13, 14, 15. The results obtained indicate a systematic pattern
between the Wilson lines in the orthosymplectic quiver and Wilson lines in the unitary
quiver.2 Based on the computations and assuming regularity of the behaviour, the pattern
can be turned into the following conjectures:

E7 family.

• For a Wilson line transforming in the product representation q ⊗ [1, 0, . . . , 0]Cr of the
U(1) node and an Sp(r) node for 1 ≤ r ≤ k + 1

2 2
. . .

2r 2r

W
. . .

2k+2 2k+4 2k+2
. . .

2

1W

2 2

←→

1 2
. . .

2r 2r

W
. . .

2k+2 k+2 2 1

k+1

(4.15)

2The unitary magnetic quivers of En families obtained from brane webs are unframed. Therefore, an
overall U(1) needs to be ungauged which corresponds to fixing the centre of mass of the brane system. The
choice of ungauging in this section is explained in appendix C.3.
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• For a Wilson line transforming in the product representation q ⊗ [1, 0, . . . , 0]Dr of the
U(1) node and an SO(2r) node for 1 ≤ r ≤ k + 2

2 2
. . .

2r

W

2r
. . .

2k+2 2k+4 2k+2
. . .

2

1W

2 2

←→

1 2
. . .

2r−1

W

2r
. . .

2k+2 k+2 2 1

k+1

(4.16)

+

1

W

2
. . .

2r−1 2r
. . .

2k+2 k+2 2 1

k+1

if r = 1, there is only one Wilson line in the unitary quiver.

• For a Wilson line transforming in the product representation q ⊗ [1, 0, . . . , 0]Dk+2 of
the U(1) node and the central SO(2k + 4) node

2 2
. . . . . .

2k+2 2k+4

W

2k+2
. . .

2

1W

2 2

←→

1 2
. . .

2k+1 2k+2 k+2 2 1

k+1W

(4.17)

+

1 2
. . .

2k+1 2k+2 k+2

W

2 1

k+1

+

1

W

2
. . .

2k+1 2k+2 k+2 2 1

k+1
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E6 family.

• For a Wilson line transforming in the product representation q ⊗ [1, 0, . . . , 0]Cr of the
U(1) node and an Sp(r) node for 1 ≤ r ≤ k + 1

2 2
. . .

2r 2r

W
. . .

2k+2 2k+2 2k+2
. . .

1W

2 2

←→

1 2
. . .

2r−1 2r

W
. . .

2k+1 k+1 1

k+1

1

(4.18)

• For a Wilson line transforming in the product representation q ⊗ [1, 0, . . . , 0]Dr of the
U(1) node and an SO(2r) node for 1 ≤ r ≤ k + 3

2 2
. . .

2r

W

2r
. . .

2k+2 2k+2 2k+2
. . .

1W

2 2

←→

1 2
. . .

2r−1

W

2r
. . .

2k+1 k+1 1

k+1

1

(4.19)

+

1

W

2
. . .

2r−1 2r
. . .

2k+1 k+1 1

k+1

1

if r = 1, there is only one Wilson line in the unitary quiver.
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• For a Wilson line transforming in the product representation q ⊗ [1, 0, . . . , 0]Ck+1 of
the U(1) node and the central Sp(k + 1) node

2 2
. . .

2r 2r
. . .

2k+2 2k+2

W

2k+2
. . .

1W

2 2

←→

1 2
. . .

2r
. . .

2k 2k+1 k+1

W

1

k+1

1

(4.20)

+

1 2
. . .

2r
. . .

2k 2k+1 k+1 1

k+1W

1

E5 family.

• For a Wilson line transforming in the product representation q ⊗ [1, 0, . . . , 0]Cr of the
U(1) node and an Sp(r) node for 1 ≤ r ≤ k

2 2
. . .

2r 2r

W
. . .

2k 2k+2 2k
. . .

1W

2 2

←→

1 2
. . .

2r−1 2r

W
. . .

2k k+1
1

1k

(4.21)

• For a Wilson line transforming in the product representation q ⊗ [1, 0, . . . , 0]Dr of the
U(1) node and an SO(2r) node for 1 ≤ r ≤ k

2 2
. . .

2r

W

2r
. . .

2k 2k+2 2k
. . .

1W

2 2

←→

1 2
. . .

2r−1

W

2r
. . .

2k k+1
1

1k

(4.22)

+

1

W

2
. . .

2r−1 2r
. . .

2k k+1
1

1k
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• For a Wilson line transforming in the product representation q ⊗ [1, 0, . . . , 0]Dk+1 of
the U(1) node and the central SO(2k + 2) node

2 2
. . . . . .

2k 2k+2

W

2k
. . .

1W

2 2

←→

1 2
. . .

2k−1 2k k+1
1

1kW

(4.23)

+

1 2
. . .

2k−1 2k k+1

W
1

1k

+

1

W

2
. . .

2k−1 2k k+1
1

1k

E4 family.

• For a Wilson line transforming in the product representation q ⊗ [1, 0, . . . , 0]Cr of the
U(1) node and an Sp(r) node for 1 ≤ r ≤ k − l

2 2
. . .

2r 2r

W
. . .

2k−2l 2k−2l 2k−2l
. . .

1W

l+1

2 2

←→

1 2
. . .

2r−1 2r

W
. . .

2k−2l−1 k−l 1

k−l

1

l+1 (4.24)

– 34 –



J
H
E
P
0
2
(
2
0
2
2
)
1
7
4

• For a Wilson line transforming in the product representation q ⊗ [1, 0, . . . , 0]Dr of the
U(1) node and an SO(2r) node for 1 ≤ r ≤ k − l

2 2
. . .

2r

W

2r
. . .

2k−2l 2k−2l 2k−2l
. . .

1W

l+1

2 2

←→

1 2
. . .

2r−1

W

2r
. . .

2k−2l−1 k−l 1

k−l

1

l+1 (4.25)

+

1

W

2
. . .

2r−1 2r
. . .

2k−2l−1 k−l 1

k−l

1

l+1

• For a Wilson line transforming in the product representation q ⊗ [1, 0, . . . , 0]Ck−l of
the U(1) node and the central Sp(k − l) node

2 2
. . . . . .

2k−2l 2k−2l

W

2k−2l
. . .

1W

l+1

2 2

←→

1 2
. . .

2k−2l−2

2k−2l−1 k−l

W

1

k−l

1

l+1 (4.26)

+

1 2
. . .

2k−2l−2

2k−2l−1 k−l 1

k−lW

1

l+1
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E3 family.

• For a Wilson line transforming in the product representation q ⊗ [1, 0, . . . , 0]Cr of the
U(1) node and an Sp(r) node, for 1 ≤ r ≤ k − l − 1

2 2
. . .

2r 2r

W
. . .

2k−2l−2

2k−2l

2k−2l−2
. . .

1W

l+1

2 2

←→

1 2
. . .

2r−1 2r

W
. . .

2k−2l−2 k−l 1

k−l−1 l+1 l+1

(4.27)

• For a Wilson line transforming in the product representation q ⊗ [1, 0, . . . , 0]Dr of the
U(1) node and an SO(r) node, for 1 ≤ r ≤ k − l − 1

2 2
. . .

2r

W

2r
. . .

2k−2l−2

2k−2l

2k−2l−2
. . .

1W

l+1

2 2

←→

1 2
. . .

2r−1

W

2r
. . .

2k−2l−2 k−l 1

k−l−1 l+1 l+1

(4.28)

+

1

W

2
. . .

2r−1 2r
. . .

2k−2l−2 k−l 1

k−l−1 l+1 l+1
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• For a Wilson line transforming in the product representation q ⊗ [1, 0, . . . , 0]Dk−l of
the U(1) node and the central SO(2k − 2l) node

2 2
. . .

2k−2l

W 2k−2l−2
. . .

1W

l+1

2 2

←→

1 2
. . .

2k−2l−3

2k−2l−2 k−l

W

1

k−l−1 l+1 l+1

(4.29)

+

1 2
. . .

2k−2l−3

2k−2l−2 k−l 1

k−l−1
W

l+1 l+1

+

1

W

2
. . .

2k−2l−3

2k−2l−2 k−l 1

k−l−1 l+1 l+1

E8 family and 6d Sp(k) SQCD. One prominent family has not been presented yet:
the E8 family of [6], i.e. the infinite coupling limit of 5d N = 1 Sp(k) with the maximally
allowed number of flavours Nf = 2k + 5. This family faces computational difficulties due
to the large rank of the gauge group such that we are unable to evaluate the partition
functions in the presence of defects. Moreover, the structure of the orthosymplectic quiver,
with the absence of a U(1) node, even prevents us from formulating a clear prediction for
matching Wilson lines.

Similarly, one could consider 6d N = (1, 0) Sp(k) SQCD with Nf = 2k + 8 flavours,
which has a unitary magnetic quiver [2] as well as an orthosymplectic magnetic quiver [5].
Again, the analysis of the partition functions and line defects is obstructed for the same
reasons as the 5d E8 family.

Wilson line transforming in other representations. For unframed orthosymplectic
quivers, a Wilson line transforming in the fundamental representation of a single gauge group
is not invariant under the Z2 1-form symmetry. On the other hand, other representations
such as charge-2 under the U(1) or the symmetric representation [2]C1 of Sp(1) are Z2-
invariant. Here, we demonstrate adding Wilson lines transforming under charge-2 and
symmetric representations for the E4 orthosymplectic quiver and match them with Wilson
lines on the unitary counterpart in the E4 quivers. Firstly, we chose the charge-2 Wilson
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line at SO(2) with character q2:

1 1 1 1

1 1

2 2 2

1

1

W2W W

←→

(4.30a)

and the matching Wilson line in the unitary quiver transforms in two adjacent U(1) nodes
(in (+1,+1) charges).

Secondly, one may choose the second symmetric representation [2] of Sp(1)

←→

1 1

2 2 2

1

1

W[2]

1 1

1 1

W

W W W

+

W

1 1 1 1 1 1 1 1

1 1 1 1

(4.30b)
and the corresponding line defect in the unitary quiver appears to be a linear combination
of three different Wilson lines. One Wilson line is charged under a single U(1) and the two
others are charged under two U(1) nodes each. All U(1) charges are +1.

Lastly, we consider the charge-2 representation of the U(1)

←→
2 2 2

1

1

1 1

W
1 1 1 1

W2
(4.30c)

which corresponds to a Wilson line charged (+1) under just one U(1) node in the unitary
quiver.

In these three examples, we depict the Wilson lines in the unitary-orthosymplectic
theory on the right side. While on the left side, we describe the corresponding Wilson
lines in the unitary theory, consisting of charge-1 Wilson lines at one gauge group or a
product of two gauge groups. As seen in the cases considered above, the dimension of the
representations agrees on both sides. As the dimension of the representation of a Wilson
line in the orthosymplectic theory becomes larger, it becomes more challenging to find the
corresponding Wilson line in the unitary theory.
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4.4 Refining symmetries

One may wonder how the global symmetries might be matched once we (partially) include
their fugacities in the partition functions. In particular, it is intriguing to study the
consequences of gauging the 1-form symmetry Zdiag

2 that is expected to introduce the
corresponding 0-form symmetry [35]. In order to investigate this question, one approach
can be the superconformal index refined by fugacities of the global symmetries. However, it
is, by definition, clear that the Zdiag

2 has no effect on the Higgs branch operators; therefore,
it is sufficient to focus on Coulomb branch operators. This then allows us to focus on
Coulomb branch Hilbert series via the monopole formula [40] because it is much easier to
evaluate it than the superconformal index.

For refinement, the following fugacities can be turned on

U(k) gauge group → U(1)top with z
∑k

i=1 mi (4.31a)

SO(2N) gauge group → Zcentre
2 with y

∑N

i=1 mi , y2 = 1 (4.31b)

for SO(2) ∼= U(1) the centre symmetry is continuous. The 0-form symmetry Z` resulting
from gauging the 1-form symmetry Z` is taken into account as follows:

HS =
`−1∑
κ=0

qκ
∑

m∈(Z+κ
` )rk

P (t,m) zm t∆(m) (4.32)

where
(
Z + κ

`

)rk denotes a suitable lattice shifted by +κ
` in every component. See section 2.4

and [36].
Here we outline a strategy that identifies the global symmetries of the orthosymplectic

quivers apparent at UV as subgroups of the (much larger) symmetries of the unitary
counterparts. The hidden symmetries, i.e. the part that only emerges in the IR, cannot be
addressed.

E4 quiver. For the E4 quiver, one may turn on the following symmetry fugacities: 2 2 2

1

1

z1

x

z2


/Zdiag

2 3q

←→ (A)

1 1 1 1

1 1

w1 w2 w3 w4

(4.33)

Evaluating the monopole formula, we see the following match of partially refined Hilbert
series

HSOSp(zi = z,x=w2, q) = HZ(zi = z,x=w2)+q ·H
Z+ 1

2
(zi = z,x=w2)

= HS(A) (w1 =w4 = z,w2 = q
w ,w3 = qw

)
|q2=1 (4.34)
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=1+t
(
6+ 1

z2 + 4
z

+4z+z2+q( 2
w

+2w+ 1
wz

+w
z

+ z
w

+wz)
)

+t2
(

26+ 4
w2 +4w2+ 1

z4 + 4
z3 + 12

z2 + 1
w2z2 +w2

z2 + 20
z

+ 2
w2z

+ 2w2
z

+20z+ 2z
w2 +2w2z+12z2+ z2

w2 +w2z2+4z3+z4

+q
(

12
w

+12w+ 1
wz3 + w

z3 + 4
wz2 + 4w

z2 + 9
wz

+ 9w
z

+ 9z
w

+9wz+ 4z2
w

+4wz2+ z3
w

+wz3
))

+t3
(

78+ 20
w2 +20w2+ 1

z6 + 4
z5 + 12

z4 + 1
w2z4 +w2

z4 + 28
z3 + 4

w2z3 + 4w2
z3 + 48

z2 + 9
w2z2 + 9w2

z2 + 68
z

+ 16
w2z

+ 16w2
z

+68z+ 16z
w2

+16w2z+48z2+ 9z2
w2 +9w2z2+28z3+ 4z3

w2 +4w2z3+12z4+ z4
w2 +w2z4+4z5+z6

+q
(

6
w3 + 44

w
+44w+6w3+ 1

wz5 + w
z5 + 4

wz4 + 4w
z4 + 1

w3z3 + 12
wz3 + 12w

z3 +w3
z3 + 2

w3z2 + 24
wz2 + 24w

z2 + 2w3
z2 + 4

w3z

+ 37
wz

+ 37w
z

+ 4w3
z

+ 4z
w3 + 37z

w
+37wz+4w3z+ 2z2

w3 + 24z2
w

+24wz2+2w3z2+ z3
w3 + 12z3

w
+12wz3+w3z3+ 4z4

w

+4wz4+ z5
w

+wz5
))

+O(t4)

and the agreement has been verified by perturbative evaluation up to order t10. This
identifies two continuous global symmetries besides Zdiag

2 .

E5 quiver. It turns out that the identification of global symmetries in the E5 magnetic
quivers is more interesting since it depends on the U(1) ungauging scheme of the unitary
counterparts, namely (A) and (B) below. For the E5 magnetic quivers, one may turn on
the following symmetry fugacities: 2 2 4 2 2

1x

z1 z2y ∈ Z2


/Zdiag

2 3q

←→ (A)
1 2 2

1

1
1

w1 w2 w3
w4

w5

(4.35)

←→ (B)

 SU(2)
1

2
1

11v1

v2
u2

u1

u3


/Zdiag

2 3p

The Hilbert series evaluation yields the following relations

HSOSp(zi = z, y = 1, x = 1, q) = HZ(zi = z, y = 1, x = 1) + q ·H
Z+ 1

2
(zi = z, y = 1, x = 1)

= HS(A)(w1 = w4 = w−1
5 = z, w2 = w3 = q)|q2=1 (4.36)

= HS(B)(u1 = u−1
3 = z, u2 = q, v1 = v−1

2 = z, p = 1)|q2=1

= 1+t
(
11+8z+ 8

z
+z2+ 1

z2 +q(4z+ 4
z

+8)
)

+t2
(
130+96z+ 96

z
+47z2+ 47

z2 +8z3+ 8
z3 +z4+ 1

z4 +q
(
4z3+ 4

z3 +32z2+ 32
z2 +80z+ 80

z
+104

))
+t3
(
942+808z+ 808

z
+487z2+ 487

z2 +208z3+ 208
z3 +47z4+ 47

z4 +8z5+ 8
z5 +z6+ 1

z6

+q
(
4z5+ 4

z5 +32z4+ 32
z4 +168z3+ 168

z3 +432z2+ 432
z2 +724z+ 724

z
+864

))
+t4
(
5350+4744z+ 4744

z
+3381z2+ 3381

z2 +1856z3+ 1856
z3 +772z4+ 772

z4 +208z5+ 208
z5 +47z6+ 47

z6 +8z7+ 8
z7 +z8+ 1

z8

+q
(
4z7+ 4

z7 +32z6+ 32
z6 +168z5+ 168

z5 +672z4+ 672
z4 +1712z3+ 1712

z3 +3152z2+ 3152
z2 +4500z+ 4500

z
+5056

))
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+t5
(
24218+22264z+ 22264

z
+17199z2+ 17199

z2 +11168z3+ 11168
z3 +5900z4+ 5900

z4 +2480z5+ 2480
z5

+772z6+ 772
z6 +208z7+ 208

z7 +47z8+ 47
z8 +8z9+ 8

z9 +z10+ 1
z10

+q
(
23488+21516z+ 21516

z
+16592z2+ 16592

z2 +10656z3+ 10656
z3 +5568z4+ 5568

z4 +2264z5+ 2264
z5

+672z6+ 672
z6 +168z7+ 168

z7 +32z8+ 32
z8 +4z9+ 4

z9

))
+O(t6)

and agreement has been verified by perturbative evaluation up to order t5. This implies in
particularly that the separation into integer and half-integer lattice of the orthosymplectic
quiver and the unitary quiver (B) does not coincide. Moreover, the identification of the
suitable Zdiag

2 in the unitary quivers is realised by embedding the Z2 into a single U(1)top
for (B) and into a diagonal U(1) ⊂ U(1)top ×U(1)top for (A).

For the unitary quiver (A) one can, moreover, identify all continuous global symmetries
of the orthosymplectic quiver as follows:

HSOSp(zi,y= 1,x,q) = HS(A)
(
w1 = z−1

1 ,w2 = q
√
z1z2x,w3 = q√

z1z2x
,w4 = z1,w5 = z2

)∣∣∣
q2=1

=1+t

(
9+4z1+ 4

z1
+4z2+ 4

z2
+z1z2+ z1

z2
+ 1
z1z2

+ z2
z1

+2qz
− 1

2
1 z

− 1
2

2 (
√
x+1/

√
x)(1+z1+z2+z1z2)

)
+O(t2) (4.37)

which has been verified up to order t5.

E6 quiver. For the E6 magnetic quivers, we turn on the following fugacities 2 2 4 4 4 2 2

1x

z1 z2y1 ∈ Z2 y2 ∈ Z2


/Zdiag

2 3q

←→ (A)

1 2 3 2 1

2w6

1

w1 w2 w3 w4 w5

(4.38)

←→ (B)

 1 2 3 2 1

SU(2)

1v

u1 u2 u3 u4 u5


/Zdiag

2 3p
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The evaluation of the monopole formula suggests the following

HSOSp(zi = z, yi = x = 1, q) = HZ(zi = z, yi = x = 1) + q ·H
Z+ 1

2
(zi = z, yi = x = 1)

= HS(A)(w1 = w5 = 1, w2 = w4 = q, w3 = w−1
6 = z)|q2=1 (4.39)

= HS(B)(u1 = u5 = z, u2 = u4 = q, u3 = v = p = 1)|q2=1

= HS(B)(u1 = u5 = 1, u2 = u4 = q, u3 = v−1 = z, p = 1)|q2=1

= 1+t
(
20+12z+ 12

z
+z2+ 1

z2 +q(16+8z+ 8
z )
)

+t2
(
422+300z+ 300

z
+115z2+ 115

z2 +12z3+ 12
z3 +z4+ 1

z4 +q
(
384+280z+ 280

z
+96z2+ 96

z2 +8z3+ 8
z3
))

+t3
(
5834+4756z+ 4756

z
+2518z2+ 2518

z2 +808z3+ 808
z3 +115z4+ 115

z4 +12z5+ 12
z5 +z6+ 1

z6

+q
(
5696+4616z+ 4616

z
+2432z2+ 2432

z2 +752z3+ 752
z3 +96z4+ 96

z4 +8z5+ 8
z5
))

+t4
(
60006+51688z+ 51688

z
+33050z2+ 33050

z2 +15104z3+ 15104
z3 +4618z4+ 4618

z4

+808z5+ 808
z5 +115z6+ 115

z6 +12z7+ 12
z7 +z8+ 1

z8

+q
(
59344+51184z+ 51184

z
+32576z2+ 32576

z2 +14848z3+ 14848
z3

+4448z4+ 4448
z4 +752z5+ 752

z5 +96z6+ 96
z6 +8z7+ 8

z7

))
+t5
(
479893+429036z+ 429036

z
+305471z2+ 305471

z2 +170968z3+ 170968
z3 +72650z4+ 72650

z4

+22240z5+ 22240
z5 +4618z6+ 4618

z6 +808z7+ 808
z7 +115z8+ 115

z8 +12z9+ 12
z9 +z10+ 1

z10

+q
(
477888+427016z+ 427016

z
+303920z2+ 303920

z2 +169744z3+ 169744
z3 +71936z4+ 71936

z4

+21824z5+ 21824
z5 +4448z6+ 4448

z6 +752z7+ 752
z7 +96z8+ 96

z8 +8z9+ 8
z9

))
+O(t6)

and the agreement has been verified up to order t5. Again, the GNO lattice split into
integer and half-integer lattice for the orthosymplectic quiver is different compared to the
split in the unitary quiver (B).

E7 quiver. For the E7 magnetic quivers, consider the following theories and their sym-
metry refinement

 2 2 4 4 6 4 4 2 2

2

1x

z1 z2y1 ∈ Z2 y2 ∈ Z2 y3 ∈ Z2


/Zdiag

2 3q

←→ (A)
1 2 3 4 3 2

2w7 1

w1 w2 w3 w4 w5 w6

(4.40)
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←→ (B)

 1 2 3 4 3 2 1

SU(2)

u1 u2 u3 u4 u5 u6 u7


/Zdiag

2 3p

←→ (C)

 1 2 3 4 3 SU(2) 1

2v6

v1 v2 v3 v4 v5 w


/Zdiag

2 3r

The Coulomb branch Hilbert series are related as follows:

HSOSp(zi = z, yi = x = 1, q) = HZ(zi = z, yi = x = 1) + q ·H
Z+ 1

2
(zi = z, yi = x = 1)

= HS(A)(w1 = w7 = w−1
4 = z, w2 = w6 = q, w3 = w5 = 1)|q2=1 (4.41)

= HS(B)(u1 = u7 = z, u2 = u6 = q, u3,4,5 = p = 1)|q2=1

= HS(C)(v1 = v5 = v−1
6 = z, v2,3,4,5 = w = 1, r = q)

= H(C)
Z (v1 = v5 = v−1

6 = z, v2,3,4,5 = w = 1)

+ r|r=q ·H(C)
Z+ 1

2
(v1 = v5 = v−1

6 = z, v2,3,4,5 = w = 1)

= 1+t
(
35+16z+ 16

z
+z2+ 1

z2 +q(32+16z+ 16
z )
)

+t2
(
1351+896z+ 896

z
+273z2+ 273

z2 +16z3+ 16
z3 +z4+ 1

z4 +q
(
1312+896z+ 896

z
+256z2+ 256

z2 +16z3+ 16
z3
))

+O(t3)

and the agreement has been verified up to order t3. We observe that the integer half-integer
split of the orthosymplectic quiver does coincide with the split in the unitary quiver (C),
while it does not agree with the split in (B).

Interestingly, one can also verify the following relation

HSOSp(zi, yi = x = 1, q) = HS(C)(v1 = z1, v5 = v−1
6 = z2, v2,3,4,5 = w = 1, r = q)

= 1+t
(
+33+8z1+ 8

z1
+8z2+ 8

z2
+z1z2+ z1

z2
+ 1
z1z2

+ z2
z1

+16q√z1z2(1+z1+z2+z1z2)
)
+O(t2) (4.42)

i.e. two global U(1)zi symmetries and the Zdiag
2 can be identified.

Remarks. The results of this section demonstrate that the discrete 0-form symmetry
Zdiag

2 resulting from gauging the 1-form Zdiag
2 in the orthosymplectic quivers, see section 2.4,

can be recovered in the unitary counterparts T (α). We also observe that the way the discrete
0-form symmetry Zdiag

2 is embedded depends on a U(1) ungauging scheme (α). Of course,
the orthosymplectic quiver offers less possibility of refining global symmetries compared to
the unitary counterparts; however, it is a necessary and so far less studied question on how
to embed the symmetries visible in the orthosymplectic quiver into the symmetries of the
unitary quiver. A detailed study of matching the refined indices is left for future work.
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One interesting outcome is the following: the identification of the discrete Zdiag
2 global

symmetry in the unitary counterparts enables unitary magnetic quiver constructions for the
orthosymplectic quivers where the Zdiag

2 1-form symmetry has not been gauged. Schemati-
cally, one finds:

OSp quiver with G′=
∏
i

[SO(2ni)×Sp(ki)]/Zdiag
2 ←→ known unitary counterpart(s) T (α)

OSp quiver with G=
∏
i

[SO(2ni)×Sp(ki)] ←→ to be explored counterpart(s) T̃ (α)

where the quiver theories T̃ (α) are derived from the unitary quivers T (α) by gauging the
corresponding Zdiag

2 global symmetry. As demonstrated in the examples of this section, the
0-form Zdiag

2 symmetry can be identified in the T (α)s. The implications are as follows:
• The proposed duality between orthosymplectic and unitary quivers, with trivial 1-form

symmetries, is likely to be extended to a duality of orthosymplectic and unitary quivers
involving non-trivial 1-form symmetries.

• Generating functions, which are sensitive to higher-form symmetries, are the Coulomb
branch Hilbert series and also the superconformal index as well as the A-twisted index.
See for instance [76] for the analysis with the superconformal index and [77] for the
observation that the Witten index is sensitive to 1-form symmetries.

A systematic study requires an at least partially refined evaluation of the supersymmetric
indices or Hilbert series, which is beyond the scope of the present paper. We leave this for
future work.

5 Summary and discussions

The central motivation for this paper has been the question whether two magnetic quivers
that describe the same moduli space are dual as honest 3d N = 4 theories.

As a first probe, the superconformal index has been computed for the unitary magnetic
quivers as well as the orthosymplectic magnetic quiver. The results of section 3.1 show
that the indices for the two different 3d mirror quivers are compatible with each other in
the given order of the perturbative evaluation. Coincidentally, these results are also valid
for the finite coupling magnetic quivers for the 5d Sp(k) theories of section 4. Moreover,
in section 4.1 the superconformal indices for the two infinite coupling magnetic quivers of
5d Sp(k) have been computed perturbatively. Again, in the given order of evaluation, the
results are compatible with one another. As a consistency check, the Coulomb limit and the
Higgs limit of the index results agree with the known Coulomb branch and Higgs branch
Hilbert series, respectively. Also, we perform the identification of some 0-form symmetries,
including that from gauging the 1-form symmetry, in the Coulomb branch Hilbert series
between the two magnetic quivers in section 4.4.

As a second probe, half BPS line defects have been introduced into the two classes of
magnetic quivers. The 3d setup of section 3 served as a playground to familiarise oneself with
Wilson and vortex lines because the entire setting admits a brane realisation in Type IIB. In
section 3.2 a pattern has been presented as a dictionary to match Wilson line defects between
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the two 3d N = 4 Sp(k) mirror theories. Computationally, evidence is provided by matching
the B-twisted indices with Wilson line insertion. Inclusion of vortex lines in the two mirrors
has been considered in section 3.4, based on the mirror symmetry of Wilson and vortex line
discussed in section 3.3. Moving on to the magnetic quivers for the 5d Sp(k) theories at infi-
nite coupling limit, the inclusion of line defects is solely based on quantum field theory rather
than underlying brane configurations. As a first conceptual step, the allowed representations
for the Wilson lines have been detailed in section 4.2. Thereafter, an intriguing matching
pattern between the Wilson lines in the two different types of magnetic quivers has been un-
covered in section 4.3. Again, the evidence stems from explicitly computing B-twisted indices.

The results clearly indicate that the unitary and orthosymplectic magnetic quivers
agree not only on their moduli spaces, but also have equal superconformal indices, and they
admit matching Wilson line defects. In (4.30), we demonstrated the agreement for a Wilson
line with higher representations in the E4 quivers. It would be intriguing to find a rule of
the agreement for Wilson lines with higher representations in the two magnetic quivers. In
section 3.4, we propose the matching of vortex defects in the unitary and orthosymplectic
quivers mirror dual to the fundamental Wilson line in Sp(k) SQCD. Nevertheless, there is
a large class of vortex-type line defects that preserve the A-type supercharge [47]. Finding
the correspondence of vortex line defects in the two magnetic quivers in section 4 is also a
consequential task left for future work. In order to further study A-type line defects in the
proposed duality, it would be desirable to, firstly, improve the computability of A-twisted
indices and, secondly, clarify the vortex line defects in orthosymplectic quivers.

Other known cases of a duality between unitary and orthosymplectic quivers include, for
instance, different 3d mirrors of certain Argyres-Douglas theories (A4m−1, D3) ∼= (A4m−1, A3)
as well as (D3, D2n+2) ∼= (A3, D2n+2) [78, 79], due to the A3 ∼= D3 Lie algebra isomorphism.
So far, the proposed duality has been checked by the match of Higgs/Coulomb Hilbert series
in [78, 79], but it would be desirable to extend the analysis along the lines of this paper.

Let us discuss another interesting open problem. In section 3.1, the unitary and
orthosymplectic mirror theories in (3.2b) and (3.3b), respectively, for Sp(1) theory with 3
flavours are obtained via mirror symmetry. At the same time, the unitary A3 quiver theory
in (3.2b) (for k = 1) is mirror dual to U(1) theory with 4 flavours. The coincidence of the
A3 and D3 unitary quiver has been observed long ago in [64], and recently revisited from
the viewpoint of S3 partition functions [80, section 4.1]. As a result, we have a web of the
following 3d N = 4 dualities.

2 22

21 1

1 1 1

1 4 2 6

U/OSp duality

MS1 MS3MS2

(5.1)
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The superconformal indices of these theories agree, see table 3. Now let us consider the
S3 partition functions of these theories. The S3 partition function of the SQED is given
in [56, section 2.2]

ZS
3

(1)−[4] =
∫
ds

e2πi(ξ1−ξ2)s

ch(s−m1) ch(s−m2) ch(s−m3) ch(s−m4)

= i

i3(eπ(ξ1−ξ2) − e−π(ξ1−ξ2))

4∑
i=1

e2πimi(ξ1−ξ2)∏
j 6=i sh(mi −mj)

, (5.2)

where ξ1 − ξ2 is the FI parameter and mi (i = 1, . . . , 4) are the mass parameters. The S3

partition function of the unitary A3 quiver theory is given by

ZS
3

A3 =
∫ 3∏
j=1

dsj
e

2πi
∑3

j=1(ξj−ξj+1)si

ch(m1 − s1) ch(s1 − s2) ch(s2 − s3) ch(s3 −m2)

=
∫ 3∏

j=1
dsj

4∏
k=1

dtk
e

2πi
∑3

j=1(ξj−ξj+1)sie−2πi(t1(m1−s1)+t2(s1−s2)+t3(s2−s3)+t4(s3−m2))∏4
k=1 ch(tk)

= e2πi(−m1ξ1+m2ξ4)
∫
dt1

e2πi(m1−m2)t1

ch(t1 − ξ1) ch(t1 − ξ2) ch(t1 − ξ3) ch(t1 − ξ4) , (5.3)

where ξi,−ξi+1 (i = 1, 2, 3) is the FI parameter of the i-th U(1) gauge node from the
left, and m1,2 are the mass parameters of the flavours. From the second to the third line,
performing dsj (j = 1, 2, 3) integrals, we obtain the delta functions that impose the relations

t2 = t1 + ξ1 − ξ2 , t3 = t1 + ξ1 − ξ3 , t4 = t1 + ξ1 − ξ4 ,

and we then integrate over dtk (k = 2, 3, 4). It is straightforward to verify that the last
line is the same integral as in (5.2) up to a factor under the exchange of the FI and
mass parameters, which shows the mirror symmetry MS1 in (5.1). To compute the sphere
partition function of the Sp(1) with 3 flavours, we introduce an UV regulator ξ and take
the limit ξ → 0 by using the L’Hospital rule:

ZS
3

SQCD = lim
ξ→0

∫
ds

e2πiξs sh2(2s)∏3
i=1 ch(±s−mi)

=
3∑
i=1

mi sh(2mi)∏
j 6=i sh(mj ±mi)

. (5.4)

This is equal to the limit mi → 0 of (5.3) with the substitution ξ4 = ξ1 + ξ2 + ξ3, up to the
same mirror parameter changes (ξi ↔ mi). This confirms the mirror symmetry MS2 in (5.1).
Note that it is necessary to take the limit ξ → 0 in (5.4) for this equality. Therefore, the
regulator ξ does not capture the emergent SO(2) symmetry at IR. To show the mirror
symmetry MS3 and the unitary/orthosymplectic duality, we take the limit ξj → 0

lim
ξj→0

ZS
3

A3 = (m1 −m2)
(
1 + (m1 −m2)2)

6 sh(m1 −m2) . (5.5)

It is also straightforward to compute the S3 partition function of the orthosymplectic quiver
theory by introducing regulators

ZS
3

OSp = lim
ξi,η→0

∫
dsdt1dt2

e2πi(ξ1t1+ξ2t2+ηs) sh2(2s)
ch(±s−m)∏i=1,2 ch(ti ± s)

= m
(
1 + 4m2)

3 sh(2m) . (5.6)
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This agrees with (5.5) with the identification of the mass parameters

m = m1 −m2
2 . (5.7)

Next, let us consider line operators dual to a Wilson loop in the SQED with 4 flavours.
The Wilson loop with charge q results in the shift ξ1 → ξ1−iq in (5.2). The dual vortex in the
unitary A3 quiver theory is described as supersymmetric quantum mechanics that couples
to two adjacent 3d U(1) nodes (including both gauge and flavour nodes). One configuration
is illustrated in (5.8), which is also equivalent to their hopping-dual configurations. Note
that the directions of the arrows for 1d chiral are for q < 0 in the unitary A3 quiver of (5.8),
and the directions become opposite for q > 0. In fact, it is straightforward to see that
this vortex produces the shift m1 → m1 − iq in the S3 partition function. Likewise, the
vortex in the orthosymplectic quiver of (5.8) becomes the dual configuration when q is
an even negative integer due to (5.7). Namely, it introduces the shift m→ m+ i|q|/2 in
the S3 partition function. We do not know a description of the dual vortex defect in the
orthosymplectic quiver for odd q. Moreover, for any value of charge q, it remains an open
problem to describe a dual B-type defect in the Sp(1) SQCD with 3 flavours because the
theory lacks an explicit FI parameter.

2 22

2

1
1

1

1 1

Wq

1 4

SQM
|q|
2

1d

3d

2 6

U/OSp duality
q < 0, q :even

MS1 MS3MS2

SQM
|q|1d

3d

(5.8)

As seen in section 3.3 and appendix D, we propose the vortex configurations in the two
mirror theories dual to the fundamental Wilson line of the Sp(1) SQCD for Nf > 3. However,
we do not know how to describe A-type line defects mirror dual to the fundamental Wilson
line of the Sp(1) SQCD with 3 flavours. Only with 3 flavours, we cannot manipulate the
integrand (5.4) of the Sp(1) SQCD into the integrand (5.3) of the unitary mirror quiver since
sh2 in the numerator of the integrand (5.4) cannot be removed by the Cauchy determinant
formula. This is different from the computations in (D.20). Hence, it is interesting to find a
description of A-type line defects in the two mirror theories dual to the fundamental Wilson
line of the Sp(1) SQCD with 3 flavours. Supersymmetric enhancement from 1d N = 2 to
N = 4 may be a potential approach for this problem. We leave these open problems to
future research.
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A Background material

In this appendix, some basics about Type IIB brane configurations for 3d N = 4 theories
are summarised. In addition, some notations are laid out.

A.1 Brane realisation of 3d N = 4 theories

The starting point is the D3-D5-NS5 setup of [29] in which the branes occupy space-time
dimension as summarised in table 2. Each brane individually breaks half the supercharges;
however, the arrangement is such that any two of the three branes imply that the third
brane can be added without breaking supersymmetry further. Hence, the system has 8
supercharges. The crucial feature of the D3-D5-NS5 setup [29] is that the system breaks
the 10d space-time symmetry

SO(1, 9)→ SO(1, 2)× SO(3)3,4,5 × SO(3)7,8,9 (A.1)

and the rotational symmetries SO(3)3,4,5 ⊂ SU(2)C and SO(3)7,8,9 ⊂ SU(2)H realise the 3d
N = 4 R-symmetry SO(4)R ∼= SU(2)C × SU(2)H geometrically.

Starting from the Type IIB brane setup D3-D5-NS5, the resulting classes of 3d N =
4 quiver gauge theories can be enriched by including orientifolds and orbifold planes.
There are three types to consider: O3, O5, and ON planes, and the reader is referred
to [31, 32, 62, 64, 81–83] for details.

The graphical notation for the different branes and orientifolds is as follows:

NS5: D5: ON: O5:
x6

x7,8,9

NS5: D5: ON: O5:
x6

x3,4,5

(A.2)

D3: O3:
x6

x3,4,5,
x7,8,9
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IIB 0 1 2 3 4 5 6 7 8 9

NS5/ON × × × × × ×
D3/O3 × × × ×
D5/O5 × × × × × ×

← R1,2 → ← R3
3,4,5 →︸ ︷︷ ︸

	SU(2)C

← R3
7,8,9 →︸ ︷︷ ︸

	SU(2)H

Table 2. Space-time occupation of the D3-D5-NS5 setup of [29]. Likewise, O3 or O5 planes occupy
the same directions as D3 or D5 branes, respectively; while ON planes are parallel to NS5 branes.

A.2 Quiver gauge theories

A Quiver diagram, composed of nodes and edges, encodes a 3d N = 4 field theory as follows:
• Gauge nodes © denotes dynamical vector multiplets, whiled flavour nodes � denote

background vector multiplets. The notation used in this paper is

k
←→ U(k)

k
←→ SO(k)

2k
←→ Sp(k) (A.3)

and the same colour-coding is used for flavour nodes.
• An edge between two nodes corresponds to a hypermultiplet H = (X,Y †), with X,Y

two N = 2 chiral multiplets. In a unitary quiver, an edge represents

k1 k2
←→ bifundamental hyper: H = (X,Y †) ∈ k1 ⊗ k2 (A.4)

i.e. each chiral transforms as bifundamental X ∈ k1 ⊗ k2 and Y ∈ k1 ⊗ k2. On the
other hand, in an orthosymplectic quiver, an edge stands for

k1 2k2
←→ half-hypermultiplet: h = (X, JY ) ∈ k1 ⊗ 2k2 (A.5)

but the individual chirals do not transform as k1 ⊗ 2k2. Only the use of the Sp(k2)
invariant tensor J allows to define h = (X, JY ) that transforms suitably.

An important concept is the classification of 3d N = 4 theories as good, ugly, or bad
based on the balance of the gauge groups [62]. For a quiver with a G = U(n), SO(n), Sp(n)
gauge node which is connected to Nf fundamental flavours, the node is good if

for U(n) : Nf ≥ 2n , for SO(n) : Nf ≥ n− 1 , for Sp(n) : Nf ≥ n+ 1 . (A.6)

If the equality holds, the node is called balanced and Coulomb branch global symmetry
is expected to be enhanced to some non-abelian group due to monopole operators. If the
inequality is strict, the node is referred to as over-balanced.

A.3 Brane realisation of line defects

3d N = 4 SCFTs admit two physically distinct classes of half-BPS line defects that are
supported on a straight line in a flat space. The preserved symmetries distinguish these. As
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detailed in [33], superconformal line defects with support on a time-like line are invariant
under either a U(1, 1|2)W or U(1, 1|2)V subalgebra of the full 3d N = 4 superconformal
algebra OSp(4|4).

Given a UV Lagrangian description of a 3d N = 4 SCFT, a line defect can be made
invariant under half of the supercharges of the 3d N = 4 Poincaré supersymmetry algebra
of the UV theory.

There are two inequivalent 1d N = 4 supersymmetric quantum mechanics (SQM)
subalgebras of the 3d N = 4 Poincaré subalgebra that can be preserved by a line defect.
SQMW preserves U(1)C × SU(2)H , while SQMV preserves SU(2)C ×U(1)H .

In a 3d N = 4 gauge theory, two classes of line defects can be defined, one of which
preserves SQMW , while the other preserves SQMV . These line defects are then expected
to flow to superconformal defects in the IR, which preserve U(1, 1|2)W or U(1, 1|2)V ,
respectively.

Both classes of supersymmetric line defect can be realised in a UV 3d N = 4 theory as
follows: a certain 1d N = 4 SQM theory is coupled to the bulk 3d N = 4 theory. Such a
coupling is canonically realised by gauging the flavour symmetries of the SQM theory with
3d N = 4 vector multiplets. In addition, superpotential couplings between the defect and
bulk fields need to be specified in the construction. For this work, the relevant line defects
are realised in brane configurations.

Brane realisation of a Wilson line defect. A Wilson line defect can be introduced by
an F1 string stretched along one of the x3,4,5 directions; to be specific, say F1 is extended
along the x5 direction. On one side, the F1 ends on a D3 brane stack. The inclusion of the
F1 breaks the rotational symmetries in (A.1) further to

SO(3)3,4,5 × SO(3)7,8,9 → SO(2)3,4 × SO(3)7,8,9 ⊂ U(1)C × SU(2)H (A.7)

which is compatible with the SQMW subalgebra.
On the other end, the F1 can be terminated on a D5 or D5′ brane without breaking any

further supersymmetries, see figure 4. Depending on D5 or D5′, the representation of the
Wilson line changes [33], as reviewed now. (See also [84–86] for an earlier brane realisation
of Wilson loops.)

Suppose an F1 is stretched between a stack of N D3s and a D5′ brane. The quantisation
of the open string states between the D3 and the D5′ gives rise to a 1d complex Fermion in
the bifundamental representation of U(1)× U(N), with mass m ∼ x5 set by the location of
the D5′. Considering k F1s and integrating out the Fermions gives rise to the insertion of a
supersymmetric Wilson loop operator in the k-th antisymmetric representation Λk of U(N).
In terms of branes, the weights of Λk are realised by the different ways the k F1s can be
suspended between the D3 and D5′. The s-rule dictates that there can only be 0 or 1 F1
stretched between the same pair of D3 and D5′ branes.

Analogously, the quantisation of an F1 between a stack of N D3s and a D5 brane
gives rise to a heavy hypermultiplet in the bifundamental representation of U(1)×U(N).
Considering k F1s and integrating out the heavy hypermultiplets yields the insertion of a
supersymmetric Wilson loop operator in the symmetric representation Sk of U(N). The
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IIB 0 1 2 3 4 5 6 7 8 9

NS5 × × × × × ×
D3 × × × ×
D5 × × × × × ×
F1 × ×
D5′ × × × × × ×

← R1,2 → R2
3,4︸︷︷︸

	U(1)C

← R3
7,8,9 →︸ ︷︷ ︸

	SU(2)H

(a)

. . .
F1

N D3

D5/D5′

x6

x5

(b)

Figure 4. Brane realisation of Wilson line defects.

IIB 0 1 2 3 4 5 6 7 8 9

NS5 × × × × × ×
D3 × × × ×
D5 × × × × × ×
D1 × ×
NS5′ × × × × × ×

← R1,2 → ← R3
3,4,5 →︸ ︷︷ ︸

	SU(2)C

R2
7,8︸︷︷︸

	U(1)H

(a)

· · ·
D1

N D3

NS5/NS5′

x6

x9

(b)

Figure 5. Brane realisation of vortex line defects.

weights of Sk are manifest in the brane configuration due to the s-rule. The number of F1s
between the same pair of a D3 and a D5 is not restricted.

Brane realisation of a vortex line defect. A vortex line defect, as a natural candidate
for a 3d mirror of a Wilson line, is constructed from a D1 string stretched along one of
the x7,8,9 directions; to be specific, D1 is extended along the x9 direction. On one end,
the D-string ends on a stack of D3 branes. The addition of the D1 breaks the rotational
symmetries in (A.1) further to

SO(3)3,4,5 × SO(3)7,8,9 → SO(3)3,4,5 × SO(2)7,8 ⊂ SU(2)C ×U(1)H (A.8)

which is compatible with the SQMV subalgebra.
On the other end, the D1 can end on an NS5 or NS5′ brane without breaking super-

symmetry further, see figure 5. Depending on the type of 5-brane, the properties of the 1d
defect theory changes. (See also [87] for a brane realisation of codimension 2 defects in 4d,
based on [88].)

To derive the 1d N = 4 gauge theory description of the vortex defect, it is convenient
to align the defect branes, i.e. the D1s and the additional 5-branes, with either one of the
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nearest NS5 branes in the main brane configuration. As evident from figure 5b, there are,
in general, two NS branes that are closest. This gives rise to a 1d theory defined by moving
the defect to the nearest NS5 brane on the left-hand side and another 1d theory by moving
to the right-hand side.

Gauge theory parameters have an interpretation in the brane setup. The distance of
the NS5/NS5′ in x9 direction gives the inverse gauge coupling. The relative distance in x6

direction yields the FI parameter for the 1d theory. Therefore, figure 5b can be understood
as the FI > 0 deformation of the 1d theory associated to the left NS5, or as the FI < 0
deformation of the 1d theory associated to the right NS5.

According to [33], the 1d N = 4 quiver gauge theory is read off by the following rules:
• A stack of k D1s between an NS5 and an NS5′ yields a U(k) vector multiplet.
• A stack of k D1s between two NS5s of two NS5′ branes yields a U(k) vector multiplet

and an adjoint chiral multiplet.
• an NS5 or NS5′ with k1 D1s ending from one side and k2 D1s ending from the other

side gives rise to a chiral multiplet in the bifundamental representation k1 ⊗ k2 of
U(k1)×U(k2) and a chiral multiplet in the anti-bifundamental representation k1⊗k2.

• For k D1s ending on an NS5 in the main brane configuration, which has NL D3s
ending from the left and NR D3s ending from the right, we associate a bifundamental
NR⊗k chiral multiplet of U(NR)×U(k) and a bifundamental k⊗NL chiral multiplet
of U(k)×U(NL).

To exemplify the notation relevant for this paper, consider the following brane setup:

. . . . . .
NL D3 NR D3

D1

NS5/NS5′

U(NL) U(NR)

U(1)

1d
3d

(A.9)

such that the arrow of the chiral multiplet points towards the gauge node in which it
transforms in the fundamental representation.

Adding an O3 plane along the stack of D3 branes affects 3d low-energy theory by
projecting the gauge groups to orthogonal and symplectic groups. In contrast, the gauge
group of the 1d SQM is not affected by the orientifold projection as the D1 branes are
suspended between NS5 branes without crossing the orientifold.

B Superconformal index

In section 3, we study the two theories mirror dual to the 3d N = 4 Sp(k) SQCD with Nf

flavours. Following the computational recipe in section 2.1, we calculate the superconformal
indices of the 3d unitary and orthosymplectic mirror quivers in section 3.1, respectively,
and check the agreement perturbatively. Here, we summarise the matching results of the
superconformal indices in table 3.
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k Nf superconformal index

1 3
1 +√q

(15
t2

+ t2
)

+ q

(
−17 + 84

t4
+ 3t4

)
+ q3/2

(300
t6
− 173

t2
− 2t2 + 3t6

)
+ q2

(
138 + 825

t8
− 707

t4
− 2t4 + 5t8

)
+ · · ·

1 4
1 + 28√q

t2
+ q

(
−29 + 300

t4
+ 2t4

)
+ q3/2

(1925
t6
− 649

t2
− t2 + t6

)
+ q2

(
376 + 8918

t8
− 5643

t4
− t4 + 3t8

)
+ · · ·

1 5
1 + 45√q

t2
+ q

(
−46 + 770

t4
+ t4

)
+ q3/2

(7644
t6
− 1714

t2
+ t6

)
+ q2

(
988 + 52920

t8
− 24574

t4
− t4 + 2t8

)
+ · · ·

1 6
1 + 66√q

t2
+ q

(
−67 + 1638

t4
+ t4

)
+ 4q3/2

(5775
t6
− 929

t2

)
+ q2

(222156
t8

− 78299
t4

+ 2143 + 2t8
)

+ · · ·

2 4
1 +√q

(28
t2

+ 3t2
)

+ q

(335
t4

+ 52 + 6t4
)

+ q3/2
(2492

t6
+ 104

t2
+ 48t2 + 13t6

)
+ q2

(13524
t8
− 2524

t4
− 96 + 40t4 + 23t8

)
+ · · ·

2 5 1 +√q
(45
t2

+ t2
)

+ q

(
−2 + 980

t4
+ 3t4

)
+ · · · .

2 6 1 + 66√q
t2

+ · · ·

Table 3. Superconformal index for the unitary and orthosymplectic mirrors of Sp(k) with Nf
flavours.

C Twisted indices

Twisted indices for 3d N = 4 theories have been introduced in section 2.2. In this appendix,
computational results supporting the statements in the main text are presented.

C.1 A-twisted index Sp(1), Nf = 3, 4, 5, 6 flavours and vortex defect

Analogously to [33], the vortex line is introduced via a 1d SQM coupled to the 3d theory
as in (3.10). The A-twisted indices of the Sp(1) theory with Nf = 3, . . . , 6 in presence of
vortex lines are presented in table 4. The notation for the splitting L+ (Nf − L) indicates
that L flavours couple to the 1d SQM.

As a remark, comparing B-twisted indices of the mirror theories with Wilson line defects
and the A-twisted indices in table 4, we need to take care of some prefactors. In section 3.2,
the B-twisted index has been computed via the Higgs branch Hilbert series with insertion
of a Wilson line. The twisted index and the Hilbert series match up to overall prefactors;
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P
0
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2
0
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2
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Vortex line A-twisted index

3+0 − t(1+t2)
(−1+t2)2(1+t)2

2+1 − 2t2
(−1+t)2(1+t)2

1+2 − t(1+t2)
(−1+t2)2

0+3 (1+t2)2

2(−1+t2)2

(a) Nf = 3

Vortex line A-twisted index

4+0 − t2(1+t2)
(−1+t2)2(1+t2)

3+1 2t3
(−1+t2)2(1+t2)

2+2 t2

(−1+t)2(1+t)2

1+3 t(1+t4)
(−1+t)2(1+t)2(1+t2)

0+4 −(1+t4)
2(−1+t2)2

(b) Nf = 4

Vortex line A-twisted index

5+0 t3(1+t2)
(−1+t)2(1+t)2(1−t+t2)(1+t+t2)

4+1 − 2t4
(−1+t)2(1+t)2(1−t+t2)(1+t+t2)

3+2 t3(1+t2)
(−1+t)2(1+t)2(1−t+t2)(1+t+t2)

2+3 − t2(1+t4)
(−1+t)2(1+t)2(1−t+t2)(1+t+t2)

1+4 t(1+t2)(1−t2+t4)
(−1+t)2(1+t)2(1−t+t2)(1+t+t2)

0+5 − (1+t2)2(1−t2+t4)
2(−1+t)2(1+t)2(1−t+t2)(1+t+t2)

(c) Nf = 5

Vortex line A-twisted index

6+0 − t4(1+t2)
(−1+t)2(1+t)2(1+t2)(1+t4)

5+1 2t5
(−1+t)2(1+t)2(1+t2)(1+t4)

4+2 − t4

(−1+t)2(1+t)2(1+t4)

3+3 t3

(−1+t)2(1+t)2(1+t2)

2+4 − t2(1−t2+t4)
(−1+t)2(1+t)2(1+t4)

1+5 t(1+t8)
(−1+t)2(1+t)2(1+t2)(1+t4)

0+6 − 1+t8
2(−1+t)2(1+t)2(1+t4)

(d) Nf = 6

Table 4. A-twisted index for Sp(1) with Nf flavours in the presence of a vortex line defect
characterised by a splitting L+ (Nf − L) and the fundamental representation of Sp(1).

A B C
1 1 1

1 1

A,C t
(1−t)2(1+t)2

B 2t2
(−1+t)2(1+t)2(1+t2)

Table 5. Sp(1) with Nf = 3. B-twisted index with Wilson lines added at the labelled position in
the quiver.

see [45]. Likewise, the computations in table 4 display the A-twisted index, which again is
related to a Coulomb branch Hilbert series by overall factors.

C.2 B-twisted index for mirrors of Sp(k) and Wilson defect

This appendix provides the computational results for the B-twisted index for the 3d mirrors
of Sp(k) SQCD in the presence of Wilson line defects, see tables 5–11.
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2

1

1

1
A B

C

D

1

A,C,D t2

(−1+t)2(1+t)2(1+t2)

B t
(−1+t)2(1+t)2

Table 6. Sp(1) with Nf = 4. B-twisted index with Wilson lines added at the labelled position in
the quiver.

2 2

1

1

1

1

A B C

D

E

A t2(1−t8)
(1−t4)2(1−t6)

B t(1−t8)
(1−t2)(1−t4)(1−t6)

C t2(1−t4)
(1−t2)2(1−t6)

D, E t3

(1−t2)(1−t6)

Table 7. Sp(1) with Nf = 5. B-twisted index with Wilson lines added at the labelled position in
the quiver. This is also the E5 family for k = 1.

2 2

1

1

21
A B C D

E

F

1
A t2(t4−t2+1)

(t−1)2(t+1)2(t2+1)(t4+1)

B t(t4−t2+1)
(t−1)2(t+1)2(t4+1)

C t2

(t−1)2(t+1)2(t2+1)

D t3

(t−1)2(t+1)2(t4+1)

E,F t4

(t−1)2(t+1)2(t2+1)(t4+1)

Table 8. Sp(1) with Nf = 6. B-twisted index with Wilson lines added at the labelled position in
the quiver.
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D

C

1 2

1

2

A B

2 A,D 2t3(1+t2)(1+t4)
(−1+t)4(1+t)4(1−t+t2)2(1+t+t2)2

B 2t2(1+t2)2(1+t4)
(−1+t)4(1+t)4(1−t+t2)2(1+t+t2)2

C 2t(1+t2)(1+t4)2

(−1+t)4(1+t)4(1−t+t2)2(1+t+t2)2

Table 9. The Higgs branch of Sp(2) with Nf = 4 consists of two identical cones. The Coulomb
branch of this quiver is one of the two cones. B-twisted index with Wilson lines at the labelled
position in the quiver.

E

D

2 3

2

2

1
A B C

1

1

A 2t4(1−t2+t4)
(−1+t)4(1+t)4(1+t2)2(1+t4)

B 2t3(1−t2+t4)
(−1+t)4(1+t)4(1+t2)(1+t4)

C 2t2(1−t+t2)(1+t+t2)(1−t2+t4)
(−1+t)4(1+t)4(1+t2)2(1+t4)

D,E t(1−t2+t4)
(−1+t)4(1+t)4(1+t2)

Table 10. Sp(2) with Nf = 5. B-twisted index with Wilson lines at the labelled position in the
quiver.

3 4

2

2

21

1

A B C D

E

F

A t4(t8+1)
(t−1)4(t+1)4(t2+1)2(t2−t+1)(t2+t+1)(t4+1)

B t3(t8+1)
(t−1)4(t+1)4(t2+1)(t2−t+1)(t2+t+1)(t4+1)

C t2(t8+1)
(t−1)4(t+1)4(t2+1)2(t4+1)

D t(t8+1)
(t−1)4(t+1)4(t2+1)(t2−t+1)(t2+t+1)

E, F t2(t8+1)
(t−1)4(t+1)4(t2+1)2(t2−t+1)(t2+t+1)

Table 11. Sp(2) with Nf = 6. B-twisted index with Wilson lines at the labelled position in
the quiver.

C.3 Wilson lines for exceptional families

For Sp(k) SQCD theories, the unitary 3d mirror can be read off from a D3-D5-NS5 brane set
up in the presence of O5 orientifold planes. The NS5 branes carry non-dynamical degrees
of freedom and are therefore seen as flavour nodes in the quiver. On the other hand, E6,7,8
unitary quivers are obtained from (p, q) 5-brane, [p, q] 7-brane settings where all 5-branes
carry dynamical degrees of freedom. As a result, magnetic quivers obtained from brane
webs are all unframed. For unitary unframed quivers, a choice needs to be made as to
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1 1

11

A B

A, B t
(−1+t)2(1+t+t2)

Table 12. E3 family for k = 1. B-twisted index with Wilson lines at the labelled position in
the quiver.

2 2

1

1

1

1

A B C

D

E

1
A t(1+t4)(1+t3−t4+t5+t8)

(−1+t)4(1+t)2(1+t2)(1−t+t2)(1+t+t2)(1+t+t2+t3+t4+t5+t6)

B t(1+t4)(1+t3+t6)
(−1+t)4(1+t)2(1−t+t2)(1+t+t2)(1+t+t2+t3+t4+t5+t6)

C t2(1+t2)(1+t3+t6)
(−1+t)4(1+t)2(1−t+t2)(1+t+t2)(1+t+t2+t3+t4+t5+t6)

D, E t3(1+t3+t6)
(−1+t)4(1+t)2(1−t+t2)(1+t+t2)(1+t+t2+t3+t4+t5+t6)

Table 13. E3 family for k = 2. B-twisted index with Wilson lines at the labelled position in
the quiver.

where to gauge an overall U(1) that corresponds to fixing the centre of mass of the brane
system. For two different choices of ungauging, a Wilson line placed at the same position in
the quiver can result in two different B-twisted indices.

We wish to ungauge on an U(1) so that the resulting quiver has an explicit flavour group.
Otherwise, as described in section 4.3, a Wilson line in the fundamental representation
of a single gauge group in an unframed quiver is not invariant under the discrete 1-form
symmetry and the B-twisted index is zero. In this paper, we focused on the En exceptional
families with n ≤ 7. For k = 1, all unitary quivers are affine Dynkin diagrams of en. Due to
the symmetry of these quivers, ungauging any of the U(1)s will give the same B-twisted
index. For k > 1, the quivers are no longer affine Dynkin diagrams but with one of the tails
extended. This extended tail is often called a T [SU(N)] tail as it is a sequence of nodes
with increasing ranks (in steps of one) that begins with U(1) and ends with U(N) for some
N . As we see in section 3, a Wilson line on the U(1) in the long T [SU(N)] tail is always
required in order to match with a Wilson line on a SO(even) node in the orthosymplectic
counterpart. Hence, we will not ungauge the U(1) node in the T [SU(N)] tail. As a result,
for the E7 family, the U(1) node to be ungauged is the one away from the extended tail. For
En and n ≤ 6, there are two U(1) nodes away from the extended tail and, since the quiver
has reflection symmetry, we can choose either one of them to be ungauged. With these
choices of ungauging, we can find a nice matching with the Wilson lines on the unframed
orthosymplectic quivers as shown in section 4.3. Examples of B-twisted indices with Wilson
lines in this ungauging scheme at various gauge groups are given in table 12–18.
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432 3 1

2 1

1

1

A B C D E F

G

A

(1−t)


t5(1+2t+3t2+4t3+5t4+6t5+8t6+10t7+12t8+13t9+14t10+15t11+17t12

+18t13+19t14+19t15+19t16+18t17+17t18+15t19+14t20+13t21

+12t22+10t23+8t24+6t25+5t26+4t27+3t28+2t29+t30)


(1−t2)(1−t3)(1−t6)(1−t7)(1−t8)(1−t10)(1−t11)

B

(1−t)(1−t4)


t4(1+2t+3t2+4t3+5t4+6t5+8t6+10t7+12t8+13t9+14t10+15t11+17t12

+18t13+19t14+19t15+19t16+18t17+17t18+15t19+14t20+13t21

+12t22+10t23+8t24+6t25+5t26+4t27+3t28+2t29+t30)


(1−t2)2(1−t3)(1−t6)(1−t7)(1−t8)(1−t10)(1−t11)

C

(1−t)


t3(1+2t+3t2+4t3+5t4+6t5+8t6+10t7+12t8+13t9+14t10+15t11+17t12

+18t13+19t14+19t15+19t16+18t17+17t18+15t19+14t20+13t21

+12t22+10t23+8t24+6t25+5t26+4t27+3t28+2t29+t30)


(1−t2)2(1−t3)(1−t7)(1−t8)(1−t10)(1−t11)

D

(1−t)


t2(1+2t+3t2+4t3+5t4+6t5+8t6+10t7+12t8+13t9+14t10+15t11+17t12

+18t13+19t14+19t15+19t16+18t17+17t18+15t19+14t20+13t21

+12t22+10t23+8t24+6t25+5t26+4t27+3t28+2t29+t30)


(1−t2)2(1−t3)(1−t6)(1−t7)(1−t10)(1−t11)

E

(1−t)


t(1−t2+t4)(1+2t+3t2+4t3+5t4+6t5+8t6+10t7+12t8+13t9+14t10+15t11+17t12

+18t13+19t14+19t15+19t16+18t17+17t18+15t19+14t20+13t21

+12t22+10t23+8t24+6t25+5t26+4t27+3t28+2t29+t30)


(1−t2)2(1−t3)(1−t7)(1−t8)(1−t10)(1−t11)

F

t(1−t)
(
1−t3+t6

)


1+2t+3t2+5t3+6t4+8t5+9t6+10t7+12t8+13t9+14t10+15t11

+16t12+17t13+17t14+17t15+17t16+17t17+16t18+15t19+14t20+13
t21+12t22+10t23+9t24+8t25+6t26+5t27+3t28+2t29+t30


(1−t3)(1−t4)2 (1−t6)(1−t7)(1−t10)(1−t11)

G

(1−t)t3


(1+2t+3t2+4t3+5t4+6t5+8t6+10t7+12t8+13t9+14t10

+15t11+17t12+18t13+19t14+19t15+19t16+18t17+17t18+15t19

+14t20+13t21+12t22+10t23+8t24+6t25+5t26+4t27+3t28+2t29+t30)


(1−t2)(1−t3)(1−t4)(1−t6)(1−t7)(1−t10)(1−t11)

Table 14. E3 family for k= 3. B-twisted index with Wilson lines at the labelled position in
the quiver.
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1111

11

A B C D

A, D t(1−t+t2)
(−1+t)2(1+t+t2+t3+t4)

B, C t2

(−1+t)2(1+t+t2+t3+t4)

Table 15. E4 family for k = 1. B-twisted index with Wilson lines at the labelled position in
the quiver.

321 2 1

2

1
1

A B C D E

F

A t4(1+t+t2+t3+t4+t5+t6+t7+t8+t9+t10+t11+t12)
(−1+t)4(1+t)2(1+t2)(1−t+t2)(1+t+t2)2(1+t+t2+t3+t4)(1+t3+t6)

B t3(1+t+t2+t3+t4+t5+t6+t7+t8+t9+t10+t11+t12)
(−1+t)4(1+t)2(1−t+t2)(1+t+t2)2(1+t+t2+t3+t4)(1+t3+t6)

C t2(1+t+t2+t3+t4+t5+t6+t7+t8+t9+t10+t11+t12)
(−1+t)4(1+t)2(1+t2)(1+t+t2)(1+t+t2+t3+t4)(1+t3+t6)

D t2(1+t+t3+t4+t5+t6+t7+t8+t9+t10+t11+t13+t14)
(−1+t)4(1+t)2(1−t+t2)(1+t+t2)2(1+t+t2+t3+t4)(1+t3+t6)

E t(1+t2+t3+t5+t7+t8+t9+t10+t11+t13+t15+t16+t18)
(−1+t)4(1+t)2(1+t2)(1−t+t2)(1+t+t2)2(1+t+t2+t3+t4)(1+t3+t6)

F t(1−t2+t4)(1+t2+t3+t4+2t5+t6+2t7+t8+t9+t10+t12)
(−1+t)4(1+t)2(1−t+t2)(1+t+t2)2(1+t+t2+t3+t4)(1+t3+t6)

Table 16. E4 family for k = 2. B-twisted index with Wilson lines at the labelled position in
the quiver.

321 2 1

2

1

A B C D E

F

A, E t4

(1−t4)(1−t6)

B, D t3

(1−t2)(1−t6)

C t2

(1−t2)(1−t4)

F t(1−t12)
(1−t4)(1−t6)2

Table 17. E6 family for k = 1. B-twisted index with Wilson lines at the labelled position in
the quiver.
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432 3 2

2

11
A B C D E F

G

A t6

(1−t6)(1−t8)

B t5(1−t4)
(1−t2)(1−t6)(1−t8)

C t4

(1−t2)(1−t8)

D t3

(1−t2)(1−t6)

E t2(1−t12)
(1−t4)(1−t6)(1−t8)

F t(1−t20)
(1−t6)(1−t8)(1−t10)

G t4

(1−t4)(1−t6)

Table 18. E7 family for k = 1. B-twisted index with Wilson lines at the labelled position in
the quiver.

D Sphere partition function

In this appendix, we provide the computations and results of S3 partition functions both
with and without line defects for 3d N = 4 theories relevant in this paper.

D.1 Sp(k) SQCDs and their mirrors

Sp(k) SQCD. The S3 partition function for Sp(k) SQCD with Nf fundamental hyper-
multiplets is given by

ZS
3

Sp(k),Nf (m) = lim
ξ→0

∫
[ds]e

2πiξ
∑k

i=1 si
∏
α∈∆ sh(α · s)∏Nf

j=1
∏
w∈� ch(w · s−mj)

=
∑

I∈C
Nf
k

k∏
j=1

mIj sh(2mIj )∏
`6∈I sh(m` ±mIj )

, (D.1)

where I runs over all combinations CNfk of k different integers in {1, . . . , Nf}. From the
first to the second line, we take poles at

sj = ±mIj + i
2kj + 1

2 , kj ∈ Z≥0 (D.2)

and their permutations Sk on I. Then, we take the limit ξ → 0 by using L’Hospital’s rule
to obtain the second line.

Vortex loops in Sp(k) SQCD. The partition function of the U(1) supersymmetric
quantum mechanics for a vortex defect of type Nf = L+ (Nf − L) in (3.10) is given by

Z(L,Nf−L),2k(z) =
∑
wi∈�

∏
j 6=i

sh(wi · s− wj · s+ iz)
sh(wi · s− wj · s)

L∏
`=1

ch(wi · s−m`)
ch(wi · s−m` + iz) . (D.3)
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Note that the fundamental representation of Sp(k) is 2k-dimensional so that (D.3) is the
sum of 2k terms. Due to the factors ch(wi · s − mk + iz) in the denominator, some of
the poles in (D.2) are shifted by −i. The explicit evaluations of the residues yield the S3

partition function with the vortex loop

ZS
3

(L,Nf−L),2k = lim
ξ→0,z→1

∫
[ds]e

2πiξ
∑k

i=1 si
∏
α∈∆ sh(α · s)∏Nf

j=1
∏
w∈� ch(w · s−mj)

Z(L,Nf−L),2k(z) ,

= (2k − L) · ZS3

Sp(k),Nf (m) +
L∑
j=1

ZS
3

Sp(k),Nf (mj → mj − i) . (D.4)

1

ξ1 − ξ2

2 2

ξ3 − ξ4
. . .

2

1
ξNf−1 − ξNf

1
ξNf−1 + ξNf

1

ξ2 − ξ3

(D.5)

The mirror unitary quiver is the DNf -type quiver (D.5) and the equivalence of the S3

partition functions can be derived for k = 1. Note that (D.4) at k = 1 is

ZS
3

(L,Nf−L),2 =
L∑
j=1

(2mj − i) sh(2mj)∏
6̀=j sh(m` ±mj)

+
Nf∑

k=L+1

(2mk) sh(2mk)∏
`6=k sh(m` ±mk)

. (D.6)

The derivation is almost the same as in [56, section 3.2] so that we refer the reader to it for
more detail.

D-type quiver. The S3 partition function of the D-type quiver is

ZS
3

D = 1
2Nf−3

∫
dz(1)dz±

Nf−2∏
j=2

dz
(j)
1 dz

(j)
2

e2πi(ξ1−ξ2)z(1)
e

2πi
∑Nf−2

j=2
(ξj−ξj+1)(z(j)

1 +z(j)
2 )

e
2πi(ξNf−1±ξNf

)z±∏
i=1,2 ch(z(2)

i −z(1))ch(z(2)
i −m)ch(z(Nf−2)

i −z±)

×
∏Nf−2
j=2 sh2(z(j)

1 −z
(j)
2 )∏Nf−3

j=2

∏
k,`=1,2 ch(z(j)

k −z
(j+1)
` )

(D.7)

= 1
2

1
sh(ξ1−ξ2)sh(ξNf−1−ξNf )

∫
dz+

Nf−2∏
j=2

dz
(j)
1 dz

(j)
2

e
2πi
∑Nf−2

j=2
(ξj−ξj+1)(z(j)

1 +z(j)
2 )

e
2πi(ξNf−1+ξNf

)z+∏
i=1,2 ch(z(2)

i −m)ch(z(Nf−2)
i −z+)

×

(
e2πi(ξ1−ξ2)z(2)

1 −e2πi(ξ1−ξ2)z(2)
2

)(
e

2πi(ξNf−1−ξNf
)z

(Nf−2)
1 −e2πi(ξNf−1−ξNf

)z
(Nf−2)
2

)
∏Nf−3
j=2

∏
i=1,2 ch(z(j)

i −z
(j+1)
i )

. (D.8)
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From the first and the second line, we apply the Cauchy determinant formula and use the
T [SU(2)] formula. Now we take the Fourier transform of each ch

ZS
3

D = 1
2

1
sh(ξ1−ξ2)sh(ξNf−1−ξNf )∫
dz+

Nf−2∏
j=2

dz
(j)
1 dz

(j)
2 e2πi

∑Nf−2
j=2 (ξj−ξj+1)(z(j)

1 +z(j)
2 )e

2πi(ξNf−1+ξNf )z+

(
e2πi(ξ1−ξ2)z(2)

1 −e2πi(ξ1−ξ2)z(2)
2

)(
e

2πi(ξNf−1−ξNf )z
(Nf−2)
1 −e2πi(ξNf−1−ξNf )z

(Nf−2)
2

)
∫

ds1ds2
chs1 chs2

e
2πi
(
s1(z(2)

1 −m)+s2(z(2)
2 −m)

)∫
dp1dp2

chp1 chp2
e

2πi
(
p1(z

(Nf−2)
1 −z+)+p2(z

(Nf−2)
2 −z+)

)
∫ Nf−3∏

j=2

dt
(j)
1 dt

(j)
2

ch t(j)1 ch t(j)2
e

2πi
∑Nf−3

j=2

(
t
(j)
1 (z(j)

1 −z
(j+1)
1 )+t(j)

2 (z(j)
2 −z

(j+1)
2 )

)
. (D.9)

Expanding the second line, we have four terms and let us focus on the term proportional

to e2πi(ξ1−ξ2)z(2)
1 +2πi(ξNf−1−ξNf )z

(Nf−2)
1 . Performing the integrals over the variables z+ z

(j)
i

(i = 1, 2 j = 2, . . . , Nf − 2), we obtain delta functions which impose the relations

s2 =−ξ2−s1 , p1 = ξNf−s1 , p2 = ξNf−1+s1 , t
(j)
1 = s1−ξj+1 , t

(j)
2 =−s1−ξj+1 ,

(D.10)

where we shift s1 → s1 − ξ1. The other three terms impose similar relations where ξ1 ↔ ξ2
and ξNf−1 ↔ ξNf . Finally, we obtain

ZS
3

D = e2πi(ξ1+ξ2)m

sh(ξ2 − ξ1) sh(ξNf−1 − ξNf )

∫
ds1

1∏Nf−2
j=2 ch(s1 ± ξj)

×
( 1

ch(s1 − ξ1) ch(s1 + ξ2) −
1

ch(s1 + ξ1) ch(s1 − ξ2)

) 1
ch(s1 − ξNf−1) ch(s1 + ξNf )

= e2πi(ξ1+ξ2)m
Nf∑
i=1

ξi sh(2ξi)∏
k 6=i sh(ξk ± ξi)

. (D.11)

Taking the limit m→ 0, it agrees with the S3 partition function of the Sp(1) SQCD with
Nf flavours under the exchange of the FI and mass parameters ξi ↔ mi.

Wilson loops in D-type quiver. Now let us include a fundamental Wilson loop in the
L-th gauge node from the left in (D.5). For L = 1, the fundamental Wilson loop amounts to
the shift ξ1 → ξ1− i. Hence, the sum of the Wilson loop at the left U(1) gauge group (3.13a)
and the flavour Wilson loop (3.13b) is

ZS
3

W at [1,0,...,0,0] + ZS
3

D = (2ξ1 − i) sh(2ξ1)∏
`6=1 sh(ξ` ± ξ1) +

Nf∑
j=2

(2ξj) sh(2ξj)∏
` 6=j sh(ξ` ± ξj)

, (D.12)
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which agrees with the vortex (D.6) of the 1 + (Nf − 1) splitting under ξ ↔ m. For
2 ≤ L ≤ Nf − 2, the relations in (D.10) are modified so that

ZS
3

W at [0,...,0,1,0,...,0]

= 1
sh(ξ2−ξ1)sh(ξNf−1−ξNf )

∫
ds1

1∏Nf−2
k=L+1 ch(s1±ξk)

∏L
j=2 ch(s1−ξj−i)ch(s1+ξj)

×
( 1

ch(s1−ξ1−i)ch(s1+ξ2)−
1

ch(s1+ξ1)ch(s1−ξ2−i)

) 1
ch(s1−ξNf−1)ch(s1+ξNf )

+ 1
sh(ξ2−ξ1)sh(ξNf−1−ξNf )

∫
ds1

1∏Nf−2
k=L+1 ch(s1±ξk)

∏L
j=2 ch(s1−ξj)ch(s1+ξj−i)

×
( 1

ch(s1−ξ1)ch(s1+ξ2−i)
− 1

ch(s1+ξ1−i)ch(s1−ξ2)

) 1
ch(s1−ξNf−1)ch(s1+ξNf )

=
L∑
j=1

(2ξj−i)sh(2ξj)∏
6̀=j sh(ξ`±ξj)

+
Nf∑

k=L+1

(2ξk)sh(2ξk)∏
` 6=k sh(ξ`±ξk)

. (D.13)

This is equal to (D.6) under ξ ↔ m. The fundamental Wilson loop at the spinor node with
the FI parameter ξNf−1 − ξNf gives rise to the shift

ξj → ξj −
i

2 (j = 1, . . . , Nf − 1) , ξNf → ξNf + i

2 . (D.14)

The fundamental Wilson loop at the other spinor node with the FI parameter ξNf−1 + ξNf
gives rise to the shift

ξj → ξj −
i

2 , (j = 1, . . . , Nf ) . (D.15)

Therefore, the sum of the fundamental Wilson loop at spinor nodes (3.18) and (3.19) is

ZS
3

W at [0,...,1,0] + ZS
3

W at [0,...,0,1] =
Nf−1∑
j=1

(2ξj − i) sh(2ξj)∏
6̀=j sh(ξ` ± ξj)

+
(2ξNf ) sh(2ξNf )∏
` 6=Nf sh(ξ` ± ξNf ) , (D.16)

which corresponds to the vortex of the (Nf − 1) + 1 splitting in the mirror dual theory. The
Wilson loop with multiplicity two (3.21) at the node with the FI parameter ξNf−1 + ξNf is

2 · ZS3

W at [0,...,0,1] =
Nf∑
j=1

(2ξj − i) sh(2ξj)∏
`6=j sh(ξ` ± ξj)

, (D.17)

corresponding to the vortex of Nf + 0 splitting in the mirror dual theory.

1 2 2
. . .

2

1

1

1 SQM

(D.18)
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Vortex loops in D-type quiver. Let us evaluate the vortex contribution (D.18).

ZSQM =
∑
`=1,2

sh(z(2)
1 − z

(2)
2 − (−1)`iz)

sh(z(2)
1 − z

(2)
2 )

∏
j=1,2

ch(z(2)
` − z

(3)
j )

ch(z(2)
` − z

(3)
j + iz)

. (D.19)

This contribution amounts to a multiplication of a factor (e−2πt(2)
1 z + e−2πt(2)

2 z) to the
integrand of (D.9). Since the relations (D.10) stay as they are, the vortex expectation value is

ZS
3

D,V = 1
sh(ξ2 − ξ1) sh(ξNf−1 − ξNf )

∫
ds1

(e2πs1 + e−2πs1)∏Nf−2
j=2 ch(s1 ± ξj)

×
( 1

ch(s1 − ξ1) ch(s1 + ξ2) −
1

ch(s1 + ξ1) ch(s1 − ξ2)

) 1
ch(s1 − ξNf−1) ch(s1 + ξNf )

=
Nf∑
i=1

ξi sh(2ξi)(e2πξi + e−2πξi)∏
k 6=i sh(ξk ± ξi)

. (D.20)

It is easy to see that it is equivalent to the expectation value of the fundamental Wilson
loop in the Sp(1) SQCD. The derivation of the hopping duality is given in [33, section 5.6]
so that the vortex defects (3.27), (3.28), (3.29) are equivalent.

D-type quiver of higher rank. Let us briefly sketch the idea of how to obtain a closed-
form expression of the S3 partition function of the D-type quiver in (3.2) mirror to the Sp(k)
SQCD with Nf flavours. The left tail in (3.2) is the T [U(2k)] theory and its S3 partition
function is obtained in [56]. Also, the contribution from the spinor nodes can be read off
from the S3 partition function of the U(k) SQCD with 2k flavours (D.23). Consequently,
we have

Z = 1
(k!)Nf−2k−1

∫ Nf−2k−1∏
j=1

dz(j) e
2πi
∑Nf−2k−1

j=1 (ξ2k−1+j−ξ2k+j)(
∑

k=1
z

(j)
k

)∏Nf−2k−1
j=1

∏
n 6=` sh2(z(j)

n −z(j)
` )∏2k

n=1 ch(z(1)
n −m)

∏Nf−2k−2
j=1

∏2k
n,`=1 ch(z(j)

n −z(j+1)
` )

ZS
3

T [U(2k)](z(1), ξ)ZS3

U(k),Nf (z(Nf−2k−1), ξNf−1−ξNf )ZS3

U(k),Nf (z(Nf−2k−1), ξNf−1+ξNf ) .
(D.21)

Then, applying the Cauchy determinant formulas repeatedly, we have

Z = 1
shk(ξNf−1 ± ξNf )∏2k

n 6=` sh(ξn − ξ`)∫ Nf−2k−1∏
j=1

dz(j) e2πi
∑Nf−2k−1

j=1 (ξ2k−1+j−ξ2k+j)(
∑

k=1 z
(j)
k

)∏2k
n=1 ch(z(1)

n −m)∏Nf−2k−2
j=1

∏2k
n=1 ch(z(j)

n − z(j+1)
n )

∑
J∈C

Nf
k

e
2πi(ξNf−1−ξNf )(

∑k

j=1 mJj )∏k
j=1

∏
` 6∈I sh(m` −mIj )

∑
I∈C

Nf
k

e
2πi(ξNf−1+ξNf )(

∑k

j=1 mIj )∏k
j=1

∏
` 6∈I sh(m` −mIj )

. (D.22)

For any choice of I, J ∈ CNfk , we can further apply the Cauchy determinant formula so that
there is no sh in the numerator of the integrand. As before, using Fourier transformations
of 1/ ch and 1/ sh, we can obtain delta-functions by integrating the gauge fugacities. By
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performing Fourier integrals further, the formula simplifies to a combination of products of
the U(1) integral formula [56, section 2.2]. During the manipulation, we use the identity
sh(x) = −i ch(x+ i

2). In this way, we can evaluate the S3 partition function of the D-type
quiver of higher ranks, and we verify that it is equal to (D.1) up to a factor under ξi ↔ mi

when k = 2.

D.2 Other theories

Let us summarise closed-form expressions of sphere partition functions for familiar 3d N = 4
theories here. The S3 partition function of SQCDs for other gauge groups can be evaluated
as in (D.1).

U(k) SQCD. The S3 partition function of U(k) SQCD with Nf flavours with an FI
parameter ξ is

ZS
3

U(k),Nf (m, ξ) =
∑

I∈C
Nf
k

e
2πiξ(

∑k

j=1 mIj )

shk(ξ)∏k
j=1

∏
`6∈I sh(m` −mIj )

. (D.23)

If we turn off the FI parameter, it becomes

ZS
3

U(k),Nf (m) = lim
ξ→0

ZS
3

U(k),Nf (m, ξ) =
∑

I∈C
Nf
k

(∑k
j=1mIj )k∏k

j=1
∏
6̀∈I sh(m` −mIj )

. (D.24)

SO(2k) SQCD. Since SO(k) SQCD is not endowed with an FI parameter, we introduce
a regulator and take its zero limit as in (D.1). The resulting partition function is

ZS
3

SO(2k),Nf (m) =
∑

I∈C
Nf
k

(∑k
j=1mIj )k∏k

j=1 sh(mIj )
∏
` 6∈I sh(m` ±mIj )

. (D.25)

T [G] theory. We also calculate the S3 partition function for the T [G] theory [62]

ZS
3

T [G] = const
∏

α∈∆+

α ·m
sh(α ·m) . (D.26)

For A type, a closed-form expression with FI parameters is obtained in [56]. We take the
limit that the FI parameters are zero, and the constant is equal to

1
G(1 +N) = 1∏N−1

k=1 k!
,

where G(x) is the Barnes gamma function. For C and D types, we can also evaluate the
S3 partition function by introducing regulators repeatedly. We have checked (D.26) up to
T [SO(6)].
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